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Abstract

In this article, we derive a new covariance estimate. The estimate has a similar struc-
ture as the Brascamp-Lieb inequality and is optimal for ferromagnetic Gaussian mea-
sures. It can be naturally applied to deduce decay of correlations of lattice systems
of continuous spins. We also discuss the relation of the new estimate with known
estimates like a weighted estimate due to Helffer & Ledoux. The main ingredient of
the proof of the new estimate is a directional Poincaré inequality which seems to be
unknown.
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1 Introduction

The main goal of this article is to deduce a new covariance estimate for a certain
class of Gibbs measures

µ(dx) =
1

Z
exp (−H(x)) dx,

on a finite-dimensional Euclidean space X (see Section 2 and Theorem 2.3 below). Here
and later on, Z denotes a generic normalization constant turning µ into a probability
measure. The covariance estimate can be seen as an analogue of the Brascamp-Lieb
inequality (BLI), which estimates variances. The BLI was originally introduced by Bras-
camp & Lieb in [5]:

Theorem 1.1 (Brascamp & Lieb). Let H : X → R be a smooth strictly convex function.
Then for all smooth functions f

varµ(f) :=

∫ (
f −

∫
f dµ

)2

dµ ≤
∫ 〈
∇f, (HessH)

−1∇f
〉
dµ. (1.1)

The main difference between the BLI and our estimate is that

• our estimate applies to covariances,
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• it also handles non-convex Hamiltonians,
• in the convex case the bound is slightly weaker than in the BLI.

The covariance estimate of Theorem 2.3 can be interpreted in the following way: The
correlations of a non-convex perturbed Gibbs measure are dominated by the correla-
tions of an suitable chosen Gaussian measure with ferromagnetic interaction. The proof
of Theorem 2.3 is given in Section 2 and is based on a new type of functional inequality
which we call directional Poincaré inequality (see Theorem 2.7 below). The proof the
directional Poincaré inequality (PI) is based on ideas which were outlined by Ledoux for
the proof of the weighted covariance estimate (cf. [14] and Theorem 3.1).

The use of the new covariance estimate is illustrated in Section 3, where we show
how the estimate can be used to deduce decay of correlations of certain lattice systems
of continuous spins. We distinguish two cases:

In Section 3.1 we consider exponential decay of correlations. We show that the new
covariance estimate yields a well-known weighted covariance estimate due to Helffer
(see Theorem 3.1, [10, Section 4] or [14, Proposition 2.1 or 3.1]). This weighted co-
variance estimate is the central ingredient in a common method to deduce exponential
decay of correlations for unbounded spin systems with a non-convex single-site poten-
tial and a weak finite-range interaction (see [10, Theorem 2.1], [3, Theorem 1.1], [4,
Theorem 3.1] or [14, Proposition 6.2]). Additionally, we show how Theorem 2.3 directly
yields an exponential decay of correlations in this situation without relying on Theo-
rem 3.1 (see Corollary 3.3 and Proposition 3.4).

In Section 3.2 we consider algebraic decay of correlations. Using the new Brascamp-
Lieb type covariance estimate, we give a criterion to deduce algebraic decay of corre-
lations of lattice systems of continuous spins (see Proposition 3.5).

The main result of this article (i.e. Theorem 2.3) was successfully applied in other
articles of the author: Because there is a deep connection between decay of correlations
and the validity of certain functional inequalities like the logarithmic Sobolev inequality
(LSI) or the PI (see for example [22, 23, 10, 3, 20, 21] or [3] for an overview), it is
not surprising that Theorem 2.3 is one of the key ingredients to derive the LSI for the
canonical ensemble µN,m in the case of a weak two-body interaction [16]. Additionally,
Proposition 3.5 was used in [17] to refine the Otto-Reznikoff approach to the LSI.

We conclude the introduction by making a comment on the origin of the content of
this article. Most of the material of this article is contained in the dissertation [15] of
the author but unpublished until now. The proof of the Brascamp-Lieb type covariance
estimate of Theorem 2.3 emerged out of joint discussions with Felix Otto.

2 The Brascamp-Lieb type covariance estimate and its proof.

We consider a finite dimensional Euclidean space X. Norms | · | and gradients ∇ are
derived from the Euclidean structure. If a probability measure µ on X satisfies the PI,
we directly obtain the following standard covariance estimate:

Lemma 2.1. Assume µ satisfies a PI with constant %, which means that for all smooth
functions f

varµ(f) :=

∫ (
f −

∫
fdµ

)2

dµ ≤ 1

%

∫
|∇f |2dµ. (PI)

Then for any smooth function f and g it holds

| covµ(f, g)| ≤ 1

%

(∫
|∇f |2 dµ

) 1
2
(∫
|∇g|2 dµ

) 1
2

. (2.1)
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Even if the estimate (2.1) is optimal (cf. [18, Remark 4]), it does not yield information
about the dependence of the covariance on the specific coordinates. Hence, the esti-
mate (2.1) is useless for deducing decay of covariances. For example, let us consider a
Gaussian Gibbs measure

µ(dx) =
1

Z
exp (−x ·Ax) dx

on RN with a symmetric and positive definite N ×N - Matrix A. Then it is known that

covµ(xn, xk) =
(
A−1

)
nk
≤ 1

%
. (2.2)

Therefore, we can hope for a finer estimate than (2.1) that is also sensitive to the depen-
dence of the functions f and g on the specific coordinates xi. Our covariance estimate
shows this feature:

Assumption 2.2. We assume that Gibbs measure µ satisfies PI with a unspecified con-
stant %̃ > 0. Because %̃ > 0 can be arbitrarily small this is a very weak assumption. For
example, this assumption is satisfied as soon as the Hamiltonian H is a bounded pertur-
bation of a convex function. This becomes clear from a combination of the observation
by Bobkov [2] – all log-concave measures satisfy PI – and the perturbation lemma of
Holley-Stroock [13] (cf. Theorem A.2).

Theorem 2.3 (Covariance estimate, Otto & Menz). We consider a probability measure
dµ := Z−1 exp(−H(x)) dx on a direct product of Euclidean spaces X = X1 × · · · ×XN .
We assume that

• the conditional measures µ(dxi|x̄i), 1 ≤ i ≤ N , satisfy a uniform PI with constant
%i > 0 which means that for all smooth functions f : Xi → R

varµ(·|x̄i)(f) :=

∫ (
f −

∫
fµ(dxi|x̄i)

)2

µ(dxi|x̄i) ≤
1

%i

∫
|∇f |2µ(dxi|x̄i)

uniformly in x̄i.

• the mixed derivatives of H are uniformly bounded in the sense that for i, j ∈ Λ

with i 6= j

|∇i∇jH(x)| ≤ κij <∞,

where the numbers κij do not depend on x. Here, | · | denotes the operator norm
of a bilinear form.

• the symmetric matrix A = (Aij)N×N defined by

Aij =

{
%i, if i = j,

−κij , if i < j,
(2.3)

is positive definite.

Then for all smooth functions f and g

| covµ(f, g)| ≤
N∑

i,j=1

(
A−1

)
ij

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

. (2.4)

The structure of the estimate in Theorem 2.3 is related to the BLI in the sense that
variance is replaced by covariance and that HessH is replaced by A.
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Remark 2.4 (Connection to BLI). We assume Xi = R for i ∈ {1, . . . , N} and let A be
a symmetric positive definite N × N - matrix. We consider a ferromagnetic Gaussian
Hamiltonian given by

H(x) =
1

2

∑
1≤i,j≤N

xiAijxj +
∑

1≤i≤N

bixi, Aij , bj ∈ R,

where ferromagnetic means that the coupling is attractive i.e.

Aij = Aji ≤ 0 for i < j ∈ {1, . . . , N}.

Then the covariance estimate (2.4) coincides with the BLI given by (1.1) provided
the function f = g is an affine function.

The next remark considers the optimality of Theorem 2.3.

Remark 2.5 (Optimality). Provided the Hamiltonian H is ferromagnetic Gaussian, the
estimate of Theorem 2.3 is optimal. This remark is verified by setting f(xn) = xn and
g(xk) = xk and using (2.2).

Remark 2.6 (Criterion for PI). Theorem 2.3 contains a well-known criterion for PI: If
A ≥ % Id, % > 0, then µ satisfies a PI with constant %.

The assumption under which Theorem 2.3 holds has the same algebraic structure
as the assumption in the Otto-Reznikoff criterion for LSI (cf. [18, Theorem 1]). The only
difference is that the uniform LSI constant for the single-site conditional measures is
replaced by the uniform PI constant.

Starting point of the proof of Theorem 2.3 is a representation of the covariance,
which was used by Helffer [8] to give another proof of the BLI. More precisely, one can
express the covariance of the measure µ as

covµ(f, g) =

∫
∇ϕ · ∇g dµ, (2.5)

where the potential ϕ is defined as the solution of the elliptic equation

−∇ · (µ∇ϕ) =

(
f −

∫
f dµ

)
µ, (2.6)

which can be rewritten as the Poisson equation

−Lϕ = f −
∫
f dµ,

where the second order differential operator L is given by L = ∆−∇H ·∇. Here we used
the convention, that µ also denotes the Lebesgue density of the probability measure µ.
As a solution of (2.6) we understand any ϕ ∈ H1(µ) such that for all ζ ∈ H1(µ)∫

∇ζ · ∇ϕ dµ =

∫
ζ

(
f −

∫
f dµ

)
dµ. (2.7)

The existence of such solutions follows directly from the Riesz representation theorem
applied to

H = H1(µ) ∩
{
ϕ,

∫
ϕdµ = 0

}
(2.8)

equipped with the inner product ∫
∇ζ · ∇ϕ dµ. (2.9)
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The completeness of H w.r.t. the chosen inner product follows from the fact that µ
satisfies some PI, which is guaranteed by our Assumption 2.2.

Let us return to the proof of Theorem 2.3. An application of the Cauchy-Schwarz
inequality to (2.5) yields

|covµ(f, g)| ≤
N∑
i=1

(∫
|∇iϕ|2dµ

) 1
2
(∫
|∇ig|2dµ

) 1
2

.

Now, an application of the following theorem yields the desired estimate (2.4) and com-
pletes the proof of Theorem 2.3.

Theorem 2.7 (Directional PI). Assume that the conditions of Theorem 2.3 are satisfied.
For any function f let the potential ϕ be a solution of (2.6). Then for all i ∈ {1, . . . , N}(∫

|∇iϕ|2dµ
) 1

2

≤
N∑
j=1

(
A−1

)
ij

(∫
|∇jf |2dµ

) 1
2

. (2.10)

Before we turn to the proof of Theorem 2.7, let us explain why we call the esti-
mate (2.10) directional PI. For this let us recall the dual formulation of the PI (cf. for
example [19]), which is an easy consequence of the dual characterization of the norm
on the Hilbert space H given by (2.8) and (2.9).

Lemma 2.8 (Dual formulation of the PI). A probability measure µ satisfies PI with
constant % > 0 if and only if for any function f and the solution ϕ of (2.6)(∫

|∇ϕ|2 dµ
) 1

2

≤ 1

%

(∫
|∇f |2dµ

) 1
2

. (2.11)

Note that the directional PI given by (2.10) estimates each coordinate of the gradient
of ϕ separately and therefore is a refinement of the dual formulation of the PI given
by (2.13). As in [19, Section 3], the function ϕ formally denotes the tangent vector at
of the curve (1 + εf)µ at ε = 0. Therefore, ∇ϕ can be interpreted as the infinitesimal
optimal displacement transporting the measure µ into (1 + εf)µ (cf. [19, Section 5]).
So, the left hand side of (2.10) measures the average flux of mass into the direction
of the i-th coordinate against a weighted gradient of f . For this reason we call (2.10)
directional PI.

One can also interpret the estimate (2.10) in terms of the Witten complex (for a nice
overview see [11]). At least formally one can introduce the inverse Witten-Laplacian
A−1

1 as
A−1

1 ∇f := ∇ϕ,

which maps the gradient of some function f onto the gradient of the solution ϕ of the
equation (2.6). Let Πi denote the projection onto the space Xi, i ∈ {1, . . . , N}. Then the
estimate (2.10) becomes a weighted estimate of the L2-operator norm of ΠiA

−1
1 .

Let us now turn to the proof of Theorem 2.7, which is the only missing ingredient in
the proof of Theorem 2.3. The argument is very basic. It combines the core inequality
of Ledoux’s argument for [14, Proposition 3.1] with linear algebra that was used in the
argument of [18, Theorem 1].

Proof of Theorem 2.7. To make the main ideas of the argument more visible, we assume
that the Euclidean spaces Xi, i ∈ {1, . . . , N}, are one dimensional i.e. Xi = R. The
argument for general Euclidean spaces Xi is almost the same. Then the product space
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X = X1 × · · · × XN becomes RN . The gradient ∇i on Xi is just the partial derivative
∂i w.r.t. the i-th coordinate. The first ingredient of the proof is the basic estimate for
j ∈ {1, . . . , N}∫ (

|∂j∂jϕ|2 + ∂jϕ ∂j∂jH ∂jϕ
)
µ(dxj |x̄j) ≥ %j

∫
|∂jϕ|2µ(dxj |x̄j). (2.12)

which is in fact just an equivalent formulation of the PI with constant %j for the single-
site measure µ(dxj |x̄j). More precisely, we use the following alternative formulation of
the PI (cf. [14, Proposition 1.3] or [12, 9]):

Lemma 2.9 (Alternative formulation of the PI). A probability measure ν = e−H

Z on Rk

satisfies PI with constant % > 0 if and only if for any function f

%

∫
|∇f |2 dν ≤

∫
|Lf |2dν, (2.13)

where L is the second order differential operator

L =
k∑
l=1

∂l∂l −
k∑
l=1

∂lH · ∂l.

Applying Lemma 2.9 to the single-site measure µ(dxj |x̄j) yields the estimate∫
|∂j∂jϕ− ∂jH∂jϕ|2µ(dxj |x̄j) ≥ %j

∫
|∂jϕ|2µ(dxj |x̄j).

To show the desired estimate (2.12), it is left to show∫
|∂j∂jϕ− ∂jH∂jϕ|2µ(dxj |x̄j)

=

∫ (
|∂j∂jϕ|2 + ∂jϕ ∂j∂jH ∂jϕ

)
µ(dxj |x̄j),

which follows from a straightforward calculation using partial integration (cf. [14, (1.8)]).

The second ingredient of the proof is the identity

∫
∂jϕ ∂jfdµ =

∫ N∑
k=1

(
|∂j∂kϕ|2 + ∂jϕ ∂j∂kH ∂kϕ

)
dµ. (2.14)

Indeed, by partial integration one sees that∫
∂jϕ ∂jfdµ = −

∫
∂j∂jϕ

(
f −

∫
fdµ

)
dµ+

∫
∂jϕ ∂jH

(
f −

∫
fdµ

)
dµ.

Applying now (2.7) on the terms of the r.h.s. yields the identity

∫
∂jϕ ∂jf dµ = −

∫ N∑
k=1

∂k∂j∂jϕ ∂kϕ dµ+

∫ N∑
k=1

∂k∂jϕ ∂jH ∂kϕ dµ

+

∫ N∑
k=1

∂jϕ ∂k∂jH ∂kϕ dµ.
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Let us have a closer look at the second term on the r.h.s of the last identity. It follows
from the definition of µ that∫ N∑

k=1

∂k∂jϕ ∂jH ∂kϕ dµ = − 1

Z

∫ N∑
k=1

∂k∂jϕ(x) ∂kϕ(x) ∂j exp (−H(x)) dx

=

∫ N∑
k=1

∂j∂k∂jϕ ∂kϕ dµ+

∫ N∑
k=1

∂k∂jϕ ∂j∂kϕ dµ

A combination of the last two formulas yields the desired identity (2.14).

Now, we turn to the proof of (2.10). A combination of (2.12) and (2.14) yields the
estimate ∫

∂jϕ ∂jf dµ ≥ %j
∫
|∂jϕ|2dµ+

∫ N∑
k=1, k 6=j

∂jϕ ∂j∂kH ∂kϕ dµ

≥ %j
∫
|∂jϕ|2dµ−

N∑
k=1, k 6=j

κjk

∫
∂jϕ ∂kϕ dµ.

Applying Cauchy-Schwarz on the last estimate yields for all j ∈ {1, . . . , N}(∫
|∂jf |2dµ

) 1
2

≥ %j
(∫
|∂jϕ|2dµ

) 1
2

−
N∑

k=1, k 6=j

κjk

(∫
|∂kϕ|2dµ

) 1
2

=

N∑
k=1

Ajk

(∫
|∂kϕ|2dµ

) 1
2

. (2.15)

A simple linear algebra argument outlined in [18, Lemma 9] shows that the elements of
the inverse of A are non negative i.e.

(
A−1

)
ij
≥ 0 for all i, j ∈ {1, . . . , N}. Hence, (2.15)

yields

N∑
j=1

(
A−1

)
ij

(∫
|∂jf |2dµ

) 1
2

≥
N∑
j=1

(
A−1

)
ij

N∑
k=1

Ajk

(∫
|∂kϕ|2dµ

) 1
2

= δik

(∫
|∂kϕ|2dµ

) 1
2

=

(∫
|∂iϕ|2dµ

) 1
2

.

The proof of Theorem 2.3 is just a direct application of Theorem 2.7.

Proof of Theorem 2.3. Using the definition of ϕ, cf. (2.6), we obtain the following esti-
mate of the covariance

covµ (f, g) =

∫
f

(
g −

∫
g µ

)
dµ

=

∫
∇ϕ · ∇g dµ

≤
N∑
j=1

(∫
|∇jϕ|2dµ

) 1
2
(∫
|∇jg|2dµ

) 1
2

Now, the statement follows directly from Theorem 2.7.
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3 Application of the B-L type covariance estimate: Decay of cor-
relations

In this section we show how Theorem 2.3 can be used to deduce decay of correla-
tions. We distinguish two cases:

• exponential decay of correlations (see Section 3.1)

• and algebraic decay of correlations (see Section 3.2).

3.1 Exponential decay of correlations.

We start with reflecting a method based on Helffer [10] that has often been used to
derive exponential decay of correlations of spin systems with finite-range interaction or
exponentially decaying (cf. [3] and [4]). This method is based on a weighted covariance
estimate, which we present in the spirit of Ledoux [14, Proposition 3.1], but rephrase
the estimate in our framework.

Theorem 3.1 (Helffer, Ledoux). We assume that the conditions of Theorem 2.3 are
satisfied. Additionally, we consider positive weights di > 0, i ∈ {1, . . . N}. Let the
diagonal N ×N - matrix D be defined as

D := diag(d1 . . . , dN ).

We assume that there exists % > 0 such that in the sense of quadratic forms

DAD−1 ≥ % Id . (3.1)

Then the matrix A is positive definite and for all functions f and g,

covµ(f, g) ≤ 1

%

(∫
|D∇f |2 dµ

) 1
2
(∫
|D−1∇g|2 dµ

) 1
2

. (3.2)

At the end of this section, we give a new proof of Theorem 3.1 showing that the
weighted covariance estimate (3.2) is an easy consequence of our covariance estimate
of Theorem 2.3. This shows that the statement of Theorem 2.3 is consistent with the
existing literature.

Remark 3.2. Using a direct argument for deducing of Theorem 3.1, one sees that the
condition (3.1) can be relaxed to a weaker condition (for the argument we refer the
reader to [15, Section 1.2.1] or [7, Proposition 3.2]). More precisely, let the symmetric
N ×N -matrix A(x) = (Aij(x)) be defined by

Aij(x) =

{
%i, if i = j,

∇i∇jH(x), if i < j.

Assume that there is % > 0 such that for all x ∈ X

DA(x)D−1 ≥ % Id .

Now, let us explain how the weighted covariance estimate of Theorem 3.1 can be
used to deduce exponential decay of correlations. Let us consider a metric δ(·, ·) on the
set of sites {1, . . . , N} of the spin system. For an arbitrary but fixed site l ∈ {1, . . . , N}
one chooses

di := exp (−δ(i, l))
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as weights in Theorem 3.1. Because the triangle inequality implies

di
dj

= exp (δ(j, l)− δ(i, l)) ≤ exp (δ(j, i)) ,

a direct application of Theorem 3.1 yields the following criterion for exponential decay
of correlations.

Corollary 3.3 (Helffer & Ledoux). Assume that the conditions of Theorem 2.3 are sat-
isfied. Additionally, we consider a metric δ(·, ·) on the set {1, . . . , N} and the symmetric
N ×N - matrix Ã = (Ãij) defined by

Ãij =

{
%i, if i = j,

− exp (δ(i, j))κij , if i < j.
(3.3)

We assume that there exists %̃ > 0 such that in the sense of quadratic forms

Ã ≥ %̃ Id . (3.4)

Then for all functions f = f(xi) and g = g(xj), i, j ∈ {1, . . . , N},

| covµ(f, g)| ≤ 1

%̃
exp (−δ(i, j))

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

.

This criterion may also be stated more generally for functions with arbitrary disjoint
supports. It is implicitly contained in the prelude of [14, Proposition 6.2].

At the end of this section we will also give a direct proof of Corollary 3.3, which is
just based on the covariance estimate of Theorem 2.3 and does not need the weighted
covariance estimate of Theorem 3.1.

Now, let us give an example how Corollary 3.3 can be applied. For that purpose
we consider a two-dimensional lattice system with non-convex single-site potential and
weak nearest-neighbor interaction. The same type of argument would also work for any
dimension and finite-range interaction. Let X denote a two-dimensional periodic lattice
of N -sites and let δ(·, ·) denote the graph distance on it. We assume that µ ∈ P(X) has
the Hamiltonian

H(x) =
∑
i

ψ(xi)− ε
∑

δ(i,j)=1

xixj , (3.5)

where the smooth potential ψ is a bounded perturbation of a Gaussian in the sense that

ψ(x) =
1

2
x2 + δψ(x) and sup

R

|δψ(x)| <∞.

By a combination of the Bakry-Émery criterion (cf. Theorem A.1) and the of Holley-
Stroock perturbation principle (cf. Theorem A.2) all conditional measures µ(dxi|x̄i) sat-
isfy a uniform LSI with constant ∆ := exp (− osc δψ). From (3.5) we see that

κij = sup
x
|∇i∇jH(x)| = ε.

Hence, we know that if the interaction is sufficiently weak in the sense of ε < ∆
4 , the

matrix A of Theorem 2.3 satisfies

A ≥ (∆− 4ε) Id .

Analogously one obtains that if ε < ∆
4 e
−1, the matrix Ã of Corollary 3.3 satisfies

Ã ≥ (∆− 4εe) Id .

Therefore, an application of Corollary 3.3 yields exponential decay of correlations:
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Proposition 3.4. Assume that ε < ∆
4 e
−1. Then for any functions f = f(xi) and g =

g(xj), i, j ∈ {1, . . . , N},

| covµ(f, g)| ≤ 1

∆− 4εe
exp (−δ(i, j))

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

.

This statement reproduces the correlation bounds established by Helffer [10] and
reproved by Ledoux in [14, Proposition 6.2].

Let us now prove the statements mentioned in this section.

Proof of Theorem 3.1 using Theorem 2.3. We start with deducing that A is positive def-
inite. Because A is a symmetric Matrix, it suffices to show that every eigenvalue of A is
positive. Let λ ∈ R be an eigenvalue of A with eigenvector x i.e.

Ax = λx.

An application of (3.1) to the vector Dx yields

λ|Dx|2 = Dx ·DAx = Dx ·DAD−1Dx ≥ %|Dx2| > 0,

which implies λ > 0.
Now, we will deduce (3.2). Because A is symmetric, the inverse A−1 also is symmetric.
Therefore, an application of Theorem 2.3 yields the estimate

covµ(f, g) ≤
N∑

i,j=1

(
A−1

)
ij

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

=

N∑
i,j=1

dj
(
A−1

)
ji
d−1
i

(∫
|di∇if |2 dµ

) 1
2
(∫
|d−1
j ∇jg|

2 dµ

) 1
2

= DA−1D−1z · z̃
≤ |DA−1D−1z| |z̃|,

where the vectors z, z̃ ∈ RN are defined for i, j ∈ {1, . . . , N} by

zi :=

(∫
|di∇if |2 dµ

) 1
2

and z̃j :=

(∫
|d−1
j ∇jg|

2 dµ

) 1
2

.

Therefore, (3.2) is verified provided

|DA−1D−1z| ≤ 1

%
|z| (3.6)

holds for any z ∈ RN . From the hypothesis (3.1) it follows that

% z · z ≤ DAD−1z · z
≤ |DAD−1z| |z|.

Hence, we have

|z| ≤ 1

%
|DAD−1z|,

which immediately yields (3.6).
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Direct proof of Corollary 3.3 using only Theorem 2.3. Let us fix two indices i, j ∈ {1, . . . , N}.
Let f and g be arbitrary functions just depending on xi and xj respectively. We apply
Theorem 2.3 and get

covµ(f, g) ≤
(
A−1

)
ij

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

, (3.7)

where A is defined as in (2.3). Therefore, it remains to estimate the element
(
A−1

)
ij

.

By Neumann series (also called the random walk expansion of A−1 (cf. [6])) we have

(
A−1

)
ij

= δij
1

%i
+

κij
%i%j

+

N∑
s=1

κisκsj
%i%s%j

+

N∑
s,l=1

κisκslκlj
%i%s%l%j

+ · · · · · ·

= δij
1

%i
+
e−δ(i,j)

e−δ(i,j)
κij
%i%j

+

N∑
s=1

e−δ(i,s)e−δ(s,j)

e−δ(i,s)e−δ(s,j)
κisκsj
%i%s%j

+

N∑
s,l=1

e−δ(i,s)e−δ(s,l)e−δ(l,j)

e−δ(i,s)e−δ(s,l)e−δ(l,j)
κisκslκlj
%i%s%l%j

+ · · · · · · . (3.8)

By the triangle inequality we get

e−δ(i,s)e−δ(s,j) ≤ e−δ(i,j)

for all i, s, j ∈ {1, . . . , N}. Hence, we can continue the estimation of (3.8) as(
A−1

)
ij
≤ e−δ(i,j)

(
Ã−1

)
ij
, (3.9)

where Ã is defined as in (3.3). By (3.4) we have the bound(
Ã−1

)
ij
≤ 1

%̃
,

which together with (3.7) and (3.9) finishes the proof.

3.2 Algebraic decay of correlations

In this section we show how Theorem 2.3 can be used to deduce an algebraic decay
of correlations in the case of algebraically decaying interaction. Because in the arti-
cle [17] the statement of Proposition 3.5 is applied to a d-dimensional lattice system,
we change the notation a little bit.

Proposition 3.5. Let Λ ⊂ Zd an arbitrary finite subset of the d-dimensional lattice Zd.
We consider a probability measure dµ := Z−1 exp(−H(x)) dx on RΛ. We assume that

• the conditional measures µ(dxi|x̄i), i ∈ Λ, satisfy a uniform PI with constant %i > 0.

• the mixed derivatives of H are uniformly bounded in the sense that for i, j ∈ Λ

with i 6= j

|∇i∇jH(x)| ≤ κij <∞,

where the numbers κij do not depend on x. Here, | · | denotes the operator norm
of a bilinear form.

• the numbers κij decay algebraically in the sense of

κij ≤ C
1

|i− j|d+α + 1
(3.10)

for some constant C > 0 and α > 0.
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• the symmetric matrix A = (Aij)N×N defined by

Aij =

{
%i, if i = j,

−κij , if i < j,

is strictly diagonally dominant i.e. for some δ > 0 it holds for any i ∈ Λ∑
j∈Λ,j 6=i

|Aij |+ δ ≤ Aii. (3.11)

Then for all functions f = f(xi) and g = g(xj), i, j ∈ Λ,

| covµ(f, g)| ≤ (A−1)ij

(∫
|∇if |2 dµ

) 1
2
(∫
|∇jg|2 dµ

) 1
2

(3.12)

and for any i, j ∈ Λ

|(A−1)ij | ≤ C
1

|i− j|d+α̃ + 1
, (3.13)

for some constant C > 0 and α̃ > 0.

Proof of Proposition 3.5. Because the matrixA is strictly diagonal dominant in the sense
of (3.11), the matrix A is also positive definite. Therefore an application of Theorem 2.3
directly yields the estimate (3.12). So, it is only left to deduce the estimate (3.13). As in
the proof of Corollary 3.3 the Neumann series representation of A−1 yields for i 6= j(

A−1
)
ij

=
κij
%i%j︸︷︷︸
=:T0

+
∑
s∈Λ

κisκsj
%i%s%j︸ ︷︷ ︸

=:T1

+
∑

s1,s2∈Λ

κis1κs1s2κs2j
%i%s1%s2%j︸ ︷︷ ︸
=:T2

+ · · · · · · (3.14)

=

∞∑
k=0

Tk.

It follows from our assumption (3.11) that

κm̃n
%n
≤
∑
m∈Λ

κnm
%n
≤ c < 1 uniformly in n, m̃ ∈ Λ. (3.15)

Therefore we get the estimate

Tk ≤ ck.

Let ñ denote the smallest integer larger than log |i−j|d+α
| log c| . Then we have

∞∑
k=ñ

Tk ≤ cñ
∞∑
k=0

ck ≤ 1

|i− j|d+α
C. (3.16)

Considering (3.14) it only remains to estimate
∑ñ
k=0 Tk. Assume for the moment that

Tk ≤ C
(k + 1)d+α+1

|i− j|d+α
(3.17)

uniform in k ∈ N. Then we get the estimate

ñ∑
k=0

Tk ≤ C
(ñ+ 1)

d+α+1

|i− j|d+α
(3.18)

≤ C (log |i− j|d+α + 1)d+α+1

|i− j|d+α
≤ C 1

|i− j|d+α
2
.
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A combination of (3.14), (3.16), and (3.18) yields the desired statement (3.13).

In order to complete the argument we have to the estimate (3.17). Consider the
multi-indexes i, s1, . . . sk, j ∈ Λ ⊂ Zd. For convenience we set s0 = i and sk+1 = j. Let ñ
be the integer such that

|iñ − jñ| = max {|il − jl| , l ∈ {1, . . . , d}} .

Then there is at least one pair of (s0, s1), (s1, s2)), . . ., (sk−1, sk), or sk, sk+1 that satisfies
the estimate

|(sl)ñ − (sl+1)ñ| ≥
1

k + 1
|iñ − jñ|.

By the equivalence of norms in finite-dimensional vector-spaces the last inequality
yields

|sl − sl+1| ≥ C
1

k + 1
|i− j|. (3.19)

Therefore we have

Tk =
∑

s1,...,sk∈Λ

κs0s1κs1s2 . . . κsksk+1

%i%s1 . . . %k%j

≤
∑

s1,...,sk∈Λ
(s0,s1) satisfies (3.19)

κs0s1κs1s2 . . . κsksk+1

%i%s1 . . . %k%j

+
∑

s1,...,sk∈Λ
(s1,s2) satisfies (3.19)

κs0s1κs1s2 . . . κsksk+1

%i%s1 . . . %k%j

+ . . . +
∑

s1,...,sk∈Λ
(sk,sk+1) satisfies (3.19)

κs0s1κs1s2 . . . κsksk+1

%i%s1 . . . %k%j
.

We show how the second term on the right hand side can be estimated. The estimation
of the other terms works almost the same, hence we skip estimating them. We have∑

s1,...,sk∈Λ
(s1,s2) satisfies (3.19)

κs0s1κs1s2 . . . κsksk+1

%i%s1 . . . %k%j

(3.10)
≤ C

∑
s1,...,sk∈Λ

(s1,s2) satisfies (3.19)

1

|s1 − s2|d+α + 1

κs0s1κs2s3 . . . κsksk+1

%i%s1 . . . %k%j

(3.19)
≤ C

(k + 1)d+α

|i− j|d+α + 1

∑
s1,...,sk∈Λ

κs0s1κs2s3 . . . κsksk+1

%i%s1 . . . %k%j

(3.15)
≤ C

(k + 1)d+α

|i− j|d+α + 1
.

With similar bounds for the other terms we get the desired estimate

Tk ≤ C
(k + 1)d+α+1

|i− j|d+α + 1
,

which closes the argument.
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A The criterion of Bakry-Émery and the Holley-Stroock perturba-
tion principle

In this section we state the criterion Bakry-Émery and the Holley-Stroock perturba-
tion principle, which we used in the main part of this article to deduce the PI for certain
measures. Because we only work with the PI in this article we state those criteria for
the PI and not for the stronger level of the LSI. The Bakry-Émery criterion connects
convexity of the Hamiltonian to the validity of the PI.

Theorem A.1 (Bakry-Émery criterion [1, Proposition 3, Corollaire 2]). Let H : D → R

be a Hamiltonian with Gibbs measure

µ(dx) = Z−1
µ exp

(
−ε−1H(x)

)
dx

on a convex domain D and assume that ∇2H(x) ≥ λ > 0 for all x ∈ Rn. Then µ satisfies
PI with constant % satisfying

% ≥ λ

ε
.

In non-convex cases the standard tool to deduce the PI is the Holley-Stroock pertur-
bation principle.

Theorem A.2 (Holley-Stroock perturbation principle [13, p. 1184]). Let H be a Hamil-
tonian with Gibbs measure

µ(dx) = Z−1
µ exp

(
−ε−1H(x)

)
dx.

Further, let H̃ denote a bounded perturbation of H and let µ̃ε denote the Gibbs measure
associated to the Hamiltonian H̃. If µ satisfies PI with constant % then also µ̃ satisfies
the PI with constant%̃, where the constants satisfies the bound

%̃ ≥ exp
(
−ε−1 osc(H − H̃)

)
%,

where osc(H − H̃) := sup(H − H̃)− inf(H − H̃).

The perturbation principle of Holley-Stroock [13] allows to deduce the PI constants
of non-convex Hamiltonian from the PI of an appropriately convexified Hamiltonian.
However due to its perturbative nature, the dependence of the PI constant %̃ usually is
bad in physical parameters like system size or temperature.
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