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Abstract

We consider branching random walks and contact processes on infinite, connected,
locally finite graphs whose reproduction and infectivity rates across edges are in-
versely proportional to vertex degree. We show that when the ambient graph is a
Galton-Watson tree then, in certain circumstances, the branching random walks and
contact processes will have weak survival phases. We also provide bounds on critical
values.
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1 Introduction

There has been considerable interest in the behavior of branching random walks
(BRW), contact processes (CP), and other related interacting particle systems on trees
and other nonamenable graphs in recent years. These processes may exhibit a weak
survival phase on trees and other nonamenable graphs which does not occur on the
integer lattice. In the weak survival phase, the population survives globally with posi-
tive probability, but eventually vacates any fixed vertex with probability one. The weak
survival phase of BRW has been studied, for example, in [4, 5, 8, 12, 15], and for CP in
[6, 7, 9, 10, 14, 15, 16].

In this paper, we introduce a discrete-time BRW, where particles reproduce as in
an ordinary Galton-Watson (GW) process, regardless of their locations in the ambient
graph, and then move as in a random walk. We also introduce a closely related version
of CP. Formal definitions are given in section 2 below. We study BRW, which always
dominates CP, in order to give natural upper bounds for CP. Our main result (Theorem
4.2) is on the existence of a weak survival phase for CP.

Our BRWs and CPs differ in an important qualitative respect from those studied by
Pemantle and Stacey [15], where the reproduction rates depend on location (in particu-
lar, they depend linearly on the vertex degree). This leads to rather different behaviors
on inhomogeneous graphs. For BRW, we give necessary and sufficient conditions for
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BRW and CP on GW trees

the existence of the weak survival phase in terms of the spectral radius of simple ran-
dom walk (SRW) on the graph, citing results in [13]. This requires us to calculate the
spectral radius of SRW on infinite GW trees. Then we use various techniques to provide
upper and lower bounds for the critical values of the CP on infinite GW trees, and show
that there exists a weak survival phase in certain circumstances.

We will deal with GW trees with offspring distribution FT = {pk}k≥0. For conciseness
and consistence, throughout this paper we will assume p0 = 0. One thing to point out
is that when p0 > 0 most results concerning BRW in this paper can be obtained as well,
however arguments for CP fail to work.

Outline. The remainder of this paper is organized as follows. In Section 2 we give
formal definitions. General properties of BRW and its connection to SRW are given in
section 3. Section 4 shows that for CP there is weak survival phase on certain GW trees.

2 Definitions and notations

All processes considered in this paper will live on infinite, connected, locally finite
graphs. We will use G = (V, E) to denote such a graph, where V is the vertex set and E
is the edge set. These graphs will themselves be constructed according to some random
mechanism, and we will use Gω = (Vω, Eω) to denote realizations of random graphs. In
all random graph constructions we shall consider, there will be a distinguished vertex %
designated the root. Say that two vertices x, y ∈ V are neighbors if and only if they are
connected in G, or equivalently (x, y) ∈ E .

Branching random walk (BRW) is a discrete-time stochastic process on G defined
in the following way. It is a special case of discrete branching Markov chain in [13],
with the underlying Markov chain being SRW. At time n = 0 there is one particle at the
root %. Given the population at time n, the population at time n+ 1 is generated in two
steps (in the following definition independence means independence of other particle’s
behavior and the history up to time n):

(1) Particle reproduction, where each particle currently in the system dies and
independently gives rise to a random number of offspring, according to a common dis-
tribution FR.

(2) Particle dispersal, where each newborn particle makes an independent SRW
step from the vertex where it is born to a neighboring vertex on the graph. In other
words, each new particle chooses one of the neighbors of the vertex where it is born,
and then move to it. The choice is made uniformly at random.

If the ambient graph G is a tree, then it is bipartite, so at even (odd) times particles
are located only at even (odd) depths from the root.

To emphasize the dependence of the process on the underlying graph G, we use PG
to denote law of BRW on G. Denote the number of particles at vertex v at time n by
Nn(v). We name the following events respectively.

(1) {limn→∞
∑
v∈V Nn(v) = 0}: extinction;

(2) {lim infn→∞
∑
v∈V Nn(v) ≥ 1}: global survival;

(3) {lim supn→∞Nn(%) ≥ 1}: local survival at the vertex %.

Clearly the event of local survival at any vertex implies the event of global survival.
As the underlying graph is connected the definition of local survival does not depend
on the choice of %. So we will use the term “local survival" without indicating the root
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%. Unless there is local survival, eventually not only every vertex is free of particles but
also every finite subset.

Correspondingly, there are 3 phases.

(1) If with probability one, the BRW dies out, i.e.

PG

(
lim
n→∞

∑
v∈V

Nn(v) = 0

)
= 1,

we say the BRW is at the subcritical phase.

(2) If with positive probability, the BRW survives locally (and thus globally), i.e.

PG

(
lim sup
n→∞

Nn(%) ≥ 1

)
> 0,

we say the BRW is at the strong survival phase. Our definition of strong survival phase
corresponds to the notion of strong recurrence in [13].

(3) If with probability one, the BRW does not survive locally; but with positive prob-
ability it survives globally, i.e.

PG

(
lim sup
n→∞

Nn(%) ≥ 1

)
= 0,

PG

(
lim inf
n→∞

∑
v∈V

Nn(v) ≥ 1

)
> 0,

we say the BRW is at the weak survival phase.
In a BRW (as defined above), the total number of particles in generations n =

0, 1, 2, . . . evolves as a GW process with offspring distribution FR = {fk}k≥0 with mean
µ =

∑
k kfk, so global survival occurs if and only if µ > 1 (in the BRWs studied in [15]

this is not the case).
Assume that the particle reproduction law FR = {fk}k≥0 is fixed. Then whether or

not BRW on graph G exhibits weak survival phase depends only on the geometry of G.
Our first main result (Theorem 3.6) concerns the case where G is a GW tree constructed
using an offspring distribution FT = {pk}k≥0. It will be shown that the existence of the
weak survival phase is determined by hmin, the minimal offspring number for FT , that
is, hmin = min{i : pi > 0}. By our assumption hmin ≥ 1.

Continuous-time BRW is a continuous-time Markov process defined as follows.
At time t = 0 there is one particle at the root %. Each particle gives rise to a new
particle with rate λ, meanwhile dies with rate 1, and its behavior is independent of all
other particles and the history. When a new particle is born, it takes an instantaneous
independent SRW step to one of the neighbors of the vertex where it is born. In section
4 we will show that existence of weak survival phase of the continuous-time BRW is
essentially the same problem as that for the discrete-time model, so it suffices to study
the discrete-time model.

Contact process (CP) is a continuous-time Markov process evolving in the following
way (in the following definition independence means independence of other particle’s
behavior and the history). We start with 1 particle at % at time 0. Then,

(1) Each particle gives rise to a new particle at rate λ independently, and the new-
born particle independently picks a neighboring vertex on the graph uniformly at ran-
dom and makes an instantaneous movement to the picked vertex.

(2) Each particle dies with rate 1 independently.
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(3) Each vertex can hold at most 1 particle. So if a newborn particle moves to a
vertex where there exists a particle at that moment, the newborn vertex is removed
immediately as if it was never born.

The existence of such a process is guaranteed by a modification of the classical
graphical representation for CP. This CP model differs from the one defined in [15]. In
homogeneous graphs (such as Zd or Td) the two definitions of CP coincide. The only
difference is that in our model we require the sum of birth rates among all directed
edges going out of the same vertex be a fixed quantity λ, whereas in [15] the birth rate
for each directed edge is λ, so when the underlying graph is not regular, in [15] an
occupied vertex with higher degree has higher reproduction rate compared with those
with lower degrees. It is important to note that duality no longer holds in our model,
because a directed edge v1v2 might have different birth rate than that of v2v1,

In particular, it is easily seen from the graphical representation that the CP is
stochastically monotone in λ. We can couple contact processes simultaneously for all
λ > 0 on the same graph G. We use PλG to denote law of CP on G with reproduction rate
λ. Because of monotonicity we can define

λg(G) = inf{λ : PλG(∀t > 0,∃ particle alive at time t) > 0},

λ`(G) = inf{λ : PλG(∀T > 0,∃t > T, s.t. ∃ particle at % at time t) > 0}.
We say CP on G has a weak survival phase if λg(G) < λ`(G).

3 Discrete-time BRW

Assume the BRW has particle reproduction law FR = {fk}k≥0 with mean µ. Let
(SRWn)n≥0 denote the SRW started from %, recall that the spectral radius of SRW on a
connected graph Gω is given by

r(G) = lim sup
n→∞

PG(SRWn = %)1/n.

The spectral radius r(G) does not depend on the choice of root %.
In our terms, one of the main results (Theorem 3.7) of [13] is

Theorem 3.1. BRW is at the strong survival phase if and only if µr(G) > 1.

Therefore to determine whether BRW might survive locally on G it suffices to com-
pute the spectral radius r(G).

What property of graph G makes its spectral radius r(G) = 1? One sufficient condi-
tion is the existence of arbitrarily long linear chains – which we will call L-chains – in
the graph G. An L-chain is defined to be a chain of vertices {vi}0≤i≤L such that each vi
is a neighbor of vi+1, and such that all of the interior vertices {vi}1≤i≤L−1 have degree
2 (so their only neighbors in G are vi−1 and vi+1). The parameter L will be called the
length of the L-chain.

Proposition 3.2. If G contains arbitrarily long L-chains then r(G) = 1.

Proof. This follows from proof of Lemma 3.6 in [1], or Theorem 3.11 in [13].

We can generalize the idea of L-chain to a finite d-ary (d ≥ 1) tree of height L.
Formally, we define a (d,L)-subtree in a graph G to be a rooted d-ary tree T of depth L
embedded inG in such a way that, except for the root and the leaves (leaves are vertices
at maximum depth L), every vertex of T has no neighbors in G other than those d + 1

neighbors it has in the tree T . Observe that a (1, L)-subtree is just an L-chain.
The relevance of (d, L)-subtrees to spectral radii is similar as for L-chains. Once a

SRW gets into a (d, L)-subtree, its depth (as viewed from the root of the (d, L)-subtree)
behaves as a p - q nearest neighbor random walk on [0, L], with p = 1/(d+1) and q = 1−p.
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Proposition 3.3. If for some d ≥ 1, G contains (d, L)-subtrees of arbitrary depth L then
r(G) ≥ 2

√
d/(d+ 1).

Proof. Let Q = (Q(x, y))x,y ∈V be the probability transition matrix of the SRW on G =

(V, E). For any finite subset F of V , denote byQF the substochastic matrix (Q(x, y))x,y∈F
and by r(QF ) its spectral radius, then it is well known (see [2] or [13]) that if Q is irre-
ducible then F ⊂ F ′ implies r(QF ) ≤ r(QF ′).

Then it is easy to see that r(G) ≥ supL r((d, L)-subtree) = r(Td) = 2
√
d/(d+1), where

the last equality follows from Lemma 1.24 in [17] and Td is the regular tree with degree
d+ 1.

For a GW tree with offspring distribution FT = {pk}k≥1 assume that pd > 0 for some
d ≥ 1. It is easy to see that GW-a.e. Gω contains a (d, L)-subtree for every L ∈ N,
because when we sequentially explore the GW tree, a vertex having a (d, L)-subtree
attached to it in the next L levels is an event with positive probability, while there are
infinitely many trials and therefore eventually there will be a success.

Proposition 3.4. If pd > 0, then GW-a.e. Gω has a (d, L)-subtree for every L ∈ N.

Recall that the minimal offspring number hmin is the smallest integer i such that
pi > 0, and by our assumption hmin ≥ 1.

Proposition 3.5. (i) If hmin = 1, then for GW-a.e. Gω, r(Gω) = 1.
(ii) If hmin > 1, then for GW-a.e. Gω, r(Gω) = 2

√
hmin/(hmin + 1).

Proof. (i) If hmin = 1, combine Propositions 3.2 and 3.4.
(ii) By Propositions 3.3 and 3.4, we have r(Gω) ≥ 2

√
hmin/(hmin + 1) for GW-a.e. Gω.

The reverse inequality follows from exercise 11.3 in [17].

Combining Theorem 3.1 and Proposition 3.5, we obtain

Theorem 3.6. (1) If hmin = 1, then for GW-a.e. Gω, BRW on Gω has no weak survival
phase for any particle reproduction law FR.

(2) If hmin > 1, then either for GW-a.e. Gω, BRW on Gω has a weak survival phase;
or for GW-a.e. Gω there is no weak survival phase. More precisely, there is a weak
survival phase if and only if the particle reproduction distribution FR = {fk}k≥0 satisfies
1 < µ =

∑
k kfk ≤ (hmin + 1)/2

√
hmin.

Remark. If hmin = 0, for GW-a.e. Gω, r(Gω) = 1 and thus there is no weak survival
phase. To see this, one can use a similar argument as in the proof of Proposition 3.3.

4 CP on GW trees

In this section we will show that for certain augmented Galton-Watson (AGW) trees,
CP on AGW-a.e. Gω exhibits weak survival phase. We will first study continuous-time
BRW, then CP.

When regarding the question of (global/local) survival of a continuous-time BRW, it
is reduced to (global/local) survival of a discrete-time BRW with geometric offspring
distribution. For more details about this connection, see, for example, Section 2.2 in
[3]. So for continuous-time BRW, its phase transition can be determined using results
obtained in the last section.

Now let us focus on CP. The underlying graph we will consider are AGW trees (which
means we always add an extra copy of the GW tree to the root %). By considering AGW
trees, it makes the root homogeneous with all other vertices. For example, an AGW
tree with degenerated offspring distribution, pd = 1, is a regular tree with degree d+ 1
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for each vertex; this is not true for the GW tree because the root only has d neighbors.
Several ergodic results are known for AGW trees, for example, [11]. All results about
BRW obtained in the last section still hold if we replace GW by AGW, because adding
one copy of a GW tree to the root doesn’t affect the computation of the spectral radius.

The first natural question is whether the critical values λ`(Gω), λg(Gω) are AGW-a.s.
constants? The following theorem answers this question affirmatively.

Theorem 4.1. AGW-a.s., λ`(Gω) and λg(Gω) are constants.

Proof. The proof uses the ergodic property of AGW trees. We will use CP(λ) to denote
the CP with infection rate λ. We explore the AGW tree from the root % level by level.
Define Fn to be the σ-algebra such that Fn contains exactly the information of the AGW
tree up to level n. Let F∞ =

⋃
n≥0 F0.

We first show that the set

Gλ = {Gω : CP(λ) survives globally with positive probability on Gω}

is a measurable subset of F∞. Let

Gλε,N = {Gω : PλGω
(there exists an infection trail which exits BN−1(%)) ≥ ε}.

This is clearly a measurable subset in FN . Gλ =
⋃
ε>0,ε∈Q

⋂∞
N=1 Gλε,N ∈ F∞.

Now we cite ergodic theory from [11]. In [11], it is shown that the system (PathsIn-
Trees, SRW×AGW, S) (where S is the shift map) is ergodic (for the definition, see [11]).
It is easily seen that because global survival doesn’t depend on the choice of the root %,
{all paths}×Gλ is an invariant subset of PathsInTrees under S. Therefore by ergodicity

SRW× AGW({all paths} × Gλ) = 0 or 1,

which proves that under measure AGW, the set Gλ has measure either 0 or 1.
Similarly, we express

Lλ = {Gω : CP(λ) survives locally with positive probability on Gω}

by Lλ =
⋃
ε>0,ε∈Q

⋂∞
m=1

⋃∞
N=m Lλε,m,N , where Lλε,m,N = {Gω : PλGω

(there exists an infec-
tion trail which hits ∂Bm−1(%), then hits % without exiting BN (%))≥ ε} ∈ FN .

Then by the same argument as above, under the measure AGW, the set Lλ has mea-
sure either 0 or 1.

Because of Theorem 4.1, from now on we will use λ` and λg for the AGW-a.s. con-
stants without indicating their dependences on Gω.

Theorem 4.2. If hmin ≥ 4, then the CP on Gω has a weak survival phase for AGW-a.e.
Gω.

The proof of this theorem involves bounding λg from above and bounding λ` from
below. Proposition 4.3 and (i) of Proposition 4.4 yield an easy proof for the case hmin ≥ 6.
For the case hmin = 4, 5,we will need the more refined results stated in (ii) of Proposition
4.4 and Proposition 4.5.

Recall that we have assumed hmin ≥ 1.

Proposition 4.3. λ` > (hmin + 1)/(2
√
hmin).

Proof. The continuous-time BRW always dominates CP (with same λ). So if the continuous-
time BRW does not survive locally, neither does CP. By [3], the parameter λ in continuous-
time BRW serves as µ in the corresponding discrete-time BRW. From Theorem 3.1 and
Proposition 3.5 (and an easy argument that by switching to AGW tree the spectral ra-
dius is unchanged), λ` > 1/r(Gω) = (hmin + 1)/(2

√
hmin) for AGW-a.e. Gω.
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Next we give an upper bound for λg for AGW tree.

Proposition 4.4. Suppose X is distributed as FT . If λ satisfies the following inequality
(EX means taking expectation w.r.t. X)

EX

(
λX(λ+X + 1)−1

(
1− λ

λ+X + 1

1

2 + λ/(hmin + 1)

)−1)
> 1,

then λg ≤ λ.
Furthermore,
(i) if hmin ≥ 2, then λg ≤ (hmin + 1)/(dmin−1);
(ii) in particular, if hmin = 4, then λg ≤ 1.46; if hmin = 5, then λg ≤ 1.35.

Proof. The strategy is to construct a supercritical GW process which is dominated by
CP. We will build a “block" in the AGW tree , run the CP within this block, retain the
particles at the bottom of the block and use each of them as “seed" for the CP on the
next block.

The root % has 1 + X neighbors, among them 1 parent and X children, where X is
distributed as FT . Imagine the parent of % to be at level -1, % at level 0, and the X

children at level 1. For any descendant of %, its level is defined to be its graph distance
to %.

We build the GW process (|ξm|)m≥0 as follows, where ξm is set-valued. Fix a positive
integer n ≥ 1 and let ξ0 = {%} (and |ξ0| = 1).

Stage 1: explore the next n+ 1 levels of the AGW tree, regard them as a block.
Stage 2: run CP on this (n + 1)-level block. This means we do not allow ρ to infect

its parent. Keep in mind that the only initially infected vertex is %. Those vertices at
the bottom (the (n + 1)-st level) that ever get infected are regarded as ξ1. We “freeze"
particles at the bottom level until all the other particles die out.

When all particles die out on this (n + 1)-level block except for those “frozen" ones
at the bottom level, we repeat stage 1 and 2 using these infected vertices as roots.
This gives a GW process (|ξm|)m which is dominated by the original CP (which means if
(|ξm|)m survives, so does the original CP), because the infection trails in (ξm)m are com-
pletely contained in the original CP. Suppose we are able to show that E|ξ1| is greater
than 1 for some λ, then it implies the CP survives globally with positive probability for
this λ and from Theorem 4.1, λg ≤ λ.

Now consider a vertex vn+1 at the (n + 1)-th level of a block. Suppose the geodesic
connecting vn+1 and % = v0 is v0, v1, . . . , vn, vn+1, and suppose vi has Xi offsprings in
Gω. At time 0 only v0 is infected. Consider the following events.

(1) vi infects vi+1, and then the particle at vi+1 dies before either the particle at vi
dies or vi+1 infects vi+2; call this event Ai, 0 ≤ i ≤ n− 1.

(2) vi infects vi+1; call this event Bi, 0 ≤ i ≤ n.
In order that vn+1 gets infected, we could have the following events happen in or-

der: A0 happens m0 times, and then B0 happens once; then A1 happens m1 times, and
then B1 happens once; ...; An−1 happens mn−1 times, and then Bn−1 happens once;
finally Bn happens once and vn+1 now gets infected. Denote the above sequences
of events by an n-tuple (m0,m1, . . . ,mn−1) where each component is a nonnegative
integer. It is easy to see that different n-tuples correspond to disjoint events. Now
let us compute the probability of observing a specific n-tuple (m0,m1, . . . ,mn−1). This
means we first observe event A0 happens m0 times. The probability that A0 happens
is q0 = λ/(X0+1)

λ/(X0+1)+1 ×
1

1+1+λ/(X1+1) . The first factor is because we need v0 infects v1 be-
fore the particle at v0 dies; this means for 2 independent Poisson processes with rates
λ/(X0 + 1) and 1, the one with rate λ/(X0 + 1) has to give the first occurrence before
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the other. The second factor is because we need the particle at v1 dies before the par-
ticle at v0 dies or v1 infects v2; this means a Poisson process with rate 1 has to give the
first occurrence before the other 2 independent processes with rates 1 and λ/(X1 + 1).
The probability of B0 happens is r0 = λ/(X0+1)

λ/(X0+1)+1 which is already explained. Therefore

the probability of observing the tuple (m0,m1, . . . ,mn−1) is qm0
0 qm1

1 . . . q
mn−1

n−1 r0r1 . . . rn,

where qi =
λ/(Xi+1)
λ/(Xi+1)+1 ×

1
1+1+λ/(Xi+1+1) , ri =

λ/(Xi+1)
λ/(Xi+1)+1 .

So the probability that vn+1 eventually gets infected, is at least∑
m0∈N

· · ·
∑

mn−1∈N
qm0
0 qm1

1 . . . q
mn−1

n−1 r0r1 . . . rn

=
1

1− q0
1

1− q1
. . .

1

1− qn−1
r0r1 . . . rn.

But vn has Xn children at the (n+1)-st level, so the expected number (given (Xi)0≤i≤n)
of infected children of vn is at least

Xn
1

1− q0
1

1− q1
. . .

1

1− qn−1
r0r1 . . . rn.

If we keep counting infected descendants at the (n + 1)-st level of vn−1, vn−2, . . . , v0, a
simple induction argument shows that the expected total number of infected vertices at
the (n+1)-st level is given by

EX0,X1,...,Xn

(
X0X1 . . . Xn

1

1− q0
1

1− q1
. . .

1

1− qn−1
r0r1 . . . rn

)
, (4.1)

where X0, X1, . . . , Xn are i.i.d. with distribution FT . Now we bound (4.1) from below.
Notice that since Xi+1 ≥ hmin,

1

1− qi
=

(
1− λ

λ+Xi + 1
× 1

2 + λ/(Xi+1 + 1)

)−1
≥
(
1− λ

λ+Xi + 1
× 1

2 + λ/(hmin + 1)

)−1
.

Define

fhmin
(x, λ) = λx(λ+ x+ 1)−1

(
1− λ

λ+ x+ 1

1

2 + λ/(hmin + 1)

)−1
.

So (4.1) is at least

EX0,X1,...,Xn

(
Xnλ

λ+Xn + 1

n−1∏
i=0

fhmin (Xi, λ)

)

=(EXfhmin
(X,λ))

n × EX
(

λX

λ+X + 1

)
:= In × II.

(4.2)

Therefore as long as I > 1, we can choose n large enough so that (4.2) is great than
1.

Now we will show (i) and (ii).
(i): Notice that

EXfhmin
(X,λ) ≥ EX

(
λX

λ+X + 1

)
≥ λhmin

λ+ hmin + 1
, (4.3)

because the function λt/(λ + t + 1) is increasing in t when t > 0. So plug λ = (hmin +

1)/(hmin − 1) into the rightmost expression in (4.3) and we can verify that (hmin +

1)/(hmin − 1) is an upper bound for λg.
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(ii): For the case hmin = 4, 5, it is easy to verify that fhmin
(x, λ) is increasing in x.

Therefore if we pick λ such that fhmin
(hmin, λ) > 1, then we get the desired inequality

EXfhmin
(X,λ) ≥ EXfhmin

(hmin, λ) > 1.

So now we need to find λ as small as possible such that fhmin(hmin, λ) > 1. It can be
verified that when hmin = 4 then λ can be chosen to be 1.46; when hmin = 5 then λ can
be chosen to be 1.35.

Remark. Even if hmin < 4, if FT has heavy tail such that EXfhmin
(X,λ)> 1 then from

Proposition 4.4 we still have λ > λg.
Next we give a tighter lower bound of λ`. The method we use in Proposition 4.5

can be used to improve the lower bound in Proposition 4.3. However for the purpose
of separating λg and λ`, Proposition 4.3 is enough when hmin ≥ 6, so we only state the
result in the case hmin = 4, 5.

Proposition 4.5. If hmin = 4, then λ` ≥ 1.50. If hmin = 5, then λ` ≥ 1.59.

Proof. We modify the proof of Theorem 2.2 in [14]. Denote the infected vertices set at
time t by ξ(t), which is a subset of Vω. The idea is to construct a positive weight function
W (v), such that

W (ξ(t)) =
∑
v∈Vω

W (v)1{v∈ξ(t)}

is a nonnegative supermartingale whose expectation decays exponentially in t. Then
it is easy to see that local survival cannot happen. This is because when % is infected,
W (ξ(t)) is at least W (%), we can apply Markov inequality together with the fact that
EW (ξ(t)) decays exponentially to conclude that the chance of % ∈ ξ(t) decays exponen-
tially as t approaches infinity.

Now for a vertex whose distance from the root % is k and who has nv children in Gω
(and 1 parent), define

W (v) = rk(1− bθ1(v)),

where θ1(v) = 1{parent of v∈ξ(t)}, and 0 < r < 1, 0 < b < 1 are constants to be determined.
Notice that W (ξ(t)) is ξ(t)-measurable. Let θ2(v) = #{children of v ∈ ξ(t)}. Let’s calcu-
late the contribution of any changes (infection/recovery) caused by v to the total weight
W (ξ(t)) in time interval (t, t+ dt).

Case 1: with rate 1, the particle at v dies. This causes a loss of

rk (1− bθ1(v))

at v, but a gain of
θ2(v)r

k+1b

by the increased weights of the infected children of v.
Case 2: with rate 1−θ1(v)

nv+1 λ, v infects its parent. The parent will gain at most (de-
pending whether the grandparent of v is infected)

rk−1,

while v loses brk.
Case 3: with rate nv−θ2(v)

nv+1 λ, v infects its (uninfected) children. This causes a gain of
at most

(1− b)rk+1

from v’s child, while possibly causing some loss due to v’s grandchildren.
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Combine all 3 possible cases, from t to t + dt, the expected change of total weight
due to changes related to v has an upper bound

dt · rk
(
−1 + bθ1(v) + brθ2(v) +

1− θ1(v)
nv + 1

λ(
1

r
− b) + nv − θ2(v)

nv + 1
λr(1− b)

)
:= dt · rku(v).

Suppose we were able to show that u(v) < −ε for all values of nv, θ1(v), θ2(v) for some
positive ε, then summing over ξ(t), we would be able to show E(W (ξ(t + dt))| ξ(t)) ≤
W (ξ(t))− dt · ε(1− b)W (ξ(t)) and thus the exponential decay of EW (ξ(t)). However this
is not possible. An alternative solution is given as follows. Define

U(v) = u(v) +
θ1(v)c

r
− θ2(v)c, (4.4)

where c is another constant to be determined. The sum over ξ(t) of U(v)rk is the same
as the sum of u(v)rk, because the two additional terms will be canceled in each infected
parent-child pair in the sum.

Now we will choose proper constants λ, r, b, c such that U(v) < −ε for some positive ε.
Notice that by the definition of hmin, we always have nv ≥ hmin. Also notice that (4.4) is
linear in θ1(v), θ2(v), where θ1(v) ranges in {0, 1}, θ2(v) ranges in {0, 1, . . . , nv}. Because
linear functions always take extreme values at boundaries, it suffices to consider the
following 4 extreme combinations: (θ1(v), θ2(v)) = (0, 0), (0, nv), (1, 0), (1, nv). Requiring
1 + U(v) < 1− ε is equivalent to

λ

nv + 1

(
1

r
− b
)
+

λ

nv + 1
nvr(1− b) < 1− ε,

(br − c)nv +
λ

nv + 1

(
1

r
− b
)
< 1− ε,

b+
λ

nv + 1
nvr(1− b) +

c

r
< 1− ε,

b+ (br − c)nv +
c

r
< 1− ε.

(4.5)

We need (4.5) to hold for all nv ≥ hmin. As long as we require br − c ≤ 0, b < 1, the
second and the fourth inequalities are redundant. Furthermore if we let ν = λ/(hmin+1),
we obtain 

(hmin + 1)ν

(
1

nv + 1

(
1

r
− b
)
+

nv
nv + 1

r(1− b)
)
< 1− ε,

b+
c

r
+

nv
nv + 1

(hmin + 1)νr(1− b) < 1− ε.
(4.6)

We need (4.6) to hold for all nv ≥ hmin. Since 1/r− b > r(1− b) for b, r < 1 the LHS of
the first inequality in (4.6) is maximized (as a function of nv) when nv = hmin (because
now it puts the largest possible weight on 1/r − b). The LHS of the second inequality in
(4.6) is obviously bounded from above by

b+
c

r
+ (hmin + 1)νr(1− b).

Therefore to show that (4.6) holds for every nv ≥ hmin (possibly infinitely many inequal-
ities), now it suffices to show the following two inequalities

ν

(
1

r
− b+ hminr(1− b)

)
< 1− ε,

b+
c

r
+ (hmin + 1)νr(1− b) < 1− ε,

(4.7)
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for some proper choice of ν, b, r, c with constraints br ≤ c, b, r < 1.
It can be verified that:

• when hmin = 4, the choice of ν = 0.3, r = 0.437, b = 0.256, c = br, ε = 0.0001 , λ =

ν(hmin + 1) = 1.5 satisfies (4.7), which implies when hmin = 4, λ` ≥ 1.5;

• when hmin = 5, the choice of ν = 0.265, r = 0.397, b = 0.264, c = br, ε = 0.0001 , λ =

ν(hmin + 1) = 1.59 satisfies (4.7), which implies when hmin = 5, λ` ≥ 1.59.

Unfortunately this method doesn’t give tight enough lower bounds of λ` in the case
hmin ≤ 3 to show the existence of weak survival phase.
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