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Abstract

We model two-dimensional crystals by a configuration space in which every admis-
sible configuration is a hard disk configuration and a perturbed version of some tri-
angular lattice with side length one. In this model we show that, under the uniform
distribution, expected configurations in a given box are arbitrarily close to some tri-
angular lattice whenever the particle density is chosen sufficiently high. This choice
can be made independent of the box size.
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1 Introduction

The breaking of rotational symmetry in two-dimensional models of crystals at low
temperature has been indicated since long, see [8] and [9]. F. Merkl and S. W. W. Rolles
showed the breaking of rotation symmetry in [7] in a simple model without defects.
In this model of crystals, atoms can be enumerated by a triangular lattice. In the very
recent work [5] by M. Heydenreich, F. Merkl and S. W. W. Rolles, defects were integrated
into the model; defects are single, isolated, missing atoms. However, the results in [5]
can be generalized to larger bounded islands of missing atoms as also mentioned in [5],
but non-local defects are not included. The first model in [7] treated pair potentials
with at least quadratic growth; the second one, [5], tackled the case of strictly convex
potentials.

We are going to examine an analogue of the models in [7] and [5] with a hard-core
repulsion. For this potential we show the breaking of the rotational symmetry in a
strong sense. Our model does not include defects, but the result extends to models
with isolated defects as in [5]. Uniformity in the box size ensures the existence of
infinite volume measures with the analogous property. In the present discussion, the
result depends on a triangular lattice structure which artificially underlies our model.
However, it might be possible to generalize the result about symmetry breaking in the
strong sense to processes which are defined with respect to Poisson point processes and
a special Hamiltonian, which enforces a local triangular structure. This generalization
is task of future work and is of topological nature.
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Motivation

The physical motivation is indirect. We do not aim at modeling realistic equilibrium
particle distributions; our model is too restrictive for this purpose. In spite of the simi-
larities to the ensemble of the hexatic liquid crystal phase, which was proposed by D. R.
Nelson and B. I. Halperin in [9], we do not aim at modeling this phenomenon. However,
we believe that Gibbsian point processes which are defined by means of a Hamiltonian
and with respect to a Poisson point process are realistic models of statistical mechan-
ics. These models were introduced by L. R. Dobrushin ([1], [2]), O. E. Lanford and D.
Ruelle ([6]). Particularly, the hard-core Hamiltonian, which is rotationally invariant, is
an interesting interaction from a physical prospective. It seems plausible that, in the
Gibbsian point process model, a solid state might be characterized by a Gibbs measure
which is not rotationally symmetric.

The mathematical progress regarding phase transitions in continuum systems like
Gibbsian point processes is slow. From a mathematical prospective, the difference
between crystalline solids and fluids is not well understood. This work is motivated
by the question whether there is a Gibbs measure on the set of locally finite point
configurations in R2 which breaks the rotational symmetry of the hard-core potential.
The existence of such a breakdown of the rotational symmetry is only imaginable in
the case of high intensity, which means a low temperature in physical terms. This
question is analogous to the problem which was solved in [4] and [10] for translational
symmetry. However, the outcome is different than what is expected in the case of
rotational symmetry, as translational symmetry is preserved, see [4] and [10].

2 Configuration space

The standard triangular lattice in R2 is the set I = Z+ τZ with τ = e
iπ
3 . We identify

Z ⊂ R ⊂ R2 by R 3 x =̂ (x, 0) ∈ R2 and R2 ⊂ C by (x, y) =̂ x+ iy. The set I is an index
set, which is going to be used to parametrize countable point configurations in the real
plane. Let us define the quotient space IN = I/(NI) for an N ∈ N := {1, 2, 3, ...}. We
identify IN with the following specific set of representatives:

IN = {x+ yτ | x, y ∈ {0, ..., N − 1}}. (2.1)

A parametrized point configuration in R2 is a function ω : I → R2, x 7→ ω(x), which
determines the point configuration {ω(x) | x ∈ I} ⊂ R2. For the set of all parametrized
point configurations we introduce the character Ω = {ω : I → R2}. Note that a single
point configuration {ω(x) | x ∈ I} ⊂ R2 can be parametrized by many different ω ∈ Ω.

Let ε ∈ (0, 1]. An N -periodic parametrized point configuration with side length
l ∈ (1, 1 + ε) is a parametrized configuration ω which satisfies the periodic boundary
conditions:

ω(x+Ny) = ω(x) + lNy for all x, y ∈ I. (2.2)

The set of N -periodic parametrized configurations with side length l is denoted by
ΩperN,l ⊂ Ω. From now on we will omit the word parametrized because we are going
to work solely with point configurations which are parametrized by I. An N -periodic
configuration is uniquely determined by its values on IN . Therefore, we identify N -
periodic configurations ω ∈ ΩperN,l with functions ω : IN → R2.

The bond set E ⊂ I × I contains index-pairs with Euclidean distance one; this is
E = {(x, y) ∈ I× I | |x− y| = 1}. In order to transfer the definition to the quotient space
IN , we define an equivalence relation ∼N on E by (x, y) ∼N (x′, y′) if and only if there
is a z ∈ NI such that x = x′ + z and y = y′ + z. We set EN = E/ ∼N . We can think of
EN as a bond set EN ⊂ IN × IN .
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For x ∈ I and z ∈ {1, τ}, define the open triangle

4x,z = {x+ sz + tτz | 0 < s, t, s+ t < 1}

with corner points x, x + z and x + τz. For 4x,z denote the set of corner points by
S(4x,z) = {x, x+ z, x+ τz}. On the set of all triangles

T = {4x,z | x ∈ I and z ∈ {1, τ}},

we define an equivalence relation: 4x,z ∼N 4x′,z′ if and only if x− x′ ∈ NI and z = z′.
The set of equivalence classes is denoted by TN = T / ∼N . We identify equivalence
classes 4 ∈ TN with their unique representative with corners in the set {x+ τy | x, y ∈
{0, ..., N}}. The closures of the triangles in TN cover the convex hull of the above set,
which is denoted by UN = conv({x+ τy | x, y ∈ {0, ..., N}}).

3 Probability space

By definition Ω = (R2)I , and we can identify ΩperN,l = (R2)IN . Both sets are endowed
with the corresponding product σ-fields F =

⊗
x∈I B(R2) and FN =

⊗
x∈IN B(R2) where

B(R2) denotes the Borel σ-field on each factor. The event of admissible, N-periodic
configurations ΩN,l ⊂ ΩperN,l is defined by the properties (Ω1)− (Ω3):

(Ω1) |ω(x)− ω(y)| ∈ (1, 1 + ε) for all (x, y) ∈ E.

For ω ∈ Ω we define the extension ω̂ : R2 → R2 such that ω̂(x) = ω(x) if x ∈ I, and on
the closure of any triangle 4 ∈ T , the map ω̂ is defined to be the unique affine linear
extension of the mapping defined on the corners of 4.

(Ω2) The map ω̂ : R2 → R2 is injective.

(Ω3) The map ω̂ is orientation preserving, this is to say that det(∇ω̂(x)) > 0 for all
4 ∈ T and x ∈ 4 with the Jacobian ∇ω̂ : ∪T → R2×2.

Define the set of admissible, N -periodic configurations as

ΩN,l = {ω ∈ ΩperN,l | ω satisfies (Ω1)–(Ω3)}

and the set of all admissible configurations as Ω∞ = {ω ∈ Ω | ω satisfies (Ω1)–(Ω3)}.
Note that for ω ∈ ΩperN,l, (Ω2) is fulfilled if and only if ω̂ is a bijection. This observation is
a consequence of the periodic boundary conditions (2.2) and the continuity of ω̂.

The set ΩN,l is non-empty and open in (R2)IN . The scaled standard configuration
ωl(x) = lx, for x ∈ I and 1 < l < 1 + ε, is an element both of ΩN,l and Ω∞. Figure 1 illus-
trates a part of an admissible, 4-periodic configuration. The points of the configuration
are illustrated by hard disks with radii 1/2. The image of I4 and those of two equivalent
triangles are shaded in the figure.

Clearly, 0 < δ0 ⊗ λIN\{0}(ΩN,l) < ∞ with the Lebesgue measure λ on R2 and the
Dirac measure δ0 in 0 ∈ R2. The lower bound holds because sections of ΩN,l are non-
empty and open in (R2)IN\{0} if ω(0) is fixed; the upper bound is a consequence of the
parameter ε in (Ω1). Let the probability measure PN,l be

PN,l(A) =
δ0 ⊗ λIN\{0}(ΩN,l ∩A)

δ0 ⊗ λIN\{0}(ΩN,l)
for any Borel measurable set A ∈ FN , thus PN,l is the uniform distribution on the
set ΩN,l with respect to the reference measure δ0 ⊗ λIN\{0}. The first factor in this
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Figure 1: A part of an admissible, 4-periodic configuration.

product refers to the component ω(0) of ω ∈ Ω. We call the measures PN,l finite-volume
Gibbs measures and the parameter l in the definition of ΩN,l and PN,l is the pressure
parameter of the system. In fact, the pressure parameter l controls the density of
periodic configurations, and therefore is inversely related to the physical pressure of
the system.

4 Result

We have the following finite-volume result:

Theorem 4.1. For ε sufficiently small (such that equation (5.7) holds for all 1 < ai <

1 + ε), one has

lim
l↓1

sup
N∈N

sup
4∈TN

EPN,l [ |∇ω̂(4)− Id|2 ] = 0 (4.1)

with the constant value of the Jacobian ∇ω̂(4) on the set 4 ∈ TN .

The following lemma is analogue to [7, Lemma 4.1]. For a proof we refer to the proof
of [7, Lemma 4.1], which only needs to be slightly modified. By (Ω1) and since ω(0) = 0

PN,l-almost surely, we have |ω(x)| ≤ dist(0, x)(1 + ε) for all x ∈ I PN,l-almost surely with
the graph distance dist(0, x) from 0 to x in the lattice I. The rest of the proof is the same
as in [7, Lemma 4.1], and we obtain:

Lemma 4.2. The finite dimensional-marginal distributions of (PN,l)N∈N are tight. As a
consequence, there is a strictly increasing sequence (Nk)k∈N of natural numbers such
that the finite-dimensional margins of PNk,l converge weakly to the margins of a limiting
distribution Pl on Ω.

Weak accumulation points of (PN,l)N∈N, predicted by Lemma 4.2, are called infinite-
volume Gibbs measures. Since the convergence in Theorem 4.1 is uniform in N , there
is an infinite-volume Gibbs measure P such that EP [ |∇ω̂(4) − Id|2 ] is small on every
triangle 4 ∈ T . This is actually a result about a spontaneous breaking of the rotational
symmetry in a strong sense. The set Ω∞ is rotational-invariant, and this symmetry is
broken by some infinite-volume Gibbs measure as per (4.1). Spontaneous breaking of
the rotational symmetry in the usual sense can be proved immediately. This observation
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is formulated and proved in the next proposition. A similar result and its proof is also
mentioned in [5, Section 1.3].

Proposition 4.3. For all l ∈ (1, 1 + ε), N ∈ N, x ∈ I and z ∈ I with (0, z) ∈ E, we have

EPN,l [ω(x+ z)− ω(x)] = lz. (4.2)

Proof. We follow the ideas stated in [5, Section 1.3]. The reference measure δ0⊗λIN\{0}
is invariant under the bijective translations

ψb : ΩperN,l → ΩperN,l (ω(x))x∈I 7→ (ω(x+ b)− ω(b))x∈I (4.3)

for all b ∈ I. The set ΩN,l is also invariant under ψ−1b = ψ−b. As a consequence, the
measures PN,l are invariant under ψb for all b ∈ I, and the random vectors ω(x+z)−ω(x)

have the same distribution under PN,l for all x ∈ I and a fixed z. Therefore, we obtain
(4.2) from the periodic boundary conditions (2.2).

The expression |ω(x+z)−ω(x)| is PN,l-almost surely uniformly bounded in N , hence
(4.2) carries over to weak accumulation points. Consequently, infinite-volume Gibbs
measures are not rotational-invariant. However, in the next section, we show Theorem
4.1, which states symmetry breaking in a much stronger sense.

In the present model, symmetry breaking in the sense of Theorem 4.1 depends
strongly on the underlying lattice structure. However, we might also encounter similar
Gibbs measures in continuum models if the Hamiltonian is chosen accordingly. Imagine
that admissible configurations are point configurations such that each pair of Poisson
points has distance greater one, and each point has exactly six neighbors in the annulus
around that point with radii one and 1 + ε. A first guess of a Hamiltonian would be the
characteristic function of such admissible configurations. In this setting, one might be
able to prove an analogue of Theorem 4.1.

5 Proof

As in [5], the central argument is the following rigidity theorem from [3, Theorem
3.1], which generalizes Liouville’s Theorem. The rigidity theorem is about Rn-valued
functions v = (v1, . . . , vn) in the space W 1,2(U,Rn), which means that each component,
v1, . . . , vn, and first order weak derivatives of each component are square integrable.
Integrability is defined with respect to the Lebesgue measure on U ⊂ Rn.

Theorem 5.1 (Friesecke, James and Müller). Let U be a bounded Lipschitz domain
in Rn, n ≥ 2. There exists a constant C(U) with the following property: For each
v ∈W 1,2(U,Rn) there is an associated rotation R ∈ SO(n) such that

||∇v −R||L2(U) ≤ C(U)||dist(∇v,SO(n))||L2(U).

Liouville’s Theorem states that a function v, fulfilling ∇v(x) ∈ SO(n) almost every-
where, is a rigid motion. Theorem 5.1 generalizes this result. We are going to set
v = ω̂|UN and U = UN , which is a bounded Lipschitz domain. The function ω̂|UN is affine
linear on each triangle 4 ∈ TN , thus piecewise affine linear on UN . As a consequence,
ω̂|UN belongs to the class W 1,2(UN ,R

n). The following remark, which also appears in
[3] at the end of Section 3, is essential to achieve uniformity in Theorem 4.1 in the
parameter N .

Remark 5.2. The constant C(U) in Theorem 5.1 is invariant under scaling of the
domain: C(αU) = C(U) for all α > 0. By setting vα(αx) = αv(x) for x ∈ U , we
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have ∇vα(αx) = ∇v(x), and therefore ||∇vα − R||L2(αU) = αn/2||∇v − R||L2(U), and
||dist(∇vα,SO(n))||L2(αU) = αn/2 ||dist(∇v,SO(n))||L2(U). Consequently, the constants
C(UN ) for the domains UN (N ≥ 1) can be chosen independently of N .

We are going to show that for ω ∈ ΩN,l, the L2-distance on UN of the Jacobian matrix
∇ω̂ from the scaled identity matrix l Id can be controlled by the difference of the areas
of ω̂(UN ) and UN . Due to the periodic boundary conditions, λ(ω̂(UN )) does not depend
on configurations ω with (Ω2), thus the mentioned area difference provides a suitable
uniform control on the set ΩN,l. First, we show that the L2-distance of ∇ω̂ from the
scaled identity l Id can be controlled by the sum over the squared deviations of the
triangles’ side lengths from one. The one should be associated with the side length of
an equilateral triangle. To achieve this estimate, we will apply the rigidity theorem,
Theorem 5.1, but first we cite an analogous result which holds locally on each triangle.

The following lemma provides the desired estimate on each triangle. It states that
the distance from SO(2) of a linear map near SO(2) can be controlled by terms which
measure how the linear map deforms the side lengths of a standard equilateral triangle.

Lemma 5.3. There is a positive constant C such that, for all linear maps A : R2 → R2

with det(A) > 0 and the property

||Avi| − 1| ≤ 1 for all i ∈ {1, 2, 3} (5.1)

where v1 = (1, 0), v2 = ( 1
2 ,
√
3
2 ), v3 = v1 − v2, the following inequality holds:

dist (A , SO(2))
2

:= inf
R∈SO(2)

|A−R|2 ≤ C max
i∈{1,2,3}

||Avi| − 1|2 (5.2)

where |M | =
√

tr(M tM) is the Frobenius norm and |v| is the Euclidean norm of v.

A proof can be found in [11, Lemma 4.2. in the appendix]. In this proof the require-
ment (5.1) is formulated by means of a positive constant α0: ||Avi| − 1| ≤ α0 for all i ∈
{1, 2, 3}, although the proof also applies to the special case α0 = 1 as stated in Lemma
5.3.

Now, we prove the mentioned estimate, which provides control over the L2-distance
of ∇ω̂ from the scaled identity matrix in terms of the side length deviations.

Lemma 5.4. There is a constant c such that for all N ≥ 1 and 1 < l < 1+ε the inequality

|| ∇ω̂ − l Id ||2L2(UN ) ≤ c
∑

(x,y)∈EN

(|ω(x)− ω(y)| − 1)2 (5.3)

holds for all ω ∈ ΩN,l, and hence

EPN,l [ || ∇ω̂ − l Id ||2L2(UN ) ] ≤ c
∑

(x,y)∈EN

EPN,l [ (|ω(x)− ω(y)| − 1)2 ] (5.4)

where the L2-norm is defined with respect to some scalar product on R2×2, and | · |
denotes the Euclidean norm on R2.

Note that the right side in equation (5.3) is strictly positive because of the boundary
conditions (2.2) and because l > 1, whereas the left is zero for ω = ωl ∈ ΩperN,l. Since the
measure PN,l is supported on the set ΩN,l, (5.4) follows from (5.3). Also note that c does
not depend on N .

Proof. Let ω ∈ ΩN,l. By Lemma 5.3 we conclude that on every triangle4 ∈ TN , we have
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dist (∇ω̂(4), SO(2))
2 ≤ C max

x 6=y∈S(4)
(|ω(x)− ω(y)| − 1)2 ≤ C

2

∑
x 6=y∈S(4)

(|ω(x)− ω(y)| − 1)2

where we used the assumption ε ≤ 1 together with (Ω1) and (Ω3) to apply Lemma 5.3.
The factor 1/2 is a consequence of summing over all non-equal pairs (x, y). Orthogonal-
ity of the functions which are non-zero on different triangles gives

|| dist(∇ω̂,SO(2)) ||2L2(UN ) ≤ c1
∑

(x,y)∈EN

(|ω(x)− ω(y)| − 1)2

with c1 = C λ(40,1) = C
√

3/4 because we sum again over both pairs (x, y) and (y, x)

on the right side. With application of Theorem 5.1 about geometric rigidity, we find an
R(ω) ∈ SO(2) such that

|| ∇ω̂ −R(ω) ||2L2(UN ) ≤ c2 || dist(∇ω̂,SO(2)) ||2L2(UN ),

with a constant c2, which does not depend on N by Remark 5.2. Due to the periodic
boundary conditions (2.2), the function ω̂ − l Id is N -periodic, this is to say

ω̂(x+Ny)− l(x+Ny) = ω̂(x)− lx for all x ∈ R2 and y ∈ I. (5.5)

Let A ∈ R2×2 be a constant matrix and 〈 · , · 〉 be a scalar product on R2×2. This
scalar product is the one which is mentioned in the lemma. Integrating the periodic
function 〈∇ω̂ − l Id, A〉 over the set UN , the result equals zero since, by (5.5) and the
fundamental theorem of calculus,∫ 1

0

〈∇ω̂ − l Id, A〉(x+ tN)dt = 0 for all x ∈ R2

where we used the embedding R ⊂ R2. By Fubini’s Theorem the integral of 〈∇ω̂ −
l Id, A〉 over the set UN is zero, because the above display says that the integral already
vanishes if evaluated in a single direction. Consequently, we obtain the orthogonality
property: ∇ω̂ − l Id ⊥L2(UN ) A, for any constant matrix A ∈ R2×2 and thus

|| ∇ω̂ − l Id ||2L2(UN ) + || l Id−R(ω) ||2L2(UN ) = || ∇ω̂ −R(ω) ||2L2(UN )

by Pythagoras. Note that l Id − R(ω) is a constant matrix if ω and l are fixed. Since
|| l Id − R(ω) ||2L2(UN ) ≥ 0 and because PN,l is supported on the set ΩN,l, the lemma is
established with c = c1c2.

With Lemma 5.4 we can now prove Theorem 4.1.

Proof of Theorem 4.1. Heron’s formula states that the area λ(4) of the triangle 4 with
side lengths a1, a2, a3 is given by

λ(4) =
1

4

√
(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3). (5.6)

By first order Taylor approximation of (5.6) at the point ai = 1, i ∈ {1, 2, 3} we obtain

λ(4)− λ(40,1) =
1

2
√

3

3∑
i=1

(ai − 1) + o

(
3∑
i=1

|ai − 1|

)
as (a1, a2, a3)→ (1, 1, 1).
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Since the function λ is smooth in a neighborhood of (1, 1, 1), we could also express the
remainder term as Big O of the sum of the squares. In the following we only need the
weaker estimate on the remainder. We choose ε so small that the inequality

1

4
√

3

3∑
i=1

(ai − 1) ≤ λ(4)− λ(40,1) (5.7)

is satisfied whenever 1 < ai < 1 + ε. Note that we have divided the constant by two
preceding the sum. Let us fix such an ε and assume that ΩperN,l is defined by means of
this ε. Using (5.7) we can also estimate the squared side length deviations:

3∑
i=1

(ai − 1)2 ≤ 4
√

3 ε (λ(4)− λ(40,1)). (5.8)

By equation (5.3) from Lemma 5.4 and (5.8), we get an upper bound on ||∇ω̂ −
l Id||2L2(UN ) in terms of the area differences. By summing up the contributions (5.8) of
the triangles 4 ∈ TN , we conclude for all ω ∈ ΩN,l that

|| ∇ω̂ − l Id ||2L2(UN ) ≤ 4
√

3 ε c
∑
4∈TN

(λ(ω̂(4))− λ(40,1)). (5.9)

As a consequence of (Ω2) and the periodic boundary conditions (2.2), the right hand
side in (5.9) does not depend on ω ∈ ΩN,l. Hence, with ωl ∈ ΩN,l we can compute∑
4∈TN

(λ(ω̂(4))− λ(40,1)) =
∑
4∈TN

(λ(ω̂l(4))− λ(40,1)) = |TN | λ(40,1)(l2 − 1). (5.10)

The combination of the equations (5.9) and (5.10) gives

|| ∇ω̂ − l Id ||2L2(UN ) ≤ 4
√

3 ε c |TN | λ(40,1)(l2 − 1). (5.11)

The reference measure δ0 ⊗ λIN\{0} and the set of allowed configurations ΩN,l are
invariant under the reflection φ : ω 7→ (−ω(−x))x∈I and the translations ψb for b ∈ I,
defined in (4.3). As a consequence, the measure PN,l is also invariant under these maps,
and therefore the matrix valued random variables ∇(ω̂(4)) are identically distributed
for all 4 ∈ TN . Thus, for all 4 ∈ TN , one has

EPN,l [ || ∇ω̂ − l Id ||2L2(UN ) ] = |TN | λ(40,1)EPN,l [ |∇ω̂(4)− l Id|2 ].

This equation, together with (5.11), implies

lim
l↓1

sup
N∈N

sup
4∈TN

EPN,l [ |∇ω̂(4)− l Id|2 ] = 0.

By means of the triangle inequality, we see that for all 4 ∈ TN and ω ∈ ΩN,l

|∇ω̂(4)− Id|2 ≤ |∇ω̂(4)− l Id|2 + c23(l − 1)2 + 2c3 |l − 1| |∇ω̂(4)− l Id|

with c3 = |Id| > 0. For ω ∈ ΩN,l, the term |∇ω̂(4) − l Id| is uniformly bounded for
l ∈ (1, ε) and N ∈ N, which proves the theorem.
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