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Abstract

We study “tricolor percolation” on the regular tessellation of R3 by truncated octa-
hedra, which is the three-dimensional analog of the hexagonal tiling of the plane.
We independently assign one of three colors to each cell according to a probability
vector p = (p1, p2, p3) and define a “tricolor edge” to be an edge incident to one
cell of each color. The tricolor edges form disjoint loops and/or infinite paths. These
loops and paths have been studied in the physics literature, but little has been proved
mathematically.

We show that each p belongs to either the compact phase (in which the length
of the tricolor loop passing through a fixed edge is a.s. finite, with exponentially
decaying law) or the extended phase (in which the probability that an n × n × n

box intersects a tricolor path of diameter at least n exceeds a positive constant,
independent of n). We show that both phases are non-empty and the extended phase
is a closed subset of the probability simplex.

We also survey the physics literature and discuss open questions, including the
following: Does p = (1/3, 1/3, 1/3) belong to the extended phase? Is there a.s. an
infinite tricolor path for this p? Are there infinitely many? Do they scale to Brownian
motion? If p lies on the boundary of the extended phase, do the long paths have a
scaling limit analogous to SLE6 in two dimensions? What can be shown for the higher
dimensional analogs of this problem?
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Tricolor percolation

1 Introduction

1.1 Overview of the model

Critical percolation on the faces of the hexagonal lattice has been very thoroughly
studied, for example in celebrated works by Smirnov and by Smirnov and Werner
[18, 19]. As illustrated in Figure 1, if one colors each face one of two colors, the set
of bicolor edges (i.e., edges that lie between two faces of distinct colors) forms a col-
lection of paths and loops. Smirnov’s constructions can be used to show that as the
mesh size tends to zero, the macroscopic loops converge in law to a random continuum
collection of loops called a conformal loop ensemble [6] (see also [16, 20]). Each loop
in the conformal loop ensemble looks locally like an instance of the Schramm-Loewner
evolution with parameter κ = 6 (written SLE6) which is a particular random fractal
non-self-crossing planar curve, first introduced by Schramm in 1999 [15]. The exist-
ing theory of SLE curves relies heavily on conformal maps and the Riemann mapping
theorem, and is very specific to two dimensions.

Figure 1: The faces of the hexagonal lattice are each colored one of two colors; a
bicolor edge is defined to be an edge incident to one face of each color. The union of
these edges is a collection of disjoint finite loops and/or infinite paths.

This paper will treat a three-dimensional analog of the percolation model mentioned
above, in which the hexagon is replaced by the truncated octahedron, illustrated in
Figure 2. Just as the hexagon tiles the plane, the truncated octahedron tessellates three-
dimensional space, as illustrated in Figures 3 and 4.1 The simplest way to describe this
tessellation is that it is the Voronoi tessellation corresponding to the set

L := 2Z3 ∪
(
2Z3 + (1, 1, 1)

)
,

i.e., the set of vertices of Z3 whose coordinates are all even or all odd. In particular,
the cells in the tessellation are indexed by L, and each v ∈ L is the center of the
corresponding cell. We will sometimes abuse notation by using v to denote the cell itself.
Cells v, w ∈ L are adjacent along a square face if v−w ∈ {(±2, 0, 0), (0,±2, 0), (0, 0,±2)},
and adjacent along a hexagonal face if v − w ∈ {(±1,±1,±1)}, and otherwise non-
adjacent. The lattice L endowed with this adjacency relation is called the body centered
cubic lattice.

The tessellation determines a complex of cells, faces, edges, and vertices. We say
that two of these objects are incident to each other if one is entirely contained in the
boundary of the other. The reader may observe by studying the figures that every face is
incident to two cells, every edge is incident to three cells, and every vertex is incident

1 This tessellation and the planar hexagonal tiling are the d = 2 and d = 3 cases of a more general
tessellation of Rd by permutohedra (also spelled “permutahedra”). See [23], [17], Wikipedia or appendix for
more information.
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Tricolor percolation

Figure 2: The truncated octahedron has six square and eight hexagonal faces. It can
be placed in R3 in such a way that the center is a point in L and the centers of the six
square faces are at the neighboring vertices {v± (1, 0, 0), v± (0, 1, 0), v± (0, 0, 1)}, which
belong to Z3 \ L.

Figure 3: Shown are cells, as described in the caption of Figure 2, centered at ver-
tices v ∈ 2Z3. They are colored red or yellow depending on whether the sum of the
coordinates of v, modulo 4, is equal to 0 or 2.

Figure 4: Shown are the cells from Figure 3 together with cells centered at points in
v ∈ 2Z3 + (1, 1, 1). The latter are colored green or blue, depending on whether the sum
of the coordinates of v, modulo 4, is equal to 1 or 3. This pattern extends to the full
tessellation of R3.
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Tricolor percolation

to four cells. (This is analogous to the planar hexagonal tiling in which each edge is
incident to two hexagons, and each vertex is incident to three hexagons.)

There is a one-to-one correspondence between faces and adjacent pairs of cells in L.
For example,

{
(3, 3, 3), (3, 3, 5)

}
describes a square face and

{
(3, 3, 3), (4, 4, 4)

}
a hexag-

onal face. Similarly, there is a one-to-one correspondence between edges and triples of
mutually adjacent cells (3-cliques). For example,

{
(3, 3, 3), (3, 3, 5), (4, 4, 4)

}
describes an

edge (the edge incident to all three of those cells). Finally, there is a one-to-one corre-
spondence between vertices and quadruples of mutually adjacent cells (4-cliques). For
example,

{
(3, 3, 3), (3, 3, 5), (4, 4, 4), (2, 4, 4)

}
describes a vertex (the vertex incident to all

four cells). When cells, faces, edges, and vertices are respectively represented by sets
of 1, 2, 3, and 4 mutually adjacent elements of L, the incidence relation corresponds to
the subset-or-superset relation.

In this paper, we fix a vector p = (p1, p2, p3) belonging to the simplex

T := {p ∈ [0, 1]3 : p1 + p2 + p3 = 1}

and then independently assign one of the three colors (red, yellow, and blue — ith color
chosen with probability pi) to each of the cells in L. Let σ : L → {red, yellow,blue} denote
the random color assignment. An instance of such a coloring with p = (1/3, 1/3, /1, 3)

is illustrated in Figure 5. We then define a tricolor edge to be an edge that is incident
to cells of all three colors, as illustrated in Figure 6. Such an edge is represented by
a triple of mutually adjacent cells in L, each assigned a different color by σ. A tricolor
vertex is a vertex incident to cells of all three colors — and represented by four cells in
L: two of one color, and one of each other color. Since every tricolor vertex is incident
to exactly two tricolor edges, and every tricolor edge is incident to exactly two tricolor
vertices, the tricolor edges and vertices form loops and/or infinite paths (as the bicolor
edges do in the planar hexagonal tiling). We are interested in studying the existence
and behavior of long tricolor paths.

A recent survey of this and similar models was given by Nahum and Chalker [12].
(See also [13].) According to [12] the tricolor percolation model was first introduced by
Scherrer and Frieman [14] as an enhancement of work of Vachaspati and Vilenkin [22].
It was studied via Monte Carlo simulations in a series of papers by Bradley, Debierre,
and Strenski in 1992 [2, 3, 4], and has since been used, e.g., in [9]. The Nahum and
Chalker paper also considers what should be involved in a continuum field theory as-
sociated to this model (keywords include CP k|k, supersymmetry, replica limit), but it is
not clear how to translate these ideas into mathematical conjectures.

The various simulations surveyed in [12] suggest a phase transition: for certain
values of p, including (1/3, 1/3, 1/3), the origin cell has a positive probability of being
incident to an edge of an infinite (as far as the simulation can detect) tricolor path, and
this path appears to have (like Brownian motion) scaling dimension 2. These p values
are sometimes said to belong to the extended phase (though we will give a slightly
different definition of the term “extended phase” below). On the other hand, it is not
hard to see that for some values of p, the length of a tricolor path starting at the origin
will be a.s. finite, with a law that decays exponentially. These p are said to belong
to the compact phase. This is in particular the case if one of the pi lies below the
threshold for site percolation on the body centered cubic lattice. To see this, suppose
p1 is subcritical and note that the length of a tricolor path including an edge on the
origin cell is bounded above by the number of edges incident to the largest cluster of
red cells containing the origin (or an origin-adjacent cell); it is well known that the
latter number has exponentially decaying law in the subcritical phase (see, e.g., the
reference text [8]). The critical probability for site percolation on the body centered
cubic lattice has been estimated by Monte Carlo approximations as pc(L) ≈ .246 [7,
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Tricolor percolation

Figure 5: Random p = (1/3, 1/3, 1/3) tricoloring.

Figure 6: The left figure shows the three cells incident to a tricolor edge e1. The right
figure shows these cells together with one additional blue cell, which is incident to one
of the endpoints of e. This blue cell, together with the original red and yellow cells, is
incident to a second tricolor edge e2, which has a (tricolor) endpoint vertex in common
with e1. The set of all tricolor edges forms a collection of loops and/or infinite paths
(like bicolor edges in two-color colorings of the hexagonal lattice).
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Tricolor percolation

1, 11], with the most recent estimate claiming significance to several decimal places:
pc(L) ≈ .2459615(10) [11]. The fact that pc(L) < 1/3 also follows rigorously from our
arguments, see Corollary 2.7. The extended phase must be a proper subset of the
triangle {p ∈ T : p1 ≥ pc(L), p2 ≥ pc(L), p3 ≥ pc(L)}.

Although this has not been proved mathematically, it seems natural to guess that
the extended phase is a convex subset of this triangle, centered at (1/3, 1/3, 1/3), whose
boundary is a simple curve (something like the brown region shown in Figure 9) and
that this curve divides the compact and extended phases from each other. Numerical
explorations have attempted to identify a p on the boundary between these phases, and
have found that for such a p, the long path seems to have a scaling dimension of about
5/2 [2, 3, 4].

To conclude our overview of the model, and to encourage further participation in
this subject, we remark that the figures in this paper are remarkably easy to produce
using math packages with built-in polyhedron functionality. Such packages allow users
to rotate the figures with a mouse and view them from different angles. In Mathematica
8.0, for example, the following code defines a function “PlaceCell” (which puts a cell of
color D at a location (A,B,C) ∈ L) and then uses it to generate the grid of cells shown
in Figure 3.

PlaceCell[{{A_, B_, C_}, D_}] =
Translate[Scale[Rotate[{Switch[D, 1, Red, 2, Yellow, 3, Blue, 4, Green],

PolyhedronData["TruncatedOctahedron", "Faces"]},
45 Degree, {0, 0, 1}], 1/(Sqrt[2])], {A, B, C}];

n = 3; Graphics3D[ Table[PlaceCell[{{2 i, 2 j, 2 k}, 1 + Mod[i + j + k, 2]}],
{i, 1, n}, {j, 1, n}, {k, 1, n}], Boxed -> False, Background -> White]

Similarly, the following code uses the “PlaceCell” function to generate the chains in
Figure 7. It first randomly colors vertices of a (sufficiently large) n× n× n subset of Z3

(which includes L), storing them in the array “ColorGrid”. A quadruple of cells (“Vert”
and “InitVert”) is used to describe a tricolor vertex, but we also use the ordering of the
cells in this quadruple to encode a directed tricolor edge terminating at that vertex: the
first three cells are the red, blue, and yellow cells incident to the edge, and last is the
cell the edge points to. The code includes a little piece of logic for replacing such a
directed tricolor edge with the next directed tricolor edge along the tricolor path, and
this logic is iterated a number of times (denoted “Steps”) or until a loop is formed. The
code could presumably be made asymptotically more efficient by only assigning colors
dynamically to the cells hit by the path (perhaps storing these cells and their colors in
an efficient lookup table), instead of assigning them to an entire n× n× n grid.

n = 100; Steps = 500; Vert =
InitVert = {{n/2, n/2, n/2 }, {n/2 + 1, n/2 + 1, n/2 + 1}, {n/2 - 1,

n/2 + 1, n/2 + 1}, {n/2, n/2, n/2 + 2}}; ColorGrid =
Table[Random[Integer, {1, 3}], {i, 1, n}, {j, 1, n}, {k, 1, n}];

ColorGrid[[n/2, n/2, n/2]] = 1; ColorGrid[[n/2 + 1, n/2 + 1, n/2 + 1]] = 2;
ColorGrid[[n/2 - 1, n/2 + 1, n/2 + 1]] = 3;
NewEnd[{A_, B_, C_, D_}]=D - 2 Sign[Mod[3 D - A - B - C, 3] (3 D - A - B - C)];
Chain = Table[{Vert[[ Mod[i - 1, 4] + 1]] , i}, {i, 1, Steps}]; j = 4;
loopmade = 0; While[j <= Steps && loopmade == 0, oldtarget = Vert[[4]];
Vert[[4]] = Vert[[oldcolor =
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Tricolor percolation

(a) 100 steps (b) 1000 steps

(c) 10000 steps (d) 100000 steps

Figure 7: Random tricolor chains of length 100, 1000, 10000, and 100000, found in the p = (1/3, 1/3, 1/3)
model, that have not (yet) formed loops.
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ColorGrid[[oldtarget[[1]], oldtarget[[2]], oldtarget[[3]]]]]];
Vert[[oldcolor]] = oldtarget; Vert[[4]] = NewEnd[Vert];
Chain[[j]] = {oldtarget, oldcolor}; If[Vert == InitVert, loopmade = 1]; ++j];
If[loopmade == 1, Print["Loop!"]]; Graphics3D[
Table[PlaceCell[Chain[[i]]], {i, 1, j - 1}], Boxed -> False]

Figure 8: Cells incident to finite tricolor loop found in p = (1/3, 1/3, 1/3) model.

1.2 New results

Write An for the cubic n-annulus, which we define to be the subset of L formed by
starting with a radius 3n cube and removing a radius n cube from its center:

An := ([−3n, 3n]3 \ [−n, n]3) ∩ L.

We now present our first formal definition of the compact and extended phases:

Definition 1.1. Let En be the event that there is a tricolor path from a vertex on the
interior boundary of An to a vertex on the exterior boundary of An. A probability vector
p ∈ T lies in the compact phase if Pp(En) tends to zero exponentially fast as a function
of n. It lies in the extended phase if Pp(En) is bounded below by a positive constant
independently of n.

Here and in the sequel Pp denotes the probability measure on colorings of L in
which colors are assigned independently according to the probability vector p ∈ T .
Note that one could alternatively use the term “compact phase” to mean the set of p for
which there a.s. exists no infinite tricolor path, or (another alternative) the set of p for
which the expected length of the tricolor path through the origin is finite. As we discuss
in Section 1.3, it is reasonable to conjecture that these definitions describe the same
set, except possibly along a critical phase separation curve. This is analogous to the
situation in classical percolation theory, where one can define the critical percolation
threshold in various ways, and it takes some work to prove that different definitions are
equivalent. We will use Definition 1.1 in this paper in part because it sets up a natural
dichotomy that is relevant to the statements we are able to prove. To begin with, we
are able to prove that each p belongs to exactly one of these two phases:

Theorem 1.2. There exists a constant α ∈ (0, 1) such that if Pp(En) < α, for some
n > 1, then Pp(En) tends to zero exponentially fast as a function of n. Hence every
p ∈ T belongs to either the compact phase or the extended phase.

As we will see, this can be proved with a type of finite-range-dependent-percolation
Peierls argument. In fact, this argument also implies the following:
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Tricolor percolation

Figure 9: This diagram represents the triangle of possible choices for p = (p1, p2, p3),
with the three vertices (colored red/yellow/blue) representing respectively the all
red/yellow/blue extreme points: (1, 0, 0), (0, 1, 0) and (0, 0, 1). The red/yellow/blue lines
represent, respectively, the thresholds for the existence of infinite red/yellow/blue clus-
ters of cells (i.e., the lines pi = pc(L) where numerics suggest pc(L) ≈ .2459615(10) [11]).
The orange/purple/green lines represent the threshold for existence of “large” clusters
of the faces that lie between red-yellow/red-blue/blue-yellow cell pairs. (More precisely,
each curve, together with the line segment between its endpoints, bounds the region
in which the probability that the corresponding face cluster containing a given face has
size greater than N does not decay exponentially with N ; we expect but do not prove
that this cluster has a positive probability of being infinite when p is in the interior of
this region.) The middle brown region represents the extended phase which is (roughly
speaking) the region in which there are macroscopic tricolor paths at all scales. We
expect (but do not prove) that when p lies in the interior of this region there are a.s.
infinite tricolor paths. Simulations in [2, 3, 4] suggest a larger extended phase than the
one sketched here: they find that the boundary of the extended phase intersects the
line segment p2 = p3 (the vertical bisector of the probability triangle in the figure) at
p1 ≈ .255 (just above the p1 ≈ .246 threshold for red percolation) and at p1 ≈ .417.
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Tricolor percolation

Theorem 1.3. If p belongs to the compact phase, then the probability that an edge at
the origin belongs to a tricolor path of length L decays exponentially fast as a function
of L.

This theorem suggests a stark dichotomy between the two phases. In the compact
phase, the tricolor loops are “microscopic”, much like the clusters in subcritical perco-
lation. The length of a tricolor loop starting at the origin not only is a.s. finite, but also
has exponentially decaying law. In the extended phase, one has a positive lower bound
on the probability of seeing a tricolor loop crossing An, independently of n. Informally,
this implies that one encounters macroscopic loops “at any scale”. Using what is prob-
ably the trickiest and least direct argument in the paper, we establish the following:

Theorem 1.4. The extended phased is a closed and non-empty subset of T .

The tricky part is showing that there exists at least one p in the extended phase. A
peculiar feature of the argument is that it does not allow us to prove that any particular
p belongs to the extended phase. It does not even tell us whether p = (1/3, 1/3, 1/3)

belongs to the extended phase.
Using the primary color rule for pigments (imagine each cell is coated in wet paint

of its given color), we make the following definitions:

1. An orange face is a face incident to one red and one yellow cell.

2. A green face is a face incident to one yellow and one blue cell.

3. A purple face is a face incident to one blue and one red cell.

Two faces are said to be adjacent if they have a boundary edge in common. It is
natural to consider percolation on the graph of faces. What kinds of phase transitions
does one have for the large green clusters? For our purposes, it will turn out to be useful
to consider when the size of the green cluster containing a given face is a.s. finite and
has an exponentially decaying law. Clearly, if either the cluster of blue cells incident
to a given face or the cluster of yellow cells incident to a given face has exponentially
decaying law, then the cluster of green faces must have exponentially decaying law also.
It is well known that the the size of the origin-containing cluster decays exponentially
in subcritical percolation (see, e.g., the reference text [8]) which implies that the size of
the green cluster decays exponentially whenever either the blue or yellow probabilities
are subcritical. We will show more than this:

Theorem 1.5. The green phase separation curve in Figure 9 is the graph of a Lips-
chitz function with Lipschitz norm at most

√
3 (i.e., at most the slope of the upper two

boundary lines of the triangle). This graph has no points in common with the critical
percolation lines, except on the boundary of T . In other words, the green curve in
Figure 9 lies strictly below both the blue and yellow lines in Figure 9.

The first sentence of Theorem 1.5 will turn out to be a simple monotonicity obser-
vation, which follows from the fact that the probability that there exists a green cluster
of size greater than N is an increasing function of the pair (p2, p3) (the blue and yellow
probabilities). The second statement requires a short argument, which will in fact give
an explicit (but non-optimal) upper bound on the height of the green curve. Since the
existence of a long tricolor path through a vertex implies the existence of comparably
large (up to constant factor) clusters of green, orange, and purple faces through that
vertex, the extended phase (brown region in Figure 9) is necessarily a subset of the
region bounded between the green, orange and purple curves in Figure 9. This fact
and Theorem 1.5 together imply the following:
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Corollary 1.6. The boundary of the extended phase is of positive distance from each
of the critical lines p1 = pc, p2 = pc, and p3 = pc (where pc = psitec (L)). In other words,
the (closed) brown set in Figure 9 is bounded away from the red, yellow, and blue lines
in Figure 9.

Note that Corollary 1.6 in particular implies that there exists a p = (p1, p2, p3) for
which there exist infinite clusters of all three colors, but nonetheless p lies in the com-
pact phase (and hence the length of the tricolor path through a given vertex has expo-
nentially decaying law).

1.3 Open problems

As this section illustrates, our list of fundamental questions about tricolor paths
is much longer than our list of fundamental results. There are several embarrassingly
simple questions that have not been settled mathematically. To describe one of the most
fundamental issues, note that one could consider the following subdivisions of what we
call the extended phase:

1. No-path extended phase: Pp(En) is bounded below independently of n (i.e., p is
in the extended phase), but there is a.s. no infinite tricolor path.

2. Single-path extended phase: There is a.s. exactly one infinite tricolor path.

3. Many-path extended phase: There are a.s. infinitely many infinite tricolor paths.

However, we are not able to determine whether any one of these phases is empty
or not. One natural guess would be that the extended phase corresponds to a convex
shape bounded by a simple boundary curve, such as the brown region in Figure 9, and
that the many-path extended phase corresponds to interior of that region, while the
no-path extended phase corresponds to the boundary. On the other hand, we have not
yet even answered the following:

Question 1.7. Is it true that, for any p, the number of infinite tricolor paths is a.s. 0, 1,
or∞?

Note that the arguments used to show that the number of percolation clusters a.s.
belongs to {0, 1}, as in [5], do not work here, because if there are two infinite tricolor
paths, it is not possible to “join” them to each other by changing the colors of finitely
many cells. Assuming that the answer to Question 1.7 is nonetheless yes, one can ask
the following:

Question 1.8. Which of the extended sub-phases mentioned above (no-path, single-
path, and many-path) are non-empty?

Question 1.9. Which one (if any) does p = (1/3, 1/3, 1/3) belong to?

Question 1.10. Are there a.s. infinitely many infinite paths for all p in the interior of
extended phase?

Question 1.11. Is there a.s. an infinite path when p is on the boundary of the extended
phase? (This is analogous to the question of whether one has percolation at pc.)

Question 1.12. What can one say about the extended phase (or the sub-phases men-
tioned above) as a set? Is it connected? Is it convex?

Let A be the set of p values for which one has percolation of all three bi-color face
types (green, orange and purple). That is, A is the set bounded between the green,
orange, and purple curves in Figure 9. Then we ask the following:
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Tricolor percolation

Question 1.13. Is A connected? Is it convex? Does the boundary of the extended
phase intersect ∂A?

The following questions address the existence of scaling limits. One would expect
any scaling limit to be rotationally invariant, but we cannot prove that this is necessary.

Question 1.14. Do the infinite paths scale to Brownian motion when p is in the interior
of the extended phase?

Question 1.15. What happens if p is on the boundary of the extended phase? Is there
a different kind of scaling limit (perhaps a higher dimensional analog of SLE6) in this
case? Does the scaling limit depend on which p on the boundary of the extended phase
is chosen? (Some physicists have speculated that different p on the boundary of the
extended phase should correspond to the same field theory [12], so it is reasonable to
speculate that they might also correspond to the same type of random path.)

As mentioned earlier in a footnote, the tiling of R2 by hexagons and the tessellation
of R3 by truncated octahedra are both special cases of the so-called permutohedron
tessellation of Rd, as we discuss in the appendix. This tessellation is classical and has
appeared in many papers and contexts, e.g. [10, 17, 23, 21]. An important aspect of
this tessellation in d dimensions is that one has d cells sharing each edge and d + 1

cells sharing each vertex, and thus one can randomly assign each cell one of d colors
and consider the paths comprised of d-color edges (or “full-spectrum edges”), which we
define to be edges incident to one cell of each color. There are other tessellations with
this property, but this one is particularly simple and canonical. One might expect that
when d was large it would be easier to show that d-color paths have Brownian motion
as a scaling limit (perhaps using lace expansions or related techniques).

Question 1.16. Can convergence to Brownian motion be established in sufficiently
high dimension d when p1 = p2 = . . . = pd = 1/d?

Question 1.17. Do the long tricolor paths have a scaling limit (and if so what kind)
when d is large and p is on the boundary of the extended phase?

We remark that, although we will not do this here, we believe that the proofs of the
main results of this paper (the results described in Section 1.2) could in principle be
extended to any dimension d ≥ 3.

1.4 Vortex line interpretation

In this section we briefly remark that there is a standard “vortex line” interpretation
of the tricolor path model, in which each tricolor edge comes with an associated unit of
“flow”, with a direction determined by the cyclic red-yellow-blue ordering, and no flow
is assigned to other edges.

To construct this flow in slightly different way, recall that we have defined σ as a
random function on L. Using this, we obtain a function σ′ on ordered pairs (v, w) of
adjacent elements in L by σ′(v, w) = η(σ(v), σ(w)) where

η(red, yellow) = η(yellow,blue) = η(blue, red) = −1,

η(red,blue) = η(blue, yellow) = η(yellow, red) = 1,

η(red, red) = η(yellow, yellow) = η(blue,blue) = 0.

If we consider a triangle with vertices labeled by the three colors (as in Figure 9), then
σ is a map from L to the vertices of the triangle, and σ′ describes whether this function
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goes counterclockwise, goes clockwise, or stays constant as one moves from v to w.
Alternatively, we may interpret σ a function to integers modulo 3, and σ′ as a discrete
gradient of σ. If (v, w, x) is a triple of mutually adjacent vertices in L, which describes a
directed edge of the tessellation, then we can write σ′′(v, w, x) = 1

3

(
σ′(v, w) + σ′(w, x) +

σ′(x, v)
)
. This quantity (which can be interpreted as a “discrete curl” of σ′) is zero unless

the edge is tricolor, in which case it is 1 or −1, depending on the orientation of the edge.
In a sense, a directed tricolor path (comprised of a sequence of directed edges on which
σ′′ is equal to 1) is a “vortex line” of σ′, and the existence of tricolor edges corresponds
to the failure of the function σ′ to be a discrete gradient of an integer-valued function
on L. If one has a non-self-intersecting cyclic loop v0, v1, v2, . . . , vk = v0 in L, then one
can interpret σ′(v0, v1) + σ′(v1, v2) + . . . + σ′(vk−1, vk) as (3 times) the total amount of
σ′′ flow passing through a surface bounded by this loop. The following is easy to prove
(e.g., by gradually retracting ∂S to a point in such a way that it passes through one
edge at a time).

Proposition 1.18. Let S be a smooth surface with smooth boundary, homeomorphic to
a closed disc, embedded in R3 in such a way that it does not intersect any vertices of
the truncated octahedron tessellation. Let v0, v1, . . . vk be the ordered sequence of cells
encountered by the loop ∂S. Then the number of tricolor edges passing through the
surface S (counted with sign) is

1

3

(
σ′(v0, v1) + σ′(v1, v2) + . . .+ σ′(vk−1, vk)

)
.

Figure 10 is meant to provide some intuition about the flow interpretation. Once
we condition on the cells along a long tricolor path, there is an “expected flow” in the
opposite direction. When we continue the long tricolor path, this phenomenon in some
sense “encourages” the path to retrace its past, instead of exploring new territory. If
one of the pi is very close to 1 (which in particular implies that p is in the compact phase)
then this effect will be overwhelming (and the continuation of the tricolor path segment
between the cells shown in the figure will indeed stay close to the path segment with
high probability, until it forms a loop).

2 Proofs

In this section we prove our main results: Theorems 1.2, 1.3, 1.4, and 1.5

2.1 Proof of Theorems 1.2 and 1.3

The following is a fairly standard observation about dependent percolation. If a
percolation model has only short range dependence, and each site separately has a
small probability of being open, then the size of the origin-containing cluster has a law
that decays exponentially.

Proposition 2.1. For any d,D there exist constants α = α(d,D) < 1 and c1 = c1(d,D), c2 =

c2(d,D) > 0 such that the following holds. Consider a random site percolation σ : Zd →
{0, 1} with the property that for each v ∈ Zd, the value of σ(v) is independent of the
restriction of σ to {w : distZd(v, w) > D}, and P[σ(v) = 1] ≤ α. Then the probability
that the origin is in an open component of size at least R is at most c1 exp (−c2R). In
particular, the probability that 0 is connected to distance R is at most c1 exp (−c2R).

Proof. Let S be a finite connected subset of Zd containing 0. By repeatedly removing
cubes of radius D, one can show that there exists a subset B ⊂ S such that

• |B| ≥ |S| · (2D + 1)−d.
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Figure 10: Two rotated views of a path obtained by letting i range from 1 to 10 and
coloring cells (i, i, i) red, cells (i, i, i + 2) yellow, and cells (i − 1, i + 1, i + 1) blue. The
result is a “straight” tri-color path in the (1, 1, 1) direction. There are three bicolor paths
on the boundary of the cluster of cells, running from one endpoint to the other. If we
start with this configuration, and color the remaining cells according to p = (p1, p2, p3),
then there is an expected flow of p1 along the blue-yellow path, p2 on the blue-red path,
and p3 along the yellow-blue path. This expected flow runs in the opposite direction of
the flow on the tricolor path. In a sense, once we are given the colors of the cells on the
long tricolor path, the flow along the path is offset by an “expected flow” in the opposite
direction.
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• For every two vertices a 6= b ∈ B we have that distZd(a, b) > D.

Thus, since vertices at distance greater than D are independent,

P[ all vertices in S are open ] ≤ α|B| ≤ α|S|·(2D+1)−d

.

It is well known that the number of possible choices for a finite connected subset S
containing 0 of size |S| = n is at most Cn for some large enough constant C = C(d) (in

fact, C = 7d suffices, see e.g. [8, Chapter 4.2]). Thus, if α < C−(2D+1)d , then for any
R > 0, the probability that 0 is in an open component of size at least R is at most the
probability that there exists an open connected subset containing 0 of size at least R,
which is bounded by∑

k≥R

αk(2D+1)−d

Ck ≤
(
Cα(2D+1)−d

)R
· 1

1− Cα(2D+1)−d .

It will be convenient to consider colorings of L with varying probabilities, although
still independent. Given a function f : L → T we may color the cells in L independently
so that P[σ(x) = j] = f(x)j for all x ∈ L, j ∈ {1, 2, 3} (for simplicity we have identified
the colors red, yellow, blue with 1, 2, 3 respectively). We denote this probability measure
Pf .

Given A,B ⊂ R3 we use the notation A ↔ B to denote the event that some point in
A is connected by a tricolor path to some point in B. We write x↔ A for {x} ↔ A.

The following lemma is a generalization of Theorem 1.2. The proof of Theorem 1.2
follows by taking f ≡ p ∈ T in the lemma.

Lemma 2.2. There exist constants α < 1 and c1, c2 > 0 such that the following holds.
Let Cr(z) =

{
x ∈ R3 : ||x− z||∞ ≤ r

}
. If there exists r > 0 such that supx∈LPf [Cr(x)↔

(C3r(x))
c] ≤ α, then for any x ∈ L and R > 0,

Pf [CR(x)↔ (C3R(x))
c] ≤ c1 exp (−c2R/r) .

Proof. Fix r > 2. Consider the following tessellation by r-cubes of R3: Let Gr = {Cr(z) :

z ∈ 2r · Z3}. Equip Gr with a graph structure by letting Cr(2rz) ∼ Cr(2rz
′) if z ∼ z′

in Z3. This is just the Voronoi tessellation of 2rZ3 in R3. The graph Gr is of course
isomorphic to Z3.

A key observation in what follows, is that if x, y are two vertices of a cell in L, then
||x − y||∞ ≤ 2. Thus, for any two subsets A,B of edges of cells in L such that the L∞-
distance between A and B greater than 2, the configuration of tricolor edges in A is
independent of the configuration of tricolor edges in B.

For each z ∈ Z3, declare z open if Cr(2rz) ↔ (C3r(2rz))
c. If distZ3(z, z′) ≥ 5 then

the L∞-distance between C3r(2rz) and C3r(2rz
′) is at least r > 2, so vertices in Z3 of

distance at least 5 are independent.
Also, note that the event CR(x) ↔ (C3R(x))

c implies that there exist vertices z, z′ ∈
Z3 with R − r ≤ ||2rz − x||∞ ≤ R and 3R ≤ ||2rz′ − x||∞ ≤ 3R + r such that z and
z′ are connected by an open path in Z3. The number of possible choices for such z, z′

is polynomial in R/r, and distZ3(z, z′) ≥ R/r. By Proposition 2.1, the probability of
this is at most c1 exp (−c2R/r), where c1, c2 are universal constants, provided that the
probability that any vertex z is open is at most some fixed α < 1.

Thus, for some α < 1, if supxPf [Cr(x)↔ (C3r(x))
c] ≤ α, then for all R, and any x,

Pf [CR(x)↔ (C3R(x))
c] ≤ c1 exp

(
−c2Rr

)
.
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The proof of Theorem 1.3 is now straightforward.

Proof of Theorem 1.3. Since p is in the compact phase, we may choose r > 0 large
enough so that for any z ∈ Z3 we have that Pp[Cr(2rz)↔ (C3r(2rz))

c] < α, with α as in
Proposition 2.1.

If the origin is on a tricolor path of length L, then by subsequently removing annuli
of the form C3r(2rz) \ Cr(2rz), we may find a connected subset 0 ∈ S ⊂ Z3, so that
|S| ≥ L

Kr3 for some constant K > 0 and such that for every z ∈ S, Cr(2rz)↔ (C3r(2rz))
c

(the corresponding annulus is crossed by a tricolor path). That is, the event that the
origin is on a tricolor path of length at least L implies that in the induced dependent
site percolation on Z3, 0 is in an open component of size at least L

Kr3 . Since we chose r
so that any site is open with probability at most α, by Proposition 2.1 we have that this
probability is at most c1 exp

(
−c2 L

Kr3

)
, which is exponentially decreasing in L.

2.2 Proof of Theorem 1.4

In this section, we will consider a prism obtained by starting with the triangular
array of cells shown in Figure 11 and coloring randomly in the manner described in
the caption to Figure 12. We then repeat for translations of the triangular array in the
orthogonal direction, as shown in Figure 13.

To make this more formal, consider the sets

Wn := {x ∈ L : x1 + x2 + x3 = n, x1 > 0, x2 > 0, x3 > 0} .

Then Ln := Wn−1 ∪Wn ∪Wn+1 is a triangular array of the sort shown in Figure 11. If
we then define Lk,n = Ln+(k, k, k), then the prism in Figure 13 is a union of Lk,n layers
over a range of k values. Write Tn =

⋃∞
k=−∞ Lk,n.

To every cell v ∈ Ln we may associate a probability vector pv,n ∈ T , by letting
pv,n = (p1, p2, p3) where v = p1v1 + p2v2 + p3v3 and v1, v2, v3 are the corner vertices of
Ln. Also, to every v ∈ Lk,n we may associate pv,n = pu,n where v = u+ (k, k, k).

Let Pn be the law of the varying coloring of the cells in Tn, by coloring each cell v
independently using the probability vector pv,n.

Proposition 2.3. For any n consider the varying tricolor percolation on Tn with law
Pn. Then, Pn-a.s. there must exist an infinite tricolored path in Tn.

Proof. Apply Proposition 1.18 to a horizontal surface whose boundary passes through
the boundary cells of the triangular array of Figure 12 in clockwise order, and such that
the surface itself is contained within the array of cells in Figure 12. Proposition 1.18
implies that the net amount of flow through this surface must be 1. On the other hand,
since there are no tricolor edges entering or exiting Tn, we deduce that if all tricolor
loops in Tn were finite, then the net amount of flow through any such surface would
have to be zero.

Proof of Theorem 1.4. For any p in the compact phase there exist C, c > 0 and r = r(p)

such that such that for any x ∈ L and any R > 0,

Pp[CR(x)↔ (C3R(x))
c] ≤ Ce−cR/r.

For every p in the compact phase let R0 = R0(p) be large enough so that for all R > R0

and all x ∈ L, Pp[CR(x)↔ (C3R(x))
c] ≤ α

4 , where α is the constant from Lemma 2.2. By
coupling with i.i.d. uniform random variables for each x ∈ L, we have that for all q ∈ T

Pq[CR(x)↔ (C3R(x))
c] ≤ Pp[CR(x)↔ (C3R(x))

c] + 2||q − p||1 ·KR3,
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Figure 11: One layer of a prism, which is a union of subsets Wn−1,Wn,Wn+1.

for some universal constant K > 0. Thus for every p in the compact phase there exist
R(p), ε(p) > 0, such that for any q ∈ T with ||q − p||1 < ε(p) and all r ≥ R(p),

Pq[Cr(x)↔ (C3r(x))
c] ≤ α

2 .

This proves that the compact phase is open, and so the extended phase is closed.
Under the assumption that the extended phase is empty, the compact phase is the

whole of T , and specifically compact. Since ({q ∈ T : ||q − p||1 < ε(p)})p∈T is an open
cover of T , we may extract a finite sub-cover, say (

{
q ∈ T : ||q − p(j)||1 < ε(p(j))

}
)mj=1.

Taking r := max1≤j≤mR(p
(j)), we get that for all p ∈ T and all x ∈ L,

Pp[Cr(x)↔ (C3r(x))
c] ≤ α

2 .

If x ∼ y then ||x − y||1 ≤ 2 so ||px,n − py,n||1 ≤ 2
n . Using i.i.d. uniform random

variables for each x ∈ L, we may couple Pn with Ppx,n
so that the configuration on

B(x, r) is not identical with probability at most

∑
y∈B(x,r)

4
n · dist(y, x) ≤

Kr4

n
,

for some universal constant K > 0. Thus, for any x ∈ L, if Kr4 < α
2 n then

Pn[Cr(x)↔ (C3r(x))
c] ≤ Ppx,n

[Cr(x)↔ C3r(x))
c] + α

2 ≤ α.

By Lemma 2.2, we conclude that there exist constants C, c = c(r) > 0 such that for all
n > 2

αKr
4, for any R > 0 and any x ∈ Tn,

Pn[CR(x)↔ (C3R(x))
c] ≤ Ce−cR.
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Figure 12: A depiction of the layer Lk,n from Figure 11 together with a random color-
ing. Each cell is colored independently of all others, but the probability vector depends
on the location of the cell. Consider one of the three levels from Figure 11, and label the
corner vertices v1, v2, v3. The each v on that level is colored according to the probability
vector (p1, p2, p3) for which v = p1v1 + p2v2 + p3v3. The same is done for the other two
levels.
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Figure 13: This prism-shaped figure is produced by stacking independent copies of
the randomly colored triangles described in Figure 12. Observe that on each of three
vertical sides, only two color possibilities are allowed, and on each of three vertical
edges, only one color is allowed. In particular, there are no tricolor edges entering or
exiting the prism on any of these sides. On the other hand, Proposition 1.18 implies that
there is a net flow of one unit through each layer of the prism, and hence there must
be least one tricolor path that passes through the inside of the prism, from the upper
triangular face to the lower triangular face.

Finally, by Proposition 2.3 there a.s. exists an infinite tricolored path that goes
through L0,n. That is, for any R > 0 such that there a.s. exists x ∈ L0,n such that x
is connected by a tricolored path to distance 3R in Tn. This implies that for any R > 0,
there a.s. exists x ∈ L0,n such that CR(x) ↔ (C3R(x))

c. Since |L0,n| ≤ Kn2 for some
constant K > 0,

1 ≤
∑

x∈L0,n

Pn[CR(x)↔ (C3R(x))
c] ≤ Kn2 · Ce−cR.

Taking R→∞ gives a contradiction.

2.3 Proof of Theorem 1.5

Proposition 2.4. The green phase separation curve in Figure 9 is the graph of a Lips-
chitz function with Lipschitz norm at most

√
3.

Proof. As usual, we use 1, 2, 3 to indicate red, yellow and blue respectively. Let G be the
set of p = (p1, p2, p3) ∈ T for which the probability that the green face cluster containing
a given face has more than N faces does not decay exponentially fast with N . We aim to
show that there exists a Lipschitz curve, such as the one drawn in Figure 9, such that
G is the region bounded below that curve.

We first claim that if p ∈ G and q ∈ T with q2 ≥ p2 and q3 ≥ p3, then q ∈ G. This
follows from the fact that we can couple Pp and Pq in such a way that if (σp, σq) is
sampled from the coupling then every cell that is yellow (resp. blue) in σp is also yellow
(resp. blue) in σq. One explicit coupling is as follows. Let (Ux)x∈L be i.i.d. uniform-[0, 1]
random variables. Then for any probability vector p, let σp(x) be yellow if Ux < p2, blue
if 1− Ux < p3, and red otherwise.
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We next observe that the above claim can be restated as the fact that for every
p ∈ G, the equilateral triangle under p (i.e., the unique equilateral triangle with one
vertex given by p and an one edge given by a segment of the bottom edge in Figure 9)
belongs to G as well. In particular, this means that the interior of G can be written as a
union of interiors of equilateral triangles of this type (the triangles under p, as p ranges
over all of G). The interior of each such triangle is described by the set of points below
a Lipschitz function (ignoring the points on the bottom edge itself), and the union is the
set of points below the supremum of these functions. The lemma then follows from the
fact that the supremum of a family of Lipschitz functions (with given Lipschitz norm) is
itself a Lipschitz function. (Note that this argument does not tell us whether the points
on the boundary curve are themselves members of G.)

Theorem 2.5. If p ∈ G then p3 ≥ pc ·
(
1 +

(
p1
14

)14)
, where pc = pc(L) is the critical value

for site percolation on L.

Proof. Fix ε > 0 small, fix some β ∈ [0, 1] and consider the following coloring. The faces
in L correspond to edges x ∼ y for x, y ∈ L. Let us consider directed edges (or faces); so
set E = {(x, y) : x ∼ y ∈ L}. Let (B(x, y))(x,y)∈E be i.i.d. Bernoulli-ε random variables,
and let (Cx)x∈L be i.i.d. Bernoulli-β random variables, so that all random variables are
independent. For every x let Bx =

∑
y∼xB(x, y). Note that 0 ≤ Bx ≤ 14 because 14 is

the degree in L.
For every cell x ∈ L set

σ(x) =


1 if Cx = 0, Bx > 0

2 if Cx = 0, Bx = 0

3 if Cx = 1.

Note that σ has the law Pp for p = ((1− β)(1− (1− ε)14), (1− β)(1− ε)14, β).
Let G = {x : σ(x) = 3,∃ y ∼ x : B(y, x) = 0}; that is, G is the set of all cells colored

3 (blue) with at least one incoming face that has B(y, x) = 0. Note that if x ∼ y such
that σ(x) = 3, σ(y) = 2 then B(y, x) = 0 so x ∈ G. So any component of faces colored
2, 3 (green) must be on the boundary of a component of cells in G. That is, if there
exists a green bi-colored component of size N passing near the origin, then G contains
a component whose size is also of order N (up to a constant factor).

Now, note that x ∈ G if and only if Cx = 1 and
∑
y∼xB(y, x) < 14. Since all these

events are independent, we have that G is just site percolation on L with parameter
β(1− ε14). Thus, if β(1− ε14) < pc(L) then the size of the component of G incident to a
given face has exponentially decaying law, and so p 6∈ G.

Thus, using (1− (1− ε)14) ≤ 14ε, if (14ε, 1− β− 14ε, β) ∈ G then also ((1− β)(1− (1−
ε)14), (1− β)(1− ε)14, β) ∈ G. So β ≥ pc(1− ε14)−1 ≥ pc · (1 + ε14).

Proof of Theorem 1.5. Theorem 1.5 now follows from Proposition 2.4 and Theorem 2.5.

There are some simple but interesting consequences of the above results.

Corollary 2.6. If p = (p1, p2, p3) is in the extended phase then pj ≥ pc(1+
(
pc
14

)14
) for all

j = 1, 2, 3, where pc = pc(L). In particular, Corollary 1.6 holds.

Corollary 2.7. If pc(L) is the critical threshold for site percolation on L, then pc(L) < 1
3 .

Proof. The extended phase is non-empty, so let p ∈ T be a probability vector in the
extended phase. There exists j such that pj ≤ 1

3 . So pc < pc(1 + (pc/14)
14) ≤ pj ≤ 1

3 .
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The statement that pc(1 + (pc/14)
14) ≤ 1/3 implies that pc ≤ x where x is the positive

solution to x(1 + (x/14)14) = 1/3. This bound is explicit, but the x described this way is
only barely below 1/3. Numerically we find x ≈ .333333333333333333333327.

A Permutohedral Lattice in dimension d

In this section we present a short practical overview the classical tessellation of
finite dimensional space by permutohedra — sufficient to allow the reader to perform
computer simulations of the type described in Section 1.1. A more thorough treatment
may be found in e.g. [17, 23]. The permutohedron of order d can be defined as the
convex hull of the points in Rd defined by (σ(1), σ(2), . . . , σ(d)), where σ ranges over
the d! possible permutations of {1, 2, . . . , d}. These vertices all belong to the hyperplane
{v : v1+v2 . . .+vd = d(d+1)/2}. In fact, it is often convenient to center this construction
at the origin, so we define the centered permutohedron Pd to be the convex hull of the
vectors (

σ(1)− d+ 1

2
, . . . , σ(d)− d+ 1

2

)
,

as in Figure 14. Then Pd lies in the subspace of Rd orthogonal to the vector (1, 1, . . . , 1).
We denote this vector by 1, and the orthogonal subspace by 1⊥.

(−1
2
, 1
2
)

(1
2
,−1

2
)

Figure 14: The convex hull of the set of vectors obtained by permuting the coordinates
of (−1/2, 1/2) is a line segment embedded in R2. Translates of this line segment tile
the line of points orthogonal to (1, 1) in the obvious way. The convex hull of the set of
vectors obtained by permuting the coordinates of (−1, 0, 1) is a hexagon embedded in
R3. Translates of this hexagon tile the plane orthogonal to (1, 1, 1).

Let Ld be the image of the lattice dZd under the orthogonal projection map sending
Rd to 1⊥. In other words, Ld is the subset of Zd consisting of vertices whose coordi-
nates sum to zero and are all equal to each other modulo d. For example, if d = 5,
then (2, 7,−3,−8, 2) ∈ Ld. The permutohedron tessellation of 1⊥ ≡ Rd−1 is simply the
Voronoi tessellation of Ld.
Proposition A.1. In the space 1⊥, the permutohedron Pd is the Voronoi cell (or Dirich-
let region) of 0 in the lattice Ld. For any x ∈ Ld, the Voronoi cell of x is Pd + x. That
is,

Pd + x =
{
z ∈ 1⊥ : ∀ y ∈ Ld ||z − x|| ≤ ||z − y||

}
.

Thus, these cells tessellate the space 1⊥.

For a non-trivial subset ∅ 6= F ( {1, . . . , d} let vF be the vector

vF (j) =

{
|F | − d j ∈ F
|F | j 6∈ F.
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Note that, viewing vF as an ordered d-tuple, we have vF ∈ 1⊥ and all entries of vF are in
the same class modulo d. In fact, the vF are precisely the non-zero elements of Ld whose
coordinates all have absolute value less than d. One may then observe that Ld is the
lattice generated by {vF : ∅ 6= F ( {1, . . . , d}}. It turns out that v, w ∈ Ld correspond
to adjacent cells in the permutohedron tessellation if and only if (v − w) belongs to this
set. Equivalently, v and w are adjacent if all coordinates of v − w have absolute value
less than d.

By construction, the vertices of the permutohedron Pd are in one-to-one correspon-
dence with permutations. Moreover, it is not hard to see that the vertices described by
permutations σ and τ lie on a common edge of Pd if and only if σ = (j j + 1)τ for some
j ∈ {1, . . . , d− 1}, where (j j+1) is the transposition of j and j+1. The graph with these
edges is the Cayley graph of Sd with respect to the generating set of all transpositions
of the form (j j + 1) where j ∈ {1, . . . , d− 1}.

Define L∗d as the graph whose vertices are the translates of Sd−c by elements of Ld,
and for two translates x∗ = x+σ−c and y∗ = y+τ−c, declare x∗ ∼ y∗ if x = y and σ ∼ τ
in Sd. Every vertex of L∗d is at the intersection of a clique of d cells in Ld. Moreover, any
edge in L∗d is the intersection of a clique of d − 1 cells of Ld. Thus, there is a bijection
between d-cliques in Ld and vertices of L∗d, and a bijection between (d− 1)-cliques of Ld
and edges of L∗d.
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