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MEASURE ATTRACTORS FOR STOCHASTIC
NAVIER–STOKES EQUATIONS

MAREK CAPIŃSKI AND NIGEL J. CUTLAND

Abstract. We show existence of measure attractors for 2-D sto-
chastic Navier-Stokes equations with general multiplicative noise.

1. Introduction

This paper is concerned with existence of attractors in connection
with stochastic Navier-Stokes equations in dimension 2. For determin-
istic Navier-Stokes equations, the existence of a global attractor in
dimension 2 goes back to the work of Ladyzhenskaya [9] and Foias &
Temam; for a full exposition see Chapter III (sec. 2) of Temam’s book
[15].

The new difficulties encountered when seeking attractors for the sto-
chastic equations are twofold. First there is a problem with the very
definition of attractors for stochastic equations - see the discussion be-
low. Second, for the stochastic Navier–Stokes equations there is the
issue of existence of solutions to the equations themselves. Whereas
the deterministic equations were solved by Leray in 1933-4 (see [14] for
a modern exposition), solutions for stochastic equations with a general
form of noise were first constructed in 1991 [3] some eighteen years af-
ter the first results in this direction [2], which considered additive noise
only.

The notion of attractor is concerned with the asymptotic behaviour
of trajectories of semigroups of operators. Recall that a semigroup on
a topological space X is a one parameter family (S(t))t≥0 of operators
with S(t) : X → X, satisfying

1) S(0) = idX,
2) S(t+ s) = S(t) ◦ S(s).
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A set A ⊆ X is an attractor for S if

1) it is invariant, that is, S(t)A = A, for all t.
2) there is an open neighbourhood U of A, called the basin of attrac-

tion, such that for all x ∈ U , S(t)x → A (in the sense that for
each open neighbourhood V of A, S(t)x ∈ V for t

sufficiently large).

If 2) holds with U = X, then A is a global attractor. Condition 1) is
trivially fulfilled for A = Ø, while 2) is for A = X. Of course, these
conditions do not guarantee uniqueness.

Variations of this definition are possible and occur in the literature
— for example 2) can be replaced by the stronger condition that A
attracts sets from a certain class B, i.e. for all B ∈ B, S(t)B ⊆ V for
sufficiently large t. An example of such a class is where B is the family
of all bounded sets (assuming now that X is metric).

For evolution equations the semigroup S(t) is defined on the phase
space by: S(t)x is the solution to the equation in question with the
initial value x ∈ X. To get the semigroup property it is necessary that
the equation be homogeneous, that is, the coefficients be independent of
time. This is not the case for stochastic equations. Moreover, the paths
of solutions to stochastic differential equations are driven by a Wiener
process so that there is little hope that they should get attracted by
some set.

The above difficulties can be tackled in various ways. In [6], for
example, the notion of semigroup is generalized to that of a cocycle.
The attraction property is formulated in a special way, by introducing
stochastic attractors as random sets that are stationary and attract at
finite time the trajectories started at −∞, where the equations are suit-
ably extended to the whole real line. For this approach to make sense,
however, one needs a stochastic flow. For Navier-Stokes equations sto-
chastic flows are proven to exist only for some particular cases of noise:
additive noise and special linear multiplicative noise. Thus this ap-
proach is not available for general stochastic Navier–Stokes equations.
For further details, see [6] where the notion of stochastic attractor was
introduced and existence proved for the special cases mentioned.

An approach that is appropriate for general stochastic Navier-Stokes
equations

du = (ν∆u− 〈u,∇〉u+ f(u))dt+ g(u)dwt (1.1)

is to study time evolution of the initial measure, that is, the probability
distribution of the initial value. Such a time evolving measure was
called a statistical solution to the Navier–Stokes equations by Foias,
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who introduced this idea in [8] for the deterministic equations. In
dimension 2 this evolution of measures is defined in a natural way
by the solutions to the equation, and gives a semigroup on the space
M(H) of probability measures defined on the underlying Hilbert space.
To transport the initial measures along the solutions to (1.1) we have
of course to restrict ourselves to the 2-dimensional case since only then
do we have global uniqueness theorems.

Attractors for the Navier–Stokes equations in this setting were first
studied by B.Schmalfuß [11], [12] (see also [10], which deals with a gen-
eral class of equations that does not include the Navier–Stokes equa-
tions). The appropriate notion is that of a measure attractor for statis-
tical solutions, which will be a subset of the space of measures M(H)
(which we equip with the topology of weak convergence). Our phase
space will be a naturally defined subset of M(H).

The paper [11] studies the case of periodic boundary conditions with
additive noise. In the sequel [12], Schmalfuß considers Navier–Stokes
equations under less general assumptions than considered here, and
imposes strong and somewhat artificial restrictions on the class of mea-
sures that can be considered. See also the paper [13], which constructs a
measure attractor from a pathwise stochastic attractor; necessarily this
works only for the special kinds of noise in the Navier–Stokes equation
for which a pathwise stochastic attractor exists.

In this paper we work initially with the most general assumptions
for which there is currently known to exist a solution to the stochas-
tic Navier–Stokes equation. Drawing on the uniqueness property we
transport the initial measure along the trajectories of the solution, to
give the semigroup S(t).

To construct the measure attractor we need to impose some addi-
tional technical conditions on the growth of the feedback in the forces
f(u) and the noise g(u). Techniques from nonstandard analysis are
used to prove a crucial continuity property (Lemma 4.2) that is used
to show that the attractor is compact. This allows us to relax the
conditions on the coefficients f, g and consider a considerably broader
space of measures as compared with [12], where it is assumed that f is
constant and that g(u) is essentially bounded.

2. Preliminaries

We introduce the following commonly used notation.
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Denote by D a bounded domain in R2; write H for the closure of the
set {u ∈ C∞0 (D,R2): div u = 0} in the L2 norm |u| = (u, u)1/2, where

(u, v) =
2∑
j=1

∫
D
uj(x)vj(x)dx.

The letters u, v, w will be used for elements of H. The space V is the
closure of {u ∈ C∞0 (D,R2): div u = 0} in the norm |u| + ‖u‖ where
‖u‖ = ((u, u))1/2 and

((u, v)) =
2∑
j=1

(
∂u

∂xj
,
∂v

∂xj
).

H and V are Hilbert spaces with scalar products (·, ·) and ((·, ·)) re-
spectively, and | · | ≤ c‖ · ‖ for some constant c.

ByA we denote the Stokes operator in H and by {ek} an orthonormal
basis of its eigenfunctions with the corresponding eigenvalues λk, λk ≥
0, λk ↗ ∞; for u ∈ H we write uk = (u, ek). Let Hα be the subspace
of H of points where |u|2α =

∑∞
k=1 λ

α
ku

2
k < ∞, α ≥ 0, and then H−α is

the dual to Hα. Note that V = H1, V′ = H−1.
We put

b(u, v, w) =
2∑

i,j=1

∫
D
uj(x)

∂vi

∂xj
(x)wi(x)dx = (〈u,∇〉v, w)

whenever the integrals make sense. We recall some well-known prop-
erties of the trilinear form b, which we will need:

b(u, v, w) = −b(u, w, v) (2.1)

|b(u, v, w)| ≤ c ‖u‖1/2|u|1/2‖v‖1/2|v|1/2‖w‖ (2.2)

We will need the following stochastic Gronwall lemma (proved in fact
in [12]).

Lemma 2.1. If h, y, g, f are real-valued stochastic processes satisfying

dy(t) = h(t)y(t)dt+ g(t)dwt − f(t)dt (2.3)

and f ≥ 0, then

E
(

exp{−
∫ t

0
h(s)ds} · y(t)

)
≤ E y(0).

Proof. Write (2.3) in the form

y(t) = y(0) +
∫ t

0
h(s)y(s)ds+

∫ t

0
g(s)dws −

∫ t

0
f(s)ds.

Put z(t) = exp{− ∫ t0 h(s)ds}. By Ito’s formula we have

d(yz) = −zfdt+ zgdw
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and after taking the mathematical expectation, the integral form of the
resulting equality gives the result.

Note that if h is deterministic, then we have

E y(t) ≤ exp{
∫ t

0
h(s)ds}E y(0)

which easily follows from

E y(t) ≤ E y(0) +
∫ t

0
h(s)E y(s)ds

using the classical Gronwall lemma.

3. Solutions of stochastic Navier-Stokes equations

Let wt be Wiener process in H with trace class covariance operator
Q.

Definition 3.1. A weak solution of the stochastic Navier–Stokes equa-
tions with the initial function u is a stochastic process v(t, ω; u) satis-
fying

(i) v(t) ∈ L∞(0, T ; H)∩ L2(0, T ; V) ∩ C(0, T ; Hweak) a.s. for all T .
(ii) for all t

v(t) = u+
∫ t

0
[νAv(s)−B(v(s)) + f(v(s))]ds+

∫ t

0
g(v(s))dws

holds as an identity in V′.

We formulate some conditions on the coefficients of the equation.
They are needed to obtain existence, uniqueness and regularity of so-
lutions.

C1. |f(u)− f(v)|2−1 + |g(u)− g(v)|2H,H ≤ c1|u− v|2.
C2. For some α ∈ (0, 1], |f(u)|α−1 + |g(u)|H,Hα ≤ c2(1 + |u|α).

Theorem 3.2. (i) If C1 holds, then there exists a unique weak solu-
tion satisfying

E
(

sup
s∈[0,t]

|v(s)|2 + ν
∫ t

0
‖v(s)‖2ds

)
≤ c(t)(1 + |v(0)|2)

(3.1)

(ii) If, additionally, C2 holds, then for α given by C2 the solution
satisfies

E
(

sup
t0≤t≤T

ξ(t)|v(t)|2α
)
≤ c(T )(1 + E|v(t0)|2α) (3.2)

for all t0 > 0, where ξ(t) = exp{−c
∫ t

0 ‖v(s)‖2ds} (which is posi-
tive a.e., by (3.1)). Hence then |v(t)|α <∞ a.e. for all t > 0.
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For the proof see [4], where (i) is proved (in fact existence is shown
for dimension n ≤ 4, but uniqueness is only known for dimension 2);
(ii) requires a slight modification of the proof of Theorem 6.5.4 of [4].
For the final part, use (3.1) to find t0 ≤ t with E‖v(t0)‖2 < ∞ and
then apply (3.2). In [12] existence is proved for n = 2 under equivalent
conditions.

4. Construction of the semigroup

Let M(H) be the set of all probability Borel measures on H. We
equip the set M(H) with two topologies T1,T2 denoting the resulting
spaces by

M1 = (M(H),T1)

and

M2 = (M(H),T2).

We say that

µn → µ in M1 if
∫
ϑ(u)dµn →

∫
ϑ(u)dµ for ϑ ∈ Cwb(H,R),

µn → µ in M2 if
∫
ϑ(u)dµn →

∫
ϑ(u)dµ for ϑ ∈ Cb(H,R),

where Cwb(H,R) denotes the set of all bounded weakly continuous
functions on H, and Cb(H,R) the set of bounded continuous functions.
Thus Ti is the conventional weak topology on M(H) regarded as Borel
measures on the space H with the topology τi, where τ1 is the weak
topology on H and τ2 is the strong (norm) topology on H. Each (H, τi)
is completely regular, and the Borel sets for these two topologies on
H coincide. Since τ2 is a metric topology, the measures in M(H) are
all Radon with respect to τ2, and hence also with respect to τ1. Note
that M2 is metrizable, whereas M1 is not; and the topology of M2 is
stronger than that of M1. Both spaces are completely regular.

Our phase space consists of measures from M(H) with finite second
moment:

X = {µ ∈M(H) :
∫
|u|2dµ(u) <∞}.

Write

Br = {µ ∈ X :
∫
|u|2dµ(u) ≤ r}.

The following is noted for future use.

Lemma 4.1. Br is compact in M1.
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Proof. For µ ∈ Br, by Chebyshev, we have µ(B(d)) ≤ 1− r/d2, where
B(d) is the closed ball in H of radius d, which is weakly compact. This
shows that Br is tight (as a family of measures on the space (H, τ1) )
and is thus compact in M1 by the Prohorov-Varadarajan theorem (see
[16]).

Alternatively, this can be seen directly by the following Loeb space
argument. Let M ∈ ∗ Br and let ML denote the corresponding Loeb
measure on ∗H. Then ML-a.a. U ∈ ∗H has |U | finite and so U is
weakly nearstandard. Thus a Borel probability measure µ is defined
on H by

µ(B) = ML(w-st−1(B))

where w-st denotes the weak standard part mapping.
Clearly µ ∈ Br.
For ϑ ∈ Cwb(H,R) we have∫
∗H

∗ ϑ(U)dM(U) ≈
∫
∗H

◦ ∗ ϑ(U)dML(U) by Loeb theory

=
∫
∗H
ϑ(◦U)dML(U) as ϑ is weakly continuous

=
∫

H
ϑ(u)dµ(u) by definition of µ.

Thus M ≈ µ ∈ Br in M1 and so by the nonstandard criterion for
compactness Br is compact.

The measure µt = S(t)µ is defined by∫
H
ϑ(u)dµt(u) =

∫
H
Eϑ(v(t, u))dµ(u)

for continuous and bounded ϑ, where v(t, u) is the solution to the
stochastic Navier–Stokes equation with the initial condition u. Thus in
general S(t) : M(H)→ M(H). However due to the energy inequality,
S(t) : X → X. To see this take ϑn = |u|2 ∧ n, note that by (3.1) we
have

∫
ϑn(u)dµt(u) ≤ c(t)(1 +

∫
|u|2dµ0), and let n→∞.

We shall need the following lemma

Lemma 4.2. Assume C1, and fix t ≥ 0. Then

(i) for any continuous and bounded ϑ : H → R, the mapping u 7→
Eϑ(v(t, u)) is continuous in H;

(ii) for any bounded weakly continuous θ : H→ R, the mapping u 7→
E θ(v(t, u)) is weakly continuous on bounded sets in H;

(iii) if C2 holds, then for any bounded continuous ϑ : H → R, the
mapping u 7→ Eϑ(v(t, u)) is weakly continuous on bounded sets in
H.



ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS 9

Proof. (i) Suppose that un → u in H. Let yn(t) = v(t, un) − v(t, u).
Arguing as in the proof of the energy inequality (3.1) we get

|yn(t)|2 ≤ |un − u|2 +
∫ t

0
(c+ ‖v(s, u)‖2)|yn(s)|2ds+

∫ t

0
ψ(s)dws

with suitable ψ. The stochastic Gronwall lemma gives

E
(

exp{−
∫ t

0
‖v(s, u)‖2ds}|yn(t)|2

)
≤ |un − u|2.

Since
∫ t

0 ‖v(s, u)‖2ds is finite almost surely, |yn(t)| converges to zero a.s,
all t. Hence ϑ(v(t, un))→ ϑ(v(t, u)) a.s. and since this convergence is
dominated we have the result.

(ii) For this it is convenient to give a simple nonstandard proof
utilising the machinery developed in [4] for constructing solutions.

Write ϕ(u) = E(θ(v(t, u)). Working on the bounded (in H) set
B(r) = {u ∈ H :|u| ≤ r}, let U ∈ ∗H with |U | ≤ r and let u = ◦ U
(this symbol denotes the weak standard part in H), so that U ≈weak u.
We have to show that ∗ ϕ(U) ≈ ϕ(u).

Writing V (τ ) = ∗v(τ, U) we have an internal solution to stochastic
Navier–Stokes equations, living on an internal (i.e. nonstandard) prob-
ability space Ω. The proof of Theorem 6.4.1 of [4], with ∗H in place of
HN , shows that the process v defined by v(◦ τ ) = ◦ V (τ ) a.s. is a weak
solution to the stochastic Navier–Stokes equation, living on the Loeb
space constructed from Ω, with v(0) = u. Note that the standard part
on V (τ ) is the weak standard part, so that in particular v(t) ≈weak V (t)
a.s. The uniqueness of solutions means that ϕ(u) = Eθ(v(t)), where
the expectation is with respect to the Loeb measure on Ω. Then we
have

ϕ(u) = E θ(v(t))

= E ◦
(
∗ θ(V (t))

)
since θ is weakly continuous

≈ E ∗ θ(V (t)) by Loeb theory
= E ∗ θ(∗ v(t, U)
= ∗ ϕ(U)

as required.
(iii) This is similar to (ii), but now we have only that θ is continu-

ous (which is weaker than weakly continuous). However, the additional
condition C2 gives that |V (t)|α is finite a.s. – see Theorem 3.2. Thus
V (t) is strongly nearstandard a.s., and the continuity of ϑ is now suf-
ficient to give ∗ ϑ(V (t)) ≈ ϑ(v(t)). The rest of the argument is as set
out in (ii).
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Proposition 4.3. Assume C1. Then S(t) defines a semigroup on X.
Moreover

(i) S(t) is continuous from M2 to M2.
(ii) S(t) is continuous from M1 to M1 on Br for any r > 0.

(iii) if C2 holds then for t > 0, S(t) is continuous from M1 to M2 on
Br for any r > 0.

Proof. The semigroup property follows from the Markov property of
the process v(t), which can be proved in the same way as was done in
[7], Theorem 9.8, for Lipschitz nonlinearities. The proof only requires
uniqueness of solutions and continuous dependence on the initial con-
dition, which hold in our case.

(i) To prove continuity consider a sequence µn convergent to µ in
M2. Let ϑ : H→ R be continuous and bounded. Then by Lemma 4.2∫

ϑ(u)d[S(t)µn] =
∫
Eϑ(v(t, u))dµn

→
∫
Eϑ(v(t, u))dµ

=
∫
ϑ(u)d[S(t)µ]

as required.
(ii) and (iii) are proved similarly using Lemma 4.2 (ii) and (iii)

respectively.

We conclude this section with some information about the compact-
ness properties of the sets S(t)Br.

Proposition 4.4. (i) Assume C1. For any r > 0, t ≥ 0 the set
S(t)Br is compact in M1.

(ii) Assume C1–2. For any r > 0, t > 0, the set S(t)Br is compact in
M2.

Proof. (i) The set of measures Br is compact in M1 by Lemma 4.1,
so this follows immediately from the continuity of S(t) on Br in M1.
(Proposition 4.3 (ii))

(ii) This is similar to (i) using the fact that S(t) is continuous on Br

from M1 to M2.

5. Construction of the attractor

To establish the existence of a measure attractor we need some extra
conditions on the coefficients f, g, as follows.
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C3.
|f(u)|2−1

γ
+ trQ.|g(u)|2H,H ≤ c + δ‖u‖2 for some γ, δ > 0 with

γ + δ < 2ν.

Note that this condition is weaker than the following alternative
linked conditions on f and g.

D1. |f(u)|−1 ≤ c+ δ1‖u‖,
D2. |g(u)|H,H ≤ c+ δ2‖u‖
for δ1, δ2 > 0 with 2δ1 + δ2

2.trQ < 2ν.

Proof. Square D1 and D2, and use Young’s inequality on 2cδ1‖u‖ and
2cδ2‖u‖, to find δ3, δ4 with δ1 < δ3 and δ2 < δ4 and 2δ3 + δ2

4.trQ < 2ν
such that

|f(u)|2−1 ≤ c2 + δ2
3‖u‖2

and
|g(u)|2H,H ≤ c2 + δ2

4‖u‖2

Now this gives C3 with γ = δ3 and δ = δ3 + δ2
4.

Proposition 5.1. Assume conditions C1 and C3. Then there exists a
ρ such that for each r there exists tr such that for t > tr, S(t)Br ⊂ Bρ.
Proof. Fix u ∈ H and let v(t) = v(t, u). Then taking expectations after
applying Itô’s formula gives

E|v(t)|2 + 2ν
∫ t

0
E‖v(s)‖2ds = |u|2 + 2

∫ t

0
E(f(v(s)), v(s))ds

(5.1)

+
∫ t

0
E tr[g(v(s))Qg(v(s))T]ds.

Now

tr[g(v(s))Qg(v(s))T] ≤ trQ.|g(v(s))|2H,H (5.2)

and

2(f(v(s)), v(s)) ≤ 2|f(v(s))|−1‖v(s)‖ ≤ |f(v(s))|2−1

γ
+ γ‖v(s)‖2

using Young’s inequality.
Substituting these two estimates in (5.1) and using condition C3 we

have
d

dt
E|v(t)|2 + εE‖v(t)‖2 ≤ c (5.3)
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where ε = 2ν − γ − δ. Now |v(t)|2 ≤ λ−1
1 ‖v(t)‖2 and so

d

dt
E|v(t)|2 + c1E|v(t)|2 ≤ c

where c1 = λ1ε. Then, by Gronwall’s lemma we deduce

E |v(t)|2 ≤ |u|2 exp{−c1t}+ c2(1− exp{−c1t})
where c2 = c/c1. So if the initial measure is in Br then µt is in Bβ with

β = β(t) = r exp{−c1t}+ c2(1− exp{−c1t}).
So let ρ > c2 and solve β(tr) = ρ, to give

tr = − 1

c1
log[(ρ− c2)/(r − c2)].

Clearly, if t > tr, then β(t) < β(tr) = ρ.

The construction of an attractor goes along the same lines as in the
deterministic case, see [15], p. 17. This is because the problem of the
time evolution of the probability distribution of the process v has been
cast in the general abstract framework of semigroup (deterministic)
acting on a metric space.

For i = 1, 2 we write

Ai =
⋂
τ>0

clMi

⋃
σ≥τ

S(σ)Bρ

 .
In other words,

Ai =
⋂
τ>0

clMi (Cτ ) , Cτ =
⋃
σ≥τ

S(σ)Bρ.

Theorem 5.2. Assume conditions C1,C3

(i) The set A1 is invariant, compact in M1, and attracts the bounded
sets in X (i.e. the sets Br for r > 0).

(ii) If, in addition, C2 holds, the set A2 is invariant, compact in M2,
and attracts the bounded sets in X.

Proof. The proof is a modification of the classical proof given in [15],
but we give it for completeness of exposition. The proofs for i = 1, 2
are identical, so let us fix i, and assume that the topology Mi is used
throughout.

The sets Ai are compact because Cτ is relatively compact in eachMi

for τ > tρ + 1: if σ ≥ τ , then S(σ)Bρ ⊂ S(1)Bρ which is compact by
Proposition 4.4.

Next we show that for each r > 0, for each open set U containing A

S(t)Br ⊆ U
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for t sufficiently large. If not, there are sequences tn ↗ ∞, µn ∈
S(tn)Br such that µn /∈ U. For tn > tρ + 1, we have S(tn)Br ⊂ S(1)Bρ

which is compact by Proposition 4.4. Hence we can extract a subse-
quence, denote it by µn for simplicity, convergent to a measure µ, so
µ /∈ U .

To get a contradiction it is sufficient to show that µ ∈ A. We will
show that for any τ , we have µn ∈ Cτ =

⋃
σ≥τ S(σ)Bρ for sufficiently

large n. In fact we will show that µn ∈ S(τ )Bρ for sufficiently large n.
Let n be such that tn > τ + tr, so tn − τ − tr > 0. Then

µn ∈ S(tn)B
r = S(τ + tr + (tn − τ − tr))Br

= S(τ )S(tr + (tn − τ − tr))Br

⊂ S(τ )Bρ.

Hence µ ∈ Cτ for all τ so µ ∈ A.
It remains to show invariance. We have the following characteriza-

tion: µ ∈ Ai if and only if there is a sequence (generalized) µα ∈ Bρ
and tα →∞ such that S(tα)µα → µ in the corresponding topology.

If ν ∈ S(t)Ai then ν = S(t)µ, µ ∈ Ai. Using the continuity of S(t)
(Proposition 4.3) we then have S(t)S(tα)µα = S(t+tα)µα → S(t)µ = ν
and so ν ∈ Ai.

Conversely, fix t and let µ ∈ Ai and take sequences µα and tα with
S(tα)µα → µ as above. We have to show that µ = S(t)ν for some
ν ∈ Ai. Then consider tα > t and the sequence S(tα − t)µα. This
is relatively compact, so, taking a subsequence if necessary, we have
S(tα − t)µα → ν for some ν, which is in Ai by the above characteri-
sation. To complete the proof we have S(tα)µα = S(t)S(tα − t)µα →
S(t)ν, again using the continuity of S(t). Since S(tα)µα → µ this
means that µ = S(t)ν.

Since we have made use of nonstandard techniques earlier, it is of
interest to see how the attractors Ai may be defined and the above
theorem proved taking advantage of the extra structure provided.

First define the set

D =
⋃

τ−infinite

∗ S(τ ) ∗Bρ

=
⋃

τ−infinite

∗ Cτ

=
⋂
n∈N

∗ Cn
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where the last equality is proved by a simple overflow argument. From
the definition it is obvious that

∗ S(t)D = D (5.4)

for finite t.
It is clear from Proposition 5.1 that D ⊆ ∗S(1)∗Bρ and so D consists

of nearstandard points in each Mi. Then we have

Ai = stMi(D

= stMi

( ⋂
n∈N

∗ Cn
)

=
⋂
n∈N

stMi(
∗ Cn).

The invariance of Ai now follows from (5.4) and the fact that for any
finite t > 0

S(t)Ai = stMi(
∗ S(t)D)

using the continuity of S(t) (Proposition 4.3).
Finally, to establish the absorbtion property, let r > 0, and take an

open set U containingAi. Then for each infinite τ we have stMi
∗Cτ ⊆ U

and so ∗Cτ ⊆ ∗U . By underflow this means that Cn ⊆ U for some finite
n. Now take t ≥ tr + n (where tr is given by Proposition 5.1) and then
we have

S(t)Br ⊆ S(t− tr)Bρ ⊆ Cn ⊆ U

as required.
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[3] M.Capiński, N.J.Cutland, Stochastic Navier–Stokes equations, Acta Applican-
dae Mathematicae 25 (1991), 59–85.

[4] M.Capiński, N.J.Cutland, Nonstandard Methods for Stochastic Fluid Mechan-
ics, World Scientific, Singapore 1995.
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