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Abstract

We consider a system of N particles on the real line that evolves through iteration of
the following steps: 1) every particle splits into two, 2) each particle jumps according
to a prescribed displacement distribution supported on the positive reals and 3) only
the N right-most particles are retained, the others being removed from the system.
This system has been introduced in the physics literature as an example of a micro-
scopic stochastic model describing the propagation of a front. Its behavior for large
N is now well understood – both from a physical and mathematical viewpoint – in
the case where the displacement distribution admits exponential moments. Here, we
consider the case of displacements with regularly varying tails, where the relevant
space and time scales are markedly different. We characterize the behavior of the
system for two distinct asymptotic regimes. First, we prove convergence in law of the
rescaled positions of the particles on a time scale of order logN and give a construc-
tion of the limit based on the records of a space-time Poisson point process. Second,
we determine the appropriate scaling when we let first the time horizon, then N go
to infinity.
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1 Introduction

1.1 Definitions

The N-BRW. Let X be a random variable taking values in R+ and define h(x) by

P(X > x) = 1/h(x), x ≥ 0. (1.1)

We assume throughout the paper that the function h(x) is regularly varying at +∞
with index α > 0 (see Section 6). For every integer N ≥ 1, we define the following
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N -particle branching random walk with polynomial tails

N -particle system. At the beginning, all N particles are located at the origin. At each
time step, each of the N particles branches into two, and all 2N particles then perform
independent jumps according to the law of X. After this, only the N particles at the
maximal positions are retained. We call this system the N -branching random walk or
N -BRW.

More formally, we define a sequence (X (n))n≥0 of N -tuples of real numbers that
represent the successive populations of N particles, with

X (n) = {X1(n) ≤ · · · ≤ XN (n)}.

Let (Xn,i)n≥0,i∈[2N ] denote i.i.d. random variables distributed as X. Initially, one sets
Xi(0) = 0 for all i ∈ [N ] := {1, . . . , N}. Then, for each integer n ≥ 0, one inductively
defines X (n+ 1) = {X1(n+ 1) ≤ · · · ≤ XN (n+ 1)} to be the N largest numbers from the
collection (Xi(n) +Xn,2i+j)i∈[N ],j∈{0,1}, sorted in ascending order.

The stairs process. We now define the stairs process, a real-valued stochastic pro-
cess which will be shown to approximate the N -BRW when N is large. We first define
a stairs measure to be a non-zero measure µ on (0,∞) such that µ([a,+∞)) < +∞
for every a > 0 (in particular, µ is σ-finite). The µ-stairs process then is the real-
valued stochastic process (R(t))t≥0 defined as follows: Given a Poisson point process
on {(t, x) : t, x > 0} with intensity dt⊗ µ, define a process (ξt)t≥0 by ξt = x if (t, x) is an
atom of the process and ξt = 0 otherwise. Now define R(t) inductively as follows: For
t ≤ 0, R(t) = 0. For integer n = 0, 1, 2, . . ., knowing the value of R(t) for t ≤ n, define
R(t) for t ∈ (n, n+ 1] by

R(t) = max
s∈[0,1]

(R(t− s− 1) + ξt−s). (1.2)
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Figure 1: Graphical representation of the stairs process.

This definition is equivalent to the following construction: Suppose R(t) is defined
for t ≤ n ∈ N. Now generate points in the interval (n, n + 1] according to the above
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N -particle branching random walk with polynomial tails

Poisson process and translate every atom (t, x) by R(t − 1) in the x-direction (note
that the graph of R(t − 1) is the graph of R(t) shifted by 1 to the right). Then define
(R(t))t∈(n,n+1] to be the record process of these points. See Figure 1 for a graphical
representation.

One easily verifies that R is a non-decreasing càdlàg process and that the following
representation holds for t ≥ 0:

R(t) = max

{
k∑
i=1

ξti : k ∈ N, 0 ≤ t1 < · · · < tk ≤ t, |ti − ti−1| ≥ 1 ∀i

}
(1.3)

Remark. The process (maxs∈[0,t] ξs)t≥0 is known in the literature as a Poisson paced
record process [11]. The stairs process can be interpreted as a self-interacting version
of it. Its long-term behaviour is quite different: While a Poisson paced record process
usually grows logarithmically in t, the stairs process grows like a random walk, due to
the existence of regeneration times (see Section 2).

1.2 Statements of the results

Define µα to be the measure on (0,∞) defined by µα([x,∞)) = x−α and let Rα
denote a realisation of the µα-stairs process. Define a sequence (cN )N≥1 by cN =

h−1(2N log2N), where h−1 is the generalized inverse of h. Note that by the regular
variation of h, we have h(cN ) ∼ 2N log2N as N →∞.

Our first theorem gives convergence in law of the maximum and the minimum of the
N -BRW to a certain stairs process, after rescaling of space and time. For a definition
of Skorokhod’s J1 and SM1 topologies appearing in the statement of the theorem, see
[29, Chapter 12]. Note that the former topology is also commonly called the Skorokhod
topology.

Theorem 1.1. We have the following convergences in law, as N →∞:

(c−1
N XN (bt log2Nc))t≥0 =⇒ (Rα(t))t≥0, in the J1-topology

(c−1
N XN (bt log2Nc, c−1

N X1(bt log2Nc))t≥0 =⇒ (Rα(t),Rα(t− 1))t≥0, in the SM1-topology.

Remark. One cannot expect convergence of c−1
N X1(bt log2Nc)t≥0 in the J1-topology,

since for some values of N , it may have two consecutive macroscopic jumps.

For a random variable Y , denote by L(Y ) the law of Y . Denote by d(·, ·) the Prokhorov
metric on the space of probability measures on R. For two positive sequences aN and
bN , write aN ∼ bN if aN/bN → 1 as N →∞.

The next theorem is our main theorem. It studies the limiting behaviour of the N -
BRW, when we let first the time horizon, then N go to infinity.

Theorem 1.2. We distinguish between the following cases:

• α > 1: The limit vN = limn→∞ XN (n)/n = limn→∞ X1(n)/n exists almost surely
and in L1 and satisfies vN ∼ ραcN/ log2N. Here, the limit ρα = limt→∞Rα(t)/t

exists almost surely and in L1 and is a positive and finite constant.

• α = 1, E[X] < ∞: The limit vN = limn→∞ XN (n)/n = limn→∞ X1(n)/n exists
almost surely and in L1 and satisfies vN ∼ (cN/ log2N)

∫∞
1
h(cN )/h(cNx) dx.

• α = 1, E[X] =∞: Set bNn =
∫ h−1(n)

1
h(cN )/h(cNx) dx. Then, for i ∈ {1, N},

lim
N→∞

lim sup
n→∞

d

(
L
(

log2N

cN

Xi(n)

nbNn

)
, δ1

)
= 0.

EJP 19 (2014), paper 22.
Page 3/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3111
http://ejp.ejpecp.org/


N -particle branching random walk with polynomial tails

• 0 < α < 1: Let Wα be a random variable with Laplace transform

E[e−λWα ] = exp(−α
∫ ∞

0

(1− e−λx)x−α−1 dx). (1.4)

Then, for i ∈ {1, N},

lim
N→∞

lim sup
n→∞

d

(
L
(

(2N)−1/α Xi(n)

h−1(n)

)
,L(Wα)

)
= 0.

1.3 Heuristics and proof strategy

The global heuristic picture of the N -BRW is the following: At a typical time and
viewed on the space scale cN , the particles are divided into one big “tribe” located near
the left-most particle and containing all but o(N) particles, the remaining particles to
the right being split into a O(1) number of smaller tribes. At each time step, the number
of particles in every small tribe is multiplied by two, which eventually leads to extinction
of the big tribe and another tribe taking over. Furthermore, new tribes are formed by
particles performing (rightward) jumps of magnitude cN out of the big tribe. The value
of cN has been chosen so that these events occur on the time scale log2N , which is
precisely the time it takes for a new tribe to grow to size N .

As N → ∞, the jumps leading to new tribes are described by a space-time Poisson
point process shifted in space by the position of the big tribe. This leads to the definition
of the stairs process from Section 1.1 and illustrated in Figure 1. Note that the record
points of that process exactly correspond to the creation of tribes which will eventually
take over the population, the other points representing tribes which get extinct before
reaching a size of order N .

In order to render this picture rigorous, we will couple the N -BRW with a discretized
version of the stairs process, see (3.1), in such a way that the error is bounded in Lp for
p < 2α. Ideally, we would have liked to use a single coupling between both processes to
derive Theorems 1.1 and 1.2 and say something about the empirical measure of the N -
BRW. However, it turned out to be more convenient to use separate couplings for upper
and lower bounds for the positions of the right- and left-most particles. The trickier part
here consisted in the upper bound, the key to which is Proposition 3.2. An important
ingredient consists of large deviation estimates for sums of iid variables with regularly
varying tails.

Theorem 1.2 is then derived from the above coupling and Theorem 2.5 below. In
order to prove the latter, we define a regeneration structure for the stairs process,
which permits to use classical results on random walks with regularly varying tails.

Note that analogues of the above theorems should remain valid if one allows X to
take on negative values or if one considers more general reproduction laws. Since this
increases the technical difficulties without leading to new phenomena, we chose to keep
to our setting for simplicity.

1.4 Discussion

For light-tailed displacement distributions, i.e. satisfying an exponential moment
assumption, the N -BRW model has been studied in the physics literature as a micro-
scopic stochastic model describing the propagation of a front, along with several vari-
ants [7, 8, 9, 10]. In the limit as N → ∞, the dynamics of the model is described by
an analog of the Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) equation, which is a
prototypical example of a reaction-diffusion equation admitting travelling wave solu-
tions [21, 23] (see [18] for a rigorous result of this type). One is then interested in
understanding how the behaviour of the model for large but finite N reflects that of the
limiting equation. The main results are the following:
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N -particle branching random walk with polynomial tails

• The cloud of particles propagates with a finite asymptotic velocity vN . As N →∞,
vN converges to the velocity v of a travelling wave solution to the corresponding
FKPP-type equation, which is also the speed of the right-most particle in the BRW
without selection. Moreover, this convergence takes place at the unusually slow
rate of (logN)−2 [6, 2].

• The relevant time scale both for macroscopic fluctuations of the cloud and for co-
alescence of ancestral lineages is (logN)3 [9, 10, 3, 24]. The genealogy is asymp-
totically described by the Bolthausen–Sznitman coalescent [3].

By contrast, in our heavy-tailed setting, the following happens:

• The particles propagate either linearly or superlinearly (but still at most polynomi-
ally) in time. In both cases, the scaling factor due to the number of particles in the
system grows roughly polynomially in N . Without selection (i.e. for the classical
BRW), the right-most particle would propagate exponentially fast in time [16] due
to the exponential growth of the number of particles1. Note that a similar behav-
ior is observed in reaction-diffusion equations with fractional Laplacian or other
non-local operators [12], which play the role of the FKPP equation in this context.

• The relevant time scale both for macroscopic fluctuations of the cloud and for
coalescence of ancestral lineages is logN . The genealogy is trivial2. Moreover,
the fluctuations come from large jumps of single particles, in contrast to the more
complex mechanism leading to the fluctuations in the light-tailed setting [24].

A natural question and possibility for future research is now to investigate what hap-
pens in between the two scenarios of light-tailed displacement distributions (satisfying
an exponential moment assumption) and the polynomial tails considered in the present
article.

1.5 Organisation of the paper

In Section 2, we first derive some basic properties of the stairs process and prove
Theorem 2.5, which gives its long-time behaviour. In Section 3, we bound the N -BRW
from below and from above by a discretised version of the stairs process. The main work
here lies in the upper bound, which is contained in Proposition 3.2. In the short Sec-
tion 4, we couple the stairs process with its discretised version. Sections 2, 3 and 4 can
be read independently of one another. Section 5 contains the proofs of Theorems 1.1
and 1.2, relying on the results obtained in the previous sections. In the appendix (Sec-
tions 6 and 7), we recall some known results about regularly varying functions (in par-
ticular, Potter’s bounds) and large deviations of random walks with regularly varying
tails.

2 Properties of the stairs process

Throughout this section, we assume that µ is a stairs measure as defined in the last
section (i.e., µ is a non-zero measure on (0,∞) such that µ([a,+∞[) < +∞ for every
a > 0). We regard µ as an element in the space of σ-finite measures on (0,∞) endowed
with the vague topology, i.e. the weak topology with respect to the space of continuous
functions supported on a compact subset of (0,∞). Statements such as “as µ varies”
always refer to this topology. We further denote by (R(t))t≥0 a realization of the µ-stairs
process.

1For the stretched exponential case, see [22].
2Here, trivial means that the genealogy is given by the “star-shaped coalescent”. This follows from the

heuristic picture described above, although we haven’t worked out a full proof of this fact.
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N -particle branching random walk with polynomial tails

We define a regeneration structure for (R(t))t≥0 as follows: Let τ0 = 0 and for
n ≥ 1, let τn = inf{t > τn−1 + 1 : R(t) = R(t − 1)}. By the definition of the stairs
process, the random times (τn)n∈N are regeneration times, i.e. the collection of pairs
(R(τn)−R(τn−1), τn − τn−1)n≥1 are i.i.d. Furthermore, we have the following lemma:

Proposition 2.1. There exists a constant C > 0 (depending on µ), such that

P(τ1 > t) ≤ C−1e−Ct, for all t > 0.

This constant can be chosen to vary continuously with µ.

Proof. By definition of µ, there exists m ∈ (0,∞), such that µ([m,∞)) < ∞ and such
that µ((2m,∞)) > 0. Let M1

n ≥ M2
n ≥ · · · be the x-coordinates of the atoms of the

Poisson process from the definition of the µ-stairs process in the time-interval [n, n+ 1),
arranged in decreasing order. Furthermore, define for every t ≥ 0, Ft = σ(ξs; s ∈ [0, t]),

where (ξt)t≥0 is the process used in the definition of R. We then have for each n ≥ 0,

P(τ1 ≤ n+ 3 | Fn) ≥ P
(
M1
n < m, M1

n+1 > 2m, M2
n+1 < m, M1

n+2 < m
)
, (2.1)

because the event on the right-hand side ensures that there is a time T ∈ [n+ 1, n+ 2)

with R(T ) − R(T−) > m and with R(T + s) = R(T ) for all s ∈ [0, 1]. This implies
τ1 ≤ T + 1 ≤ n + 3. Now, the right-hand side of (2.1) is positive, independent of n and
continuous in µ. The proposition is immediate.

Proposition 2.2. Suppose
∫∞

1
xµ(dx) < ∞. Then the limit ρ = limt→∞R(t)/t exists

almost surely and in L1 and satisfies ρ = E[R(τ1)]/E[τ1] > 0.

Remark 2.3. Proposition 2.2 implies in particular that for every α > 1, the limit ρα =

limt→∞Rα(t)/t exists almost surely and in L1 and is a positive and finite constant.

Proof of Proposition 2.2. Let ξt be as in the definition of the µ-stairs process. For n ≥
0, define the process ξnt = ξt1t>n and let (R(n, t))t∈R be the µ-stairs process defined
from ξn as in (1.2). One easily checks from the definition or by (1.3) that R(0,m) ≤
R(0, n)+R(n,m) for every n ≤ m. Moreover, by the hypothesis on µ,R(1) is positive and
integrable, since P(R(1) > x) = 1 − exp(−µ((x,∞))). Kingman’s subadditive ergodic
theorem [17, Theorem 6.6.1], whose remaining conditions are readily verified, now
yields almost sure and L1-convergence of R(n)/n to a non-negative, finite constant ρ,
and by the monotonicity of the process R, this convergence also holds for R(t)/t.

Now note that E[τ1] <∞ by Proposition 2.1, so that τn/n converges almost surely to
E[τ1] by the law of large numbers. The almost sure convergence of R(t)/t established
above then yields almost sure convergence of R(τn)/n to E[τ1]ρ. By the converse to the
law of large numbers, this implies that E[R(τ1)] is finite and that ρ = E[R(τ1)]/E[τ1].
Moreover, E[R(τ1)] is positive, because the measure µ is non-zero by definition and
R(τ1) ≥ R(1). This shows ρ > 0.

We remark that we could have proven Proposition 2.2 without applying Kingman’s
subadditive ergodic theorem; using only the regeneration structure and an argument
involving Fatou’s lemma and the converse to the law of large numbers to get finiteness
of E[R(τ1)].

Proposition 2.4. Let µN be a sequence of stairs measures converging to µ and denote
by RN and (τNn )n≥0 the corresponding stairs process and regeneration times. Then the
following hold:

1. The sequence of processes (RN (t))t≥0 converges in law to (R(t))t≥0 w.r.t. the J1-
topology (“Skorokhod’s topology”), as N →∞.
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N -particle branching random walk with polynomial tails

2. The sequences of random variables τN1 and RN (τN1 ) converge in law to τ1 and
R(τ1), respectively, as N →∞.

3. The sequence τN1 is uniformly integrable in N .

Proof. We can assume w.l.o.g. that µ has no atoms and has full support in (0,∞). More-
over, we can assume that µN ((0,∞)) ≤ µ((0,∞)) for every N , otherwise we truncate
µN near the origin. Let ξNt and ξt be the processes used to construct RN and R. De-
fine the functions F, FN : R∗+ → R+ by F (x) = µ([x,∞)) and FN (x) = µN ([x,∞)) and let
F−1
N (x) = inf{y ≥ 0 : FN (y) ≤ x} be the generalised inverse of FN . Defining the function
fN := F−1

N ◦F , we can then couple the processes ξNt and ξt by setting ξNt = fN (ξt) (here
we implicitly used the above-mentioned assumptions on µ). Note that for every N ≥ 1,
the function fN is non-decreasing and the sequence (fN )N≥1 converges pointwise to
the identity function on [0,∞). Using (1.3), we can now show that almost surely,

∀T ≥ 0 : lim
N→∞

sup
0≤t≤T

|RN (t)−R(t)| = 0, lim
N→+∞

τN1 = τ1, lim
N→+∞

RN (τN1 ) = R(τ1).

This proves the first two claims. The third follows from Proposition 2.1.

For the next results, we suppose that µN is a sequence of stairs measures given by

µN ([x,∞)) = −γN log(1− h(cNx)−1),

where (γN )N≥1 is a sequence such that γN/(2N log2N) → 1 as N → ∞. Here, h is the
function given in the introduction, in particular, h(x) varies regularly at infinity with
index α > 0. The sequence µN therefore converges to µα.

The following theorem gives the long-time behaviour of the µN -stairs process. It will
be important for the proof of Theorem 1.2.

Theorem 2.5. We distinguish among the following cases:

• α > 1: The limits ρN = limt→∞RN (t)/t and ρα = limt→∞Rα(t)/t exist almost
surely and in L1. Moreover, ρN → ρα as N →∞.

• α = 1, E[X] < ∞: The limit ρN = limt→∞RN (t)/t exists almost surely and in L1

and satisfies ρN ∼
∫∞

1
h(cN )/h(cNx) dx, as N →∞.

• α = 1, E[X] =∞: Set bNt =
∫ h−1(t)

1
h(cN )/h(cNx) dx. Then, for every N ,

RN (t)/tbNt → 1, in probability as t→∞.

• 0 < α < 1: Let Wα be a random variable with Laplace transform given by (1.4).
Then,

lim
N→∞

lim sup
t→∞

d

(
L
(

cN
h(cN )1/α

RN (t)

h−1(t)

)
,L(Wα)

)
= 0

A few remarks on Theorem 2.5: In the case α > 1, its proof is almost immediate
from Propositions 2.2 and 2.4 and Remark 2.3. Indeed, since ρN = E[RN (τN1 )]/E[τN1 ]

and ρα = E[Rα(τα1 )]/E[τα1 ], it remains to show that the sequence of random variables
RN (τN1 ) is uniformly integrable in N , which can easily be done through fractional mo-
ment estimates using Hölder’s inequality and Proposition 2.1. It will also follow directly
from Proposition 2.6 below. This proposition yields a precise estimate of the tail of
RN (τN1 ), which is the key to proving Theorem 2.5 in the more delicate case α ≤ 1. In-
deed, armed with Proposition 2.6, the theorem directly follows from classic results on
random walks applied to (RN (τNn ))n≥0.

We furthermore remark that the uniformity in N in the statement of Proposition 2.6
is only needed in the case E[X] < ∞. In the case E[X] = ∞, estimates not uniform in
N would suffice.
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N -particle branching random walk with polynomial tails

Proposition 2.6. For every ε > 0, there exists x0 = x0(ε), such that for all N ,

sup
x≥x0

∣∣∣∣ P(RN (τN1 ) > x)

E[τN1 ]µN ([x,∞))
− 1

∣∣∣∣ < ε.

Write ∆RN (t) = RN (t) −RN (t−) for the jump of RN at time t. As part of the proof
of Proposition 2.6, we will show that if RN (τN1 ) is large, then it is approximately equal
to ∆RN (τN1 − 1). We therefore first prove the following lemma:

Lemma 2.7. For every ε > 0, there exists x0 = x0(ε), such that for all N ,

sup
x≥x0

∣∣∣∣P(∆RN (τN1 − 1) > x)

E[τN1 ]µN ([x,∞))
− 1

∣∣∣∣ < ε.

Proof. For better readability, write µ = µN , R = RN , τ1 = τN1 , ∆R(t) = R(t) − R(t−),
ξt = ξNt . We further set Mt = maxs∈(t−1,t] ξs and Mt− = maxs∈(t−1,t) ξs.

Bounding P(∆R(τ1 − 1) > x) from above is easy: Let P be the Poisson point process
used to construct R. We have

P(∆R(τ1 − 1) > x) = E
[ ∑

(t,ξt)∈P

1τ1=t+1,∆R(t)>x

]
≤ E

[ ∑
(t,ξt)∈P

1τ1≥t, ξt>x

]
.

Now, since τ1 is a stopping time for R, the event {τ1 ≥ t} = {τ1 < t}c is measurable
w.r.t. the σ-field generated by P∩{[0, t)×R+} for every t ≥ 0. By the projection theorem
for Poisson processes [5, Theorem VIII.T3], the previous equation now yields

P(∆R(τ1 − 1) > x) ≤ (1− e−µ([x,∞)))

∫ ∞
0

P(τ1 ≥ t) dt = (1− e−µ([x,∞)))E[τ1],

which proves the upper bound of P(∆R(τ1 − 1) > x).
As for the lower bound, we note that for every t ≥ 0, on the event {∆R(t) > 0}, we

have τ1 ≥ t+ 1 iff τ1 ≥ t. This gives for every ε > 0, x > 0 and t ≥ 0,

{τ1 = t+ 1, ∆R(t) > x} ⊃ {τ1 ≥ t, Mt+1 ≤ x, ∆R(t) > x}
⊃ {τ1 ≥ t,Mt+1 ≤ x, ξt > (1 + ε)x, Mt− ≤ εx}.

By the independence properties of the Poisson process and the previously mentioned
projection theorem [5, Theorem VIII.T3], this gives,

P(∆R(τ1 − 1) > x) ≥ E

 ∑
(t,ξt)∈P

1τ1≥t,Mt+1≤x, ξt>(1+ε)x,Mt−≤εx


≥ P(M1 ≤ x)E

 ∑
(t,ξt)∈P

(
1τ1≥t, ξt>(1+ε)x − 1τ1≥t−1, ξt>(1+ε)x,Mt−>εx

)
= P(M1 ≤ x)(1− e−µ([(1+ε)x,∞)))(E[τ1]− (1 + E[τ1])P(M1 > εx)).

(in the second line, we used the fact that τ1 ≥ t trivially implies τ1 ≥ t − 1). Now, since
µN converges to µα, the variables M1 = MN

1 converge in law as well. Together with the
fact that E[τ1] ≥ 1 by definition, this gives for x ≥ x0(ε), for every N ,

P(∆RN (τN1 − 1) > x) ≥ (1− ε)(1− e−µN ([(1+ε)x,∞))).

Now, by the regular variation of h(x), we have for every N , for large x, µN ([(1 +

ε)x,∞)) ≥ (1 + 2ε)−αµN ([x,∞)). Since ε was arbitrary, this proves the lemma.
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N -particle branching random walk with polynomial tails

Proof of Proposition 2.6. For better readability, we use the same notation as in the proof
of Lemma 2.7. Note that we trivially have P(∆R(τ1 − 1) > x) ≤ P(R(τ1) > x), such that
the lower bound on P(R(τ1) > x) directly follows from Lemma 2.7.

For the upper bound, fix ε > 0. By the definition of the process R, for every x > 0,

the event {∆R(τ1 − 1) ≤ (1− ε)x, R(τ1) > x} implies the event {R−(τ1 − 1) > εx}, such
that

P(R(τ1) > x) ≤ P(∆R(τ1 − 1) > (1− ε)x) + P(R−(τ1 − 1) > εx). (2.2)

In order to bound the second term on the right-hand side, let C be large enough, such
that with Lx = dC log xe, we have P(τ1 > Lx) ≤ µ([x,∞))2 for large x and every N (this
is possible by Proposition 2.1 and Potter’s bounds for regularly varying functions, see
Section 6). We then have for large x, with R−(t) = R(t−),

P(R−(τ1 − 1) > x) ≤ µ([x,∞))2 + P(R−(τ1 − 1) > x, τ1 ≤ Lx) (2.3)

We furthermore split the second term on the right-hand side of (2.3) into two, according
to whether maxt<τ1−1 ξt > x/2 or not. Now first note that if ξt > x/2 for some t < τ1− 1,
then necessarily ξt′ > x/4 for some t′ < t + 1, t′ 6= t, otherwise τ1 ≤ t + 1, which is a
contradiction (this is the same reasoning as that used in the proof of Proposition 2.1).
As a consequence, for some numerical constant c we have for large x,

P( max
t<τ1−1

ξt > x/2, τ1 ≤ Lx) ≤ c(Lxµ([x,∞)))2. (2.4)

On the other hand, by (1.3),

P(R−(τ1 − 1) > x, max
t<τ1−1

ξt ≤ x/2, τ1 < Lx) ≤ P(M1 + · · ·+MLx > x, ∀i : Mi ≤ x/2),

and by Corollary 7.2 in Section 7, the last quantity is less than Kαx
−3α/2 for a constant

Kα and for large x. Together with (2.3) and (2.4) and Potter’s bounds, this gives for
large x,

P(R−(τ1 − 1) > x) ≤ µ([x,∞))x−α/3,

and the regular variation of h(x) then yields existence of x0 (depending on ε), such that
P(R−(τ1 − 1) > εx) ≤ εµ([x,∞)) for x ≥ x0. Together with (2.2) and Lemma 2.7, as well
as the regular variation of h(x) and the fact that E[τ1] ≥ 1 by definition, this finishes the
proof.

Proof of Theorem 2.5. Case α > 1: Here,
∫∞

1
xµα(dx) <∞ and for every N , by Potter’s

bounds,
∫∞

1
xµN (dx) < ∞. By Proposition 2.2, the limits ρN = limt→∞RN (t)/t and

ρα = limt→∞Rα(t)/t exist almost surely and in L1 and satisfy ρN = E[RN (τN1 )]/E[τN1 ]

and ρα = E[Rα(τα1 )]/E[τα1 ]. Furthermore, by Propositions 2.1 and 2.4, E[τN1 ] converges
to E[τα1 ] and RN (τN1 ) converges in law to Rα(τα1 ), as N → ∞. In order to show that
ρN → ρα as N →∞, it therefore remains to show that the sequence of random variables
RN (τN1 ) is uniformly integrable in N . But this follows from Proposition 2.6 and the fact
that the restrictions of the measures µN to [1,∞) are uniformly integrable in N , again
by Potter’s bounds. This finishes the proof of the case α > 1.

Case α = 1, E[X] <∞: As in the previous case, the limit ρN = limt→∞RN (t)/t ex-
ists almost surely and in L1 by Proposition 2.2 and satisfies ρN = E[RN (τN1 )]/E[τN1 ].
Furthermore, since the measures µN converge as N → ∞ to µ1(dx) = x−2 dx which
satisfies

∫∞
1
xµ1(dx) = ∞, we have

∫∞
1
xµN (dx) → ∞, as N → ∞, by Fatou’s lemma.

Proposition 2.6 now yields as N → ∞ (note that here we need the fact that x0 in the
statement of Proposition 2.6 is independent of N ),

ρN ∼
∫ ∞

1

µN ([x,∞)) dx ∼
∫ ∞

1

h(cN )

h(cNx)
dx,
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N -particle branching random walk with polynomial tails

which yields the theorem in the case α = 1, E[X] <∞.
Case α = 1, E[X] =∞: For each N ∈ N, define the random variable

SN = RN (τN1 )/E[τN1 ],

and set aNn = inf{x : P(SN > x) < n−1}. We introduce the relation αNn � αNn between
two positive double sequences meaning that limN→∞ lim supn→∞ |αNn /αNn − 1| = 0. By
Proposition 2.6,

aNn � (cNE[τN1 ])−1h−1(E[τN1 ]h(cN )n) � c−1
N h(cN )h−1(n),

where the last relation follows from the fact that h−1 is regularly varying with index
1 [4, Theorem 1.5.12]. Now define βNn = E[SN1SN≤aNn ]. By Proposition 2.6, and the
“boundary case” of Karamata’s theorem [4, Proposition 1.5.9a], we have

βNn =

∫ aNn

0

P(SN > x) dx− aNn P(SN > aNn )

∼
∫ aNn

1

h(cN )

h(cNx)
dx ∼

∫ h−1(n)

1

h(cN )

h(cNx)
dx, as n→∞.

Furthermore, again by [4, Proposition 1.5.9a], we have nβNn /a
N
n →∞ and βNn ∼ bNcn for

every constant c > 0, as n → ∞. Now, if (SNn )n≥0 is a random walk with increments
distributed according to SN , then standard results on random walks (see e.g. [17, The-
orem 2.7.7], note that P(SN > x) is regularly varying for every N , by Proposition 2.6)
imply that (SNn − nβNn )/aNn converges in law to a non-degenerate random variable, as
n → ∞. With the above, this implies that SNn /nβ

N
n → 1 in probability, as n → ∞. To-

gether with the fact that τNn /n → E[τN1 ] almost surely as n → ∞ and the monotonicity
of RN (t), this readily yields the theorem in the case α = 1, E[X] =∞.

Case α ∈ (0, 1): This case is similar to the previous one. Let (SNn )n≥0 be a random
walk with increments distributed as RN (τN1 ) and set aNn = inf{x : P(SN1 > x) > n−1}.
Again by standard results on random walks (see e.g. [20, Theorem XVII.5.3] or [17,
Theorem 2.7.7]), since, by Proposition 2.6, P(SN > x) is regularly varying for every N ,
the sequence SNn /a

N
n converges in law toWα, as n→∞, for everyN . By Proposition 2.6,

aNn �
h(cN )1/α

cN
h−1(E[τN1 ]n).

Together with the fact that τNn /n→ E[τN1 ] almost surely as n→∞ and the monotonicity
of RN (t), this finishes the proof.

We finish this section with an easy lemma which will be used in the proof of Theo-
rem 1.1.

Lemma 2.8. The process (R(t))t≥0 is stochastically continuous. Furthermore, the pro-
cesses (R(t))t≥0 and (R(t+ 1))t≥0 almost surely do not have common jumps.

Proof. For every t ≥ 0 and δ > 0, R(t + δ) is by definition stochastically dominated
by R(t) + R′(δ), for an independent copy R′ of R. This easily yields the first claim.
For the second claim, we note that for every stopping time T of the process R, by the
independence properties of the Poisson process, T + 1 is almost surely not a jump time
of R. Fix ε > 0 and define Tk to be the time of the k-th jump of size greater than ε. Then
Tk → ∞ almost surely as k → ∞ and almost surely, Tk + 1 is not a jump time of R for
every k. Letting ε→ 0 yields the lemma.
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3 Coupling the BRW with a discretised stairs process

Recall the definition of X, (Xn,i)n≥0,i∈[2N ] and X (n) = {X1(n) ≤ · · · ≤ XN (n)} from
the introduction and define the rescaled variables Y := c−1

N X, Yn,i := c−1
N Xn,i and

Y(n) := c−1
N X (n). Set Yi(−n) = 0 for all i ∈ [N ] and n > 0. For n ≥ 1, let Fn be the

sigma-algebra generated by the variables Yk,i for 0 ≤ k ≤ n − 1, i ≥ 1 and set F−n to
the trivial σ-field for all n ≥ 0. Note that (X (n))n≥0 and (Y(n))n≥0 are adapted to the
filtration (Fn)n≥0. For integers N, ` ≥ 1, the (N, `)-discretised stairs process (DSP) is
the process (RN,`(n))n∈Z defined inductively by RN,`(n) = 0 for all n ≤ 0 and

RN,`(n+ 1) = RN,`(n) ∨ max
i=1,...,2N

(RN,`(n− `) + Yn,i). (3.1)

3.1 Lower bound

Proposition 3.1. Let `N = dlog2Ne. Then RN,`N (n−`N ) ≤ Y1(n) and RN,`N (n) ≤ YN (n)

for all n ≥ 0.

Proof. Writing R(n) = RN,`N (n) for short, define the random time

τ = inf{n ≥ 0 : Y1(n) < R(n− `N ) or YN (n) < R(n)}.

We shall prove by contradiction that τ is infinite almost surely. Assume that τ is finite for
some realisation of the variables Yn,i. By definition of τ , one has Y1(τ−1) ≥ R(τ−1−`N ),
so that by the definitions of Y(n) and R(n), we then have YN (τ) ≥ R(τ). We therefore
must have Y1(τ) < R(τ − `N ). But now, by the definition of τ , we have YN (τ − `N ) ≥
R(τ − `N ). Hence, at time τ , there are no particles below R(τ − `N ), otherwise the
particle at position YN (τ − `N ) at time τ − `N would have 2`N ≥ N descendants at time
τ , all above R(τ − `N ), whence the total number of particles would be larger than N ,
which is a contradiction. Thus, Y1(τ) ≥ R(τ − `N ), but this contradicts the definition
of τ .

3.2 Upper bound

The main result in this section is Proposition 3.2. One should not be fooled by its
apparent simplicity, its proof is more intricate than it looks at first sight (and took us
quite some time to come up with). Let δN be a positive sequence which tends to zero as
N → ∞ but such that δNNε → ∞ for all ε > 0. Set mN = log2N + log2 δN and assume
that mN ∈ N and mN ≥ 1 for all N . Define the process (θn)n≥0 by θ0 = 0 and

θn = max
0≤k≤n

{YN (k)−RN,mN (k)}.

Proposition 3.2. For all ε > 0, all large enough N and x ≥ mN −N (1∨α−1)+ε/cN , for all
n ≥ 0,

P(θn+1 − θn > x | Fn−mN ) ≤ NmN2mN+1/h(cNx)2.

Proof. Let n ∈ N and x > 0. Set Y(n)
i (k) = Yi(k) − θn, k = 0, 1, . . . and note that

by definition Y(n)
N (k) ≤ RN,mN (k) for all 0 ≤ k ≤ n. We now claim that the event

θn+1 − θn > x implies that there exists i ∈ [N ] and j ∈ {0, 1}, such that on the one hand

Yn,2i+j > x and on the other hand Y(n)
i (n) > x + RN,mN (n −mN ) ≥ x + Y(n)

N (n −mN ),
whence Yi(n) > x+ YN (n−mN ). Indeed, note first that by definition of θn, we have

θn+1 − θn = max
(
YN (n+ 1)−RN,mN (n+ 1), θn

)
− θn

=
(
Y(n)
N (n+ 1)−RN,mN (n+ 1)

)
∨ 0. (3.2)
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Furthermore, recall that by definition,

Y(n)
N (n+ 1) = max

i∈[N ], j∈{0,1}
Y(n)
i (n) + Yn,2i+j

RN,mN (n+ 1) = RN,mN (n) ∨
(
RN,mN (n−mN ) + max

r∈[2N ]
Yn,r

)
.

Now let i ∈ [N ]. Since Y(n)
i (n) ≤ RN,mN (n) as noted above, we have on the one hand,

Y(n)
N (n+ 1)−RN,mN (n+ 1) ≤ Y(n)

i (n) + max
j∈{0,1}

Yn,2i+j −RN,mN (n) ≤ max
j∈{0,1}

Yn,2i+j . (3.3)

On the other hand, we have

Y(n)
N (n+ 1)−RN,mN (n+ 1) ≤ Y(n)

i (n) + max
j∈{0,1}

Yn,2i+j −RN,mN (n−mN )− max
r∈[2N ]

Yn,r

≤ Y(n)
i (n)−RN,mN (n−mN ).

(3.4)

Equations (3.2), (3.3) and (3.4) then yield the above claim.
Now if we denote by Mx(n) the number of particles above x+YN (n−mN ) at time n

(i.e. Mx(n) = #{i ∈ [N ] : Yi(n) > x+ YN (n−mN )}), then a union bound gives that

P(θn+1 − θn > x | Fn−mN ) ≤ E(Mx(n) | Fn−mN )P(Y > x) ≤ E[Mx(mN )]/h(cNx). (3.5)

Let (Sn)n≥0 be a random walk with increments distributed according to Y . Bounding
Mx(mN ) by the number of particles above x at time mN in N branching random walks
without selection, we get

E[Mx(mN )] ≤ N2mNP(SmN > x). (3.6)

Note that from the definition of mN , one has that (1/2) log2N ≤ mN ≤ 2 log2N for

all large enough N . Now, for all ε > 0, for all large enough N and x ≥ m
(1∨α−1)+ε
N /cN ,

we have P(SmN > x) ≤ 2mNP(Y > x) (see Corollary 7.1 in Section 7). The statement
follows.

Corollary 3.3. Let p ∈ [0, 2α). Then for every 0 < ε ≤ (2α− p)/2, there exists Nε, such
that for N > Nε and n ≥ 0, we have

E[(θn+1 − θn)p | Fn−mN ] ≤
(

1 +
4p

2α− p

)(
δN

log2N

) p
2α+ε

.

Proof. Write En = E[· | Fn−mN ] and set δ′N = δN/ log2N . By Proposition 3.2, we have
for every x > γmN/cN and every n ≥ 0:

En[(θn+1 − θn)p] ≤ x+
NmN2mN+1

h(cN )2

∫ ∞
x

h(cN )2

h(cNy1/p)2
dy.

By definition, we have 2mN = NδN and h(cN ) ∼ 2N log2N as N → ∞. By Potter’s
bounds, there now exists xε, such that for cN ≥ xε and x1/pcN ≥ xε, we have

En[(θn+1 − θn)p] ≤ x+ δ′NIx, Ix =

∫ ∞
x

y−2α/p max(yε/p, y−ε/p) dy. (3.7)

By the hypothesis on ε, we have for x ≤ 1: Ix ≤ 4(p/(2α − p))x1−(2α+ε)/p. Setting now

x = xN = (δ′N )p/(2α+ε) in (3.7) yields the lemma (note that x1/p
N cN ≥ xε and xN >

m
(1∨α−1)+ε
N /cN for large N , by the hypothesis on δN ).
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4 Coupling the discretised stairs process and the stairs process

Let N, ` ∈ N and define the measure µN,` on R+ by

µN,`([x,∞)) = −2N` log(1− h(cNx)−1).

Let RµN,` be the µN,`-stairs process as defined in the introduction. Furthermore, let
RN,` be the (N, `)-DSP defined in (3.1).

Proposition 4.1. We have (RµN,`(n/`))n≥0

st
≥ (RN,`(n))n≥0

st
≥ (RµN,`(n/(` + 1)))n≥0,

where (X(n))n≥0

st
≥ (Y (n))n≥0 means that there exists a coupling, such that X(n) ≥

Y (n) for all n ≥ 0.

Proof. Let ξt be the function used to define the process RµN,` . By the definition of the
measure µN,`, the variables max{ξt : t ∈ [0, 1/`)} and max{Y1,i : i ∈ [2N ]} have the same
distribution, a fact which is also known as Serfling’s coupling after [27] (see also [26]).
We can therefore construct the process RN,` using ξt by

RN,`(n+ 1) = RN,`(n) ∨ max
t∈[0,1/`)

(RN,`(n− `) + ξ(n+1)/`−t). (4.1)

In comparison, the processes (RµN,`(n` ))n∈Z and (RµN,`( n
`+1 ))n∈Z satisfy by definition

RµN,`(n+1
` ) = RµN,`(n` ) ∨ max

t∈[0,1/`)
(RµN,`(n+1−`

` − t) + ξ(n+1)/`−t). (4.2)

RµN,`(n+1
`+1 ) = RµN,`( n

`+1 ) ∨ max
t∈[0,1/(`+1))

(RµN,`(n−``+1 − t) + ξ(n+1)/(`+1)−t). (4.3)

Equations (4.1) and (4.2) and the monotonicity of RµN,` now directly yield the first
inequality in the statement of the proposition. As for the second inequality, if we take
(4.3) as the definition of the process (RµN,`( n

`+1 ))n≥0, then exchanging ξ(n+1)/(`+1)−t by
ξ(n+1)/`−t does not change its law, and we obviously have maxt∈[0,1/(`+1)) ξ(n+1)/`−t ≤
maxt∈[0,1/`) ξ(n+1)/`−t for every n. Together with (4.1) and the monotonicity of RµN,` ,
this yields the statement.

5 Proof of Theorems 1.1 and 1.2

The following lemma will be needed in the proof of Theorem 1.1.

Lemma 5.1. We have for every n0 ≥ 0 and ε > 0,

P(Y1(n0 + b(1− ε) log2Nc) < YN (n0) + ε | Fn0
)→ 1, as N →∞.

Proof. Since we can bound the configuration of particles at time n0 from above by
moving all particles to the position of the maximum YN (n0), it is clearly enough to show
the lemma for n0 = 0. Let ε > 0 and set γN = ε/ log2N . Denote by Jn the number of
particles which jump by at least γN between times n and n+ 1. Then E[Jn] = 2NP(Y >

γN ) = 2N/h(cNγN ), such that E[Jn] ≤ Nε/2 for large N , by Potter’s bounds). Now, if a
particle is at a position strictly greater than nγN at a time n, it must have an ancestor
which has jumped by more than γN between times k − 1 and k for some k ≤ n. This
ancestor then has at most 2n−k descendants at time n. Altogether, this gives for large
N ,

E[#{i : Yi(n) > nγN}] ≤
n∑
k=1

2n−kE[Jk] ≤ 2n+1Nε/2,

which now implies with nN = b(1− ε) log2Nc, for large N ,

P(Y1(nN ) ≥ ε) ≤ P(#{i : Yi(nN ) > nNγN} ≥ N) ≤ 2N−ε/2,

by Markov’s inequality. This yields the lemma.
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Proof of Theorem 1.1. Set (Y ′N (t))t≥0 = (YN (bt log2Nc))t≥0. We will first show that the
finite-dimensional distributions of (Y ′N (t),Y ′1(t))t≥0 converge to those of (Rα(t),Rα(t −
1))t≥0. Recall the definitions of `N and mN from Sections 3.1 and 3.2 and note that `N ∼
mN ∼ log2N as N → ∞. For an upper bound, let p = 1 if α ≥ 1 and p ∈ (α,min(1, 2α))

if α < 1. Write x+ = max(x, 0) for x ∈ R. We then have by Corollary 3.3, for every ε > 0

and some c > 0, for large N ,

∀n ≥ 0 : E[(YN (n)−RN,mN (n))p+] ≤ E[θpn] ≤
n∑
k=1

E[(θk − θk−1)p] ≤ cn
(

δN
log2N

)p/(2α+ε)

.

(5.1)
Fix K > 0. If we choose δN = o((log2N)1−(2α+ε)/p), then for all n ≤ K log2N , the
right-hand side in the last inequality tends to zero as N → ∞. Together with Proposi-
tions 2.4 and 4.1 as well as Lemmas 2.8 and 5.1, this shows that the finite-dimensional
distributions of (Y ′N (t),Y ′1(t)) are tight in N and all limit points are dominated by the
finite-dimensional distributions of (Rα(t),Rα(t− 1)).

For a lower bound, note that by Propositions 3.1 and 4.1, we have for every n ≥ 0,

(YN (n),Y1(n))
st
≥ (RN,`N (n), RN,`N (n− `N ))

st
≥ (RµN,`N ( n

`N+1 ),RµN,`N (n−`N`N+1 )), (5.2)

with the coordinate-wise order on R2 (i.e. (x, y) ≤ (v, w) iff x ≤ v and y ≤ w). Together
with the first part of Proposition 2.4 and Lemma 2.8, this proves that as N →∞, every
limit point of the finite-dimensional distributions of (Y ′N (t),Y ′1(t))t≥0 dominates those of
(Rα(t),Rα(t− 1))t≥0. Together with the upper bound established above, this proves the
convergence.

In order to prove tightness of (Y ′N (t))t≥0 in Skorokhod’s J1-topology, we will use Al-
dous’ criterion [1, Theorem 1]: Let TN be a sequence of stopping times for Y ′N . Suppose
for simplicity that TN only takes on values which are multiples of (log2N)−1. Let εN be
a sequence of positive numbers converging to 0. We then have for every x > 0,

P(Y ′N (TN + εN )− Y ′N (TN ) > x) ≤ P(Y ′N (εN ) > x),

because we can bound the configuration of particles at time TN log2N from above by
moving all particles to the position of the maximum. The right-hand side of the last
inequality now converges to 0 by the convergence in finite-dimensional distributions
established above together with the monotonicity of Y ′N (t) and Lemma 2.8. By Aldous’
criterion, this yields tightness in Skorokhod’s J1-topology.

As for the convergence of (Y ′N (t),Y ′1(t))t≥0 in the SM1-topology, we note that by
Skorokhod’s representation theorem for stochastic processes [28, §3.1.2] and the con-
vergence of the finite-dimensional distributions established above, we can transfer the
processes Y ′N , Y ′1 and Rα onto a common probability space, such that almost surely,
(Y ′N (t),Y ′1(t)) → (Rα(t),Rα(t − 1)) for every t ∈ Q+. The monotonicity of Y ′N and
Y ′1 then implies that almost surely, both Y ′N and Y ′1 converge w.r.t. the SM1-topology
[29, Corollary 12.5.1]. Convergence of the pair now follows from the second part of
Lemma 2.8, by [29, Theorem 12.6.1].

Proof of Theorem 1.2. We first cover the case E[X] < ∞ (which includes the case α >

1). The existence of the limit vN = limN→∞ XN (n)/n = limN→∞ X1(n)/n is easily proven
using subadditivity (see [2, Proposition 2]) with the convergence holding almost surely
and in L1. The asymptotic for vN now easily follows from (5.2) and (5.1), together with
Theorem 2.5 and Proposition 4.1. Indeed, (5.2) immediately gives a lower bound on vN
and for the upper bound, we note that with δN = o(logN)1−2α−ε, the right-hand side of
5.1, multiplied by (log2N)/n, vanishes in the limit as N goes to infinity.
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In the case E[X] =∞, set βn = nbNn if α = 1 and βn = h−1(n) if α < 1 and let p = 1 if
α = 1 and p ∈ (α,min(1, 2α)) if α < 1. Then n/βpn → 0 as n→∞, by Potter’s bounds) and
the fact that h−1(n) is regularly varying with index 1/α [4, Theorem 1.5.12]. Letting
δN be any sequence satisfying the hypotheses of Corollary 3.3, we get for every N and
every ε > 0, for some constant CN , by (5.1),

P(YN (n)−RN,mN (n) > εβn) ≤ ε−pβ−pn E[(YN (n)−RN,mN (n))p+] ≤ CNε−pn/βpn → 0,

as n → ∞. This, together with Theorem 2.5 and Propositions 3.1 and 4.1, implies the
statement about XN (n). The statement about X1(n) follows from the fact that XN (n −
dlog2Ne) ≤ X1(n) ≤ XN (n) for all n.

6 Appendix A: Regular variation

A function f : R → (0,∞) is said to vary regularly (at +∞) with index α ∈ R if for
every y > 0,

f(xy)

f(x)
→ yα, as x→∞.

The classic reference to regular variation and the only one that we use in this article
is the book by Bingham, Goldie and Teugels [4]. We will particularly often use a result
known as Potter’s bounds, which we reproduce here for convenience.

Theorem. (Potter’s bounds, [4, Theorem 1.5.6]) If f is regularly varying of index α,
then for every C > 1 and δ > 0 there exists x0 = x0(C, δ), such that

f(y)

f(x)
≤ C max((y/x)α+δ, (y/x)α−δ), for all x ≥ x0, y ≥ x0.

7 Appendix B: Large deviations for sums of i.i.d. random vari-
ables with regularly varying tails

A substantial body of literature is devoted to the following problem: given a family of
i.i.d. random variables (Xi)i≥1 distributed according to X, and a sequence (xn)n≥1 such
that limn→+∞ xn = +∞, find conditions on the distribution of X and on the sequence
(xn)n≥1 under which one has

lim
n→+∞

sup
x≥xn

∣∣∣∣ P(Sn > x)

nP(X > x)
− 1

∣∣∣∣ = 0. (7.1)

In what follows, we assume that X is non-negative and P(X > x) = 1/h(x), where h(x)

is regularly varying at +∞ with index α > 0. The specific result we use in this paper is
the following corollary of [13, Theorem 3.3]):

Corollary 7.1. (corollary to [13, Theorem 3.3]) For a random variable X as above,
property (7.1) holds for any sequence (xn)n≥0 of the form xn := n(1∨α−1)+ε, where
ε > 0.

The as-yet-unpublished paper [13] quoted above both covers the whole range of
values of α and provides easy-to-read statements. The reader may consult [19, Section
8.6], [25] and [14] for additional references to the classical literature, as well as [15],
which is rarely cited in this context.

Implicit in proofs of results of the above type are results about random walks with
truncated jumps, such as the following. It is a direct consequence of the lemma stated
on p. 168 of [16], whose author refers to the proof of [15, Lemma 3].
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Corollary 7.2. (corollary to [16, Lemma on p. 168]) For a random variable X as above,
for every ε > 0, r ∈ (0, 1), there exists a constant C such that for large n,

P(Sn > x, max
i=1,...n

Xi ≤ rx) ≤ C(n/xα−ε/2)1/r, for all x ≥ xn = n(1∨α−1)+ε.
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