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Abstract

Consider critical bond percolation on a large 2n × 2n box on the square lattice. It is
well-known that the size (i.e. number of vertices) of the largest open cluster is, with
high probability, of order n2π(n), where π(n) denotes the probability that there is an
open path from the center to the boundary of the box. The same result holds for the
second-largest cluster, the third largest cluster etcetera.

Járai showed that the differences between the sizes of these clusters is, with high
probability, at least of order

√
n2π(n). Although this bound was enough for his appli-

cations (to incipient infinite clusters), he believed, but had no proof, that the differ-
ences are in fact of the same order as the cluster sizes themselves, i.e. n2π(n). Our
main result is a proof that this is indeed the case.

Keywords: Critical percolation, cluster size.
AMS MSC 2010: 60K35.
Submitted to ECP on October 8, 2013, final version accepted on December 4, 2013.
Supersedes arXiv:1310.2019v1.

1 Introduction and statement of main results

For general background on percolation we refer to [10] and [3]. We consider bond
percolation on the square lattice with parameter p equal to its critical value pc = 1/2.

Let Λn = [−n, n]2∩Z2 be the 2n×2n box centered atO = (0, 0) and let ∂Λn = Λn\Λn−1
be the (inner) boundary of the box. For each vertex v ∈ Z2, we write Λn(v) = Λn + v.
Further, the open cluster in Λn of the vertex v is denoted by Cn(v). More precisely,

Cn(v) := {u ∈ Λn : u↔ v inside Λn},

where ’u ↔ v inside Λn’ means that there is an open path from u to v of which all
vertices are in Λn. We write π(n) for the probability P(O ↔ ∂Λn), the probability that
there is an open path from O to ∂Λn. Further, we write

s(n) := n2π(n). (1.1)

By the size of a cluster we mean the number of vertices in the cluster. Let, for i =

1, 2, · · · , C(i)n denote the i-th largest open cluster in Λn, and let |C(i)n | denote its size. (If
two clusters have the same size, we order them in some deterministic way).
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Gaps between sizes of large clusters

In [4] it was proved that |C(1)n | is of order s(n). In the later paper [5] by the same

authors it is shown that also |C(2)n |, |C(3)n | etcetera are of order s(n). They also proved an
extension of this result for the case where the parameter p is not equal but close to pc.

It was shown by Járai (see Section 1, Proposition 1, and its proof in section 3.1 in
[11]) that for each i the difference |C(i)n | − |C(i+1)

n | → ∞ in probability as n→∞. In fact
he showed that this difference is at least of order

√
s(n). He suggested that it should

be of order s(n), but did not have a proof. In this paper we show that his conjecture is
correct. We became interested in such problems through our investigation of frozen-
percolation processes. Our main theorem is as follows.

Theorem 1.1. For all k ∈ N, δ > 0, there exist ε > 0, N ∈ N such that for all n ≥ N :

P
(
∃i ≤ k − 1 : |C(i)n | − |C(i+1)

n | ≤ εs(n)
)
< δ. (1.2)

Remarks: (i) The analog of Theorem 1.1 can be proved for site and bond percolation
on other common two dimensional lattices, e.g. site percolation on the square or the
triangular lattice. In this latter model (site percolation on the triangular lattice) one of
the last steps of the proof can be made a little bit shorter (see the Remark below the
proof of Proposition 3.2).
(ii) The proof, which is given in Section 3, follows the main line of Járai’s proof of
the weaker bound: We divide the box Λn in boxes of smaller length (denoted by 2t),
and condition on the configuration outside certain open circuits in these smaller boxes.
Conditioned on this information, the ‘contributions’ (to the sizes of certain open clus-
ters) from the interiors of these circuits are independent random variables. This leads
to a problem concerning the concentration function of a sum of independent random
variables, to which a general (‘classical’) theorem is applied. The main difference with
Járai’s arguments is that we take t proportional to n, with a proportionality factor cho-
sen as a suitable function of the ‘parameters’ k and δ in the theorem. This makes the
arguments more powerful (and also somewhat more complicated). Moreover, the theo-
rem on concentration functions we used (see Theorem 2.6 below) is somewhat stronger
than the one used in Járai’s arguments.

Furthermore, with essentially the same argument we can show that the probability
that there exists a cluster with size in a given interval of length εs(n) goes to zero as
ε→ 0 uniformly in n:

Theorem 1.2. For all x, δ > 0, there exists an ε > 0 such that, for all n ∈ N:

P (∃u ∈ Λn : xs(n) < |Cn(u)| < (x+ ε)s(n)) < δ. (1.3)

This last theorem is in some sense complementary to the result in an earlier paper
[1], where we proved that, for any interval (a, b), the probability that |C(1)n |/s(n) ∈ (a, b)

is bounded away from zero as n→∞.

2 Notation and Preliminaries

2.1 Preliminaries

First we need some more notation. For a cluster Cn(u) we define its (left-right)
diameter by

diam(Cn(u)) = max
v,w∈Cn(u)

|v1 − w1|.

For a box Λn we define the spanning cluster by

SCn = {u ∈ Λn : u↔ L(Λn) and u↔ R(Λn)}, (2.1)
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Gaps between sizes of large clusters

where L(Λn) = {−n}× [−n, n]∩Z2 and R(Λn) = {n}× [−n, n]∩Z2. We use the notation
Am,n for the annulus Λn \Λm and, for a vertex v ∈ Z2, the notation Am,n(v) for Am,n+v.

In our proof of Theorem 1.1 and 1.2 we will use the following results from the lit-
erature, Theorems 2.1 - 2.6 below. The first one is well known, see for example [5],
[2].

Theorem 2.1. ([5],[2]) There exist constants c1, c2, c3 > 0, such that for all m ≤ n:

c1(
n

m
)c2 ≤ π(m)

π(n)
≤ c3(

n

m
)

1
2 .

As we already mentioned in the introduction, the largest clusters in Λn are of order
s(n). This is stated in the following result.

Theorem 2.2. ([5] Thm. 3.1(i), 3.3, 3.6) For all i ∈ N,

E[|C(i)n |] � s(n), (2.2)

and,

lim inf
n→∞

P

(
ε <

|C(i)n |
E[|C(i)n |]

<
1

ε

)
→ 1 as ε→ 0. (2.3)

In an earlier paper Borgs, Chayes, Kesten and Spencer showed exponential decay
for the probability that there exists a cluster with large volume, but a small diameter:

Theorem 2.3. ([4] Remark (xiii)) There exist C1, C2 > 0 such that for all x > 0,
α ∈ (0, 1] and n ≥ 4/α we have

P (∃u ∈ Λn : |Cn(u)| ≥ xs(n); diam(Cn(u)) ≤ αn) ≤ C1α
−2 exp (−C2x/α). (2.4)

An easy consequence of Theorems 2.2 and 2.3 is the following.

Corollary 2.4. Let k ∈ N. For all δ > 0 there exist α > 0 and N ∈ N such that for all
n ≥ N :

P
(
∃i ≤ k : diam(C(i)n ) < αn

)
< δ. (2.5)

In [11] a version of Theorem 2.2 for the spanning cluster is given:

Theorem 2.5. ([11] Thm. 8)
E[|SCn|] � s(n); (2.6)

moreover,

lim
ε→0

inf
n∈N

P

(
ε <

|SCn|
E[|SCn|]

<
1

ε
| SCn 6= ∅

)
= 1. (2.7)

In the proof of our main theorem we use the following inequality concerning the
concentration function Q(X,λ) of a random variable X, which is defined by

Q(X,λ) = sup
x∈R

P(x ≤ X ≤ x+ λ), (2.8)

for λ > 0.

Theorem 2.6. ([6]; [7] (B)) Let (Xk)k∈N be a sequence of independent random vari-
ables, and 0 < λ̃ ≤ λ. Let a > 0 and let (bk)k∈N be a sequence of real numbers such
that, for all k ∈ N,

P(Xk ≤ bk −
λ̃

2
) ≥ a, P(Xk ≥ bk +

λ̃

2
) ≥ a.

There exists a universal constant C > 0 such that, for all m ∈ N

Q(Sm, λ) ≤ Cλ

λ̃
√
ma

,

where Sm = X1 +X2 + · · ·+Xm.
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2.2 Large clusters contain many good boxes

In the proof of our main theorem we need the following lemma, which is essentially
already in [11]. First some definitions. Recall the notation Am,n in the beginning of
Section 2.. Let t ∈ 3N. (Later we will choose a suitable value for t). For any i, j ∈
Z we say that the box Λt(2ti, 2tj) is ‘good’ if there is an open circuit in the annulus
A 2

3 t,t
(2ti, 2tj); in that case we denote the widest open circuit in that annulus by γi,j .

(Although γi,j depends on t, we omit that parameter from the notation). For each vertex
u we denote by Gt(Cn(u)) the set of good boxes in Λn of which the corresponding γi,j is
contained in the open cluster of u. More precisely,

Gt(Cn(u)) = {(i, j) : Λt(2ti, 2tj) ⊂ Λn is good ; γi,j ⊂ Cn(u)}. (2.9)

Lemma 2.7. Let α > 0. For any δ, β > 0 there exist η > 0 and N ∈ N such that, for all
n ≥ N and t ∈ (0, ηn) ∩ 3N

P (∃u ∈ Λn : diam(Cn(u)) ≥ αn; |Gt(Cn(u))| < β) < δ. (2.10)

Járai proved a somewhat stronger statement (see (3.15) in [11] and Proposition 3.6
in [9]), but we only need this weaker statement and give a (short) proof.

Proof. The Ci’s in this proof denote universal constants larger than 0. Their existence
is important but their precise value does not matter for the proof. First note that we
can cover the box Λn by at most

C1

α2
(2.11)

rectangles of width 1
4αn and length 1

2αn, such that every cluster with diameter at least
αn crosses at least one of these rectangles in the easy direction. We consider one
such rectangle, namely Q0 := [0, 14αn] × [0, 12αn]. (The argument for each of the other
rectangles in Λn is, a rotated, reflected and/or translated version of that for Q0.) By
RSW and the BK inequality we have that the probability that there are more than C2

disjoint horizontal open crossings of Q0 is less than

δ

2

α2

C1
. (2.12)

Let Rl denote the l-th lowest open crossing of Q0. We claim that there exist η ∈ (0, 1/2)

and N ∈ N such that, for any n ≥ N , deterministic crossing r0 of Q0, and t ∈ (0, ηn),

P (|Gt(Cn(r0))| < β | Rl = r0) <
δα2

2C1C2
, (2.13)

where Cn(r0) denotes the open cluster which contains the crossing r0. From this claim
we get (see (2.11) and (2.12)) that the l.h.s. of (2.10) is less than

C1

α2

(
δ

2

α2

C1
+ C2

δα2

2C1C2

)
= δ,

and the lemma follows.
It remains to prove the claim concerning the inequality (2.13): The objects defined

below involve a parameter i. We will always assume that i is such that the correspond-
ing object is contained in the rectangle [0, 14αn] × [0, αn] (Note that this rectangle is
contained in Λn). Consider all rectangles of the form A(i) := [2ti− t, 2ti+ t]× [0, αn]. For
every i we let j(i) be the smallest integer j for which the box Λt(2ti, 2tj) is located above
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r0. Let E(i) be the event that Λt(2ti, 2tj(i)) is good and γi,j(i) is connected with r0 inside
A(i). The events E(i) are conditionally independent of each other (where we condition
on the event Rl = r0), and, by RSW, each has probability larger than C3. Hence, when
η is small enough (that is, n/t and thus the number of events E(i) is large enough), the
probability that at most β of the E(i)’s occur is smaller than the r.h.s. of (2.13). This
proves the claim and completes the proof of Lemma 2.7.

Remark: In one of the steps of Járai’s proof (see the lines below our statement of
Lemma 2.7), he shows that with large probability the l-th lowest crossing in Q0 is con-
tained in [0, 14αn] × [0, 12αn(1 − a)], for some constant a < 1. He used this to guarantee
that the good boxes obtained are inside Q0. However, as the above arguments show,
this (and hence the introduction of the extra constant a) is not needed in our argument.

3 Proof of Theorems 1.1 and 1.2

3.1 Gaps between sizes of clusters with large diameter

The following lemma will be used later to show that the conditions for Theorem 2.6
are satisfied in our situation. First we define, for each circuit γ, int(γ) as the interior of
γ (that is, the bounded connected component of R2 \ γ, where γ is seen as subset of the
plane), and

Xγ := |{u ∈ int(γ) ∩Z2 : u↔ γ}|. (3.1)

Lemma 3.1. There exist universal constants χ, ξ > 0 and, for all t ∈ 3N and for any
circuit γ in A 2

3 t,t
, a value c(t, γ) ≥ 0 such that

P(Xγ ≤ c(t, γ)) ≥ χ; (3.2)

P(Xγ ≥ c(t, γ) + ξs(t)) ≥ χ. (3.3)

Proof. Fix some a ∈ (0, 12 ). Define the random variable Z = |{u ∈ A 1
3 t,t
∩ int(γ) : u↔ γ}|.

Let c(t, γ) be defined by

c(t, γ) = min{z ∈ N ∪ {0} : P(Z ≤ z) > a}.

By RSW, the probability that there is a closed dual circuit in A 1
3 t,

2
3 t

is larger than some
universal constant C1 > 0. Moreover, if there is such a circuit, then Xγ = Z. Hence,
P(Xγ ≤ c(t, γ)) is larger than or equal to the probability that there is such a circuit and
that Z ≤ c(t, γ). By the above and FKG this is larger than C1a.

To prove (3.3) recall the notation (2.1) and define the random variable Y = |SC 1
3 t
|.

Theorem 2.5 implies that there exist constants C2, ξ > 0 such that, for all t, we have
P(Y ≥ ξs(t)) > C2. Let E be the event that there is an open crossing in Λ 1

3 t
from top to

bottom and that this crossing is connected to γ. On E we have that Xγ ≥ Z + Y , since
the spanning cluster is connected to γ. By RSW, P(E) is larger than some universal
constant C3. Hence

P (Xγ ≥ c(t, γ) + ξs(t)) ≥ P(E;Z ≥ c(t, γ);Y ≥ ξs(t)) ≥ C3 (1− a)C2, (3.4)

where the last inequality uses FKG. This proves Lemma 3.1.

Now we prove the following proposition, from which, as we show in the next subsec-
tion, Theorem 1.1 follows almost immediately. The set of clusters with diameter larger
than αn is denoted by Cα,n. More precisely,

Cα,n = {Cn(u) : u ∈ Λn; diam(Cn(u)) ≥ αn}. (3.5)
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Proposition 3.2. For all α, δ > 0 there exist ε = ε(α, δ) > 0, N = N(α, δ) ∈ N such that,
for all n ≥ N

P(∃ distinct D1,D2 ∈ Cα,n : ||D1| − |D2|| < εs(n)) < δ. (3.6)

Proof. Let α, δ > 0 be given. By a standard RSW argument, the probability that |Cα,n| ≥
1 is smaller than some constant < 1 which depends only on α. Hence, by the BK inequal-
ity we can choose a κ = κ(α, δ) ∈ N such that, for all n:

P(|Cα,n| > κ) <
δ

3
. (3.7)

Let ξ and χ as in Lemma 3.1 and C as in Theorem 2.6. Take β so large that

ξ

2
≤
δξ
√
χ

6C
(
κ
2

) ·√β. (3.8)

(For the time being, this property of β will play no role; it will become essential at (3.16)
for a suitable choice of ε). Let η be as in Lemma 2.7 (but with δ/3 instead of δ in (2.10)).
It is clear from that lemma that without loss of generality we may assume that

η <
α

2
. (3.9)

For each n we take t = t(n) = 3b 13ηnc. Hence, by the above choice of η we have, for all
sufficiently large n,

P (∃D ∈ Cα,n : |Gt(D)| < β) <
δ

3
. (3.10)

Denote by W the event that there are at most κ clusters in Λn with diameter at least αn
and all these clusters have at least β good boxes. Note that the complement of W is the
union of the event in the l.h.s. of (3.7) and the event in the l.h.s. of (3.10), and hence
has probability smaller than 2δ/3. Therefore, to prove Proposition 3.2 it is sufficient to
show that there exists ε > 0 such that for all sufficiently large n,

P(W ∩ {∃ distinct D1,D2 ∈ Cα,n : ||D1| − |D2|| < εs(n)}) < δ

3
. (3.11)

We define (compare with (2.9))

Gt,n = {(i, j) ∈ Z2 : Λt(2ti, 2tj) ⊂ Λn is good }.

Recall that we denote the outermost open circuit in A 2
3 t,t

(2ti, 2tj) (if it exists) by γi,j .
Denote the configuration on the edges in the set

H := [−n, n]2 \

 ⋃
(i,j)∈Gt,n

int(γi,j)

 (3.12)

by ωH .
To estimate the l.h.s. of (3.11) we condition first on the γi,j ’s and the configuration

ωH . Therefore, let G̃ be an arbitrary set of vertices (i, j) with Λt(2ti, 2tj) ⊂ Λn, and let,
for each (i, j) ∈ G̃, γ̃i,j be a (deterministic) circuit in A 2

3 t,t
(2ti, 2tj). Let H̃ be the analog

of (3.12), with γ replaced by γ̃ and let ω̃ be a configuration on H̃. We will consider the
conditional distribution P(·|Gt,n = G̃; γi,j = γ̃i,j ∀(i, j) ∈ Gt,n; ωH = ω̃). Note that the
information we condition on allows us to distinguish all the clusters in Cα,n and their
good boxes. (Here we used that (3.9) implies that no cluster of Cα,n fits entirely in the
interior of one of the above mentioned γi,j ’s). We may assume that ω̃ is such that W
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holds. Let D1,D2 be two open clusters in Cα,n for the configuration ω̃. Their sizes can
be decomposed as follows:

|D1| = a1 +
∑

(i,j)∈Gt(D1)

Xγ̃i,j , (3.13)

|D2| = a2 +
∑

(i,j)∈Gt(D2)

Xγ̃i,j ,

where a1 = |D1 ∩H| and a2 = |D2 ∩H|, and the X variables are as defined in (3.1). The
terms a1 and a2 can be considered as ‘fixed’ (namely, determined by ω̃), and the Xγ̃i,j ’s
as independent random variables. Therefore, and because there are at most

(
κ
2

)
choices

for D1 and D2, to prove (3.11) it is enough to show that there exists ε > 0, which does
not depend on a1, a2, Gt(D1), Gt(D2) and the γ̃i,j ’s, such that

P

∣∣∣∣∣
a1 +

∑
(i,j)∈Gt(D1)

Xγ̃i,j

−
a2 +

∑
(i,j)∈Gt(D2)

Xγ̃i,j

∣∣∣∣∣ < εs (n)

 <
δ

3
(
κ
2

) , (3.14)

On the event W we have that |Gt(D1)| ≥ β. So we can mark β of the good boxes in
Gt(D1), and condition (in addition to the earlier mentioned information) also on the
values of Xγi,j for the remaining good boxes in Gt(D1) and all the good boxes in Gt(D2).
Hence it is enough to show that there exists an ε > 0 such that

P

(
|

β∑
m=1

Xγm − b| < εs(n)

)
<

δ

3
(
κ
2

) , (3.15)

uniformly in b ∈ N and γ1, · · · , γβ , where the γm’s are circuits in distinct annuli
A 2

3 t,t
(2ti, 2tj). We will do this by application of Theorem 2.6, where Lemma 3.1 (and our

choice (3.8) for β) enables a suitable application of that theorem:
From (3.8) it follows immediately that for all n there is an ε(n) such that

ξ

2
· s(t)
s(n)

≤ ε(n) ≤
δξ
√
χ

6C
(
κ
2

) ·√β · s(t)
s(n)

. (3.16)

By the lower bound in Theorem 2.1, the l.h.s. of (3.16) is bounded away from 0, uni-
formly in n. Hence, infn ε(n) > 0. Take ε equal to this infimum. We get (with Q as in
(2.8),

P

(
|

β∑
m=1

Xγm − b| < εs(n)

)
≤ Q(

β∑
m=1

Xγm , 2εs(n))

≤ Q(

β∑
m=1

Xγm , 2ε(n)s(n))

≤ 2C

ξ
√
βχ
· s(n)

s(t)
· ε(n), (3.17)

where in the last inequality we used Lemma 3.1 and applied Theorem 2.6 (with λ̃ =

ξs(t), a = χ, m = β and λ = 2ε(n)s(n)). Note that the condition λ̃ ≤ λ in that theorem is
satisfied because ξs(t) ≤ 2ε(n)s(n) by the first inequality in (3.16).
Now, by the second inequality of (3.16) we have that the r.h.s. of (3.17) is at most δ

3(κ2)
.

This shows (3.15) and completes the proof of Proposition 3.2.
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Remark In the case of site percolation on the triangular lattice we can, in equation
(3.16) and the line above it, skip the introduction of ε(n), and choose ε itself such that it
is (for all sufficiently large n) between the l.h.s. and r.h.s. of (3.16). For that percolation
model such ε exists because (see [8], Proposition 4.9 and the last part of the proof of
Theorem 5.1 in that paper) π(t)/π(n), and hence s(t)/s(n), has a limit as n → ∞ (with
t/n fixed).

3.2 Proof of Theorem 1.1

Let δ and k be fixed. By Corollary 2.4 we can choose α = α(δ, k) and N1 = N1(δ, k)

such that, for all n ≥ N1

P(∃i ≤ k : diam(C(i)n ) < αn) <
δ

2
.

Further, by Proposition 3.2 there is an ε > 0 such that the probability that there are two
clusters with diameter larger than αn of which the sizes differ less than εs(n) is smaller
than δ/2. Hence the l.h.s. of (1.2) is less than δ/2 + δ/2.

3.3 Proof of Theorem 1.2

Let x and δ be given. By Theorem 2.3 we can find an α such that

P (∃u ∈ Λn : |Cn(u)| ≥ xs(n); diam(Cn(u)) ≤ αn) <
δ

2
.

Let Cα,n be defined as in (3.5). It is enough to show that there exist ε = ε(α, δ) > 0, N =

N(α, δ) ∈ N such that, for all sufficiently large n,

P(∃D ∈ Cα,n : |D − xs(n)| < εs(n)) <
δ

2
. (3.18)

This can be proved in practically the same way as Proposition 3.2. (And, in fact, a
bit easier, because now we deal with single clusters instead of pairs of clusters. In
particular the factor

(
κ
2

)
is replaced by κ in the proof.)
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