
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 18 (2013), no. 98, 1–14.
ISSN: 1083-6489 DOI: 10.1214/EJP.v18-3137

Internal DLA in higher dimensions
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Abstract

Let A(t) denote the cluster produced by internal diffusion limited aggregation (in-
ternal DLA) with t particles in dimension d ≥ 3. We show that A(t) is approximately
spherical, up to an O(

√
log t) error.
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In the process known as internal diffusion limited aggregation (internal DLA) one
constructs for each integer time t ≥ 0 an occupied set A(t) ⊂ Zd as follows: begin with
A(0) = ∅ and A(1) = {0}. Then, for each integer t > 1, form A(t + 1) by adding to A(t)

the first point at which a simple random walk from the origin hits Zd \A(t). Let Br ⊂ Rd
denote the ball of radius r centered at 0, and write Br := Br ∩Zd. Let ωd be the volume
of the unit ball in Rd. Our main result is the following.

Theorem 0.1. Fix an integer d ≥ 3. For each γ there exists an a = a(γ, d) < ∞ such
that for all sufficiently large r,

P
{
Br−a

√
log r ⊂ A(ωdr

d) ⊂ Br+a
√

log r

}c ≤ r−γ .
We treated the case d = 2 in [7] (see also the overview in [6]), where we obtained a

similar statement with log r in place of
√

log r. Together with a Borel-Cantelli argument,
these results in particular imply the following: let D(r) be the Hausdorff distance be-
tween the ball Br and the set A(ωdr

d) + [− 1
2 ,

1
2 ]d centered at points of the internal DLA

cluster. Then

Corollary 0.2. For each d ≥ 2 there is a constant a = a(d) such that

P {D(r) ≤ a(log r)α eventually} = 1

where

α =

{
1, d = 2
1
2 , d ≥ 3.
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Internal DLA in higher dimensions

These results show that internal DLA in dimensions d ≥ 3 is extremely close to
a perfect sphere: when the cluster A(t) has the same size as a ball of radius r, its
fluctuations around that ball are confined to the

√
log r scale (versus log r in dimension

2). A recent result of Asselah and Gaudillière [4] shows that Theorem 0.1 is sharp in the
sense that

√
log r cannot be replaced by any function that is o(

√
log r).

In [7] we explained that our method for d = 2 would also apply in dimensions d ≥ 3

with the log r replaced by
√

log r. We outlined the changes needed in higher dimen-
sions (stating that the full proof would follow in this paper) and included a key step:
Lemma A, which bounds the probability of “thin tentacles” in the internal DLA cluster
in all dimensions. The purpose of this note is to carry out the adaptation of the d = 2

argument of [7] to higher dimensions. We remark that in [7] we used an estimate from
[10] to start this iteration, while here we have modified the argument slightly so that
this a priori estimate is no longer required.

One way for A(ωdr
d) to deviate from the radius r sphere is for it to have a single

“tentacle” extending beyond the sphere. The thin tentacle estimate [7, Lemma A] es-
sentially says that in dimensions d ≥ 3, the probability that there is a tentacle of length
m and volume less than a small constant times md (near a given location) is at most
e−cm

2

. By summing over all locations, one may use this to show that the length of the
longest “thin tentacle” produced before time t is O(

√
log t). To complete the proof of

Theorem 0.1, we will have to show that other types of deviations from the radius r

sphere are also unlikely.
Lemma A of [7] was also proved for d = 2, albeit with e−cm

2

replaced by e−cm
2/ logm.

However, when d = 2 there appear to be other more “global” fluctuations that swamp
those produced by individual tentacles. (Indeed, we expect, but did not prove, that the
log r fluctuation bound is tight when d = 2.) We bound these other fluctuations in higher
dimensions via the same scheme introduced in [6, 7], which involves constructing and
estimating certain martingales related to the growth of A(t). It turns out the quadratic
variations of these martingales are, with high probability, of order log t when d = 2

and of constant order when d ≥ 3, closely paralleling what one obtains for the discrete
Gaussian free field (as outlined in more detail in [7]). The connection to the Gaussian
free field is made more explicit in [8].

Section 1 proves Theorem 0.1 by iteratively applying higher dimensional analogues
of the two main lemmas of [7]. The lemmas themselves are proved in Section 3, which
is the heart of the argument. Section 2 contains preliminary estimates about random
walks that are used in Section 3.

A brief history of internal DLA fluctuation bounds

In 1986, Meakin and Deutch [13] defined a closely related process which they
termed diffusion limited annihilation. In numerical experiments, they found that the av-
erage fluctuation (as opposed to the “worst case” fluctuation bounded by Theorem 0.1)
was of order

√
log r in dimension 2 and of constant order in dimension 3. Diaconis and

Fulton proposed internal DLA in its modern form in 1991 [5]. In 1992, Lawler, Bram-
son, and Griffeath proved that the limit shape of internal DLA from a point is the ball in
all dimensions [10]. In 1995 Lawler gave a more quantitative proof, showing that the
fluctuations of A(ωdr

d) from the ball of radius r are at most of order O(r1/3 log4 r) [11].
In December 2009, the present authors announced the bound O(log r) on fluctuations
in dimension d = 2 [6] and gave an overview of the argument, making clear that the
details remained to be written. In April 2010, Asselah and Gaudillière [1] gave a proof,
using different methods from [6], of the bound O(r1/(d+1)) in all dimensions, improving
the Lawler bound for all d ≥ 3. In September 2010, Asselah and Gaudillière improved
this to O((log r)2) in all dimensions d ≥ 2 with an O(log r) bound on “inner” errors [2]. In
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Internal DLA in higher dimensions

October 2010 the present authors proved the O(log r) bounds (announced in December
2009) for dimension d = 2 and outlined the proof of the O(

√
log r) bound for dimen-

sions d ≥ 3 [7]. In November 2010, Asselah and Gaudillière gave a second proof of
the O(

√
log r) bound [3]. Their proof uses methods from [2] along with Lemma A of [7]

to bound “outer” errors and a new large deviation bound (in some sense symmetric to
Lemma A) to bound “inner” errors.

More references and a more general discussion of internal DLA history appear in
[7].

1 Proof of Theorem 0.1

We recall the overall structure of the proof in [7]. The first step is to quantify how
early or late each point joins the cluster A(T ). Lemma 1.1, below, then says that an
early point is unlikely unless there is also a comparably late point. Lemma 1.2 says that
a late point is unlikely unless there is also a significantly earlier point. Since A(T ) is a
connected set of T lattice sites in Zd, we have A(T ) ⊂ BT , which gives an upper bound
on how early any point can be. Thus the region {m > T} at the top right of Figure 1
has probability 0. The other colored rectangles in Figure 1 are unlikely by Lemmas 1.1
and 1.2, so with high probability there are no very early or late points.

To make the above outline more precise, let m and ` be positive real numbers. We
say that x ∈ Zd is m-early if

x ∈ A(ωd(|x| −m)d),

where |x| =
(∑d

i=1 x
2
i

)1/2

, and ωd is the volume of the unit ball in Rd. Likewise, we say

that x is `-late if

x /∈ A(ωd(|x|+ `)d).

Let Em[T ] be the event that some point of A(T ) is m-early. Let L`[T ] be the event that
some point of B(T/ωd)1/d−` is `-late. These events correspond to “outer” and “inner”
deviations of A(T ) from circularity.

Lemma 1.1. (Early points imply late points) Fix a dimension d ≥ 3. For each γ ≥ 1,
there is a constant C0 = C0(γ, d), such that for all sufficiently large T , if m ≥ C0

√
log T

and ` ≤ m/C0, then

P(Em[T ] ∩ L`[T ]c) < T−10γ .

Lemma 1.2. (Late points imply early points) Fix a dimension d ≥ 3. For each γ ≥ 1,
there is a constant C1 = C1(γ, d) such that for all sufficiently large T , if m ≥ ` ≥
C1

√
log T and ` ≥ C1((log T )m)1/3, then

P(Em[T ]c ∩ L`[T ]) ≤ T−10γ .
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Internal DLA in higher dimensions

`
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T = m0

`0 = C(T log T )1/3

m1

`1

m2

Figure 1: Let mT be the largest m′ for which A(T ) contains an m′ early point. Let `T

be the largest `′ for which some point of B(T/ωd)1/d−`′ is `′-late. By Lemma 1.1, the pair
of random variables (`T ,mT ) is unlikely to belong to the semi-infinite rectangle in the
left figure if ` ≤ m/C0. By Lemma 1.2, (`T ,mT ) is unlikely to belong to the semi-infinite
rectangle in the second figure if ` ≥ C1((log T )m)1/3. Theorem 0.1 will follow because
the event {mT > T} is impossible and the other colored rectangles on the right are all
(by Lemmas 1.1 and 1.2) unlikely.

We now proceed to derive Theorem 0.1 from Lemmas 1.1 and 1.2. The lemmas
themselves will be proved in Section 3. Let C = max(C0, C1). We start with

m0 = T.

Note that A(T ) ⊂ BT , so P(ET [T ]) = 0. Next, for j ≥ 0 we let

`j = max(C((log T )mj)
1/3, C

√
log T )

and
mj+1 = C`j .

By induction on j, we find

P(Emj [T ]) < 2jT−10γ

P(L`j [T ]) < (2j + 1)T−10γ .

To estimate the size of `j , let K = C4 log T and note that `j ≤ `′j , where

`′0 = (KT )1/3; `′j+1 = max((K`′j)
1/3,K1/2).

Then
`′j ≤ max(K1/3+1/9+···+1/3j

T 1/3j

,K1/2)

so choosing J = log T we have

T 1/3J

< 2

and
`J ≤ 2K1/2 ≤ C

√
log T .

Setting T = ωdr
d, ` = `J and m = mJ , the event Em[T ]∪L`[T ] has probability at most

(4J + 1)T−10γ < T−9γ < r−γ .

We conclude that if a is sufficiently large, then

P
{
Br−a

√
log r ⊂ A(ωdr

d) ⊂ Br+a
√

log r

}
≤ P(Em[T ] ∪ L`[T ]) < r−γ

which completes the proof of Theorem 0.1.
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Internal DLA in higher dimensions

2 Green function estimates on the grid

This section assembles several Green function estimates that we need to prove Lem-
mas 1.1 and 1.2. The reader who prefers to proceed to the heart of the argument may
skip this section on a first read and refer to the lemma statements as necessary. Fix
d ≥ 3 and consider the d-dimensional grid

G = {(x1, . . . , xd) ∈ Rd : at most one xi /∈ Z}.

In many of the estimates below, we will assume that a positive integer k and a y ∈ Zd
have been fixed. We write

Ω = Ω(y, k) := G ∩B|y|+k\{y}.

For x ∈ Ω ∪ ∂Ω, let
P (x) = Py,k(x)

be the probability that a Brownian motion on the grid G (defined in the obvious way;
see [7]) starting at x reaches y before exiting B|y|+k. Note that P is grid harmonic in
Ω (i.e., P is linear on each segment of Ω \ Zd, and for each x ∈ Ω ∩ Zd, the sum of the
slopes of P on the 2d directed edge segments starting at x is zero). Boundary conditions
are given by P (y) = 1 and P (x) = 0 for x ∈ (∂Ω) \ {y}.

The point y plays the role that ζ played in [7], and Py,k plays the role of the discrete
harmonic function Hζ . One difference from [7] is that we will sometimes take k > 1

so that y lies inside the ball instead of on the boundary. As we explain in Section 3,
this extra parameter k (in particular, the gain of a factor of k in the lower bound of
Lemma 2.5(a)) is what enables the improved arithmetic in Lemma 1.2 which results in
fluctuation bounds of order

√
log T instead of log T in Theorem 0.1.

To estimate P we use the discrete Green function g(x), defined as the expected
number of visits to x by a simple random walk started at the origin in Zd. The well-
known asymptotic estimate for g is [14]∣∣g(x)− ad|x|2−d

∣∣ ≤ C|x|−d (2.1)

for dimensional constants ad and C (i.e., constants depending only on the dimension d).
We extend g to a function, also denoted g, defined on the grid G by making g linear on
each segment between lattice points. Note that g is grid harmonic on G \ {0}.

Throughout we use C to denote a large positive dimensional constant, and c to de-
note a small positive dimensional constant, whose values may change from line to line.

Lemma 2.1. There is a dimensional constant C such that

(a) P (x) ≤ C/(1 + |x− y|d−2).

(b) P (x) ≤ Ck(|y|+ k + 1− |x|)/|x− y|d, for |x− y| ≥ k/2.

(c) max
x∈Br

P (x) ≤ Ck/(|y| − r − k)d−1 for r < |y| − 2k.

Proof. The maximum principle (for grid harmonic functions) implies Cg(x − y) ≥ P (x)

on Ω, which gives part (a).
For part (b), let y∗ be one of the lattice points nearest to (1+(2k+C1)/|y|)y. By (2.1)

we can choose a dimensional constant C1 large enough so that g(x− y) ≥ g(x− y∗) for
all x ∈ ∂B|y|+k. By the maximum principle it follows that for x ∈ Ω we have

P (x) ≤ C(g(x− y)− g(x− y∗)) (2.2)

where C = (g(0)−g(y−y∗))−1. Indeed, both sides are grid harmonic on Ω, and the right
side is nonnegative on ∂B|y|+k.

EJP 18 (2013), paper 98.
Page 5/14

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-3137
http://ejp.ejpecp.org/


Internal DLA in higher dimensions

Combining (2.1) and (2.2) yields the bound

P (x) ≤ Ck

|x− y|d−1
, for |x− y| ≥ 2k.

Next, let z ∈ ∂B|y|+k be such that |z − y| = 2L, with L ≥ 2k. The bound above implies

P (x) ≤ Ck

Ld−1
, for x ∈ BL(z)

Let z∗ be one of the lattice points nearest to (|y|+ k + L+ C1)z/|z|. Then

F (x) = adL
2−d − g(x− z∗)

is comparable to L2−d on ∂B2L(z∗) and positive outside the ball BL(z∗) (for a large
enough dimensional constant C1 — in fact, we can also do this with C1 = 1 with L large
enough). It follows that

P (x) ≤ C(k/Ld−1)(Ld−2)F (x)

on ∂(B2L(z∗) ∩ Ω) and hence by the maximum principle on B2L(z∗) ∩ Ω. Moreover,

F (x) ≤ C(|y|+ k + 1− |x|)/Ld−1

for x a multiple of z and |y|+ k − L ≤ |x| ≤ |y|+ k. Thus for these values of x,

P (x) ≤ C(k/L)F (x) ≤ Ck(|y|+ k + 1− |x|)/Ld

We have just confirmed the bound of part (b) for points x collinear with 0 and z, but z
was essentially arbitrary. To cover the cases |x−y| ≤ 2k one has to use exterior tangent
balls of radius, say k/2, but actually the upper bound in part (a) will suffice for us in the
range |x− y| ≤ Ck.

Part (c) of the lemma follows from part (b).

The mean value property (as typically stated for continuum harmonic functions)
holds only approximately for discrete harmonic functions. There are two choices for
where to put the approximation: one can show that the average of a discrete harmonic
function h over the discrete ball Br is approximately h(0), or one can find an approxi-
mation wr to the discrete ball Br such that averaging h with respect to wr yields exactly
h(0). The divisible sandpile model of [12] accomplishes the latter. In particular, the
following discrete mean value property follows from Theorem 1.3 of [12]. For the sake
of completeness we include a proof in dimensions d ≥ 3. (Although we only use the
d ≥ 3 result here, the proof below also applies in dimension 2 after replacing the Green
function g(x) by −a(x) where a is the recurrent potential kernel for Z2.)

Lemma 2.2. (Exact mean value property on an approximate ball) For each real number
r > 0, there is a function w = wr : Zd → [0, 1] such that

(i) w(x) = 1 for all x ∈ Br−c, for a constant c depending only on d.

(ii) w(x) = 0 for all x /∈ Br.

(iii) For any function h that is discrete harmonic on Br,∑
x∈Zd

w(x)(h(x)− h(0)) = 0.
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Internal DLA in higher dimensions

Proof. Let m = ωd(r − a)d, for a constant a to be chosen below. Let F be the set of all
functions f : Zd → R satisfying

f ≥ 0 on Zd

∆f ≤ 1−mδ0 on Zd.

Here ∆f(x) = 1
2d

∑
y∼x(f(y)− f(x)) denotes the discrete Laplacian of f , where the sum

is over the 2d lattice neighbors y of x; and δ0 denotes the function that is 1 at the origin
and 0 elsewhere.

Let u : Zd → R be defined by

u(x) = inf
f∈F

f(x)

and let w = mδ0 + ∆u. (Intuitively, w is the result of starting with mass m at the origin
and spreading it out by discrete balayage until every site in Zd has mass at most 1.)

It is straightforward to show that u ∈ F and hence w ≤ 1 on Zd. Next we show
w ≥ 1U where U = {x ∈ Zd|u(x) > 0} is the support of u. Indeed, if for some x ∈ Zd we
have w(x) < 1U (x), then for small enough ε > 0 we would have u−εδx ∈ F , contradicting
the minimality of u.

To prove items (i) and (ii) we express u in terms of an obstacle problem for the
discrete Laplacian. Consider the “obstacle” γ : Zd → R given by

γ(x) = −|x|2 −mg(x)

where g is the discrete Green function forZd. Let Φ be the set of all functions φ : Zd → R

satisfying

φ ≥ γ on Zd

∆φ ≤ 0 on Zd.

Let

s(x) = inf
φ∈Φ

φ(x).

Since ∆γ = −1 + mδ0, a simple argument using the maximum principle shows that
u = s− γ.

By the Green function estimate (2.1), we have

γ(x) = Γ(|x|) +O((r/|x|)d)

where Γ(t) := −t2− 2
d−2 (r−a)dt2−d, and the constant in the error term depends only on

the dimension d. In particular, there is a constant C depending only on d, such that for
all t ∈ [r/2, 2r] and all x, y ∈ ∂Bt we have |γ(x)− γ(y)| < C. We choose a = 3C.

Since s ≥ γ ≥ Γ(r)− C on ∂Br and s is superharmonic, we have s ≥ Γ(r)− C on Br

by the minimum principle. Since Γ is maximized at t = r − a, it follows that s > γ on
Br−a−b for a constant b depending only on d. Hence for all x ∈ Br−a−b we have u(x) > 0

and hence w(x) = 1, which proves (i).
To prove (ii), note that the constant function φ(x) ≡ Γ(r−a)+C belongs to Φ. Hence

s ≤ Γ(r − a) + C, which shows that u ≤ 2C on ∂Br−a. We will show this implies u is
supported in Br−a+2C . For each x ∈ U −{0} the equality ∆u(x) = 1 implies that at least
one neighbor y of x has u(y) ≥ u(x) + 1; hence there is a path x = x0, x1, . . . , xk = 0 such
that u(xi) > i. If |x| > r − a then this path must pass through ∂Br−a, which shows that
|x| ≤ r − a+ 2C, proving (ii).
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Internal DLA in higher dimensions

To prove (iii), let h : Zd → R be discrete harmonic on Br and let H(x) = h(x)− h(0).
Since w = mδ0 + ∆u is supported on Br, we have by summation by parts∑

x∈Zd

w(x)H(x) =
∑
x∈Br

∆u(x)H(x) =
∑
x∈Br

u(x)∆H(x) = 0.

The next lemma bounds sums of P = Py,k over discrete spherical shells and discrete
balls.

Lemma 2.3. There is a dimensional constant C such that

(a)
∑

x∈Br+1\Br

P (x) ≤ Ck for all r ≤ |y|+ k.

(b)

∣∣∣∣∣ ∑
x∈Br

(P (x)− P (0))

∣∣∣∣∣ ≤ Ck for all r ≤ |y|.

(c)

∣∣∣∣∣∣
∑

x∈B|y|+k

(P (x)− P (0))

∣∣∣∣∣∣ ≤ Ck2.

Proof. Part (a) follows from Lemma 2.1: Take the worst shell, when r = |y|. Then the
sum over x satisfying |x− y| ≤ k and |y| ≤ |x| ≤ |y|+ 1 is bounded by Lemma 2.1(a)∫ k

0

s2−dsd−2ds = k

(volume element on disk with thickness 1 and radius k in Zd−1 is sd−2ds.) For the
remaining portion of the shell, Lemma 2.1(b) has numerator k(|y|+k−|y|) = k2, so that∫ ∞

k

k2s−dsd−2ds = k.

Next, for part (b), let wr be as in Lemma 2.2. Since P is discrete harmonic in B|y|, we
have for r ≤ |y| ∑

x∈Zd

wr(x)(P (x)− P (0)) = 0.

Since wr equals the indicator 1Br
except on the annulus Br \ Br−c, and |wr| ≤ 1, we

obtain ∣∣∣∣∣ ∑
x∈Br

(P (x)− P (0))

∣∣∣∣∣ ≤ ∑
x∈Br\Br−c

|wr(x)| |P (x)− P (0)|

≤
∑

x∈Br\Br−c

(P (x) + P (0))

≤ Ck.

In the last step we have used part (a) to bound the first term; the second term is bounded
by Lemma 2.1(b), which says that P (0) ≤ Ck/|y|d−1.

Part (c) follows by splitting the sum over B|y|+k into k sums over spherical shells
B|y|+j \B|y|+j−1 for j = 1, . . . , k, each bounded by part (a), plus a sum over the ball B|y|,
bounded by part (b).
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Internal DLA in higher dimensions

Fix α > 0, and consider the level set

U = {x ∈ G | g(x) > α}.

For x ∈ ∂U , let p(x) be the probability that a Brownian motion started at the origin in G
first exits U at x.

Lemma 2.4. Choose α so that ∂U does not intersect Zd. For each x ∈ ∂U , the quantity
p(x) equals the directional derivative of g/2d along the directed edge in U starting at x.

Proof. We use a discrete form of the divergence theorem∫
U

div V =
∑
∂U

νU · V. (2.3)

where V is a vector-valued function on the grid, and the integral on the left is a one-
dimensional integral over the grid. The dot product νU · V is defined as ej · V (x − 0ej),
where ej is the unit vector pointing toward x along the unique incident edge in U . To
define the divergence, for z = x+ tej , where 0 ≤ t < 1 and x ∈ Zd, let

div V (z) :=
∂

∂xj
ej · V (z) + δx(z)

d∑
j=1

(ej · V (x+ 0ej)− ej · V (x− 0ej)).

If f is a continuous function on U that is C1 on each connected component of U−Zd,
then the gradient of f is the vector-valued function

V = ∇f = (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xd)

with the convention that the entry ∂f/∂xj is 0 if the segment is not pointing in the
direction xj . Note that ∇f may be discontinuous at points of Zd.

Let G = −g/2d, so that div∇G = δ0. If u is grid harmonic on U , then div∇u = 0 and

div (u∇G−G∇u) = u(0)δ0.

Indeed, on each segment this is the same as (uG′−u′G)′ = u′G′−u′G′+uG′′−u′′G = 0

because u and G are linear on segments. At lattice points u and G are continuous, so the
divergence operation commutes with the factors u and G and gives exactly one nonzero
delta term, the one indicated.

Let u(y) be the probability that Brownian motion on U started at y first exits U at x.
Then p(x) = u(0). Since u is grid-harmonic on U , we have div∇u = 0 on U , hence by
the divergence theorem

u(0) =

∫
U

div (u∇G−G∇u) =
∑
∂U

u νU · ∇G.

Since u vanishes on ∂U \ {x}, the only nonzero term in the sum on the right side is
νU · ∇G(x). Since ∂U does not intersect Zd, this term equals the directional derivative
of g/2d along the directed edge in U starting at x.

Next we establish some lower bounds for P .

Lemma 2.5. There is a dimensional constant c > 0 such that

(a) P (0) ≥ ck/|y|d−1.
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Internal DLA in higher dimensions

(b) Let k = 1, and z = (1− 2m
|y| )y for 0 < m < |y|/2. Then

min
x∈B(z,m)

P (x) ≥ c/md−1.

Proof. By the maximum principle, there is a dimensional constant c > 0 such that

P (x) ≥ c(g(x− y)− ad(k/2)2−d)

for x ∈ Bk/2(y). In particular,

P (x) ≥ ck2−d for all |x− y| ≤ k/4

Now consider the region
U = {x ∈ G : g(x) > ads

2−d}

where s is chosen so that |s− (|y| − k/8)| < 1/2 and all of the boundary points of U are
non-lattice points. (A generic value of s in the given range will suffice.)

By (2.1), this set is within unit distance of the ball of radius |y| − k/8. Let p(z)
represent the probability that a Brownian motion on the grid starting from the origin
first exits U at z ∈ ∂U . Thus

u(0) =
∑
z∈∂U

u(z)p(z) (2.4)

for all grid harmonic functions u in U .
Take any boundary point of z ∈ ∂U . Take the nearest lattice point z∗. Let zj be a

coordinate of z largest in absolute value. Then |zj | ≥ |z|/d. The rate of change of |x|2−d
in the jth direction near z has size ≥ 1/d|z|d−1, which is much larger than the error
term C|z|−d in (2.1). It follows that on the segment in that direction, where the function
g(x) − ad(|y| − k/8)2−d changes sign, its derivative is bounded below by 1/2d|z|d−1. In
other words, by Lemma 2.4, within distance 2 of every boundary point of z ∈ ∂U there
is a point z′ ∈ ∂U for which p(z′) ≥ c/|y|d−1. There are at least ckd−1 such points in the
ball Bk/4(y) where the lower bound for P was ck2−d, so

P (0) ≥ ck2−dkd−1/|y|d−1 = ck/|y|d−1.

Next, the argument for Lemma 2.5(b) is nearly the same. We are only interested in
k = 1. It is obvious that for points x within constant distance of y (and unit distance
from the boundary at radius |y|+ 1) the values of P (x) are bounded below by a positive
constant. We then bound P ((1 − 2m/|y|)y) from below using the same argument as
above, but with Green’s function for a ball of radius comparable tom. Finally, Harnack’s
inequality says that the values of P (x) for x in the whole ball of size m around this point
(1− 2m/|y|)y are comparable.

3 Proofs of main lemmas

The proofs in this section make use of the martingale

M(t) = My,k(t) :=
∑

x∈Ay,k(t)

(Py,k(x)− Py,k(0))

where Py,k is the grid harmonic function defined in Section 2, and Ay,k(t) is the modified
internal DLA cluster in which particles are stopped if they exit Ω.

As in [7], we take the time parameter t to be real-valued: starting at each integer
time n, a particle is released from the origin and performs Brownian motion on the grid
G until reaching a point in (G \Ω)∩ (Zd \A(n)). By applying a deterministic time change
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Internal DLA in higher dimensions

to the Brownian motion we can ensure that this happens before time n + 1, so only
one particle is active at any given time. The choice of continuous time is convenient
for applying the martingale representation theorem, but it is not essential for the argu-
ment: One can embed the discrete time martingale M(n) into a Brownian motion using
Skorohod’s theorem, and estimate the elapsed time (M(n+ 1)−M(n))2.

We view Ay,k(t) as a multiset: points on the boundary of Ω where many stopped
particles accumulate are counted with multiplicity in the sum defining M . In addition
to these stopped particles, the set Ay,k(t) contains one more point, the location of the
currently active particle performing Brownian motion on G.

Recall that P = Py,k and M = My,k depend on k, which is the distance from y to
the boundary of Ω. We will choose k = 1 for the proof of Lemma 1.1, and k = a` for a
small constant a in the proof of Lemma 1.2. Taking k > 1 is one of the main differences
from the argument in [7]. The factor of k in the lower bound of Lemma 2.5(a) results
in the bound M(T1) ≤ −k2 on the event that y is `-late, and consequently the weaker
hypothesis ` ≥ C1((log T )m)1/3 suffices at the end of the proof of Lemma 1.2 (compare
to [7, Lemma 13] where the power was 1/2 instead of 1/3).

Proof of Lemma 1.1. The proof follows the same method as [7, Lemma 12]. We highlight
here the changes needed in dimensions d ≥ 3. We use the discrete harmonic function
P (x) with k = 1. Fix z ∈ Zd, let r = |z| and y = (r + 2m)z/r. Let

T1 = dωd(r −m)de

where ωd is the volume of the unit ball in Rd. If z is m-early, then z ∈ A(T1); in particuar,
this means that r ≥ m, so that r + m, r + 2m are all comparable to r. Since k = 1, we
have by Lemmas 2.1(c) and 2.5(a)

P (0) ≈ 1/rd−1,

where ≈ denotes equivalence up to a constant factor depending only on d.

First we control the quadratic variation

S(t) = lim
0=t0≤...≤tN=t

max(ti−ti−1)→0

N∑
i=1

(M(ti)−M(ti−1))2

on the event Em+1[T ]c that there are no (m + 1)-early points by time T . As in [7,
Lemma 9], there are independent standard Brownian motions B̃0, B̃1, . . . such that each
increment (S(n+ 1)− S(n))1Em+1[T ]c is bounded above by the first exit time of B̃n from
the interval [−an, bn], where

an = P (0) ≈ 1

rd−1

bn = max
|x|≤(n/ωd)1/d+m+1

P (x) ≤ 1

[r + 2m− ((n/ωd)1/d +m+ 1)]d−1
.

Here we have used Lemma 2.1(b) in the bound on bn.

Unlike in dimension 2, we will use the large deviation bound for Brownian exit times
[7, Lemma 5] with λ = cm2 instead of λ = 1. Here c is a constant depending only on
d. Note that bn ≤ 1/md−1, for all n ≤ T1, so this is a valid choice of λ in all dimensions
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Internal DLA in higher dimensions

d ≥ 3 (that is, the hypothesis
√
λ(an + bn) ≤ 3 of [7, Lemma 5] holds). We obtain

logE
[
eλS(T1)1Em+1[T ]c

]
≤

T1∑
n=1

10λanbn

≤
∫ T1

1

λ
C

rd−1

1

(r +m− (n/ωd)1/d − 1)d−1
dn

≤
∫ r

1

λ
C

rd−1

1

(r +m− j − 1)d−1
jd−1dj

≤
∫ r

1

Cλdj

(r +m− j − 1)d−1
≤ Cλ/md−2.

Note that the last step uses d ≥ 3. Taking λ = cm2 for small enough c we obtain

E
[
ecm

2S(T1)1Em+1[T ]c

]
≤ em

2/md−2

≤ em.

Therefore, by Markov’s inequality,

P({S(T1) > 1/c} ∩ Em+1[T ]c) ≤ em−m
2

< T−20γ . (3.1)

Fix z ∈ BT and t ∈ {1, . . . , T}, and let Qz,t be the event that z ∈ A(t) \A(t− 1) and z
is m-early and no point of A(t−1) is m-early. This event is empty unless (t/ωd)

1/d+m ≤
|z| ≤ (t/ωd)

1/d + m + 1; in particular, the first inequality implies t ≤ T1. We will bound
from below the martingale M(t) on the event Qz,t ∩ L`[T ]c. With no `-late point, the
ball Br−m−`−1 is entirely filled by time t. Lemma 2.3(b) shows that the sites in this ball
contribute at most a constant to M(t) (recall that k = 1). The thin tentacle estimate [7,
Lemma A] says that except for an event of probability e−cm

2

, there are order md sites
in A(t) within the ball B(z,m). By Lemma 2.5(b), P is bounded below by c/md−1 on this
ball, so these sites taken together contribute order m to M(t). Each of the remaining
terms in the sum defining M(t) is bounded below by −P (0), and there are at most `rd−1

sites in A(t) \Br−m−`−1. So these terms contribute at least

−`rd−1(1/rd−1) = −` ≥ −m/C

which cannot overcome the order m term. Thus

P(Qz,t ∩ {Mζ(t) < m/C} ∩ L`[t]c) < e−cm
2

. (3.2)

We conclude that

P(Qz,t ∩ L`[T ]c) ≤ P(Qz,t ∩ {S(t) > 1/c})
+ P(Qz,t ∩ {M(t) < m/C} ∩ L`[t]c)

+ P({S(t) ≤ 1/c} ∩ {M(t) ≥ m/C}).

The first two terms are bounded by (3.1) and (3.2). Since M(t) = B(S(t)) for a standard
Brownian motion B, the final term is bounded by

P

{
sup

0≤s≤1/c

B(s) ≥ m/C

}
< e−c(m/C)2/2 < T−20γ .

Proof of Lemma 1.2. Fix y ∈ Zd, and let L[y] be the event that y is `-late. Set k = a` in
the definition of P = Py,k. Here a > 0 is a small dimensional constant chosen below.
Note that the hypotheses on m and ` imply that ` is at least of order

√
log T ; after
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Internal DLA in higher dimensions

choosing a, we take the constant C1 appearing in the statement of the lemma large
enough so that k2 > 1000γ log T .

Case 1. 1 ≤ |y| ≤ 2k. Then P (0) ≈ 1/|y|d−2. Let

T1 = bωd(|y|+ `)dc

With an = P (0) and bn = 1, we have S(n + 1) − S(n) ≤ τn, where τn is the first exit
time of the Brownian motion B̃n from the interval [−an, bn]. (Note that because we take
bn = 1, the indicator 1Em+1[T ]c is not needed here as it was in the proof of Lemma 1.1.)
We obtain

logEeS(T1) ≤
T1∑
t=1

logEeτn ≤ T1P (0).

Let Q = T1P (0). By Markov’s inequality, P(S(T1) > 2Q) ≤ e−Q.
On the event L[y], the site y is still not occupied at time T1. Accordingly, the largest

M(T1) can be is if Ay,k(T1) fills the whole ball B|y|+k (except for y), and then the rest
of the particles will have to collect on the boundary where P is zero. The contribution
from B|y|+k is at most Ck2 by Lemma 2.3(c). The number of particles stopped on the
boundary is at least

T1 − 2ωd(|y|+ k)d ≥ T1

2
.

Therefore, on the event L[y] we have

M(T1) ≤ Ck2 − T1

2
P (0). (3.3)

Note that Q := T1P (0) ≈ (|y|+ `)d/|y|d−2 ≥ `d/(k/2)d−2, so by taking a = k/` sufficiently
small, we can ensure that the right side of (3.3) is at most −Q/4. Also, Q ≥ `2 ≥
1000γ log T . Since M(t) = B(S(t)) for a standard Brownian motion B, we conclude that

P(L[y]) ≤ P(S(T1) > 2Q) + P

{
inf

0≤s≤2Q
B(s) ≤ −Q/4

}
≤ e−Q + e−(Q/4)2/4Q

< T−20γ .

Case 2. |y| ≥ 2k. Then by Lemma 2.1(c) with r = 1, and Lemma 2.5(a), we have
P (0) ≈ k/sd−1. First take

T0 = bωd(|y|+ k − 3m)dc

(or T0 = 0 if |y| + k − 3m ≤ 0). As in the previous lemma (but taking λ = 1 instead of
λ = cm2) we have

logE
[
eS(T0)1Em[T ]c

]
≤ C k

|y|d−1

∫ T0

0

dn(
|y|+ k − (n/ωd)1/d

)d−1
≤ Ck/md−2.

Since d ≥ 3 and m ≥ k/a, the right side is ≤ C. By Markov’s inequality,

P({S(T0) > C + k2} ∩ Em[T ]c) < e−k
2

< T−20γ .

Now since
(T1 − T0)P (0) ≈ m|y|d−1(k/|y|d−1) = km

we have
logEeS(T1)−S(T0) ≤ Ckm.
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Internal DLA in higher dimensions

Thus (since km ≥ k2)

P({S(T1) > 2Ckm} ∩ Em[T ]c) < 2T−20γ . (3.4)

As in case 1, the martingale M(T1) is largest if the ball B|y|+k is completely filled,
and in that case the total contribution of sites in this ball is at most Ck2. On the event
L[y], the number of particles stopped on the boundary of Ω at time T1 is at least

T1 −#B|y|+k ≥ ωd((|y|+ `)d − (|y|+ k + C)d) ≈ `|y|d−1.

Each such particle contributes −P (0) ≈ −k/|y|d−1 to M(T1), for a total contribution of
order −k` = −k2/a. Taking a sufficiently small we obtain M(T1) ≤ Ck2 − k2/a ≤ −k2.
We conclude that

P(L[y] ∩ Em[T ]c) ≤ P({S(T1) > 2Ckm} ∩ Em[T ]c)+

+ P({S(T1) ≤ 2Ckm} ∩ {M(T1) ≤ −k2}).

The first term is bounded above by (3.4), and the second term is bounded above by

P

{
inf

s≤2Ckm
B(s) ≤ −k2

}
≤ e−k

4/4Ckm < T−20γ .

Hence P(L[y]∩Em[T ]c) < 3T−20γ . Since L`[T ] is the union of the events L[y] for y ∈ B :=

B(T/ωd)1/d−`, summing over y ∈ B completes the proof.
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