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Abstract

Following Bertoin who considered the ergodicity and exponential decay of Lévy pro-
cesses in a finite domain [4], we consider general Lévy processes and their ergodicity
and exponential decay in a finite interval. More precisely, given

Ta = inf{t > 0 : Xt /∈ (0, a)},

a > 0 and X a Lévy process then we study from spectral-theoretical point of view the
killed process P (Xt ∈ ., Ta > t). Under general conditions, e.g. absolute continuity
of the transition semigroup of the unkilled Lévy process, we prove that the killed
semigroup is a compact operator. Thus, we prove stronger results in view of the
exponential ergodicity and estimates of the speed of convergence. Our results are
presented in a Lévy processes setting but are well applicable for Markov processes in
a finite interval once one can establish Lebesgue irreducibility of the killed semigroup
and that the killed process is a doubly Feller process. For example, this scheme is
applicable to the work of Pistorius [10].

Keywords: Markov processes; Lévy processes; ergodicity; Banach spaces.
AMS MSC 2010: 60J35; 60J25; 60G51 ; 47D99.
Submitted to ECP on September 9, 2013, final version accepted on May 19, 2014.

1 Introduction and results

In this short note we investigate the ergodic properties of general Lévy processes
killed upon exiting a finite interval. Exit from such domains is known as the "double-
sided exit problem". We stress that this technique is applicable in the far wider context
of Markov processes. So far this problem has been previously considered in some gen-
erality by Bertoin in [4] for the case when a Lévy process has only negative jumps.
There Bertoin uses the so called R-theory developed by Tuominen and Tweedie [13] in
order to identify the r-positivity of the process and to identify the r-invariant function
and measure. Under similar conditions, i.e. the doubly Feller property of the underly-
ing Lévy process, we derive and discuss the exponential ergodicity of the semigroup of
the killed Lévy process in the general case, i.e. when our Lévy process can make both
positive and negative jumps. Moreover, we connect this topic to the general theory of
semigroups and explicitly demonstrate how the main result can be related to general
spectral theory. We achieve this by making use of a result by Schilling and Wang [11]
on compactness of Markov semigroups and using the classical theory of compact, posi-
tive operators. We strongly believe that this approach is perfectly adapted to studying
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Exponential Ergodicity of killed Lévy processes

the ergodic properties in the "double-sided exit problem" as it makes use of first and
foremost the domain in question namely a compact interval and then of the underlying
structure of the one-dimensional Lévy process.

The note is organized as follows: in the first section we introduce the notation and
the main results; in the second section we discuss the implications of our results, their
conditions and how far they can be extended, also we point out some challenges; in the
third section we provide the proof of our results.

2 Notation and Main Result

We denote by X = (Xt)t≥0 a real-valued Lévy process, i.e. an a.s. right-continuous
process with stationary and independent increments. The semigroup of the Lévy pro-
cess will be denoted by P. We recall that each Lévy process is characterized by its Lévy
-Khintchine exponent, i.e.

Ψ(z) = lnE
[
ezX1

]
=
σ2

2
z2 + γz +

∞∫
−∞

(
ezy − 1− 1{|y|≤1}zy

)
Π(dy), (2.1)

where σ2 ≥ 0 is the variance of the Brownian component, γ ∈ R is the linear term and Π

is a σ-finite measure which describes the structure of the jumps of X, i.e. their intensity
and size.

Fix a > 0. Denote the first hitting time to the closed set R \ (0, a) by

Ta = inf{t > 0 : Xt /∈ (0, a)}. (2.2)

Then the Lévy process killed upon exiting (0, a) is a Markov process, see [3, IV, Prop. 4,
p.46] and its semigroup will be denoted by P . For any q > 0, we will denote its resolvent
by

Θq(x, dy) =

∞∫
0

e−qtPx (Xt ∈ dy) , for x ∈ (0, a) and y ∈ (0, a). (2.3)

In the sequel we will call (DF) the assumption that

Pt is a semigroup of a doubly Feller process,

i.e. Ptf ∈ Cb(R) for any f ∈ L∞(R), where Cb(R) stands for the continuous bounded
functions on R and L∞(R) is the set of all bounded measurable functions on R. By
Theorem 2.2 in [8], it follows that X is a doubly Feller process when (AC) holds, namely

P (Xt ∈ dx) << dx, for every t > 0.

Call (F) the assumption that

σ > 0 or X is not a negative of subordinator, does not live on a lattice and Π((−a, 0)) > 0

or X is not a subordinator, does not live on a lattice and Π((0, a)) > 0.

We note that condition (F) is very general, whereas (DF) seems slightly more restrictive,
see Subsection 3.1 for details.

We are now able to state our main result. We will denote by C0((0, a)) the space of
continuous functions on [0, a] which vanish at the boundary.

Theorem 2.1. Let (F) holds and a > 0 is fixed. Then Pt is a semigroup of a Lebesgue
irreducible Markov process with a state space (0, a). If additionally (DF) holds, for each
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Exponential Ergodicity of killed Lévy processes

t > 0, Pt : C0((0, a)) 7→ C0((0, a)) is a compact operator. Therefore the spectrum of
its generator consists of isolated eigenvalues of finite multiplicity, which we ordered
according to their real part size in the complex plane, namely <(ρ1) ≤ <(ρ2) ≤ · · · ≤
<(ρn) ≤ · · · . Moreover,

i) ρ1 ∈ (0,∞), ρ1 is of multiplicity 1 and ρ1 < infn≥2<(ρn).

ii) The eigenfunction W := W ρ1 : [0, a] 7→ [0,∞), W ∈ C0((0, a)), W (x) > 0 for
x ∈ (0, a) and PtW (x) = e−ρ1tW (x), for any x ∈ [0, a]. It can be chosen such that

a∫
0

W (x)W (a− x)dx = 1 (2.4)

iii) The co-eigenfunction corresponding to ρ1, W̃ = W̃ ρ1 : (0, a) 7→ [0,∞), i.e. the
function such that

a∫
0

Ptf(x)W̃ (x)dx = e−ρ1t
a∫

0

f(x)W̃ (x)dx (2.5)

satisfies in fact the relation W̃ (x) = W (a− x).

iv) The function W (a− x) defines a measure W(dx) = W (a− x)dx on (0, a) such that
every ε > 0 there is a constant Mε > 0 such that

sup
{f∈C([0,a]):||f ||∞≤1}

∣∣∣∣eρ1tPtf −W 〈f, W̃ 〉∣∣∣∣∞ ≤Mεe
−(<(ρ2)−ρ1−ε)t, (2.6)

where ||.||∞ is the supremum norm on [0, a], 〈f, g〉 =
a∫
0

f(x)g(x)dx. For any compact

set C ⊂ (0, a) and A ⊂ B(0, a), where B (0, a) is the Borel σ-algebra on (0, a), we
have that for every ε > 0 there is some constant M ′ε,C > 0 that

sup
x∈C

sup
A⊂(0,a)

∣∣∣∣eρ1tPx (Xt ∈ A|Ta > t)− W(A)

〈1, W̃ 〉

∣∣∣∣ ≤M ′ε,Ce−(<(ρ2)−ρ1−ε)t (2.7)

Remark 2.2. This theorem allows us to conclude that for every measurable A ⊂ (0, a)

lim
t→∞

Px
(
Xt ∈ A | T > t

)
=
W(A)

〈1, W̃ 〉
, (2.8)

i.e. W is the Yaglom limit. Additionally, it provides an exponential speed of convergence
to the quasi-stationary distribution represented by the probability measureW(.)/〈1, W̃ 〉.

Remark 2.3. Under the conditions in [4, Theorem 2 ] it is immediately augmented
with convergence in total variation and the knowledge of an existing exponential rate
of convergence in [4, (v), Th.2]. We note that W−ρ in the notation of Bertoin satis-
fying W−ρ(a) = 0 is an immediate consequence of the fact that Ptf(a) = 0, for any
f ∈ C ([0, a]) due to the fact that X issued forth from a immediately enters (a,∞) and
PtW

−ρ(x) = e−ρtW−ρ(x).

Remark 2.4. It seems that theR-theory with all its might in general state space Markov
processes is in this particular instance of "double-exit problem" weaker than the appli-
cation of spectral theory. We believe this is due to the special case of a certain type
of smoothing, i.e. the strong Feller property and the compactness of the closure of the
domain (0, a). This is due to the fact that those properties imply compactness of the
semigroup und thus in particular a gap between the first and the second eigenvalue.
The R-theory does not directly imply this spectral gap property.
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Exponential Ergodicity of killed Lévy processes

3 Discussion and Further Remarks

3.1 Condition (F) and (DF)

Condition (DF) is implied by (AC), i.e. the absolute continuity of the transition semi-
group of the original Lévy process. Via Fourier inversion it is clear that the transition
density pt exists, equals

pt(x) =
1

2πi

∞∫
−∞

e−iξxetΨ(ξ)dξ

and is L∞(R) provided lim|ξ|→∞<(Ψ(ξ))/ ln(|ξ|) = −∞. Thus the class when (AC) holds
is enormous. It seems that no necessary and sufficient condition for (DF) in terms of the
Lévy triplet is known. Condition (F) is explicit in terms of the Lévy triplet and certainly
holds when X is of unbounded variation, i.e.

1∫
−1

|x|Π(dx) =∞.

Though in many conceivable examples (DF) implies (F) we have not proved this in gen-
erality.

3.2 General applicability of our results

Our Theorem 2.1 essentially relies on Proposition 4.2 and the irreducibility of the
semigroup Pt and is independent of the fact that X is a Lévy process. Given that any
doubly Feller process killed upon hitting an open set is a doubly Feller, see [5], therefore
all we need to know to apply our result is that X is a doubly Feller process,

Ta = inf{t > 0 : Xt /∈ [0, a]}

a.s. which implies that the killed process is doubly Feller and that X killed upon exit of
(0, a) is a Lebesgue irreducible Markov process. In this vein the results of Pistorius [10]
on reflected spectrally one-sided process and its ergodicity can be reduced to the still
demanding but yet much shorter task of computation of the resolvent, its properties and
the verification of the fact that the reflected killed process satisfies (DF). The R-theory
is again superfluous.

It is very difficult however to have information on the eigenvalues. Some trivial
estimates for ρ1 exist but any precise analytical way to computing it is elusive. Further-
more, it seems that numerical schemes will be hard to obtain even for Lévy processes
due to the difficulty of computing the resolvents.

3.3 Applicability to Lévy processes

We believe that our results and methodology is very streamlined in view of the clas-
sical spectral and Markov theory it relies on. Some results that need a good guess seem
to come naturally thanks to the language and notions we use from analysis. Certainly,
not all comes for free and for Lévy processes what needs to be computed to have any
information on the first eigenfunction and first eigenvalue, namely W and ρ1, is the re-
solvent Θq. Once this is done as in [4] (see also [12]) then one can have a grasp on these
quantities which by no means ensures that they would be known explicitly. Even in [4],
where many quantities are tractable we have no clear way to obtain W−ρ in a closed
form and even ρ = ρ1. Therefore a new methodology is needed for further progress in
this direction.
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4 Proof of Theorem 2.1

We prove Theorem 2.1 in several steps. Taking into accound Theorems 4.4, 4.4 and
4.6 we see that the assertions i), ii) and the first part of the assertions iii) and iv) without
the specific form of the co-eigenfunction follow in fact from general theory of compact
irreducible semigroups. Thus we will first prove irreducibility and then compactness of
the killed semigroup.

4.1 Proof of irreducibility

We start with the question of irreducibility as defined in the appendix.

Proposition 4.1. The killed semigroup (Pt)t≥0 is irreducible.

Proof. We need to show, that the resolvent maps a non-trivial and non-negative function
to a strictly positve. Fix a generic interval A = (b, c) ⊂ (0, a), x ∈ (0, a). It suffices to
show that Θq1A(x) > 0, for each x ∈ (0, a). Clearly this is the case for x ∈ A since
the Lévy process is a.s. continuous at any deterministic time. Assume that x /∈ A and
without loss of generality assume that 0 < x ≤ b. Now it is enough to show that with
positive probabilityX enters (b+ε, c−ε) for some very small ε > 0 prior to exiting (0, a). If
Π(0,∞) =∞ then for a sequence εi ↓ 0, Π( εi2 , εi) > 0. Decompose Xt = Yt +Zt, where Y
is a Lévy process collecting all jumps ofX between ( εi2 , εi) only. Then for all i big enough
∃ 0 < S <∞ a.s. such that YS ∈ (b+ εi, c− εi). If P

(
sups≤S |Zs| < εi/4

)
> 0, for any such

εi > 0 corresponding to large i, then upon conditioning on Ai = {sups≤S |Zs| < εi/4}
we obtain that XS ∈ (b + εi/2, c − εi/2) and therefore Θq1A(x) > 0. So it remains to
investigate when P (Ai) > 0, for all i big enough. If X is with infinite variation then
by definition Z is as well with infinite variation and from [2, Prop 1.1.] we get that Z
has the so-called small deviation property and thus P (Ai) > 0. If X has a bounded

variation, i.e.
1∫
−1

|x|Π(dx) < ∞ put b = γ −
1∫
−1

xΠ(dx) with γ defined in (2.1). If b ≤ 0

then from [2, Prop 1.1.] we conclude that Z has the small deviation property and thus
P (Ai) > 0. However, if b > 0 we add a drift to Y , say Y ′t = 2bt + Yt which also has as a
stopping time∞ > S′ > 0 such that Y ′S′ ∈ (b+ εi, c− εi) and clearly Z ′t = Zt − 2bt is such
that b′ < 0. Applying the same procedure we conclude the statement. If Π(0,∞) < ∞
then we decompose Xt = Yt + Zt with Y being a compound Poisson process collecting
all positive jumps of X. From [4, Prop. 1] Z killed upon exiting (0, a) is Lebesque
irreducible if either σ > 0 or Π(−a, 0) > 0 holds. Therefore, conditioning upon {Y ≡ 0}
until Z enters (b, c) we get that Θq1A(x) > 0. However, when the last condition of
(F ) is satisfied it may happen that Π(−a, 0) = 0. Then we put Y to be the compound
Poisson process collecting the negative jumps only and use the fact that Z is Lebesgue
irreducible from [4, Prop. 1] in the same fashion as above.

4.2 Compactness of Pt

In the following theorem we demonstrate the compactness of the semigroup by fol-
lowing the ideas of [11]. Similar ideas can be found in the proof of Theorem BIV 2.5
in [1]. In order to make this work self-contained and to make these ideas more widely
konwn to the the probabilistic community we provide a complete proof of this very
useful result.

Proposition 4.2. Assume that (Pt)t≥0 is a semigroup of a doubly Feller process, then
for every t > 0 the operator Pt : C([0, a])→ C([0, a]) is compact.

Proof. Choose a continuous function w > 0 on [0, a] with
∫ a

0
w(x)dx = 1 and define, for
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t > 0,

µt(·) :=

∫ a
0
w(x)Pt(x, ·) dx∫ a

0
w(x)Pt(x, [0, a]) dx

If N ⊂ [0, a] satisfies that µt(N) = 0 then Pt(x,N) = 0 for Lebesgue all x. Using the
strong Feller property we conclude that x 7→ Pt1N (x) = Pt(x,N) is continuous and
we thus conclude that Pt(x,N) = 0 for all x ∈ [0, a]. Therefore Pt(x, ·) is absolutely
continuous with respect to µt and has a Radon-Nikodym density pt(x, y). Now, for any
u ∈ L∞(µt), define the measurable set N = {x ∈ [0, a] | u(x) > ||u||L∞(µt)}. Then
µt(N) = 0. Set ũ = u · 1Nc and note that ũ is bounded and Borel measurable. We define

Ptu(x) :=

∫ a

0

u(y)Pt(x, dy) =

∫ a

0

u(y)pt(x, y)µt(dy), u ∈ L∞(µt) (4.1)

Clearly Ptu = Ptũ and Pt is well defined on C([0, a]) ⊂ L∞(µt) and Pt(L∞(µt)) ⊂ C([0, a])

due to the strong Feller property. We now need to show that the image of

U = {u ∈ L∞(µt) | ‖u‖L∞(µt) ≤ 1}

under Pt is sequentially compact in C([0, a]). First observe that by the Banach-Alaoglu
theorem U is weak*–compact and therefore every sequence (uj)j∈N ⊂ U contains a
weak*– subsequence (ujk)k∈N and for suitable u ∈ L∞(µt) the limit

lim
k→∞

∫ a

0

ujk(y)ϕ(y)µt(dy) =

∫ a

0

u(y)ϕ(y)µt(dy), ϕ ∈ L1(µt) (4.2)

exists. Therefore we have for every x ∈ [0, a]

lim
k→∞

∫ a

0

ujk(y)Pt(x, dy) = lim
k→∞

∫ a

0

ujk(y)pt(x, y)µt(dy) =

∫ a

0

u(y)pt(x, y)µt(dy).

Moreover, for every k, l,m ∈ N with k, l ≥ m

|P2tujk − P2tujl | ≤ Pt
∣∣Ptujk − Ptujl∣∣ ≤ Pt( sup

k,l≥m
|Ptujk − Ptujl |

)
.

Note that hm := supk,l≥m |Ptujk − Ptujl | decreases to 0 as m → ∞ and so does the
sequence (Pthm)m∈N as a consequence of the dominated convergence theorem. Ac-
cording to the strong Feller property the functions Pthm are continuous and thus by
Dini’s theorem we get uniform convergence, which means that (P2tujk)k∈N is Cauchy in
C([0, a]) and the proof is complete as C([0, a]) ⊂ L∞(µt).

We are now ready to prove compactness for our semigroups. First we show that
started from any x ∈ (0, a)

Ta
a.s
= T̃a = inf{t > 0 : Xt /∈ [0, a]}.

If X is with infinite variation then Ta
a.s
= T̃a is immediate as the two-half planes are

regular for X, i.e. X enters immediately in R+ and R− provided it starts from zero. Let
X be of bounded variation and X satisfies (F) and (DF). We next prove that X enters
immediately in (a,∞) conditional on {XTa = a} with the other case, i.e. {XTa = 0}
studied in the same way. If P (XTa = a) > 0 then it follows that X creeps up which
implies that the ascending ladder height process H+

t = δ+t + jumps with δ+ > 0. This
implies that R+ is regular for X, see [7, Th.22, p.61] and therefore conditioned on
{XTa = a}, X enters immediately after Ta the set (a,∞). Thus Ta

a.s
= T̃a.

However, since X satisfies (DF) and any doubly Feller process remains doubly Feller
upon hitting an open set (recall Ta

a.s
= T̃a), see [5], we can use Proposition 4.2 above to

conclude compactness.
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4.3 Properties of the first eigenfunction

In this section we establish properties of the eigenfunction and in particular of the
co-eigenfunction. In particular we demonstrate the missing assertions stated in iii) and
iv) of Theorem 2.1. The compact semigroup (Pt)t≥0 is irreducible as defined in the
appendix and therefore the generalized Perron-Frobenius theorem, i.e. Krein–Rutman
theorem, as described in Theorem 4.4 in the appendix below applies and proves the
existence of a principal eigenfunction W (x) ∈ C0((0, a)) with W (x) > 0 on (0, a) and a
first real eigenvalue ρ1 > 0 of algebraic multiplicity 1. We can choose W such that

a∫
0

W (x)W (a− x)dx = 1.

Next from duality with respect to the Lebesgue measure of Pt we get the trivial
lemma

Lemma 4.3. If P̃t is the semigroup of −X killed upon exit from (0, a) then for any
x ∈ (0, a) and f ∈ C0((0, a)) we have that

Ptf(x) = P̃tf̃(a− x), (4.3)

where f̃(x) = f(a− x).

This implies that W̃ (x) = W (a − x) ∈ C0((0, a)) is the eigenfunction for the dual
semigroup, i.e. P̃tW̃ = e−ρ1tW̃ . Similarly, this duality via the Hunt’s switching identity
[3, II, Th.5, p.47] yields (2.5). Therefore the the measure ν appearing in Theorem 4.4
and Theorem 4.6 has the form ν(dx) = W̃ (x) dx.

4.4 Ergodicity of the semigroup

The strict positivity of Θq and its compactness imply further that the spectral pro-
jection P associated to ρ1 is a subspace of dimension one generated by W (x) and since
Pt is compact and therefore has only point spectrum we deduce by [9, Th 3.1, p.329] or
alternatively by Theorem 4.6 in the appendix that

Pt = e−ρ1tP +Rt, (4.4)

where Rt is a one-parameter family of bounded operators satisfying

lim
t→∞

e(<ρ2−ε)t||Rt|| = 0

for any ε > 0 and where the action P is given by

P(f) =

∫ a

0

f(y)W̃ (y) dyW (x).

Therefore the proof of the theorem is complete.

Appendix

In this appendix we collect some essential results connected to the spectral theory
of positive semigroups on the Banach space E of continuous functions defined on a
compact set K. For a rather complete account we refer to the book [1]. Let us denote
by (Tt)t≥0 a Sub-Markov semigroup on the Banach space E = C0(X) of continuous
functions on a locally compact set X which vanish at infinity. According to Definition
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BIII 3.1 in [1] irreducibility of the semigroup (Tt)t≥0 is defined by the requirement that
for every given 0 < f ∈ E and φ ∈ E′ there is some t0 > 0 such that(

Tt0f, φ
)
> 0

or equivalently by the property that there is some λ > 0 such that for every 0 < f ∈ E
the continuous function

g :=

∫ ∞
0

e−λtTtf dt

is strictly positive.
Irreducible positive semigroups have some fundamental spectral properties, which

are usually referred to results of Perron-Frobenius or Krein-Rutman type. We denote by
σ(B) the spectrum of B, by r(B) the spectral radius and by s(B) the spectral bound of
an operator B, i.e.

s(B) := sup{<λ | λ ∈ σ(B)}.

Theorem 4.4 (Proposition BIV 3.5 in [1]). Suppose that A is the generator of an irre-
ducible positive semigroup (Tt)t≥0 on the Banach space E of continuous functions on
some locally compact space which vanish at infinity. Then the following assertions are
true:

1) The spectrum σ(A) of A is not empty.

2) every positive eigenfunction of A is strictly positive

3) if ker(s(A)−A) is contains a positive element then dim ker(s(A)−A) ≤ 1.

4) if s(A) is a pole of the resolvent then it is algebraically simple. The residue has
the form P = φ⊗ u where φ ∈ E′ and u ∈ E are strictly positive eigenelements of
A′ and A, respectively, satisfying (φ, u) = 1.

The influence of the generator A upon the spectral properties of the semigroups is
content of the following result, where we denote by σ(B) the spectrum of an operator
B.

Theorem 4.5 (compare Corollary AIII 6.7 in [1]). The sepctral mapping theorem

σ(Tt) \ {0} = e−σ(A), t ≥ 0

holds true for every compact semigroup (Tt)t≥0.

The previous results in combination with compactness of the semigroup the follow-
ing asymptotic result is true:

Theorem 4.6 (compare Theorem BIV 2.1 and Corollary BIV 2.1 in [1]). Let (Tt)t≥0 be a
compact irreducible Sub-Markov-semigroup on the Banach space E = C0(X) for some
locally compact space X with generator A. Then the spectrum A is discrete

σ(A) = {−ρ1,−ρ2, . . . }

with <ρn+1 ≥ <ρn for n > 1 and R ∈ ρ1 < <ρ2 and there exists a strictly positive
continuous function h and a strictly positive bounded measure ν on K such that for
every δ ∈ (0, ρ1 −<ρ2) and some Mδ ≥ 1 and all t ≥ 0∥∥eω(T )tTt − ν ⊗ h

∥∥ ≤Mδe
−δt,

where
ω(T ) := inf{w | ∃Mw ∀t ≥ 0 : ‖Tt‖ ≤Mwe

−wt}
is the growth bound of the semigroup and under the above conditions the growth bound
coincides with the spectral radius of the semigroup and the spectral radius of the gen-
erator.
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