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Abstract

Scale-free networks with small power law exponent are known to be robust, meaning
that their qualitative topological structure cannot be altered by random removal of
even a large proportion of nodes. By contrast, it has been argued in the science lit-
erature that such networks are highly vulnerable to a targeted attack, and removing
a small number of key nodes in the network will dramatically change the topolog-
ical structure. Here we analyse a class of preferential attachment networks in the
robust regime and prove four main results supporting this claim: After removal of
an arbitrarily small proportion ε > 0 of the oldest nodes (1) the asymptotic degree
distribution has exponential instead of power law tails; (2) the largest degree in the
network drops from being of the order of a power of the network size n to being just
logarithmic in n; (3) the typical distances in the network increase from order log logn
to order logn; and (4) the network becomes vulnerable to random removal of nodes.
Importantly, all our results explicitly quantify the dependence on the proportion ε of
removed vertices. For example, we show that the critical proportion of nodes that
have to be retained for survival of the giant component undergoes a steep increase as
ε moves away from zero, and a comparison of this result with similar ones for other
networks reveals the existence of two different universality classes of robust network
models. The key technique in our proofs is a local approximation of the network by
a branching random walk with two killing boundaries, and an understanding of the
particle genealogies in this process, which enters into estimates for the spectral ra-
dius of an associated operator.
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1 Introduction

1.1 Motivation

The problem of resilience of networks to either random or targeted attack is cru-
cial to many instances of real world networks, ranging from social networks (like col-
laboration networks) via technological networks (like electrical power grids) to com-
munication networks (like the world-wide web). Of particular importance is whether
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Vulnerability of robust preferential attachment networks

the connectivity of a network relies on a small number of hubs and whether their loss
will cause a large-scale breakdown. Albert, Albert and Nakarado [1] argue that “the
power grid is robust to most perturbations, yet disturbances affecting key transmission
substations greatly reduce its ability to function”. Experiments of Albert, Jeong, and
Barabási [2], Holme, Kim, Yoon and Han [24] and more recently of Mishkovski, Biey
and Kocarev [29] find robustness under random attack but vulnerability to the removal
of a small number of key nodes in several other networks. The latter paper includes
a study of data related to the human brain, as well as street, collaboration and power
grid networks. One should expect this qualitative behaviour across the range of real
world networks and it should therefore also be present in the key mathematical models
of large complex networks.

A well established feature of many real world networks is that in a suitable range of
values k the proportion of nodes with degree k has a decay of order k−τ for a power law
exponent τ . The robustness of networks with small power law exponent under random
attack has been observed heuristically by Callaway et al. [8] and Cohen et al. [11], but
there seems to be controversy in these early papers about the extent of the vulnerability
in the case of targeted attack, see the discussion in [17] and [12]. As Bollobás and
Riordan [7, Section 10] point out, such heuristics, informative as they may be, are often
quite far away from a mathematical proof that applies to a given model. In their seminal
paper [7] they provide the first rigorous proof of robustness in the case of a specific
preferential attachment model with power law exponent τ = 3, and later Dereich and
Mörters [15] proved for a class of preferential attachment models with tunable power
law exponent that networks are robust under random attack if the power law exponent
satisfies τ ≤ 3, but not when τ > 3, thus revealing the precise location of the phase
transition in the behaviour of preferential attachment networks. However, the question
of vulnerability of robust networks when a small number of privileged nodes is removed
has not been studied systematically in the mathematical literature so far.

It is the aim of the present paper to give evidence for the vulnerability of robust net-
works by providing rigorous proof that preferential attachment networks in the robust
regime τ ≤ 3 undergo a radical change under a targeted attack, i.e. when an arbitrarily
small proportion ε > 0 of the most influential nodes in the network is removed. Our
main results, presented in Section 1.3, show how precisely this change affects the de-
gree structure, the length of shortest paths and the connectivity in the network. The
results take the form of limit theorems revealing explicitly the dependence of the rel-
evant parameters on ε. Not only does this provide further insight into the topology
of the network and the behaviour as ε tends to zero, it also allows a comparison to
other network models, and thus exposes two classes of robust networks with rather
different behaviour, see Section 1.5. Our mathematical analysis of the network uses
several new ideas and combines probabilistic and combinatorial arguments with ana-
lytic techniques informed by new probabilistic insights. It is crucially based on the local
approximation of preferential attachment networks by a branching random walk with a
killing boundary recently found in [15]. In this approximation the removal of a propor-
tion of old vertices corresponds to the introduction of a second killing boundary. On the
one hand this adds an additional level of complexity to the process, as the mathematical
understanding of critical phenomena in branching models on finite intervals is only just
emerging, see for example [20]. On the other hand compactness of the typespace for
this branching process opens up new avenues that are exploited, for example, in the
form of spectral estimates based on rather subtle information on the shape of principal
eigenfunctions of an operator associated with the branching process.
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1.2 Mathematical framework

The established mathematical model for a large network is a sequence (Gn : n ∈ N)

of (random or deterministic) graphs Gn with vertex set Vn and an edge set En consisting
of (directed or undirected) edges between the vertices. We assume that the size |Vn| of
the vertex set is increasing to infinity in probability, so that results about the limiting
behaviour in the sequence of graphs may be seen as predictions for the behaviour of
large networks. In all cases of interest here the average number of edges per vertex
converges in probability to a finite limit and the topology of a bounded neighbourhood
of a typical vertex stabilizes. An important example for this is the proportion of vertices
with a given degree in Gn, which in the relevant models converges and allows us to talk
about the asymptotic degree distribution. The mathematical models of power law net-
works therefore have an asymptotic degree distribution with the probability of degree k
decaying like k−τ , as k →∞, for some τ > 1. Our focus here is on the global properties
emerging in network models with asymptotic power law degree distributions.

A crucial global feature of a network is its connectivity, and in particular the exis-
tence of a large connected component. To describe this, we denote by Cn a connected
component in Gn with maximal number of nodes. The graph sequence (Gn : n ∈ N) has
a giant component if there exists a constant ζ > 0 such that

|Cn|
E|Vn|

→ ζ as n→∞,

where the convergence holds in probability. We remark that for the models usually
considered the issue is not the convergence itself but the positivity of the limit ζ. If a
giant component exists and the length of the shortest path between any two vertices
in the largest component of Gn is asymptotically bounded by a multiple of log n, the
network is called small. If it is asymptotically bounded by a constant multiple of log log n,
the network is called ultrasmall ; cf. Section 1.2 in [23].

To model a random attack on the network we keep each vertex in Gn independently
with probability p ∈ [0, 1] and otherwise we remove it from the vertex set together with
all its adjacent edges, i.e. we run vertex percolation on Gn with retention probability
p. The resulting graph is denoted by Gn(p). A simple coupling argument shows that
there exists a critical parameter pc ∈ [0, 1] such that the sequence (Gn(p) : n ∈ N) has
a giant component if pc < p ≤ 1, and it does not have a giant component if 0 ≤ p <

pc. If pc = 0, i.e. if the giant component cannot be destroyed by percolation with any
positive retention parameter, then the network is called robust. To study the resilience
of networks to a targeted attack we look at models in which the construction of the
network favours certain vertices in such a way that these privileged vertices have a
better chance of getting a high degree than others. When Gn is a network on n vertices,
we label these by 1 to n and assume that vertices are ordered in decreasing order of
privilege. This assumption allows an attacker to target the most privileged vertices
without knowledge of the entire graph. The damaged graph Gεn, for some ε ∈ (0, 1), is
obtained from Gn by the removal of all vertices with label less or equal to εn together
with all adjacent edges. In particular, the new vertex set is Vεn = {bεnc + 1, . . . , n}, and
we let Cεn be a connected component in Gεn with maximal number of nodes. We write
Gεn(p) for the graph obtained from Gn by first removing all vertices with label at most εn
and then running vertex percolation on the remaining graph. Note that we would get
the same graph when reversing the order in which these two attacks are performed.
However, we always start with the targeted attack for definiteness.

We investigate the problem of vulnerability of random networks to targeted attacks
in the context of preferential attachment networks. This class of models has been pop-
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ularised by Barabási and Albert [3] and has received considerable attention in the sci-
entific literature. The idea is that a sequence of graphs is constructed by successively
adding vertices. Together with a new vertex, edges are introduced by connecting it
to existing vertices at random with a probability depending on the degree of the exist-
ing node; the higher the degree the more likely the connection. Despite the relatively
simple principle on which this model is based it shows a good match of global features
with real networks. For example, the asymptotic degree distributions follow a power
law, and variations in the attachment probabilities allow for tuning of the power law
exponent τ . If the power law exponent satisfies τ < 3, then the network is robust and
ultrasmall.

The first mathematically rigorous study of resilience in preferential attachment net-
works was performed by Bollobás and Riordan [7] for the so-called LCD model. This
model variant has the advantage of having an explicit static description, which makes
it easier to analyse than models that have only a dynamic description. It also has a
fixed power law exponent τ = 3, hence, Bollobás and Riordan [7] prove only results for
this specific exponent. They show that in this case the network is robust and identify a
critical proportion εc < 1 such that the removal of the oldest bεnc oldest vertices leads
to the destruction of the giant component if and only if ε ≥ εc. Note that this is not in
line with the notion of vulnerability that we are interested in as we only want to remove
a small proportion of old vertices.

In the present paper, we consider the question of vulnerability in the following model
variant, introduced in [14]. Let N0 be the set of nonnegative integers and fix a function
f : N0 → (0,∞), which we call the attachment rule. The most important case is if f is
affine, i.e. f(k) = γk + β for parameters γ ∈ [0, 1) and β > 0, but non-linear functions
are allowed. Given an attachment rule f , we define a growing sequence (Gn : n ∈ N) of
random graphs by the following dynamics:

• Start with one vertex labelled 1 and no edges, i.e. G1 is given by V1 := {1}, E1 := ∅;
• Given the graph Gn, we construct Gn+1 from Gn by adding a new vertex labelled
n + 1 and, for each m ≤ n independently, inserting the directed edge (n + 1,m)

with probability
f(indegree of m at time n)

n
∧ 1. (1.1)

Formally we are dealing with a sequence of directed graphs but all edges point from
the younger to the older vertex. Hence, the directions can be recreated from the undi-
rected, labelled graph. For all structural questions, particularly regarding connectivity
and the length of shortest paths, we regard (Gn : n ∈ N) as an undirected network.
Dereich and Mörters consider in [14, 15] concave attachment rules f . Denoting the
asymptotic slope of f by

γ := lim
k→∞

f(k)

k
, (1.2)

they show that for γ ∈ (0, 1) the sequence (Gn : n ∈ N) has an asymptotic degree distri-
bution which follows a power law with exponent

τ =
γ + 1

γ
.

For γ ≥ 1, i.e. τ ≤ 2, the mean of the asymptotic degree distribution is infinite and
a radically different topology can be expected. Results on power law networks in this
regime have been derived for example in [18, 4]; we restrict ourselves to the finite mean
case γ < 1. In the case γ < 1

2 , or equivalently τ > 3, there exists a critical percolation
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parameter pc > 0 such that (Gn(p) : n ∈ N) has a giant component if and only if p > pc.1

If however γ ≥ 1
2 , or equivalently τ ≤ 3, the sequence (Gn(p) : n ∈ N) has a giant

component for all p ∈ (0, 1], i.e. (Gn : n ∈ N) is robust. This is the regime of interest in
the present paper.

1.3 Statement of the main results

Our focus is on the case of an affine attachment rule f(k) = γk + β with β > 0 and
γ ∈ [ 1

2 , 1). Recall that for this choice the preferential attachment network is robust. We
use the symbol a(ε) � b(ε) to indicate that there are constants 0 < c < C and some
ε0 > 0 such that cb(ε) ≤ a(ε) ≤ Cb(ε) for all 0 < ε < ε0.

Theorem 1.1. (Loss of connectivity) For any ε ∈ (0, 1), there exists pc(ε) ∈ (0, 1] such
that the damaged network

(Gεn(p) : n ∈ N) has a giant component ⇔ p > pc(ε). (1.3)

If γ = 1
2 then

pc(ε) � 1

log(1/ε)
. (1.4)

If γ > 1
2 then, as ε ↓ 0,

pc(ε) =
2γ − 1√
β(γ + β)

εγ−1/2
[
1 +O

(
εγ−1/2(log ε)

)]
.

Theorem 1.1 shows that the removal of an arbitrarily small proportion of old nodes
makes the network vulnerable to percolation, but does not destroy the giant component.
The steep increase of pc(ε) as ε leaves zero shows that, even when a small proportion of
old nodes has been removed in the network, the removal of further old nodes is much
more destructive than the removal of a similar proportion of randomly chosen nodes.

As for small ε the critical value pc(ε) is strictly decreasing in γ, this effect is stronger
the closer γ is to 1

2 . This result might be perceived as slightly counterintuitive since
the preferential attachment becomes stronger as γ increases and therefore we might
expect older nodes to be more privileged and a targeted attack to be more effective
than in the small γ regime. However, the effect of the stronger preferential attachment
is more than compensated by the fact that networks with a small value of γ have a
(stochastically) smaller number of edges and are therefore a-priori more vulnerable.
Note also that pc(ε) may be equal to 1 if ε is not sufficiently small in which case (1.3)
implies that the damaged network has no giant component. In the case γ = 1

2 the
implied constants in (1.4) can be made explicit as c = 1

γ+β and C = 1
β , but we cannot

show that they match asymptotically. However, we conjecture that

pc(ε) ∼ 1√
β(γ + β)

1

log(1/ε)
as ε ↓ 0,

meaning that the ratio of the left- and right-hand sides converges to one.

To gain further insight into the topology of the damaged graph, we now look at the
asymptotic indegree distribution and at the largest indegree in the network. Recall
from [14] that outdegrees are asymptotically Poisson distributed and therefore inde-
grees are solely responsible for the power law behaviour as well as the dynamics of
maximal degrees. From here onwards we additionally assume that β ≤ 1. Under this

1The results of [15] are formulated for edge percolation, whereas we consider vertex percolation. It is not
hard to see that for the existence or nonexistence of the giant component this makes no difference.
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condition, f(n) < n+ 1 for all n ∈ N0 and the minimum in (1.1) is always attained by its
first argument.

For a probability measure ν on the nonnegative integers, we write ν≥k := ν({k, k +

1, . . .}) and νk := ν({k}). Let Z[m,n] be the indegree of vertex m in Gn at time n ≥
m. Since for m > bεnc, the indegree of m in Gn and Gεn agree, writing Xε(n) for the
empirical indegree distribution in Gεn, we have

Xε
k(n) =

1

n− bεnc

n∑
m=bεnc+1

1{k}(Z[m,n]), for k ∈ N0.

We write M(G) for the maximal indegree in a directed graph G. For s, t > 0, let

B(s, t) :=

∫ 1

0

xs−1(1− x)t−1 dx

denote the beta function at (s, t). Before we make statements about the network after
the targeted attack, we recall the situation in the undamaged network. In this case
Dereich and Mörters in [14] show that the empirical indegree distribution X0(n) in Gn
satisfies almost surely

lim
n→∞

X0(n) = µ

in total variation norm. The limit is the probability measure µ on the nonnegative inte-
gers given by

µ≥k =
B(k + β

γ ,
1
γ )

B(βγ ,
1
γ )

for k ∈ N0,

and satisfies limk→∞ logµ≥k/ log k = −1/γ. Moreover, the maximal indegree satisfies,
in probability,

logM(Gn)

log(nγ)
→ 1 as n→∞.

Our theorem shows that in the damaged network the asymptotic degree distribution
is no longer a power law but has exponential tails. The maximal degree grows only
logarithmically, not polynomially.

Theorem 1.2. (Collapse of large degrees) Let ε ∈ (0, 1). Almost surely,

lim
n→∞

Xε(n) = µε

in total variation norm. The limit is the probability measure µε on the nonnegative
integers given by

µε≥k =

∫ 1

ε

1

1− ε
B
(
k, βγ

)−1
∫ 1

yγ
x
β
γ−1(1− x)k−1 dx dy for k ∈ N0.

It satisfies limk→∞ logµε≥k/k = log(1− εγ). Moreover, the maximal indegree satisfies, in
probability,

M(Gεn)

log n
→ − 1

log(1− εγ)
as n→∞. (1.5)

It is worth mentioning that µ = µ0, so Theorem 1.2 remains valid for ε = 0. Moreover,
the result holds also for γ ∈ (0, 1

2 ) by the same proof. Theorem 1.2 shows in particular
that by removing a proportion of the oldest vertices we have removed all vertices with
a degree bigger than a given constant multiple of log n. This justifies the comparison
of our vulnerability results with empirical studies of real world networks such as [1], in
which all nodes whose degree exceeds a given threshold are removed. Note also that
as ε ↓ 0 the right-hand side in (1.5) is asymptotically equivalent to ε−γ and the growth
of the maximal degree is the faster the larger γ.
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Preferential attachment networks are ultrasmall for sufficiently small power law
exponents. For our model, Mönch [31], see also [13, 16], has shown that, denoting by
dG the graph distance in a graph G, for independent random vertices Vn,Wn chosen
uniformly from Cn, we have

if γ =
1

2
, then dGn(Vn,Wn) ∼ log n

log log n
,

if γ >
1

2
, then dGn(Vn,Wn) ∼ 4 log log n

log(γ/(1− γ))
,

meaning that the ratio of the left- and right-hand side converges to one in probability
as n → ∞. Removing an arbitrarily small proportion of old vertices however leads to
a massive increase in the typical distances, as our third main theorem reveals. We
say that a sequence of events (En : n ∈ N) holds with high probability if P(En) → 1 as
n→∞.

Theorem 1.3. (Increase of typical distances) Let ε > 0 be sufficiently small so
that (Gεn : n ∈ N) has a giant component, and let Vn,Wn be chosen independently and
uniformly from Cεn. Then, for all δ > 0,

dGεn(Vn,Wn) ≥ 1− δ
log(1/pc(ε))

log n with high probability.

Our proof gives the result for all values γ ∈ [0, 1), ε > 0, with pc(ε) < 1 but if γ < 1
2

even without removal of old vertices the typical distances in the network are known to
be of order log n, so that this is not surprising. We believe that there is an upper bound
matching the lower bound above, but the proof would be technical and the result much
less interesting.

In the next two sections we discuss some further ramifications of our main results.

1.4 Non-linear attachment rules

So far we have presented results for the case of affine attachment rules f , given by
f(k) = γk + β. While the fine details of the network behaviour often depend on the
exact model definition, we expect the principal scaling and macroscopic features to be
independent of these details. To investigate this universality we now discuss to what
extent Theorem 1.1 remains true when we look at more general non-linear attachment
rules f .

We consider two classes of attachment rules.

(1) A function f : N0 → (0,∞) is called a L-class attachment rule if there exists γ ∈
[0, 1) and 0 < βl ≤ βu such that γk + βl ≤ f(k) ≤ γk + βu for all k. Note that the
parameter γ for a L-class rule is uniquely defined by (1.2).

(2) A concave function f : N0 → (0,∞) with γ := limk→∞ f(k)/k ∈ [0, 1) is called a C-
class attachment rule. Note that concavity of f implies that the limit above exists
and that f is non-decreasing.

The asymptotic slope of the attachment rule determines the key features of the
model. For example, Dereich and Mörters [14] show that for certain C-class attach-
ment rules with γ > 0 the asymptotic degree distribution is a power law with exponent
τ = 1 + 1/γ. The following theorem shows that γ also determines the scaling of the
critical percolation probability for the damaged network.
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Theorem 1.4. (Loss of connectivity, non-linear case) Let f be a L-class or C-class
attachment rule. For all ε ∈ (0, 1),

pc(ε) := inf
{
p : (Gεn(p) : n ∈ N) has a giant component

}
> 0.

Moreover, if f is in the L-class and

if γ =
1

2
, then lim

ε↓0

log pc(ε)

log log(1/ε)
= −1,

if γ >
1

2
, then lim

ε↓0

log pc(ε)

log ε
= γ − 1

2
.

If f is in the C-class, the statement remains true in the case γ > 1
2 , and in the case γ = 1

2

if the limit is replaced by a lim supε↓0 and the equality by ‘≤’.

Theorem 1.4 implies that the damaged network (Gεn : n ∈ N) is not robust. But as
limε↓0 pc(ε) = 0 it is still ‘asymptotically robust’ for ε ↓ 0 in the sense that when less than
order n old vertices are destroyed, then the critical percolation parameter remains zero.
We formulate this as a corollary. For two graphs G = (V,E) and G̃ = (Ṽ, Ẽ), we write
G ≥ G̃ if there is a coupling such that V ⊇ Ṽ and E ⊇ Ẽ.

Corollary 1.5. Let f be a L-class or C-class attachment rule with γ ≥ 1
2 and let (mn : n ∈

N) be a sequence of natural numbers with limn→∞mn/n = 0. The network (G(mn)
n : n ∈

N), consisting of the graphs Gn damaged by removal of the oldest mn vertices along
with all adjacent edges, is robust.

Proof. Let p ∈ (0, 1). By Theorem 1.4, there exists ε > 0 such that pc(ε) < p. Choose
n0 ∈ N such that mn/n < ε for all n ≥ n0. Then G(mn)

n ≥ Gεn for all n ≥ n0, implying
G(mn)
n (p) ≥ Gεn(p). Since the network (Gεn(p) : n ∈ N) has a giant component, so does the

network (G(mn)
n (p) : n ∈ N).

Theorem 1.4 is derived from Theorem 1.1 using the monotonicity of the network in
the attachment rule. Its appeal lies in the large class of functions to which it applies.
The L-class attachment rules are all positive, bounded perturbations of linear functions.
In Figure 1 we see several examples: On the left a concave function which is also in
the C-class, then a convex function and a function which is convex in one and concave
in another part of its domain. The latter examples are not monotone, and all three are
asymptotically vanishing perturbations of an affine attachment rule. The example of an
L-class attachment rule on the right shows that this may also fail.
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Figure 1: Examples for L-class attachment rules. The blue curve is the attachment rule, the

red, dashed lines are linear lower and upper bounds.

The C-class attachment rules are always non-decreasing as positive concave functions
and always have a linear lower bound with the same asymptotic slope γ as the function
itself. However, when the perturbation k 7→ f(k)− γk is not bounded, then there exists
no linear function with slope γ which is an upper bound to the attachment rule; any
linear upper bound will be steeper. Two examples are displayed in Figure 2.
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Figure 2: Examples for C-class attachment rules. The blue curve is the attachment rule, the
red, dashed lines are linear lower and upper bounds. The slope of the upper bound is strictly

larger than γ.

1.5 Vulnerability of other network models

We would like to investigate to what extent our results are common to robust random
network models rather than specific to preferential attachment networks. Again our
focus is on Theorem 1.1 and we look at two types of networks, the configuration model
and the inhomogeneous random graphs. Both types have an explicit static description
and are therefore much easier to analyse than the preferential attachment networks
studied in our main theorems.

1.5.1 Configuration model

A targeted attack can be planned particularly well when the degree sequence of the
network is known. A random graph model with fixed degree sequence is given by the
configuration model. For n ∈ N, let dn = (dni )ni=1 ∈ Nn with

∑n
i=1 d

n
i even. To simplify

notation, we write di instead of dni . The multigraph G(CM)
n on vertex set {1, . . . , n} is

constructed as follows: to every vertex i attach di half-edges. Combine the half-edges
into pairs by a uniformly random matching of the set of all half-edges. Each pair of
half-edges is then joined to form an edge of G(CM)

n . The configuration model received a
lot of attention in the literature, see [23] and the references therein. A good targeted
attack in the configuration model is the removal of the vertices with the highest degree
and we denote by G(CM),ε

n the network after removal of the bεnc vertices with the largest
degree.

Let nk = |{i ≤ n : di = k}| be the number of vertices with degree k and assume that
there exists a N-valued random variable D with 0 < ED < ∞ and P(D = 2) < 1, such
that

nk/n→ P(D = k) for all k ∈ N and
1

n

∞∑
k=1

knk → ED as n→∞. (1.6)

In particular, the law of D is the weak limit of the empirical degree distribution in
(G(CM)
n : n ∈ N) and the network is robust if E[D2] = ∞; see [25, Theorem 3.5]. Our

focus is on the case that the distribution of D is a power law with exponent τ = 1 + 1/γ,
γ ≥ 1

2 .

Theorem 1.6. Let ε ∈ (0, 1), γ ≥ 1
2 and suppose there is a constant C > 0 such P(D >

k) ∼ Ck−1/γ as k →∞. Then there exists p(CM)
c (ε) > 0 such that

(G(CM),ε
n (p) : n ∈ N) has a giant component ⇔ p > p(CM)

c (ε).

Moreover,

p(CM)

c (ε) �

{
1

log(1/ε) if γ = 1
2 ,

ε2γ−1 if γ > 1
2 .

EJP 19 (2014), paper 57.
Page 9/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2974
http://ejp.ejpecp.org/
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We observe the same basic phenomenon as in the corresponding preferential attach-
ment models: While the undamaged network is robust, after removal of an arbitrarily
small proportion of privileged nodes the network becomes vulnerable to random re-
moval of vertices. However, when γ > 1

2 , then the increase of the critical percolation
parameter pc(ε) as ε leaves zero is less steep than in the corresponding preferential
attachment model.

Note that our assumptions imply that 0 < ED < ∞. In the case ED = ∞, Bhamidi
et al. [4] show a more extreme form of vulnerability, where the connected network can
be disconnected with high probability by deleting a bounded number of vertices.

1.5.2 Inhomogeneous random graphs

Inhomogeneous random graphs are a generalization of the classical Erdős-Rényi ran-
dom graph. Let κ : (0, 1] × (0, 1] → (0,∞) be a symmetric kernel. The inhomogeneous
random graph G(κ)

n corresponding to kernel κ has the vertex set Vn = {1, . . . , n} and any
pair of distinct vertices i and j is connected by an edge independently with probability

P({i, j} present in G(κ)

n ) = 1
nκ
(
i
n ,

j
n

)
∧ 1. (1.7)

Many features of this class of models are discussed by Bollobás, Janson and Riordan [6]
and van der Hofstad [23]. The first inhomogeneous random graph model we consider is
a version of the Chung-Lu model, see for example [9, 10]. The relevant kernel is

κ(CL)(x, y) = x−γy−γ for x, y ∈ (0, 1].

This is an example of a kernel of the form κ(x, y) = ψ(x)ψ(y), for some ψ, which are
called kernels of rank one, see [6]. Note that a similar factorisation occurs in the
configuration model since the probability that vertices i and j are directly connected
is roughly proportional to didj . Therefore, the configuration model can be classified as
a rank one model, too. The network corresponding to κ(CL) has an asymptotic degree
distribution which is a power law with exponent τ = 1 + 1/γ.

The second inhomogeneous random graph model we consider is chosen such that
the edge probabilities agree (at least asymptotically) with those in a preferential at-
tachment network and the asymptotic degree distribution is a power law with exponent
τ = 1 + 1/γ. The relevant kernel is

κ(PA)(x, y) =
1

(x ∧ y)γ(x ∨ y)1−γ for x, y ∈ (0, 1].

Note that if γ 6= 1
2 this kernel is not of rank one, but strongly inhomogeneous. These

two kernels allow us to demonstrate the difference between rank one models and pref-
erential attachment models within one model class.

We denote by G(CL)
n , resp. G(PA)

n the inhomogeneous random graphs with kernel κ(CL),
resp. kernel κ(PA). If γ ≥ 1

2 , then (G(CL)
n : n ∈ N) and (G(PA)

n : n ∈ N) are robust. Since the
kernels κ(CL) and κ(PA) are decreasing in both components, vertices with small labels are
favoured in the corresponding models. We denote by G(CL),ε

n , resp. G(PA),ε
n , what remains

of the graph G(CL)
n , resp. G(PA)

n , after removal of all vertices with label at most εn along
with their adjacent edges.

The following theorem confirms that, like in the preferential attachment and in the
configuration model, the removal of a positive fraction of key vertices makes the net-
works vulnerable to random removal of nodes. Notice that κ(CL) and κ(PA) agree for
γ = 1

2 so that we only have to state a result for G(CL),ε
n in this regime.
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Theorem 1.7. Let γ ≥ 1
2 , ? ∈ {CL,PA} and ε ∈ (0, 1). There exists p(?)

c (ε) > 0 such that

(G(?),ε
n (p) : n ∈ N) has a giant component ⇔ p > p(?)

c (ε).

Moreover,

p(CL)

c (ε) =

{
1

log(1/ε) if γ = 1
2 ,

(2γ − 1)ε2γ−1[1 +O(ε2γ−1)] if γ > 1
2 ,

and
p(PA)

c (ε) � εγ−1/2 if γ > 1
2 .

The fact that the Chung-Lu model is vulnerable to targeted attacks has also been
remarked by van der Hofstad in Section 9.1 of [23].

Summarising, we note that vulnerability to a targeted attack is a universal feature
of robust networks, holding not only for preferential attachment networks but also for
configuration models and various classes of inhomogeneous random graphs. In the
case 2 < τ < 3, studying the asymptotic behaviour of the critical percolation parame-
ter pc(ε) as a function of the proportion ε of removed vertices reveals two universality
classes of networks, distinguished by the critical exponent measuring the polynomial
rate of decay of pc(ε) as ε ↓ 0. In terms of the power law exponent τ this critical expo-
nent equals 3−τ

τ−1 in the case of the configuration model and the Chung-Lu model, but is
only half this value in the case of preferential attachment networks and inhomogeneous
random graphs with a strongly inhomogeneous kernel. The same classification of net-
works has emerged in a different context in [13], where it was noted that the typical
distances in networks of the two classes differ by a factor of two. The key feature of
the configuration model and the rank one inhomogeneous random graphs seems to be
that the connection probability of two vertices factorises. By contrast, the connection
probabilities in preferential attachment networks have a more complex structure giving
privileged nodes a stronger advantage.

1.6 The local neighbourhood in the network

Dereich and Mörters [15] have shown that the (not too large) graph neighbourhood
of a uniformly chosen vertex in Gn can be coupled to a branching random walk on the
negative half-line. Although we cannot make direct use of this coupling result in our
proofs, it is helpful to formulate our ideas in this framework. Therefore, we now explain
heuristically that a suitable exploration of the local neighbourhood of a given vertex
v0 ∈ Gεn reveals a graph that can be approximated by the genealogical tree of a two-
type branching random walk with two killing boundaries. A complete definition of the
branching process used in the current article is given in Section 2.1 and the coupling is
proved rigorously in Section 4 below.

Firstly, we associate to every vertex in Gn a location on the negative half-line such
that the youngest vertex (i.e., vertex n) is located at the origin and the distance between
vertex j− 1 and vertex j is given by 1/j. In particular, the vertex labelled v is located at
sn(v) := −

∑n−1
j=v

1
j , the location of the oldest vertex scales like − log n, and vertices with

label at most bεnc, which we remove when damaging the network, are asymptotically
located to the left of log ε. The location of a vertex is determined by its age in the
network with old vertices being located further left than young vertices. As the graph
size increases, the location of any fixed vertex moves to the left and the vertex locations
(sn(v) : v ∈ {1, . . . , n}) become dense everywhere on the negative half-line.

We run an exploration from vertex v0 ∈ Gεn and successively create particles in the
branching random walk that approximate the discovered vertices. We stop as soon
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as there is no longer a one-to-one correspondence between the nodes in the two pro-
cesses. For example, this could happen if in the network a vertex is rediscovered and
the explored subgraph is no longer a tree. A careful analysis, carried out in Section 4.1
below, shows that when the order in which vertices are explored is chosen in a suitable
way, then we do not stop until either the whole component is discovered or at least cn
vertices have been found, where limn→∞ c2n/n = 0.

To start, we place a particle at the location of vertex v0 and declare it to be the
root of the branching random walk. Then we explore all direct neighbours of v0 in
Gεn. The locations of the particles in the first generation of the branching random walk
are chosen to approximate the locations of these direct neighbours. To this end, we
distinguish offspring located to the left and right of v0. For a given interval [a, b] on the
left of sn(v0), i.e. [a, b] ⊆ [log ε, sn(v0)], the number of vertices located in [a, b] is a sum of
independent Bernoulli random variables by the definition of the model. The probability
that v0 has a direct neighbour labelled u < v0, is given by

P(4Z[u, v0 − 1] = 1) =
1

v0 − 1
E
[
f(Z[u, v0 − 1])

]
≈
∫ sn(u)−sn(v0)

sn(u−1)−sn(v0)

βe(1−γ)t dt, (1.8)

where Z[u, v] is the indegree of vertex u at time v, 4Z[u, v0− 1] = Z[u, v0]−Z[u, v0− 1],
and the approximation follows from the fact that the process (f(Z[u, n])

∏n−1
j=u

1
1+γ/j : n ≥

u) is a martingale; see Lemma 3.8 below. Since the location of u can be written as sn(v0)

plus the displacement sn(u) − sn(v0), asymptotically, we can approximate the displace-
ments of the direct neighbours of v0 on its left by the points of a Poisson point process
Π with intensity measure βe(1−γ)t on (−∞, 0] that lie in [log ε− sn(v0), 0]. We emphasise
that Π describes the displacements, not the particle locations. Hence, in the branching
random walk, the relative positions of the offspring to the left of a particle with location
λ are given by the points of Π that lie in [log ε− λ, 0].

In the next step, we motivate the point process that describes the relative positions
of the offspring on the right in the branching random walk. Note that in the network
every direct neighbour u of v0 with u > v0 increases the indegree of v0 and therefore
the probability that v0 has further offspring on its right. The distance between the i-th
and (i+ 1)-st right neighbour of v0 in the network is given by

Tv0 [i] := sup
{ l∑
j=k

1

j
: Z[v0, k] = i = Z[v0, l]

}
.

Suppose the i-th neighbour of v0 is born at time k. For given t > 0, we have

P
(
Tv0 [i] > t | Z[v0, k − 1] < Z[v0, k] = i

)
= P

(
Z[v0, l] = i | Z[v0, k] = i

)
, (1.9)

where l is the smallest integer with
∑l
j=k

1
j > t. Plugging in the connection probabili-

ties, we deduce that (1.9) is equal to

l−1∏
j=k

(
1− f(i)

j

)
≈ exp

(
− f(i)

l−1∑
j=k

1

j

)
≈ exp

(
− f(i)t

)
.

Hence, the distance between the i-th and (i+1)-st right neighbour of v0 is approximately
exponentially distributed with rate f(i). For a precise statement, see Lemma 3.2 below.
Consequently, the displacements of the direct neighbours on the right of v0 are well
approximated by the jump times in [0,−sn(v0)] of the pure jump Markov process Z =

(Zt : t ≥ 0) that starts in Z0 = 0 and jumps from i to i + 1 after an exponential waiting
time with rate f(i), independently of the previous jumps. Therefore, in the branching
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random walk, the relative positions of the offspring to the right of the root located in λ
are given by jump times of Z in [0,−λ].

When the exploration is continued, the information gathered from the already ex-
plored neighbourhood leads to a size-biasing effect. Indeed, in the network the edges
between a vertex v and its direct neighbours on the right u > v are not independent.
If v was discovered as a direct neighbour of a vertex w on its right, i.e. w > v, then
we already know that v has indegree at least one. Consequently, we expect v to have
more direct neighbours on its right than without this information. Mathematically, this
leads to a size biasing effect and the displacements of particles on the right of v are
given by the jump times in [0,−sn(v)] of Z started in one instead of zero. In contrast,
if v was discovered as a direct neighbour of a vertex w with smaller label, i.e. w < v,
then we do not have that information and the displacements are again the jump times in
[0,−sn(v)] of Z started in zero. Similarly, for the direct neighbours on the left of v, there
is no size-biasing effect as a consequence of the independence between the edges on
the left. Of course, there are several further dependencies coming from the previously
explored subgraph. However, we show in Section 4 that the error accrued by adjusting
only for the immediate parent is asymptotically negligible when we discover not more
than cn vertices, where limn→∞ c3n/n = 0.

To be able to use different offspring distributions depending on the relative location
of the parent, each vertex is equipped with a mark α in {`, r} to indicate the relative
location of the parent, where the non-numerical symbols ` and r stand for ‘left’ and
‘right’, respectively. The relative positions of the offspring can be generated as the
points of Π on (−∞, 0] and the jump times of Z (with initial state depending on the
mark) on [0,∞). All offspring particles located on the left of log ε or on the right of 0 are
immediately removed. In other words, the approximating tree is the genealogical tree
of a two-type branching random walk with two killing boundaries.

An equivalent description is as a multitype branching process with type space Φ :=

[log ε, 0] × {`, r}, where the first component indicates the location of a particle and the
second indicates its mark. Whilst the branching random walk interpretation offers more
intuition, the two killing boundaries make the mathematical analysis difficult. Hence
in our analysis, we will use the interpretation of the process as multitype branching
process with the larger typespace Φ.

1.7 Main ideas of the proofs

Understanding the local neighbourhood of vertices in the network is the key to many
of its properties. As in [15] the survival probability of the approximating killed branch-
ing random walk is equal to the asymptotic relative size ζ of the largest component.
This result allows us to determine, for example, the critical parameter for percolation
from knowledge when the percolated branching process has a positive survival proba-
bility. To form the percolated branching process with retention probability p from the
original process every particle is kept with probability p and removed together with its
line of descent with probability 1− p independently of all other particles.

It is instructive to continue the comparison of the damaged and undamaged net-
works in the setup of this branching process. In [15], where the undamaged network
is analysed, the branching random walk has only one killing boundary on the right. It
turns out that on the set of survival the leftmost particle drifts away from the killing
boundary, such that it does not feel the boundary anymore. As a consequence, the un-
killed process carries all information needed to determine whether the killed branching
random walk survives with positive probability and, therefore, whether the network has
a giant component. The two killing boundaries in the branching random walk describ-
ing the damaged network prevent us from using this analogy; every particle is exposed
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to the threat of absorption.

To survive indefinitely, a genealogical line of descent has to move within the (space-
time) strip [log ε, 0] ×N0. To understand the optimal strategy for survival observe that,
in the network with strong preferential attachment, old vertices typically have a large
degree and therefore are connected to many young vertices, while young vertices them-
selves have only a few connections. This means that in the branching random walk
without killing, particles produce many offspring to the right, but only a few to the left.
Hence, if a particle is located near the left killing boundary it represents an old vertex
in the graph and is very fertile, but its offspring are mostly located further to the right
and are therefore less fertile. A particle near the right killing boundary, however, rep-
resents a young vertex and has itself a small number of offspring, which then however
have a good chance of being fertile since they are necessarily located further left in the
strip. As a result, the optimal survival strategy for a particle is to have an ancestral
line of particles whose locations are alternating between positions near the left and the
right killing boundary. This intuition is the basis for our proofs.

Continuing more formally, for the proof of Theorem 1.1 we show that positivity of
the survival probability can be characterised in terms of the largest eigenvalue ρε of an
operator that describes the spatial distribution of offspring of a given particle. More
precisely, the branching random walk survives percolation with retention parameter p
if its growth rate pρε exceeds the value one, so that pc(ε) = 1/ρε. Our intuition allows
us to guess the form of the corresponding eigenfunction, which, relatively to the par-
ticle density, has its mass concentrated in two bumps near the left and right killing
boundary. From this guess we obtain sufficiently accurate estimates for the largest
eigenvalue, and therefore for the critical percolation parameter, as long as the prefer-
ential attachment effect is strong enough. This is the case if γ ≥ 1

2 , allowing us to prove
Theorem 1.1.

By contrast, for γ < 1
2 we know that the network is not robust, i.e. we have pc(0) > 0.

It would be of interest to understand the behaviour of pc(ε)−pc(0) as ε ↓ 0. Our methods
can be applied to this case, but the resulting bounds are very rough. The reason is
that in this regime the preferential attachment is much weaker, and the intuitive idea
underlying our estimates gives a less accurate picture.

The idea for the proof of Theorem 1.3 is based on the branching process comparison,
too. To bound the probability that two typical vertices V and W are connected by a
path of length at most h, we look at the expected number of such paths. That is given
by the number of vertices at distance at most h− 1 from V multiplied by the probability
that such a vertex connects to W . By our branching process heuristics, the number
of vertices at distance at most h − 1 from V can be approximated by the number of
particles in the first h− 1 generations of the branching random walk, which is of order
ρhε where ρε = 1/pc(ε) as before. The probability of connecting any vertex with label
at least εn to W is bounded from above by f(m)/εn, where m is the maximal degree
in the network. Since m = o(n) by Theorem 1.2, this implies that the probability of
a connection between V and W is bounded from above by exp(h log(1/pc(ε)) − log n +

o(log n)) and therefore goes to zero if h ≤ (1 − δ) log n/ log(1/pc(ε)), δ > 0, which yields
the result.

Theorem 1.2 is relatively soft by comparison. The independence of the indegrees of
distinct vertices allows us to study them separately and we again use the continuous
approximation to describe the expected empirical indegree evolution. The limit theorem
for the empirical distribution itself follows from a standard concentration argument.
The asymptotic result for the maximal degrees is only slightly more involved and is
based on fairly standard extreme value arguments.
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1.8 Overview

The outline of this article is as follows. We start with the main steps of the proofs
in Section 2. The multitype branching process which locally approximates a connected
component in the network is defined in Section 2.1 and its key properties are stated.
The main part of the proof of Theorem 1.1 then follows in Section 2.2. The analysis
of the multitype branching process is conducted in Section 2.3. We study an operator
associated with this process in Section 2.3.1 and derive necessary and sufficient con-
ditions for its survival in Section 2.3.2. Sections 3.1 and 3.2 are devoted to the study
of the topology of the damaged graph. In Section 3.1 the typical and maximal degree
of vertices is analysed. In Section 3.2 typical distances are studied. The couplings be-
tween the network and the approximating branching process that underlie our proofs
are provided in Section 4. We then look at model variations in Section 5. The derivation
of Theorem 1.4 from Theorem 1.1 is presented in Section 5.1. This is the only section
which requires consideration of non-linear attachment rules. We finish in Section 5.2
by studying the question of vulnerability in other network models.

2 Connectivity and branching processes

In this section, we restrict our attention to linear attachment rules f(k) = γk + β,
for γ ∈ [0, 1) and β > 0, and let ε be a fixed value in (0, 1). The goal of this section is to
prove Theorem 1.1. To this end, we couple the local neighbourhood of a vertex in Gεn to
a multitype branching process. The branching process is introduced in Section 2.1 and
Theorem 1.1 is deduced in Section 2.2. Properties of the branching processes which
are needed in the analysis are proved in Section 2.3. The proof of the coupling between
network and branching process is deferred to Section 4.

2.1 The approximating branching process

As explained in Section 1.6 the local neighbourhood of a vertex in Gεn can be approx-
imated by a multitype branching process with type space Φ = [log ε, 0]× {`, r}. A typical
element of Φ is denoted by φ = (λ, α). The intuitive picture is that λ encodes the spatial
position of the particle which we call location. The second coordinate α indicates on
which side of the particle its parent is located and we refer to α as the mark. In view
of (1.8), a particle of type (λ, α) ∈ Φ produces offspring to its left with displacements
having the same distribution as those points of the Poisson point process Π on (−∞, 0]

with intensity measure

βe(1−γ)t
1(−∞,0](t) dt (2.1)

that lie in [log ε− λ, 0]. Since these offspring have their parent on the right, they are of
mark r.

Recall from Section 1.6 that we denote by Z an increasing, integer-valued process,
which jumps from i to i + 1 after an exponential waiting time with rate f(i), indepen-
dently of the previous jumps. We write P for the distribution of Z started in zero and
E for the corresponding expectation. By (Ẑt : t ≥ 0) we denote a version of the process
started in Ẑ0 = 1 under the measure P .

The distribution of the offspring to the right depends on the mark of the parent. As
motivated in Section 1.6, when the particle is of type (λ, `), then the displacements of
the offspring follow the same distribution as the jump times of (Zt : t ∈ [0,−λ]), but
when the particle is of type (λ, r), then the displacements follow the same distribution
as the jump times of (Ẑt : t ∈ [0,−λ]). All offspring on the right have their parent on the
left, so their mark is `. Observe that the chosen offspring distributions ensure that new
particles have again a location in [log ε, 0]. The offspring distribution to the right is not
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a Poisson point process: The more particles are born, the higher the rate at which new
particles arrive.

We call the branching process thus constructed the idealized branching process
(IBP). It can be interpreted as a labelled tree, where every node represents a particle
and is connected to its children and (apart from the root) to its parent. We equip node
x with label φ(x) = (λ(x), α(x)), where λ(x) denotes its location and α(x) its mark,
and write |x| for the generation of x. To obtain a branching process approximation
to Gεn(p), we define the percolated IBP by associating to every offspring in the IBP an
independent Bernoulli(p) random variable. If the random variable is zero, we delete the
offspring together with its line of descent. If it equals one, then the offspring is retained
in the percolated IBP.

Let Sε be a random variable with

P(−Sε ≤ t) =
1

1− ε
(
1− e−t

)
, for t ∈ [0,− log ε]. (2.2)

Denote by ζε(p) the survival probability of the tree which is with probability p equal to
the percolated IBP started with one particle of mark ` and location Sε and equals the
empty tree otherwise. Let Cεn(p) be a connected component in Gεn(p) of maximal size.

Theorem 2.1. For all ε ∈ (0, 1) and p ∈ (0, 1], in probability,

|Cεn(p)|
E|Vεn(p)|

→ ζε(p)/p as n→∞.

The proof of Theorem 2.1 is postponed to Section 4. The theorem describes the
asymptotic size of the largest component in the network in terms of the survival proba-
bility of the percolated IBP. To make use of this connection, we have to understand the
branching process.

For any measurable, complex-valued, bounded function g on Φ, and φ ∈ Φ, let

Apg(φ) := Eφ,p

[ ∑
|x|=1

g(λ(x), α(x))
]
,

where the expectation Eφ,p refers to the percolated IBP starting with a single particle
of type φ, percolated with retention parameter p. We write A = A1 for the operator
corresponding to the unpercolated branching process and Eφ := Eφ,1. Recall that all
quantities associated with the IBP, and in particular Ap, depend on the fixed value of ε.
We denote by C(Φ) the complex Banach space of continuous functions on Φ equipped
with the supremum norm. The following proposition, which summarizes properties
of Ap, is proved in Section 2.3.1.

Proposition 2.2. For all ε ∈ (0, 1) and p ∈ (0, 1], the operator Ap : C(Φ) → C(Φ) is
linear, strictly positive and compact with spectral radius ρε(Ap) ∈ (0,∞). Moreover,
Ap = pA and ρε(Ap) = pρε(A).

The survival probability of the percolated IBP has the following property.

Theorem 2.3. For all ε ∈ (0, 1) and p ∈ (0, 1]

ζε(p) > 0 ⇔ ρε(Ap) > 1.

Theorem 2.3 is proved in Section 2.3.2. Combined with Theorem 2.1 and Proposi-
tion 2.2 it gives a characterisation of the critical percolation parameter for the network
(Gεn(p) : n ∈ N).
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Corollary 2.4. The network (Gεn(p) : n ∈ N) has a giant component if and only if the
retention probability p satisfies p > ρε(A)−1.

Notice that the corollary implies that (Gεn : n ∈ N) has no giant component when
ρε(A) ≤ 1. Moreover, the first statement of Theorem 1.1 follows from the corollary by
taking pc(ε) = ρε(A)−1 ∧ 1.

To complete the proof of Theorem 1.1, it remains to estimate the spectral radius
ρε(A). This estimation is performed in Section 2.2 below using that (see, e.g., Theo-
rem 45.1 in [22]) for a linear and bounded operator A on a complex Banach space, the
spectral radius is given by

ρ(A) = lim
n→∞

‖An‖ 1
n = inf{‖An‖ 1

n : n ∈ N}. (2.3)

By the definition of the Poisson point process Π in (2.1), the intensity measure of Π

equals

1(−∞,0](t)M(dt), for M(dt) := βe(1−γ)t dt.

We denote by Π` the point process given by the jump times of (Zt : t ≥ 0) and by Πr

the point process given by the jump times of (Ẑt : t ≥ 0). A simple computation (cf.
Lemma 1.12 in [15]) shows that with Mα(dt) := aαe

γt dt, where a` = β and ar = γ + β,
the intensity measure of Πα is given by 1[0,∞)(t)M

α(dt) for α ∈ {`, r}. Hence, for any
bounded, measurable function g on Φ and (λ, α) ∈ Φ,

Ag(λ, α) = E(λ,α)

[ ∑
|x|=1

g(λ(x), α(x))
]

=

∫ 0

log ε−λ
g(λ+ t, r)βe(1−γ)t dt+

∫ −λ
0

g(λ+ t, `)aαe
γt dt. (2.4)

2.2 Proof of Theorem 1.1

Subject to the considerations of the previous section, Theorem 1.1 follows from the
following proposition.

Proposition 2.5. (a) If γ = 1
2 , then

1

γ + β

1

log(1/ε)
≤ ρε(A)−1 ≤ 1

β

1

log(1/ε)
.

(b) If γ > 1
2 , then

(
1 + log(ε1−2γ)εγ−1/2 +

[
log(ε1−2γ)εγ−1/2

]2)−1/2

≤
√
β(γ+β)

2γ−1 ε−γ+1/2ρε(A)−1 ≤
(
1− εγ−1/2

)−1
.

Proof of Proposition 2.5 (a). For h0 ∈ C([log ε, 0]), the complex Banach space of contin-
uous functions on [log ε, 0], let

Āh0(λ) :=

∫ 0

log ε−λ
h0(λ+ t)et/2 dt+

∫ −λ
0

h0(λ+ t)et/2 dt for λ ∈ [log ε, 0].

Note that A and Ā map real-valued functions to real-valued functions and nonnegative
functions to nonnegative functions, and they are monotone. For A this observation
implies

‖An‖ = sup
{
‖Ang‖ : g ∈ C(Φ), g(φ) ∈ [0, 1] for all φ ∈ Φ

}
= ‖An1‖, (2.5)
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Vulnerability of robust preferential attachment networks

where ‖Ang‖ = sup{|Ang(φ)| : φ ∈ Φ} and 1 denotes the constant function with value 1.
Combining (2.3) and (2.5), we deduce that ρε(A) = limn→∞ ‖An1‖

1
n . The same argu-

ment shows that

ρε(Ā) = lim
n→∞

‖Ān1‖ 1
n . (2.6)

Defining h(λ, α) := h0(λ) for all (λ, α) ∈ Φ, (2.4) yields for h0 ∈ C([log ε, 0]) with h0 ≥ 0,

βĀh0(λ) ≤ Ah(λ, α) ≤ (γ + β)Āh0(λ) for all (λ, α) ∈ Φ.

In particular, by the monotonicity and linearity of A and Ā,

βnĀn1(λ) ≤ An1(λ, α) ≤ (γ + β)nĀn1(λ) for (λ, α) ∈ Φ, n ∈ N,

implying ρε(A) ∈ [βρε(Ā), (γ + β)ρε(Ā)]. To complete the proof it suffices to show that
ρε(Ā) = log(1/ε), which we can achieve by ‘guessing’ the principal eigenfunction of Ā.
Indeed, the result follows from (2.6) and

Ān+11(λ) = 2(1− ε1/2)(log(1/ε))ne−λ/2 for λ ∈ [log ε, 0], n ∈ N0.

We show the latter identity by induction over n. For n = 0,

Ā1(λ) =

∫ 0

log ε−λ
et/2 dt+

∫ −λ
0

et/2 dt = 2(1− e−λ/2ε1/2 + e−λ/2 − 1) = 2(1− ε1/2)e−λ/2.

Moreover, with h0(λ) := e−λ/2 we have

Āh0(λ) =

∫ 0

log ε−λ
e−(λ+t)/2et/2 dt+

∫ −λ
0

e−(λ+t)/2et/2 dt = e−λ/2 log(1/ε).

Thus, λ 7→ e−λ/2 is an eigenfunction of Ā with eigenvalue log(1/ε) and the proof is
complete.

Proof of lower bound in Proposition 2.5 (b). We analyse the ancestral lines of particles
in the branching process at a fixed time n ≥ 2. Going back two steps in the ancestral line
of every particle alive we can divide the population at time n in four groups depending
on the relative positions of parent and child in the transitions from generation n− 2 to
n − 1 and from n − 1 to n: (1) in both steps the child is to the left of its parent, (2) in
the first step the child is to the left and in the second it is to the right of its parent, (3)
first right, then left, (4) in both steps the child is to the right of its parent. The cases
are depicted in Figure 3.

B1

log ε 0
B2

log ε 0
B3

log ε 0
B4

log ε 0

Figure 3: Possible genealogy of a particle contributing to the respective operators.

We denote by Bi, i ∈ {1, . . . , 4}, the operators corresponding to the four scenar-
ios. Using the point processes Π, Π` and Πr this means, for any bounded, measurable
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function g on Φ and (λ, α) ∈ Φ,

B1g(λ, α) := E
[ ∑

p∈Π
log ε−λ≤p

∑
q∈Π

log ε−λ−p≤q

g(λ+ p + q, r)
]
,

B2g(λ, α) := E
[ ∑

p∈Π
log ε−λ≤p

∑
q∈Πr

q≤−(λ+p)

g(λ+ p + q, `)
]
,

B3g(λ, α) := E
[ ∑

p∈Πα

p≤−λ

∑
q∈Π

log ε−λ−p≤q

g(λ+ p + q, r)
]
,

B4g(λ, α) := E
[ ∑

p∈Πα

p≤−λ

∑
q∈Π`

q≤−(λ+p)

g(λ+ p + q, `)
]
.

Intuitively, going back the ancestral line of a typical particle in the population at a
late time, for a few generations the ancestral particles may be in group (4), because
of the high fertility of particles positioned near the left boundary of [log ε, 0]. But this
behaviour is not sustainable, as after a few generations in this group the offspring
particle will typically be near the right end of the interval and will therefore be pushed
into the right killing boundary so that it is likely to die out. Over a longer period the
ancestral particles are much more likely to be in groups (2) and (3), as this behaviour is
sustainable over long periods when the ancestral line is hopping more or less regularly
between positions near the left and the right boundary of the interval [log ε, 0]. A similar
pattern can also be observed when studying typical paths in the random graph model;
see our discussion in Section 1.7. The aim is now to turn this heuristics into useful
bounds on high iterates of the operator A.

It is useful to understand how the operators Bi act on the constant function 1 as well
as on the functions g1(λ, α) := e−γλ and g2(λ, α) := e−(1−γ)λ. We can write

B3g(λ, α) =

∫ −λ
0

∫ 0

log ε−λ−t
g(λ+ t+ s, r)M(ds)Mα(dt),

where M(dt) = βe(1−γ)t dt and Mα(dt) = aαe
γt dt with aα ≤ γ + β are the intensity

measures of the point processes Π and Πα. From this we obtain, for (λ, α) ∈ Φ,

B31(λ, α) ≤
∫ −λ
−∞

∫ 0

−∞
M(ds)M r(dt) =

β(γ + β)

γ(1− γ)
e−γλ,

B3g1(λ, α) ≤
∫ −λ
−∞

∫ ∞
log ε−t−λ

e−γ(λ+t+s)M(ds)M r(dt) =
β(γ + β)

(2γ − 1)2
ε1−2γe−γλ,

B3g2(λ, α) ≤
∫ −λ
−∞

∫ 0

log ε

e−(1−γ)(λ+t+s)M(ds)M r(dt) =
β(γ + β)

2γ − 1
log(1/ε)e−γλ.

Moreover, similarly elementary calculations for B1, B2 and B4 imply

B11(λ, α) ≤ β2

(1−γ)2 , B21(λ, α) ≤ β(γ+β)
γ(2γ−1)ε

1−2γe−(1−γ)λ,

B41(λ, α) ≤ β(γ+β)
γ log(1/ε)e−γλ;

and

B1g1(λ, α) ≤ β2

2γ−1 log(1/ε)ε1−2γe−(1−γ)λ, B1g2(λ, α) ≤ β2(log ε)2e−(1−γ)λ,

B2g1(λ, α) ≤ β(γ+β)
2γ−1 log(1/ε)ε1−2γe−(1−γ)λ, B2g2(λ, α) ≤ β(γ+β)

(2γ−1)2 ε
1−2γe−(1−γ)λ,

B4g1(λ, α) ≤ β(γ + β)(log ε)2e−γλ, B4g2(λ, α) ≤ β(γ+β)
2γ−1 log(1/ε)e−γλ.
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Summarising, there exists Cε > 0 such that Bi1(φ) ≤ Cεg1(φ) for all i ∈ {1, . . . , 4}, φ ∈ Φ,
and denoting

bsm := b1 := b4 := β(γ + β)(log ε)2, bbg := b2 := b3 := β(γ+β)
(2γ−1)2 ε

1−2γ ,

where bg stands for ‘big’ and sm for ‘small’, we have

Big1(φ) ≤ bbg log(ε1−2γ)g2(φ), Big2(φ) ≤ big2(φ) for i ∈ {1, 2},
Big1(φ) ≤ big1(φ), Big2(φ) ≤ bbg log(ε1−2γ)ε2γ−1g1(φ) for i ∈ {3, 4}.

Using that by definition A2 =
∑4
i=1Bi, our estimate for Bi1 yields

A2(n+1)1(φ) =
∑

i0,...,in∈{1,...,4}

Bin ◦ · · · ◦Bi01(φ) ≤ 4Cε
∑

i1,...,in∈{1,...,4}

Bin ◦ · · · ◦Bi1g1(φ).

(2.7)
Up to constants, the estimates for B3 and B4 preserve g1 but change g2 into g1, whereas
the estimates for B1 and B2 preserve g2 and change g1 into g2. Hence, we split the
sequence of indices into blocks containing only 1 or 2 and blocks containing only 3 or 4.
We write m for the number of blocks, kj for the length of block j and k̄j :=

∑j−1
i=1 ki + 1

for the first index in block j. Then∑
i1,...,in∈{1,...,4}

Bin ◦ · · · ◦Bi1g1(φ) =

n+1∑
m=1

∑
k1+...+km=n

k1∈N0,k2,...,km∈N

∑
(i1,...,in)

Bin ◦ · · · ◦Bi1g1(φ),

where the last sum is over all sequences of indices (i1, . . . , in) with ik̄j , . . . , ik̄j+1−1 ∈
{3, 4} for j odd and ik̄j , . . . , ik̄j+1−1 ∈ {1, 2} for j even. We insist that formally the first
block contains the indices 3 or 4 — the case that this does not hold is covered by k1 = 0.
Hence, in the first block, operators B3 and B4 encounter g1, which is preserved. To de-
termine the constants, we only have to keep track of how often B4 is used; we call this
number l1. The first operator belonging to a new block j causes a factor bbg log(ε1−2γ)

and if the change is from a {1, 2} to a {3, 4} block, then an additional ε2γ−1 is obtained.
For the subsequent steps within block j, we again have to track how often the operator
causing the smaller constant bsm, B1 or B4, is used. This number is called lj . After ap-
plying all n operators, the function g1(φ)1odd(m) + g2(φ)1even(m) remains and we bound
it by ε−γ . This procedure yields∑

i1,...,in∈{1,...,4}

Bin ◦ · · · ◦Bi1g1(φ)

≤
n+1∑
m=1

∑
k1+...+km=n

k1∈N0,k2,...,km∈N

bm−1
bg (log(ε1−2γ))m−1ε(2γ−1)(dm2 e−1)ε−γ

·
k1∑
l1=0

[(k1

l1

)
bl1smb

k1−l1
bg

] m∏
j=2

kj−1∑
lj=0

[(kj − 1

lj

)
bljsmb

kj−1−lj
bg

]

= ε−γ
n+1∑
m=1

∑
k1+...+km=n

k1∈N0,k2,...,km∈N

bm−1
bg (log(ε1−2γ))m−1ε(2γ−1)(dm2 e−1)(bsm + bbg)k1

·
m∏
j=2

(bsm + bbg)kj−1

= ε−γ
n+1∑
m=1

∑
k1+...+km=n

k1∈N0,k2,...,km∈N

bm−1
bg (log(ε1−2γ))m−1ε(2γ−1)(dm2 e−1)(bsm + bbg)n−(m−1).
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Given m, the number of configurations k1 ∈ N0, k2, . . . , km ∈ N with k1 + . . . + km = n

is the number of arrangements of m − 1 dividers and n − (m − 1) balls, which equals(
n

m−1

)
. Since dm2 e − 1 ≥ m−1

2 − 1
2 , an application of the binomial theorem yields∑

i1,...,in∈{1,...,4}

Bin ◦ · · · ◦Bi1g1(φ) ≤ ε−2γ+1/2
(
bbg log(ε1−2γ)εγ−1/2 + bbg + bsm

)n
. (2.8)

Combining (2.7) and (2.8), we conclude that for all φ ∈ Φ

A2(n+1)1(φ) ≤ 4Cεε
−2γ+1/2bnbg

(
log(ε1−2γ)εγ−1/2 + 1 + bsm

bbg

)n
.

Now (2.3) yields, for all ε ∈ (0, 1),

ρε(A)−1 ≥ 2γ−1√
β(γ+β)

εγ−1/2
(

1 + log(ε1−2γ)εγ−1/2 +
[

log(ε1−2γ)εγ−1/2
]2)−1/2

.

The insight gained in the proof of the lower bound, enables us to ‘guess’ an approx-
imating eigenfunction, which is the main ingredient in the proof of the upper bound.

Proof of upper bound in Proposition 2.5 (b). Let cr := 1 and c` := β/(γ + β) and, for
(λ, α) ∈ Φ, let

ge(λ, α) := cαε
γe−γλ1[log ε, log ε

2 ](λ) +
√
β/(γ + β)ε1/2e−(1−γ)λ

1( log ε
2 ,0](λ).

Notice that aα/cα = γ + β for α ∈ {`, r}. Recall that we write |x| for the generation of a
particle x in the IBP and λ(x) for its location. If (λ, α) ∈ [log ε, log ε

2 ]× {`, r}, then

Age(λ, α) ≥ E(λ,α)

[ ∑
|x|=1

λ(x)>
log ε

2

ge(λ(x), `)
]

= aα
√
β/(γ + β)ε1/2e−(1−γ)λ

∫ −λ
−λ+ log ε

2

e(2γ−1)t dt

= cα

√
β(γ+β)

2γ−1 ε1/2e−γλ
[
1− εγ−1/2

]
=

√
β(γ+β)

2γ−1 ε−γ+1/2
[
1− εγ−1/2

]
ge(λ, α).

If (λ, α) ∈ ( log ε
2 , 0]× {`, r}, then

Age(λ, α) ≥ E(λ,α)

[ ∑
|x|=1

λ(x)≤ log ε
2

ge(λ(x), r)
]

= βcrε
γe−γλ

∫ −λ+ log ε
2

−λ+log ε

e(1−2γ)t dt

= β
2γ−1ε

γe−γλe(1−2γ)(log ε−λ)
[
1− e−(1−2γ) log ε

2

]
=

√
β(γ+β)

2γ−1 ε−γ+1/2[1− εγ−1/2]ge(λ, α).

By monotonicity of A this implies

‖An‖ ≥
(√β(γ+β)

2γ−1 ε1/2−γ [1− εγ−1/2]
)n
.

Taking the n-th root on both sides, an application of (2.3) yields the required bound
for ρε(A).

2.3 A multitype branching process

In this section, we analyse the IBP and its relation to the associated operator A. We
begin by providing properties of A in Section 2.3.1, and then use these properties to
prove necessary and sufficient conditions for the multitype branching process to survive
with positive probability in Section 2.3.2. Throughout, we use the notation introduced
in Section 2.1 and write Pφ,p for the distribution of the percolated IBP with retention
probability p started with one particle of type φ ∈ Φ, abbreviating Pφ := Pφ,1.
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2.3.1 Proof of Proposition 2.2

Lemma 2.6. For all nonnegative g ∈ C(Φ) with g 6≡ 0, we have min
φ∈Φ

A2g(φ) > 0.

Proof. If g ∈ C(Φ), g ≥ 0, g 6≡ 0, then there exist log ε ≤ λ1 < λ2 ≤ 0 and α0 ∈ {`, r} such
that g is strictly positive on [λ1, λ2]× {α0}. Hence, it suffices to show that

min
φ∈Φ

Pφ
(
∃x : |x| = 2, φ(x) ∈ [λ1, λ2]× {α0}

)
> 0.

By the definition of the process any particle produces offspring in a given interval of
positive length with, uniformly in the start type, strictly positive probability. The two
steps allow the time needed to ensure that the relative position of the parent satis-
fies α(x) = α0.

Lemma 2.7. The operator A : C(Φ)→ C(Φ) is compact.

Proof. According to (2.4), we can write for g ∈ C(Φ) and (λ, α) ∈ Φ,

Ag(λ, α) =

∫ 0

log ε

g(t, r)κ`(λ, t) dt+

∫ 0

log ε

g(t, `)κr(λ, α, t) dt,

with κ`(λ, t) = 1[log ε,λ](t)βe
(1−γ)(t−λ) and κr(λ, α, t) = 1[λ,0](t)aαe

γ(t−λ). Thus A can
be written as the sum of two operators, which are both compact by the Arzelà-Ascoli
theorem.

We summarize some standard properties of compact, positive operators in the fol-
lowing proposition.

Proposition 2.8. LetX be a complex Banach space andA : X → X be a linear, compact
and strictly positive operator.

(i) The spectral radius of A, ρ = ρ(A), is a strictly positive eigenvalue of A with one
dimensional eigenspace, generated by a strictly positive eigenvector ϕ. The eigen-
value ρ is also the spectral radius of adjoint A∗ and the corresponding eigenspace
is generated by a strictly positive eigenvector ν0. We rescale ϕ and ν0 such that
‖ϕ‖ = 1 and ν0(ϕ) = 1 to make the choice unique.

(ii) There exists θ0 ∈ [0, ρ) such that |θ| ≤ θ0 for all θ ∈ σ(A) \ {ρ}, where σ(A) is the
spectrum of A.

(iii) For any θ > θ0 and g ∈ X, we have Ang = ρnν0(g)ϕ+O(θn).

Proof. Statements (i) and (ii) are immediate from the Krein-Rutman theorem, see The-
orem 3.1.3 (ii) in [32], and the general form of the spectrum of compact operators.
Statement (iii) then follows from the spectral decomposition of a compact operator on a
complex Banach space. See for example [22] and there in particular Theorem 49.1 and
Proposition 50.1.

Now all results are collected to establish Proposition 2.2.

Proof of Proposition 2.2. Identity Ap = pA holds by definition and implies ρε(Ap) =

pρε(A). Moreover, it is clear that it suffices to prove the first sentence of the statement
for p = 1. Linearity is immediate from the definition, positivity was shown in Lemma 2.6
and compactness is the content of Lemma 2.7. The positive spectral radius follows
immediately from Proposition 2.8 (i).
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2.3.2 Proof of Theorem 2.3

We start with a moment estimate for the total number of offspring of a particle. In the
sequel, we write |IBPn| for the number of particles in generation n of the IBP.

Lemma 2.9. We have supφ∈ΦEφ
[
|IBP1|2

]
<∞.

Proof. Let Π, Z and Ẑ be independent realisations of the Poisson point process and the
pure jump processes defined in Section 2.1. Let φ = (λ, α) ∈ Φ. By the definition of the
IBP,

|IBP1|
d
=

{
Π([log ε− λ, 0]) + Z−λ if α = `,

Π([log ε− λ, 0]) + Ẑ−λ if α = r,

where
d
= denotes distributional equality. Since f is non-decreasing, Ẑ stochastically

dominates Z. This implies that for all φ ∈ Φ,

Eφ
[
|IBP1|2

]
≤ 2
(
E
[
Π([log ε, 0])2

]
+ E

[
(Ẑ− log ε)

2
])
.

The first term on the right is finite because Π is a Poisson point process with finite
intensity measure. The second summand was computed in Lemma 1.12 of [15] and
found to be finite.

The next result is a classical fact about branching processes. We give a proof since
we could not find a reference for the result in sufficient generality. See Theorem III.11.2
in [21] for a special case.

Lemma 2.10. For all p ∈ [0, 1], N ∈ N and φ ∈ Φ,

Pφ,p
(
1 ≤ |IBPn| ≤ N infinitely often

)
= 0.

Proof. We split the proof in two steps. First we show that δ := infφ∈Φ Pφ,p(|IBP1| = 0) >

0, then we conclude the statement from this result. By definition of the percolated IBP,
for all (λ, α) ∈ Φ,

P(λ,α),p

(
|IBP1| = 0

)
≥ P(λ,α),1

(
|IBP1| = 0

)
=

{
P
(
{Π([log ε− λ, 0]) = 0} ∩ {Z−λ = 0}

)
if α = `

P
(
{Π([log ε− λ, 0]) = 0} ∩ {Ẑ−λ = 0}

)
if α = r

≥ P
(
Π([log ε, 0]) = 0

)
P
(
Ẑ− log ε = 0

)
> 0.

Since the lower bound is independent of (λ, α), the claim δ > 0 is proved.
For the second step of the proof, we set p = 1 to simplify notation. The proof for gen-

eral p is identical. Fix N ∈ N, set τ0 := 0 and, for k ≥ 1, let τk := inf{n > τk−1 : |IBPn| ∈
[1, N ]}, where inf ∅ :=∞. The strong Markov property implies, for all φ ∈ Φ and k ∈ N,

Pφ(τk <∞) ≤ Pφ(τ1 <∞) sup
ν
Pν(τ1 <∞)k−1,

where the supremum is over all counting measure ν on Φ such that ν(Φ) ∈ [1, N ]. Under
Pν , ν =

∑n
i=1 δφi , the branching process is started with n particles of types φ1, . . . , φn.

When all original ancestors have no offspring in the first generation, then the branching
process suffers immediate extinction and τ1 =∞. Hence, for all such ν,

Pν(τ1 <∞) = 1− Pν(τ1 =∞) ≤ 1− Pν
(
|IBP1| = 0

)
≤ 1− δν(Φ) ≤ 1− δN .

We conclude, for all φ ∈ Φ

Pφ
(
1 ≤ |IBPn| ≤ N infinitely often

)
= lim
k→∞

Pφ(τk <∞) ≤ lim
k→∞

sup
ν
Pν(τ1 <∞)k−1

≤ lim
k→∞

(1− δN )k−1 = 0.

EJP 19 (2014), paper 57.
Page 23/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2974
http://ejp.ejpecp.org/


Vulnerability of robust preferential attachment networks

With Lemma 2.10 at hand, we can prove Theorem 2.3.

Proof of Theorem 2.3. Throughout the proof, we write ρ := ρε(Ap) and ϕ for the corre-
sponding strictly positive eigenfunction with ‖ϕ‖ = 1 from Proposition 2.8 (i). First sup-
pose ρ ≤ 1. By Lemma 2.10 Pφ,p(limn→∞ |IBPn| ∈ {0,∞}) = 1. By Proposition 2.8 (iii)
the assumption ρ ≤ 1 implies that

Eφ,p
[
|IBPn|

]
= Anp1(φ) = ρnν0(1)ϕ(φ) + o(1).

Hence, supn∈NEφ,p[|IBPn|] < ∞ and we conclude that limn→∞ |IBPn| = 0 Pφ,p-almost
surely for all φ ∈ Φ and, therefore, ζε(p) = 0.

Now suppose that ρ > 1 and denote Wn = 1
ρn

∑
|x|=n ϕ(φ(x)) for n ∈ N. Then

(Wn : n ∈ N) is under Pφ,p a nonnegative martingale with respect to the filtration gen-
erated by the branching process. Hence, W := limn→∞Wn exists almost surely. Given
Lemma 2.9, Biggins and Kyprianou show in Theorem 1.1 of [5] that Eφ,p[W ] = 1 and
therefore, Pφ,p(W > 0) > 0. This implies in particular that the branching process sur-
vives with positive probability irrespective of the start type.

We now investigate continuity of the survival probability as a function of the attach-
ment rule. For this purpose we emphasise dependence on f by adding it as an additional
argument to several quantities. The result is used in the proof of Theorem 2.1 in Sec-
tion 4 below.

Lemma 2.11. Let p ∈ (0, 1]. Then limδ↓0 ζ
ε(p, f − δ) = ζε(p, f).

Proof. Observe that there exists a natural coupling of the IBP(f) with the IBP(f − δ)
such that every particle in the IBP(f − δ) is also present in the IBP(f) and, hence,
ζε(p, f − δ) is increasing as δ ↓ 0. We can therefore assume that ζε(p, f) > 0, that is
ρ(f) := ρε(Ap, f) > 1, and by the continuity of Ap in the attachment rule, there exists
δ0 > 0 such that ρε(Ap, f − δ0) > 1. In the proof of Theorem 2.3 we have seen that this
implies that the IBP(f − δ0) survives with positive probability, irrespective of the start
type, and similar to Lemma 2.6, we conclude

inf
φ∈Φ

Pφ,p
(
IBP(f − δ0) survives

)
> 0. (2.9)

Recall the definition of the martingale (Wn : n ∈ N) and its almost sure limit W from the
proof of Theorem 2.3, which satisfies Eφ,p[W ] = 1 and

W =
1

ρ(f)

∑
|x|=1

W (φ(x)) Pφ,p-almost surely,

where, conditionally on the first generation, (W (φ(x)) : |x| = 1) are independent copies
of the random variable W under Pφ(x),p. In particular, φ 7→ Pφ,p(W = 0) is a fixed
point of the operator Hg(φ) = Eφ,p[

∏
|x|=1 g(φ(x))] on the set of [0, 1]-valued, measurable

functions. As the only [0, 1]-valued fixed points of H are the constant function 1 and the
extinction probability φ 7→ Pφ,p(IBP(f) dies out), we deduce that W > 0 almost surely
on survival. Let c > 0 and N ∈ N. On the space of the coupling between IBP(f) and
IBP(f − δ),

ζε(p, f)−ζε(p, f − δ) = P (IBP(f) survives, IBP(f − δ) dies out)

≤ P
(
W ≤ c, IBP(f) survives

)
+ P

(
W > c, ∃n ≥ N : |IBPn(f)| < cρ(f)n

2 maxϕ

)
+ P

(
|IBPn(f)| ≥ cρ(f)n

2 maxϕ
∀n ≥ N, IBP(f − δ) dies out

)
=: Θ1(c) + Θ2(c,N) + Θ3(c,N, δ).
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Since the offspring distribution of an individual particle is continuous in δ uniformly on
the type space, the probability that IBP(f) and IBP(f − δ) agree until generation N

tends to one as δ ↓ 0. On this event, when |IBPN (f)| ≥ Cρ(f)N for some C > 0, then the
probability that the IBP(f − δ) subsequently dies out is bounded by

sup
φ∈Φ

Pφ,p
(
IBP(f − δ) dies out

)dCρ(f)Ne
.

By (2.9), this expression tends to zero as N →∞ when δ ≤ δ0. Hence, for all c > 0,

0 ≤ lim sup
δ↓0

(
ζε(p, f)− ζε(p, f − δ)

)
≤ Θ1(c) + lim sup

N→∞
Θ2(c,N).

On the event {W > c} ∩ {Wn → W}, there is a finite stopping time N0 such that Wn ≥
W/2 for all n ≥ N0 and we deduce that ρ(f)−n|IBPn(f)| ≥ Wn/maxϕ ≥ c/(2 maxϕ).
Since Wn converges to W almost surely, we conclude that limN→∞Θ2(c,N) = 0. Finally,
Θ1(c) tends to zero as c ↓ 0 because W is positive on the event of survival.

3 The topology of the damaged graph

We investigate the empirical indegree distribution and maximal indegree of the dam-
aged network in Section 3.1, and typical distances in Section 3.2.

3.1 Degrees

The following lemma formalises basic facts about the indegrees Z[m,n].

Lemma 3.1. For given n ∈ N, the random variables (Z[m,n] : m ≤ n) are independent.
Fix m̂ ∈ N and let (Zm[m̂, n] : m ≤ n), be independent copies of the random variable
Z[m̂, n].

(i) There exists a coupling between (Z[m,n] : 1 ≤ m ≤ m̂) and (Zm[m̂, n] : 1 ≤ m ≤ m̂)

such that
Z[m,n] ≥ Zm[m̂, n] for all 1 ≤ m ≤ m̂.

(ii) There exists a coupling between (Z[m,n] : m̂ ≤ m ≤ n) and (Zm[m̂, n] : m̂ ≤ m ≤ n)

such that
Z[m,n] ≤ Zm[m̂, n] for all m̂ ≤ m ≤ n.

Proof. The independence of (Z[m,n] : m ≤ n) is immediate from the network construc-
tion. Consequently, to prove (i) and (ii) it suffices to couple Z[m,n] and Zm[m̂, n] for
fixed 1 ≤ m ≤ m̂ ≤ n in such a way that Z[m,n] ≥ Zm[m̂, n]. Equivalently, we show
that Z[m,n] stochastically dominates Z[m̂, n]. Let Ym = (Yml : l ∈ N0) be the Markov
process given by Yml = Z[m,m+ l]. Then Ym0 = 0 and, for all l, k ∈ N0 with k ≤ l,

P(Yml+1 = k + 1|Yml = k) = 1− P(Yml+1 = k|Yml = k) =
f(k)

m+ l

is decreasing in m. Hence, in every step, the probability that Ym jumps is at least the
probability that Ym̂ jumps. Since Z[m,n] = Ymn−m, Z[m̂, n] = Ym̂n−m̂ and n−m ≥ n− m̂,
the claim is established.

Our goal is to determine the asymptotic behaviour of maxm∈Vεn Z[m,n] and

Xε
≥k(n) =

1

n− bεnc

n∑
m=bεnc+1

1{k,k+1,...}(Z[m,n]).
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Lemma 3.1 allows us to replace the independent random variables in these sequences
by groups of independent and identically distributed random variables.

Dereich and Mörters observe in [14], see for example Corollary 4.3, that the inde-
grees in network (Gn : n ∈ N) are closely related to the pure jump process (Zt)t≥0. Since
the indegrees are not altered by the targeted attack, the same holds in the damaged
network (Gεn : n ∈ N). We now explain this connection. Let ψ(k) :=

∑k−1
j=1 j

−1 for all
k ∈ N, which we consider as a time change, mapping real time epochs k to an ‘artificial
time’ ψ(k). The artificial time spent by the process Z[m, ·] in state i is

Tm[i] := sup
{ l∑
j=k

1

j
: Z[m, k] = i = Z[m, l]

}
.

Let k ∈ N0 and nk the last real time that Z[m, ·] spends in k, that is, Z[m,nk] = k,
Z[m,nk + 1] = k + 1. Then

∑k
i=0 Tm[i] =

∑nk
j=m j

−1 = ψ(nk + 1)− ψ(m). In particular,

Z[m,n] ≤ k ⇔
k∑
i=0

Tm[i] ≥ ψ(n+ 1)− ψ(m). (3.1)

By definition, there exists a sequence of independent random variables (T [i] : i ∈ N0)

such that T [i] is exponentially distributed with mean 1/f(i) and

Zt ≤ k ⇔
k∑
i=0

T [i] > t. (3.2)

The next lemma provides a coupling between the artificial times Tm[i] and the expo-
nential times T [i]. In combination with (3.1) and (3.2) this allows us to study the jump
process (Zt : t ≥ 0) instead of the involved dynamics of the indegree process Z[m, ·].
The proof of the lemma is identical to the proof of Lemma 4.1 in [14] and is omitted.
However, the argument behind the result was sketched in the paragraph of (1.9). We
denote by τm,i = inf{ψ(k) : Z[m, k] = i} the artificial first entrance time of Z[m, ·] into
state i. If τm,i = ψ(k), we write 4τm,i = k−1.

Lemma 3.2. There exists a constant η > 0 such that for all m ∈ N there is a coupling
such that, for all i ∈ N0 with f(i)4τm,i ≤ 1

2 ,

T [i]− ηf(i)4τm,i ≤ Tm[i] ≤ T [i] +4τm,i almost surely,

and the random variables ((T [i], Tm[i]) : i ∈ N0) are independent.

By definition 4τm,i ≤ m−1. Hence, Lemma 3.2 yields a coupling such that when
f(k)/m ≤ 1

2 , then

k∑
i=0

T [i]− kηf(k)/m ≤
k∑
i=0

Tm[i] ≤
k∑
i=0

T [i] + k/m.

In particular, for f(k)/m ≤ 1
2 , the equivalence (3.1) implies

P
( k∑
i=0

T [i] ≥ ψ(n+ 1)− ψ(m) + ηkf(k)/m
)
≤ P(Z[m,n] ≤ k)

≤ P
( k∑
i=0

T [i] ≥ ψ(n+ 1)− ψ(m) + k/m
)
.
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If m ≤ n and m − ϑn = O(1) for some ϑ ∈ (0, 1], then ψ(n + 1) − ψ(m) =
∑n
j=m j

−1 =

− log ϑ+ o(1). Hence, for m ≤ n, m− ϑn = O(1) and k = O(log n),

P(Z[m,n] ≤ k) = P
( k∑
i=0

T [i] ≥ − log ϑ+ o(1)
)
, (3.3)

where the random null sequence o(1) is bounded by a deterministic null sequence of
order O((log n)2/n).

We proceed by estimating the distribution function of
∑k
i=0 T [i]. The following iden-

tity for the incomplete beta function will be of use.

Lemma 3.3. Let a > 0, c > 0 and k ∈ N0. Then

k∑
i=0

(
k

i

)
(−a)i

i+ c
= a−c

∫ a

0

xc−1(1− x)k dx.

Proof. Denote the left-hand side by θ(k, a, c). For x > 0, we have

∂

∂x

[
xcθ(k, x, c)

]
=

∂

∂x

[ k∑
i=0

(
k

i

)
(−1)i

xi+c

i+ c

]
=

k∑
i=0

(
k

i

)
(−1)ixi+c−1 = xc−1(1− x)k.

Integrating both sides between 0 and a and dividing by ac, we obtain the claim.

Lemma 3.4. For k ∈ N0 and t ≥ 0,

P (Zt ≥ k + 1) = P
( k∑
i=0

T [i] ≤ t
)

= B
(
k + 1, βγ

)−1
∫ 1

e−γt
x
β
γ−1(1− x)k dx. (3.4)

Proof. Let k ∈ N0. The probability density for
∑k
i=0 T [i] is given by (see for example

Problem 12, Chapter 1 in [19])

t 7→
k∑
i=0

∏k
j=0,j 6=i f(j)∏k

j=0,j 6=i(f(j)− f(i))
f(i)e−f(i)t

1[0,∞)(t).

Using f(j) = γj + β, we can rewrite for all i ∈ {0, . . . , k},∏k
j=0,j 6=i f(j)∏k

j=0,j 6=i(f(j)− f(i))
=

β
f(i)

k!
k!

∏k
j=1 f(j)

γk(−1)ii!(k − i)!
=
β

γ

( k∏
j=1

f(j)

γj

)(k
i

)
(−1)i

i+ β
γ

.

We obtain

P
( k∑
i=0

T [i] ≤ t
)

=
β

γ

( k∏
j=1

f(j)

γj

) k∑
i=0

(
k

i

)
(−1)i

i+ β
γ

(
1− e−βte−γit

)
.

The factor in front of the sum equals B(k + 1, βγ )−1. Thus, it remains to show that the
sum agrees with the integral in (3.4). Using Lemma 3.3, we derive

k∑
i=0

(
k

i

)
(−1)i

i+ β
γ

(
1− e−βte−γit

)
=

∫ 1

0

x
β
γ−1(1− x)k dx− e−βt(e−γt)−

β
γ

∫ e−γt

0

x
β
γ−1(1− x)k dx

=

∫ 1

e−γt
x
β
γ−1(1− x)k dx.
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Now everything is prepared for the proof of Theorem 1.2.

Proposition 3.5. For all k ∈ N0

E
[
Xε
≥k+1(n)

]
→
∫ 1

ε

1

1− ε
B
(
k + 1, βγ

)−1
∫ 1

yγ
x
β
γ−1(1− x)k dx dy as n→∞.

Proof. Let δ > 0, ∆ = bδεnc, N = 1 + bn−bεnc∆ c, mj = bεnc+ 1 + j∆ for j = 0, . . . , N − 1,
mN = n + 1, ∆j = ∆ for j = 1, . . . , N − 1 and ∆N = mN −mN−1 ∈ [0,∆). Combining
Lemma 3.1 with (3.3), we obtain

1

n− bεnc

n∑
m=bεnc+1

P(Z[m,n] > k) ≤ 1

n− bεnc

N−1∑
j=0

∆j+1P(Z[mj , n] > k)

≤ 1

n− bεnc

N−1∑
j=0

δεnP
( k∑
i=0

T [i] ≤ − log(ε+ jδε) + o(1)
)
,

and

lim sup
n→∞

1

n− bεnc

n∑
m=bεnc+1

P(Z[m,n] > k)

≤
d 1−ε
δε e∑
j=0

δε

1− ε
P
( k∑
i=0

T [i] ≤ − log
(
ε+ j

δε

1− ε
(1− ε)

))
.

Taking δ → 0 on the right-hand side, we conclude

lim sup
n→∞

1

n− bεnc

n∑
m=bεnc+1

P(Z[m,n] > k) ≤
∫ 1

0

P
( k∑
i=0

T [i] ≤ − log
(
ε+ y(1− ε)

))
dy.

(3.5)
Similarly,

1

n− bεnc

n∑
m=bεnc+1

P(Z[m,n] > k) ≥ 1

n− bεnc

N∑
j=1

∆jP(Z[mj − 1, n] > k)

≥ 1

n− bεnc

N−1∑
j=1

∆jP
( k∑
i=0

T [i] ≤ − log(ε+ jδε) + o(1)
)
,

and as above we see that lim inf satisfies the reverse inequality in (3.5). Lemma 3.4
yields the claim.

Dereich and Mörters (pp 1238–1239 in [14]) give a simple argument based on Cher-
noff’s inequality to upgrade the convergence of the expected empirical degree distribu-
tion to convergence of the empirical degree distribution itself. The proof remains valid
for the damaged network and is therefore omitted.

To establish the claimed tail behaviour of µ, we consider the large k asymptotics of
P (Zt ≥ k + 1) in (3.4). By Stirling’s formula, B(k + 1, β/γ)−1 � kβ/γ , where we write
a(k) � b(k) if there exist constants 0 < c ≤ C <∞ such that ca(k) ≤ b(k) ≤ Ca(k) for all
large k. Moreover,

1

1− ε

∫ 1

ε

∫ 1

yγ
x
β
γ−1(1− x)k dx dy �

∫ 1

ε

∫ 1

yγ
(1− x)k dx dy

=
1

k + 1

∫ 1

ε

(1− yγ)k+1 dy � (1− εγ)k+1

(k + 1)2
.
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In the first estimate we used that x
β
γ−1 is bounded from zero and infinity; in the second

we employed Laplace’s method (see for example Section 3.5 of [28]). In particular, µε

has the stated tails. To complete the proof of Theorem 1.2, it remains to derive the
asymptotic behaviour of the maximal indegree. The statement follows from the next
two lemmas.

Lemma 3.6 (Upper bound). Let c > − 1
log(1−εγ) . Then,

P
(

max
m∈Vεn

Z[m,n] ≤ c log n
)
→ 1 as n→∞.

Proof. Write kn = bc log nc, m = bεnc + 1 and ∆ = n − bεnc. Moreover, let Zm[m,n],
m ≤ n, be independent copies of Z[m,n]. Lemma 3.1 and (3.3) yield

P
(

max
m∈Vεn

Z[m,n] ≤ c log n
)
≥ P

(
max
m∈Vεn

Zm[m,n] ≤ kn
)

= P
(
Z[m,n] ≤ kn

)∆
= P

( kn∑
i=0

T [i] ≥ − log ε+ o(1)
)∆

= exp
(
−∆P

( kn∑
i=0

T [i] ≤ − log ε+ o(1)
)

(1 + o(1))
)
,

(3.6)

using a Taylor expansion in the last equality. As above, uniformly for t in compact
subintervals of (0,∞),∫ 1

e−γt
x
β
γ−1(1− x)k dx �

∫ 1

e−γt
(1− x)k dx � exp

(
k log(1− e−γt)− log k

)
.

Thus, Lemma 3.4 and Stirling’s formula yield for ϑ ∈ (0, 1) and t = − log ϑ + o(1), as
k →∞,

P
( k∑
i=0

T [i] ≤ t
)
� exp

(
k log(1−e−γt)+(βγ−1) log k

)
= exp

(
k log(1−ϑγ)(1+o(1))

)
. (3.7)

Using this estimate for k = kn and ϑ = ε, the exponent on the right-hand side of (3.6)
tends to zero as n→∞ if c > −1/ log(1− εγ).

Lemma 3.7 (Lower bound). Let c < − 1
log(1−εγ) . Then,

P
(

max
m∈Vεn

Z[m,n] ≤ c log n
)
→ 0 as n→∞.

Proof. The idea of the proof is to restrict the maximum to an arbitrarily small proportion
of the oldest vertices. Let δ > 0 and write kn := bc log nc , ∆ = bδεnc and m = bεnc +

∆. Moreover, let Zm[m,n], m ≤ n, be independent copies of Z[m,n]. According to
Lemma 3.1 there is a coupling such that

max
m∈Vεn

Z[m,n] ≥ max
m=bεnc+1,...,bεnc+∆

Z[m,n] ≥ max
m=bεnc+1,...,bεnc+∆

Zm[m,n].

Arguing as in (3.6), (3.3) yields

P
(

max
m∈Vεn

Z[m,n] ≤ c log n
)
≤ exp

(
−∆P

( kn∑
i=0

T [i] ≤ − log(ε(1 + δ)) + o(1)
)(

1 + o(1)
))
.

Now (3.7) with ϑ = ε(1 + δ) implies that the exponent on the right-hand side tends to
−∞ if c < −1/ log(1− (ε(1 + δ))γ). Since δ was arbitrary, the claim is established.
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3.2 Distances

In this section, we study the typical distance between two uniformly chosen vertices
in Cεn and prove Theorem 1.3. We write4Z[m,n] = Z[m,n+1]−Z[m,n] and, for m ≥ n,
Z[m,n] = 0. In the graph, the indegree of vertex m at time m is zero by definition,
but we will also use the distribution of the process (Z[m,n] : n ≥ m) for different initial
values. Formally, the evolution of Z[m, ·] with initial value k is obtained by using the
attachment rule g(l) := f(k + l) and we denote its distribution by Pk, using Ek for
the corresponding expectation; we abbreviate P := P0, E := E0. We further write
n̂ := inf{n ∈ N : f(n)/n ≤ 1} ∨ 2. Note that γ < 1 implies n̂ ∈ N. We observe some facts
about the indegree distribution. These are adaptations of results in [15].

Lemma 3.8 (Lemma 2.7 in [15]). For all k ∈ N0 and m,n ∈ N with k ≤ m, n̂ ≤ m ≤ n,

Pk(4Z[m,n] = 1) ≤ f(k)

(m− 1)γn1−γ . (3.8)

Proof. Observe that (f(Z[m,n])
∏n−1
j=m

1
1+γ/j : n ≥ m) is a martingale and therefore

Pk(4Z[m,n] = 1) = Ek
[f(Z[m,n])

n

]
=
f(k)

n

n−1∏
j=m

(1 + γ/j) ≤ f(k)

(m− 1)γn1−γ .

Lemma 3.9 (Lemma 2.10 in [15]). For all k ∈ N0, m,m′ ∈ N, n̂ ≤ m ≤ m′, k ≤ m, there
exists a coupling of the process (Z[m,n] : n ≥ m) under the conditional probability
Pk(·|4Z[m,m′] = 1) and the process (Z[m,n] : n ≥ m) under Pk+1 such that, apart from
time m′, the jump times of the first process are a subset of the jump times of the latter.

The proof of the lemma is similar to the proof of Lemma 2.10 in [15] and we omit
it. After these preliminary results, we now begin our analysis of typical distances in the
network (Gεn : n ∈ N). Recall, that for this type of questions, we consider Gεn to be an
undirected graph. For v, w ∈ Vεn and h ∈ N0, let

Sh(v, w) := {(v0, . . . , vh) : vi ∈ Vεn, vi 6= vj for i 6= j, v0 = v, vh = w}

be the set of all self-avoiding paths of length h between v and w, and let Sh(v) = {p : p ∈
Sh(v, w) for some w ∈ Vεn} the set of all self-avoiding paths of length h starting in v.

Definition 3.10. Let θ ∈ (0,∞) and G = (V,E) be an undirected graph with V ⊆ N.
A self-avoiding path p = (v0, . . . , vh) in G is θ-admissible (or admissible) if, for all i ∈
{1, . . . , h}, we have {vi−1, vi} ∈ E and∣∣{w ∈ V : vi−1 < w ≤ vi, {vi−1, w} ∈ E

}∣∣ ≤ θ. (3.9)

Note that (3.9) is automatically satisfied if vi < vi−1. In the graph Gεn, condition
(3.9) can be written as Z[vi−1, vi] ≤ θ. We further denote, for v, w ∈ Vεn, h ∈ N0 and
θ ∈ (0,∞),

Nθ
h(v, w) :=

∣∣{p ∈ Sh(v, w) : p is θ-admissible in Gεn}
∣∣,

Nθ
h(v) :=

∣∣{p ∈ Sh(v) : p is θ-admissible in Gεn}
∣∣,

and, for h > 0, Nθ
≤h(v) =

∑bhc
k=0N

θ
k (v), Nθ

≤h(v, w) =
∑bhc
k=0N

θ
k (v, w). The dependence of

Sh(v, w), Sh(v), Nθ
h(v, w) etc. on n is suppressed in the notation, but it will always be

clear from the context which graph is considered. We write IBPε(f) for the idealized
branching process with type space [log ε, 0]× {`, r} generated with attachment rule f if
we want to emphasize f and ε. The proof of the following lemma is deferred to Section
4.3.

EJP 19 (2014), paper 57.
Page 30/47

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2974
http://ejp.ejpecp.org/


Vulnerability of robust preferential attachment networks

Lemma 3.11. Let δ > 0 such that γ(1 + δ) < 1, ε ∈ (0, ε), and (θn : n ∈ N) a sequence of
positive numbers with θn = o(n). For all sufficiently large n, v0 ∈ Vεn, and h ∈ N0,

E
[
Nθn
h (v0)

]
≤ E(sn(v0),`)

[∣∣IBP
ε
h((1 + δ)f)

∣∣] where sn(v0) := −
n−1∑
j=v0

1

j
.

We are now in the position to prove Theorem 1.3. The distance between two vertices
v, w ∈ Vεn in different components of Gεn is defined to be infinite.

Proof of Theorem 1.3. Let v, w ∈ Vεn, h ∈ N. With θn := (log n)2, (1.5) yields

P
(
dGεn(v, w) ≤ h

)
≤ P

(
dGεn(v, w) ≤ h, max

m∈Vεn
Z[m,n] ≤ θn

)
+ P

(
max
m∈Vεn

Z[m,n] > θn

)
≤ P

(
Nθn
≤h(v, w) ≥ 1

)
+ o(1), (3.10)

where the error bound is uniform in v, w and h. Markov’s inequality yields, for every
v, w ∈ Vεn with v 6= w and for every h ∈ N,

P
(
Nθn
≤h(v, w) ≥ 1

)
≤ E

[
Nθn
≤h(v, w)

]
=

h∑
k=1

∑
p∈Sk(v,w)

P
(
p is θn-admissible in Gεn

)
. (3.11)

We write w+
i := vi−1∨vi, w−i := vi−1∧vi and Ei := {4Z[w−i , w

+
i −1] = 1,Z[vi−1, vi] ≤ θn}

for every i ∈ {1, . . . , k}. Then we have

P(p is θn-admissible in Gεn) = P
( k⋂
i=1

{
4Z[w−i , w

+
i − 1] = 1,Z[vi−1, vi] ≤ θn

})
(3.12)

= P
(
Ek
∣∣∣ k−1⋂
i=1

Ei
)
P((v0, . . . , vk−1) is θn-admissible in Gεn).

To estimate the probability P(Ek|
⋂k−1
i=1 Ei), we first note that the only edge in the self-

avoiding path p on whose presence the event {vk−1, vk} ∈ Eεn can depend is {vk−2, vk−1}.
The possible arrangements of these two edges are sketched in Figure 4.

vk−2 vk−1 vk

A

vk−1 vk−2 vk

D

vk vk−1 vk−2

F

vk−2 vk vk−1

B

vk vk−2 vk−1

C

vk−1 vk vk−2

E

Figure 4: Possible interactions of two edges on a self-avoiding path. The red, dashed edges

have to be considered to decide if the number of right-neighbours is small enough to declare the

path admissible.

When vk−2 < vk−1 (cases A,B,C in Figure 4), then we, in addition, have knowledge of
edges whose left vertex is vk−2. However, these are always independent of {vk−1, vk}. If
vk−1 < vk (cases A,D,E in Figure 4), then event Ek requires that Z[vk−1, vk] ≤ θn. Since
edges with left vertex vk−1 depend only on edges whose left vertex is also vk−1, the only
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relevant conditioning occurs in cases D and E in Figure 4 by requiring {vk−1, vk−2} to
be present. We deduce

P
(
Ek
∣∣∣ k−1⋂
i=1

Ei
)

=

{
P(4Z[w−k , w

+
k − 1] = 1,Z[vk−1, vk] ≤ θn) in A,B,C and F,

P(4Z[vk−1, vk − 1] = 1,Z[vk−1, vk] ≤ θn|4Z[vk−1, vk−2 − 1] = 1) in D and E.

Using Lemma 3.9 and (3.8), we can bound the probability in both cases by f(1)/(εn).
Combining this estimate with (3.11) and (3.12), we obtain

P
(
Nθn
≤h(v, w) ≥ 1

)
≤

h∑
k=1

∑
p∈Sk−1(v)

f(1)

εn
P(p is θn-admissible in Gεn) =

f(1)

εn

h−1∑
k=0

E
[
Nθn
k (v)

]
.

Lemma 3.11 yields for small δ̄ > 0 and ε := ε− δ̄ > 0,

P
(
Nθn
≤h(v, w) ≥ 1

)
≤ f(1)

εn

h−1∑
k=0

E(sn(v),`)

[∣∣IBP
ε
k((1 + δ̄)f)

∣∣].
We denote by ρ̄ the spectral radius of the operator A associated to IBPε((1 + δ̄)f) and
by ϕ̄ the corresponding eigenfunction. Choose a constant C such that for all sufficiently
small δ̄, C ≥ maxφ ϕ̄(φ)/minφ ϕ̄(φ). This is possible since the eigenfunctions are contin-
uous in δ̄ (this can be seen along the lines of Note 3 to Chapter II on pages 568-569 of
[27]). Furthermore, by the continuity of the spectral radius with respect to the operator
(see Chapter II.5 in [27]) and, since ρε(A) > 1 by assumption, ρ̄ > 1 for all small δ̄.
Hence, for all v, w ∈ Vεn, v 6= w,

P
(
Nθn
≤h(v, w) ≥ 1

)
≤ f(1)

εn

h−1∑
k=0

1

minφ ϕ̄(φ)
E(sn(v),`)

[ ∑
x∈IBPε((1+δ̄)f)

|x|=k

ϕ̄(φ)
]

=
f(1)

εn

h−1∑
k=0

ρ̄k
ϕ̄(sn(v), `)

minφ ϕ̄(φ)

≤ f(1)C

εn

ρ̄h

ρ̄− 1
=

f(1)C

ε(ρ̄− 1)
exp

(
h log ρ̄− log n

)
.

In particular, for δ > 0 and hn := (1− δ2) logn
log ρ̄ , we showed that

sup
v,w∈Vεn,v 6=w

P(Nθn
≤hn(v, w) ≥ 1) = o(1).

For independent, uniformly chosen vertices Vn,Wn in Cεn, we have Vn 6= Wn with high
probability. According to (3.10), this implies P(dGεn(Vn,Wn) ≤ hn) = o(1). Choosing δ̄ so
small that log ρ̄ ≤ (1 + δ) log ρε(A), it follows that, with high probability,

dGεn(Vn,Wn) ≥ (1− δ2)
log n

log ρ̄
≥ (1− δ) log n

log ρε(A)
.

4 Approximation by a branching process

In this section, we compare the connected components in the network to the multi-
type branching process defined in Section 2.1. We begin by coupling the local neigh-
bourhood of a uniformly chosen vertex to the IBP in Sections 4.1 and 4.2. This local
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consideration allows us to draw conclusions about the existence or nonexistence of the
giant component from knowledge of the branching process, see Section 4.4. For the
analysis of the typical distances in the network, knowing the local neighbourhood is
insufficient. We show in Section 4.3 that a slightly larger IBP dominates the network
globally in a suitable way.

4.1 Coupling the network to a tree

The proof of the coupling follows the lines of [15] for the undamaged network, but
unfortunately we cannot use their results directly as the coupling in [15] makes exten-
sive use of vertices which are removed in the damaged network. Note however that the
removal of the old vertices significantly reduces the risk of cycles in the local neighbour-
hood of a vertex and, therefore, the coupling here will be successful for much longer
than the coupling in [15].

In the first step, we couple the local neighbourhood of a vertex v0 in Gεn to a labelled
tree Tεn(v0), thus ruling out cycles in that subgraph. In Section 4.2 we then study the
asymptotics of the offspring distributions to arrive at the IBP.

Every vertex v in the labelled tree Tεn(v0) is equipped with a ‘tag’ in Vεn and a ‘mark’
α ∈ Vεn ∪ {`}. The tag indicates which vertex in the network is approximated by v. We
use the same notation for vertex and tag to emphasize the similarity between the tree
and the network. The mark α carries information about the tag of the parent w of v in
the tree. In the spirit of Section 1.6, v has mark α = ` if its parent has a smaller tag,
i.e. w < v, and we say that the parent of v is on its left. In contrast, if w > v we say that
the parent is on its right. It turns out that here it is beneficial to record the exact tag of
w instead of only the relative position and we choose α = w. Hence, a typical label is of
the form (v, α).

To construct the coupling, we run an exploration process on the connected compo-
nent of v0. The offspring distribution of a vertex v in the tree is chosen to be the same
as the distribution of direct neighbours of v in Gεn when only the vertex w is known as
whose direct neighbour v is found in the exploration. That vertex w determines the
mark of v. The need of this information to identify the offspring distribution is the rea-
son why vertices in Tεn(v0) are equipped with marks, whereas vertices in Gεn(v0) are not.
Note the similarity to the comparison between network and IBP sketched in Section 1.6.

Formally, for v0 ∈ Vεn, let Tεn(v0) be the random tree with root v0 of label (v0, `)

constructed as follows: Every vertex v produces independently offspring to the left, i.e.,
with tag u ∈ {bεnc+ 1, . . . , v − 1} with probability

P(v has a descendant with tag u) = P(4Z[u, v − 1] = 1).

All offspring on the left are of mark v. Moreover, independently, v produces descendants
to its right (i.e. with tag at least v+1). Since the parent of these descendant is on the left,
they are of mark `. The distribution of the cumulative sum2 of the sequence of relative
positions of the right descendants depends on the mark of v When v is of mark α = `,
then the cumulative sum is distributed according to the law of (Z[v, u] : v + 1 ≤ u ≤ n).
When v is of mark α = w ∈ Vεn, w > v, then the cumulative sum follows the same
distribution as (Z[v, u]− 1[w,∞)(u) : v + 1 ≤ u ≤ n) conditioned on 4Z[v, w− 1] = 1. The
percolated version Tεn,p(v0) is obtained from Tεn(v0) by deleting every particle in Tεn(v0)

together with its line of descent with probability 1 − p, independently for all particles.
In particular, with probability 1− p the root v0 is deleted and Tεn,p(v0) is empty.

We write Cεn,p(v0) for the connected component in Gεn(p) containing vertex v0.

2For a sequence (xj : j = 1, . . . , n) the cumulative sum is given by (
∑j

i=1 xi : j = 1, . . . , n)
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Proposition 4.1. Suppose (cn : n ∈ N) is a sequence of positive integers that satisfies
limn→∞ c2n/n = 0. Then there exists a coupling of a uniformly chosen vertex Vn in Vεn,
graph Gεn(p) and tree Tεn,p(Vn) such that

|Cεn,p(Vn)| ∧ cn = |Tεn,p(Vn)| ∧ cn with high probability.

To prove Proposition 4.1, we define an exploration process which we then use to
inductively collect information about the tree and the network on the same probability
space. We show that the two discovered graphs agree until a stopping time, which is
with high probability larger than cn. After that time, the undiscovered part of the tree
and the network can be generated independently of each other. This result offers a
detailed description of the local neighbourhood of a vertex, and is much stronger than
the equal cardinality stated in Proposition 4.1.

We begin by specifying the exploration process that is used to explore the connected
component of a vertex v0 in a labelled graph G, like Cεn,p(v0) or Tεn,p(v0). We distinguish
three categories of vertices:

• veiled vertices: vertices for which we have not yet found a connection to the
cluster of v0

• active vertices: vertices for which we already know that they belong to the cluster
of v0 but for which we have not yet explored all its immediate neighbours

• dead vertices: vertices which belong to the cluster of v0 and for which all imme-
diate neighbours have been explored

At the beginning of the exploration only v0 is active and all other vertices are veiled.
In the first exploration step we explore all immediate neighbours of v0, declare v0 as
dead and all its immediate neighbours as active. The other vertices remain veiled. We
now continue from the active vertex v with the smallest tag and explore all its immediate
neighbours apart from v0 from where we just came. The exploration is continued until
there are no active vertices left.

We couple the exploration processes of the network and the tree started with v0 ∈ Vεn
up to a stopping time T , such that up to time T both explored subgraphs (without the
marks) coincide. In particular, the explored part of Cεn,p(v0) is a tree and every tag has
been used at most once by the active or dead vertices in Tεn,p(v0). The event that at least
one of these properties fails is called E. We also stop the exploration, when either the
number of dead and active vertices exceeds cn or when there are no active vertices left.
In this case we say that the coupling is successful. If we have to stop as a consequence
of E, we say that the coupling fails.

Lemma 4.2. Suppose that p ∈ (0, 1] and (cn : n ∈ N) satisfies limn→∞ c2n/n = 0. Then

lim
n→∞

sup
v0∈Vεn

P
(
the coupling of Cεn,p(v0) and Tεn,p(v0) fails

)
= 0.

In the sequel, we will label some key constants by the lemma in which they appear
first. In the proof of Lemma 4.2 we make use of the following result.

Lemma 4.3 (Adaption of Lemma 2.12 in [15]). Let (cn : n ∈ N) satisfy limn→∞ cn/n = 0.
Then there exists a constant C4.3 > 0 such that for all sufficiently large n, for all disjoint
sets I0, I1 ⊆ Vεn with |I0| ≤ cn and |I1| ≤ 1, and for all u, v ∈ Vεn,

P
(
4Z[v, u] = 1

∣∣4Z[v, i] = 1 for i ∈ I1,4Z[v, i] = 0 for i ∈ I0

)
≤ C4.3P

(
4Z[v, u] = 1

∣∣4Z[v, i] = 1 for i ∈ I1

)
.
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Proof. We have

P
(
4Z[v, u] = 1

∣∣4Z[v, i] = 1 for i ∈ I1,4Z[v, i] = 0 for i ∈ I0

)
≤ P(4Z[v, u] = 1 |4Z[v, i] = 1 for i ∈ I1)

P(4Z[v, i] = 0 for i ∈ I0 |4Z[v, i] = 1 for i ∈ I1)
.

With n so large that bεnc ≥ n̂, Lemma 3.9 and (3.8) imply that

P(4Z[v, i] = 0 for i ∈ I0 |4Z[v, i] = 1 for i ∈ I1) ≥ P1(4Z[v, i] = 0 for i ∈ I0)

≥
∏
i∈I0

P1(4Z[v, i] = 0) ≥
∏
i∈I0

(
1− f(1)

(v − 1)γi1−γ

)
≥
(

1− f(1)

εn

)cn
.

Since cn/n tends to zero as n→∞, the right-hand side converges to one.

Proof of Lemma 4.2. We assume that n is so large that bεnc ≥ n̂. To distinguish the
exploration processes, we use the term descendant for a child in the labelled tree and
the term neighbour in the context of Gεn(p). The σ-algebra generated by the exploration
until the completion of step k is denoted Fk.

Since the probability of removing v0 is the same in Cεn,p(v0) and Tεn,p(v0), this event
can be perfectly coupled. If v0 is not removed, then we explore the immediate neigh-
bours of v0 in Gεn(p) and the children of the root v0 in the tree. Again these families are
identically distributed and can be perfectly coupled.

Now suppose that we successfully completed exploration step k and are about to
start the next step from vertex v. At this stage every vertex in the tree can be uniquely
referred to by its tag and the subgraphs coincide. Denoting by a and d the set of active
and dead vertices, respectively, we have a 6= ∅ and |a∪d| < cn. We continue by exploring
the left descendants and neighbours of v. Since we always explore the leftmost active
vertex, we cannot encounter a dead or active neighbour in this step. However, in the
tree Tεn,p(v0) we may find a dead left descendant (i.e. an offspring whose tag agrees
with the tag of a dead particle); we call this event Ia. On Ia, the vertices in the explored
part of Tεn,p(v0) are no longer uniquely identifiable by their tag and we stop. We have

P
(
Ia | Fk

)
= P

(
∃d ∈ d : d left descendant of v | Fk

)
≤
∑
d∈d

P(4Z[d, v − 1] = 1) ≤ cn
f(0)

εn
.

In the first inequality, we used subadditivity, the definition of Tεn,p(v0) and omitted the
event that offspring of v are removed by percolation. Hence, P(Ia) = O(cn/n). In the
exploration to the left in the tree, we immediately check if a found left descendant has
a right descendant which is dead. We denote this event by Ib and stop the exploration
as soon as it occurs. The reason is that in the network this event could not happen
since we always explore the leftmost active vertex. Therefore, the distribution of left
neighbours agrees with the distribution of the left descendants conditioned on having
no dead right descendants and we can couple both explorations such that they agree in
this case. To estimate the probability of the adverse event Ib, we use the definition of
Tεn,p(v) to obtain

P
(
Ib | Fk

)
≤ P

(
∃u ∈ dc, d ∈ d : u left descendant of v, d right descendant of u | Fk

)
≤
∑
u∈dc

∑
d∈d

P(4Z[u, v − 1] = 1)P(4Z[u, d− 1] = 1 |4Z[u, v − 1] = 1).

By definition of the exploration process, there are at most cn dead vertices. Therefore,
Lemma 3.9 and (3.8) yield

P
(
Ib|Fk

)
≤ cn

∑
u∈dc,u≤v−1

f(0)

(u− 1)γ(v − 1)1−γ
f(1)

εn
≤ cn

f(0)f(1)

εn

1

(v − 1)1−γ

v−1∑
u=1

u−γ ,
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which implies in particular that P(Ib) = O(cn/n).

We turn to the exploration of right descendants, resp. neighbours. When vertex v is
of mark α 6= `, then we already know that v has no right descendants, resp. neighbours,
in d since we checked this when v was discovered. We denote the event that a right
descendant, resp. neighbour, is active by IIr and stop the exploration as soon as this
event occurs because the tags in Tεn,p(v0) are no longer unique, resp. we found a cycle
in Cεn,p(v0). According to Lemma 4.3 and (3.8),

P
(
IIr
∣∣Fk)

≤ P
(
∃a ∈ a : 4Z[v, a− 1] = 1

∣∣4Z[v, α− 1] = 1,4Z[v, d− 1] = 0 for d ∈ d \ {α},Fk
)

≤ C4.3

∑
a∈a

P1(4Z[v, a− 1] = 1) ≤ C4.3cn
f(1)

εn
.

Thus, P(IIr) = O(cn/n). Conditional on the event that there are no active vertices in
the set of right descendants, resp. neighbours, the offspring distribution in tree and
network agree and can therefore be perfectly coupled. When the vertex v is of mark
α = `, then we have not gained any information about its right descendants, yet. The
event that there is a dead or active vertex in the right descendants is denoted by II`a.
We stop when this event occurs and use (3.8) to estimate

P
(
II`a|Fk

)
= P

(
∃a ∈ a ∪ d : a right descendant of v

∣∣Fk)
≤
∑
a∈a∪d

P(4Z[v, a− 1] = 1) ≤ cn
f(0)

εn
.

Thus, P(II`a) = O(cn/n). In Cεn,p(v0), we know that v has no dead right neighbours as
this would have stopped the exploration in the moment when v became active. The
event that there are active vertices in the set of right neighbours is denoted by II`b and
we stop as soon as it occurs since a cycle is created. Using again (3.8), we find

P
(
II`b|Fk

)
= P

(
∃a ∈ a : 4Z[v, a− 1] = 1

∣∣4Z[v, d− 1] = 0 for d ∈ d,Fk
)

≤
∑
a∈a

P(4Z[v, a− 1] = 1) ≤ cn
f(0)

εn
.

As in case α 6= `, the explorations can be perfectly coupled when the adverse events do
not occur. We showed that in every step the coupling fails with a probability bounded
by O(cn/n). As there are at most cn exploration steps until we end the coupling success-
fully, the probability of failure is O(c2n/n) = o(1). In other words, the coupling succeeds
with high probability.

Proof of Proposition 4.1. First, consider the statement for a fixed vertex v0. When
the coupling is successful and ends because at least cn vertices were explored, then
|Cεn,p(v0)| ≥ cn and |Tεn,p(v0)| ≥ cn. If the coupling is successful and ends because there
are no active vertices left, then |Cεn,p(v0)| = |Tεn,p(v0)| since the subgraphs coincide.
Since the coupling is successful with high probability by Lemma 4.2, |Cεn,p(v0)| ∧ cn =

|Tεn,p(v0)| ∧ cn with high probability. As Lemma 4.2 shows the success of the coupling
uniformly in the start vertex, the randomization of the vertex v0 to a uniformly chosen
vertex Vn ∈ Vεn is now straightforward.

4.2 Coupling the tree to the IBP

Coupling the neighbourhood of a vertex to a labelled tree provides a great simplifi-
cation of the problem since many dependencies are eliminated. However, the offspring
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distribution in the tree Tεn,p(Vn) is still complicated and depends on n. Since we are
mainly interested in the asymptotic size of the giant component, we now couple the
tree to the IBP, which does not depend on n and is much easier to analyse. We denote
by |X ε(p)| the total progeny of the IBP. Recall the definition of Sε from (2.2).

Proposition 4.4. Let p ∈ (0, 1] and (cn : n ∈ N) be a sequence of positive integers with
limn→∞ c3n/n = 0. Then there exists a coupling of a uniformly chosen vertex Vn in Vεn,
the graph Gεn(p) and the percolated IBP started with a particle of mark ` and location Sε

such that, with high probability,

|Cεn,p(Vn)| ∧ cn = |X ε(p)| ∧ cn.

Proof of Proposition 4.4. Throughout the proof, suppose that n is so large that bεnc ≥ n̂.
Instead of coupling the IBP directly to the network, we couple a projected version of
the IBP to the tree Tεn,p(Vn). As long as the number of particles is preserved under the
projection, this is sufficient according to Proposition 4.1. To describe the projection, we
define πεn : [log ε, 0]→ Vεn by

πεn(λ) = v ⇔ sn(v − 1) < λ ≤ sn(v), (4.1)

where sn(v) = −
∑n−1
j=v

1
j . Since sn(bεnc) < log(bεnc/n) ≤ log ε, every location in [log ε, 0]

can be uniquely identified with a tag in Vεn by the map πεn. The projected IBP is again a
labelled tree: The genealogical tree of the IBP with its marks is preserved, the location
of a particle x is replaced by the tag πεn(λ(x)). If sn(bεnc + 1) < log ε, then no particles
of the IBP are projected onto bεnc + 1. Moreover, while for v ≥ bεnc + 3 an interval
of length 1/(v − 1) is projected onto v, for bεnc + 2 only an interval of length at most
sn(bεnc+ 2)− log ε is used. This length is positive but may be smaller than 1/(bεnc+ 1).
As a consequence, the projected IBP can have unusually few particles at bεnc + 1 and
bεnc+ 2 and we treat these two tags separately.

The exploration of the two trees follows the same procedure as the exploration de-
scribed in Section 4.1 and we declare the coupling successful and stop as soon as either
there are no active vertices left or the number of active and dead vertices exceeds cn.
Since both objects are trees, as long as the labels for the starting vertices agree, any
failure of the coupling comes from a failure in the coupling of the offspring distribu-
tions. For simplicity, we consider only the case p = 1. The generalization to p ∈ (0, 1] is
straightforward.

We first show that the labels of the starting vertices can be coupled with high prob-
ability. To this end, note that the distribution of Sε is chosen such that exp(Sε) is uni-
formly distributed on [ε, 1]. Since log ε ≤ sn(bεnc + 2) ≤ sn(v − 1) ≤ sn(v) ≤ 0, for
v ≥ bεnc+ 3, we obtain

P
(
πεn(Sε) = v

)
= P

(
esn(v−1) < eS

ε

≤ esn(v)
)

= 1
1−ε
(
esn(v) − esn(v−1)

)
= 1

1−ε e
sn(v−1)

(
e1/(v−1) − 1

)
.

The right-hand side is in the interval [ 1
1−ε (

1
n−

2
vn ), 1

1−ε (
1
n+ 2

vn )]. Moreover, the probability
that Vn or πεn(Sε) is in {bεnc + 1, bεnc + 2} is of order O(1/n). Hence, Vn and Sε can be
coupled such that

P
(
Vn 6= πεn(Sε)

)
≤

n∑
v=bεnc+3

∣∣P(πεn(Sε) = v
)
− 1

n−bεnc
∣∣+O

(
1
n

)
= O

(
logn
n

)
.

In the next step we study the offspring distributions of a particle x in the IBP with label
(λ, α) and πεn(λ) = v. We start with the offspring to the left. Let u ∈ {bεnc + 1, . . . , v}.
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By definition of the IBP, particle x produces a Poissonian number of projected offspring
with tag u with parameter ∫ (sn(u)−λ)∧0

(sn(u−1)−λ)∨(log ε−λ)

βe(1−γ)t dt.

A vertex with tag v in Tεn(Vn) produces a Bernoulli distributed number of descendants
with tag u with success probability P(4Z[u, v − 1] = 1) when u < v, and with success
probability zero when u = v. It is proved in Lemma 6.3 of [15] that for u ≥ bεnc + 3

the Poisson distributions can be coupled to the Bernoulli distribution such that they
disagree with a probability bounded by a constant multiple of vγ−1u−(γ+1) for u < v and
1/v for u = v. For u ∈ {bεnc+ 1, bεnc+ 2} a similar estimate shows that the probability
can be bounded by a constant multiple of 1/(εn). Since the number of descendants with
tag in {bεnc+1, . . . , v} form an independent sequence of random variables, we can apply
the coupling sequentially for each location and obtain a coupling of the πεn-projected left
descendants in the IBP and the left descendants in Tεn(Vn). The failure probability of
this coupling can be estimated by

P(left descendants of v disagree) ≤ 3C

εn
+

C ′

v1−γ

v−1∑
u=bεnc+3

1

uγ+1

≤ 3C

εn
+
C ′

εn
log
(v − 1

bεnc

)
≤ C ′′

n
,

where C,C ′, C ′′ are suitable positive constants whose value can change from line to line
in the sequel. We turn to the offspring on the right. Suppose that particle x in the IBP
has mark α = `. The cumulative sum of πεn-projected right descendants of x follows the
same distribution as (Zsn(u)−λ : v ≤ u ≤ n). The cumulative sum of right descendants
of v in Tεn(Vn) is distributed according to the law of (Z[v, u] : v ≤ u ≤ n). The following
lemma is taken from [15] and we omit its proof.

Lemma 4.5 (Lemma 6.2 in [15]). Fix a level H ∈ N. We can couple the processes
(Zsn(u)−λ : v ≤ u ≤ n) and (Z[v, u] : v ≤ u ≤ n) such that for the coupled processes
(Y (1)
u : v ≤ u ≤ n) and (Y (2)

u : v ≤ u ≤ n)

P(Y (1)

u 6= Y (2)

u for some u ≤ σH) ≤ C4.5
f(H)2

v − 1
,

for some constant C4.5 > 0 and σH the first time one of the processes reaches or exceeds
H.

In the coupling between the tree Tεn(Vn) and the projected IBP we consider at most
cn right descendants. Hence, Lemma 4.5 implies that the distributions can be coupled
such that

P(right descendants of v disagree) ≤ C4.5
f(cn)2

v − 1
≤ C c

2
n

εn
,

for some C > 0. When α = r, then cumulative sum of πεn-projected right descendants
of x follows the same distribution as (Ẑsn(u)−λ − 1: v ≤ u ≤ n). The cumulative sum
of right descendants of a vertex v with mark w ∈ Vεn, w > v, in Tεn(Vn) is distributed
according to (Z[v, u] − 1[w,∞)(u) : v ≤ u ≤ n) conditioned on 4Z[v, w − 1] = 1. We can
couple these two distributions. Again the proof of the following lemma is up to minor
changes given in [15] and therefore omitted.
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Lemma 4.6 (Lemma 6.6 in [15]). Fix a level H ∈ N. We can couple the processes
(Ẑsn(u)−λ − 1: v ≤ u ≤ n) and (Z[v, u]− 1[w,∞)(u) : v ≤ u ≤ n) conditioned on 4Z[v, w −
1] = 1 such that for the coupled processes (Y (1)

u : v ≤ u ≤ n) and (Y (2)
u : v ≤ u ≤ n)

P(Y (1)

u 6= Y (2)

u for some u ≤ σH) ≤ C4.6
f(H)2

v − 1
,

for some constant C4.6 > 0 and σH the first time one of the processes reaches or exceeds
H.

As we explore at most cn vertices during the exploration, Lemma 4.6 implies that
we can couple the offspring distribution to the right such that there is a constant C > 0

with

P(right descendants of v disagree) ≤ C4.6
f(cn)2

v − 1
≤ C c

2
n

εn
.

Since we explore at most cn vertices in total, the probability that the coupling fails can
be bounded by a constant multiple of cn/n + c3n/n, which converges to zero. Thus, the
two explorations can be successfully coupled with high probability and, as in the proof
of Proposition 4.1, the claim follows.

4.3 Dominating the network by a branching process

Like in the coupling, we begin with a comparison to a tree: For θ ∈ N and v0 ∈ Vεn,
let Tε,θn (v0) be the subtree of Tεn(v0), where every particle can have at most θ offspring
to the right. That is, for a particle with tag v and mark α = ` the cumulative sum of the
offspring to the right is distributed according to the law of (Z[v, u] ∧ θ : v + 1 ≤ u ≤ n).
When v is of mark α = w ∈ Vεn, w > v, then the cumulative sum follows the same
distribution as ((Z[v, u]−1[w,∞)(u))∧ θ : v+ 1 ≤ u ≤ n) conditioned on 4Z[v, w− 1] = 1.
Recall from Section 3.2 that Nθ

h(v0) denotes the number of θ-admissible paths of length
h in Gεn with starting-point v0.

Lemma 4.7. For all θ, h, n ∈ N, v0 ∈ Vεn,

E
[
Nθ
h(v0)

]
≤ E

[∣∣{particles in generation h of Tε,θn (v0)
}∣∣].

Proof. Let p = (v0, . . . , vh) ∈ Sh(v0). Using the notation and set-up from the proof of
Theorem 1.3, and the definition of the tree Tε,θn (v0), one easily checks that in cases
A,B,C,E and F of Figure 4 on page 31, P(Eh| ∩h−1

i=1 Ei) agrees with the probability that in
tree Tε,θn (v0) a vertex with tag vh−1 gives birth to a particle of tag vh given that its parent
has tag vh−2. In case D of Figure 4, the tree Tε,θn is allowed to have one more offspring
on its right, because the edge {vh−2, vh−1} is not accounted for. Hence P(Eh| ∩h−1

i=1 Ei) is
bounded from above by the probability for the event in the tree. We obtain

E[Nθ
h(v0)] =

∑
p∈Sh(v0)

P(p is θ-admissible in Gεn) ≤
∑

p∈Sh(v0)

P(p present in Tε,θn (v0)).

Particles in generation h of Tε,θn (v0), who have two ancestors with the same tag, are not
represented in the sum on the right-hand side. Adding these, we obtain the result.

Proof of Lemma 3.11. By Lemma 4.7, it suffices to dominate Tε,θnn (v0) by the IBPε((1 +

δ)f) started in sn(v0), or, as in the proof of Proposition 4.4, by the π
ε
n-projected IBP

defined by (4.1). Since both processes are trees starting with the same type of particle,
it suffices to compare the offspring distributions. All particles in Tε,θnn (v0) have a tag
v > bεnc, but the projected IBP can have offspring with tag v ∈ {bεnc + 1, . . . , bεnc}.
Hence, these offspring are ignored in the following, giving us a lower bound on the
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projected IBP. We assume that n is so large, that n ≥ n̂ and sn(bεnc+ 1) ≥ log ε. Let x be
a particle in the IBP of type (λ, α) with πεn(λ) = v. We begin with the offspring to the left,
i.e. tag u ∈ {bεnc+1, . . . , v}. A particle in Tε,θnn (v0) with tag v cannot produce particles in
u = v, therefore, the IBP clearly dominates. For u < v, using (3.8), the probability that
a particle with tag u is a child of x, is P(4Z[u, v − 1] = 1)

)
≤ β(u − 1)−γ(v − 1)−(1−γ).

Writing f̄(k) = (1 + δ)f(k) = γ̄k + β̄, for k ∈ N0, the number of particles with tag u

produced by x in the projected IBP follows a Poisson distribution with parameter∫ sn(u)−λ

sn(u−1)−λ
β̄e(1−γ̄)t dt ≤ β̄

u− 1
e−(1−γ)

∑v−1
k=u−1

1
k ≤ β̄

u− 1

(u− 2

v − 1

)1−γ
,

where we used that λ ≤ sn(v) and ey−1 ≥ y. For % > 0, η ∈ [0, 1], the Poisson distribution
with parameter % is dominating the Bernoulli distribution with parameter η if and only
if e−% ≤ 1− η. Since e−y ≤ 1− y + y2/2 for y ≥ 0, it suffices to show that %(1− %/2) ≥ η.
In our case, η = β(u−1)−γ(v−1)−(1−γ), % = η(1 + δ)(1−1/(u−1))1−γ and the inequality
holds for all large n and u ∈ Vεn, u < v, since η is a null sequence.

We turn to the right descendants. The pure jump process corresponding to the
attachment rule f̄ is denoted by Z̄ and we write P l for the distribution of Z̄ when
started in l, that is, P l(Z̄0 = l) = 1. First suppose that α = `. The cumulative sum
of πεn-projected right descendants of x have the distribution of (Z̄sn(u)−λ : v ≤ u ≤ n),
where Z̄0 = 0. The cumulative sum of right descendants of v in Tε,θnn (v0) is distributed
according to the law of (Z[v, u] ∧ θn : v ≤ u ≤ n). We couple these distributions by
defining ((Y (1)

u ,Y (2)
u ) : v ≤ u ≤ n) to be the time-inhomogeneous Markov chain which

starts in P 0(Z̄sn(v)−λ ∈ ·) ⊗ δ0, has the desired marginals and evolves from state (l, k)

at time j according to a coupling of Z̄1/j and Z[j, j + 1], which guarantees that Z̄1/j ≥
Z[j, j+1], until Y (2) reaches state θn, where Y (2) is absorbed. To show that this coupling
exists, it suffices to show that

e−f̄(l)/j = P l(Z̄1/j = l) ≤ Pk(Z[j, j + 1] = k) = 1− f(k)/j for j ∈ Vεn, k ≤ θn, k ≤ l.

Since f̄ is non decreasing, this inequality follows as above once we show that %(1 −
%/2) ≥ η with η = f(k)/j, % = f̄(k)/j = η(1 + δ). Since k ≤ θn = o(n) and j ≥ bεnc, η is
a null sequence and the claim follows. Hence, Y (1)

j ≥ Y
(2)

j for all j and the domination is
established.

Now suppose that α = r and that the location of x parent is projected onto tag
w. The cumulative sum of πεn-projected right descendants of x has the distribution of
(Ysn(u)−λ : v ≤ u ≤ n), where Y is a version of Z̄ under measure P 1. The cumula-
tive sum of right descendants of v in Tε,θnn (v0) is distributed according to the law of
((Z[v, u]− 1[w,∞)(u))∧ θn : v ≤ u ≤ n) conditioned on 4Z[v, w− 1] = 1. We couple these
distributions as in the α = ` case, but for times j ≤ w−2, the Markov chain evolves from
state (l, k) according to a coupling of Y1/j and Z[j, j+1] conditioned on4Z[j, w−1] = 1,
which guarantees that Y1/j ≥ Z[j, j + 1], until either j = w − 2 or Y (2) reaches θn and is
absorbed. To show that this coupling exists, it suffices to show that

P l+1(Z̄1/j −1 = l) ≤ Pk(Z[j, j+ 1] = k|Z[j, w−1] = 1) for j ∈ Vεn, k ≤ θn, k ≤ l. (4.2)

We compute

Pk(Z[j, j + 1] = k|4Z[j, w − 1] = 1) = 1− P
k(4Z[j, j] = 1,4Z[j, w − 1] = 1)

Pk(4Z[j, w − 1] = 1)

= 1−
f(k)
j Pk+1(4Z[j + 1, w − 1] = 1)

Pk(4Z[j, w − 1] = 1)
= 1− f(k + 1)

j + γ
.
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Since f̄ is non-decreasing, (4.2) follows when we show that %(1 − %/2) ≥ η with η =

f(k+ 1)/(j+ γ) and % = f̄(k+ 1)/j = η(1 + δ)(1 + γ/j). Since k ≤ θn = o(n) and j ≥ bεnc,
η is a null sequence and (4.2) is proved. In the transition from generation j = w − 1

to j = w, Y (2) cannot change its state while Y (1) can increase. From generation j = w

onwards, the coupling explained in case α = ` is used. Thus, the Markov chain can be
constructed such that Y (1)

j ≥ Y
(2)

j for all j and the domination is proved.

4.4 Proof of Theorem 2.1

Proposition 4.4 implies the following result.

Corollary 4.8. Let p ∈ (0, 1] and (cn : n ∈ N) be a sequence with limn→∞ c3n/n = 0 and
limn→∞ cn =∞. Then, as n→∞,

E
[ 1

n− bεnc

n∑
v=bεnc+1

1{|Cεn,p(v)| ≥ cn}
]

= P
(
|Cεn,p(Vn)| ≥ cn

)
→ P (|X ε(p)| =∞) = ζε(p).

This convergence can be strengthened to convergence in probability.

Lemma 4.9. Let p ∈ (0, 1] and (cn : n ∈ N) be a sequence with limn→∞ c3n/n = 0 and
limn→∞ cn =∞. Then

M ε
n,p(cn) :=

1

(1− ε)n

n∑
v=bεnc+1

1{|Cεn,p(v)| ≥ cn} → ζε(p) in probability, as n→∞.

To prove Lemma 4.9, we use a variance estimate for M ε
n,p(cn).

Lemma 4.10. Let p ∈ (0, 1] and (cn : n ∈ N) be a positive sequence. There exists a
constant C > 0 such that

Var(M ε
n,p(cn)) ≤ C

n

(
cn +

c2n
εn

)
.

The proof is almost identical to the proof of Proposition 7.1 in [15]. The necessary
changes are similar to the changes made for the proofs of Proposition 4.1 and 4.4. We
sketch only the main steps.

Proof sketch. Write

Var
( 1

(1− ε)n

n∑
v=bεnc+1

1{|Cεn,p(v)| ≥ cn}
)

=
1

(1− ε)2n2
(4.3)

·
n∑

v,w=bεnc+1

(
P(|Cεn,p(v)| ≥ cn, |Cεn,p(w)| ≥ cn)− P(|Cεn,p(v)| ≥ cn)P(|Cεn,p(w)| ≥ cn)

)
.

To estimate the probability P(|Cεn,p(v)| ≥ cn, |Cεn,p(w)| ≥ cn), we run two successive
explorations in the graph Gεn(p), the first starting from v and the second starting from
w. For these explorations, we use the exploration process described below Proposition
4.1 but in every step only neighbours in the set of veiled vertices are explored. The
first exploration is terminated as soon as either the number of dead and active vertices
exceeds cn or there are no active vertices left. The second exploration, additionally,
stops when a vertex is found which was already unveiled in the first exploration. We
denote

Θv := {the first exploration started in vertex v stops because cn vertices are found}.
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Then, for any v ∈ Vεn, P(|Cεn,p(v)| ≥ cn) = P(Θv) and in the proof of Proposition 7.1 of
[15] it was shown that there exists a constant C ′ > 0, independent of v and n, such that

n∑
w=bεnc+1

P
(
|Cεn,p(v)| ≥ cn, |Cεn,p(w)| ≥ cn

)
(4.4)

≤ P(Θv)
(
cn +

n∑
w=bεnc+1

P(Θw) + C ′cnP
cn(4Z[bεnc+ 1, bεnc+ 1] = 1)

)
.

Combining (4.3) and (4.4) and using (3.8), we deduce that there exists a constant C > 0

with

Var(M ε
n(cn)) ≤ 1

(1− ε)2n2

n∑
v=bεnc+1

P(Θv)
(
cn + C ′

cnf(cn)

εn

)
≤ C

n

(
cn +

c2n
εn

)
.

Proof of Lemma 4.9. Using Chebyshev’s inequality, Corollary 4.8 and Lemma 4.10 yield
the claim.

Lemma 4.9 already implies that the asymptotic relative size of a largest component
in the network is bounded from above by ζε(p). To show that the survival probability
also constitutes a lower bound, we use the following sprinkling argument.

Lemma 4.11. Let ε ∈ [0, 1), p ∈ (0, 1], δ ∈ (0, f(0)) and define f(k) := f(k) − δ for all
k ∈ N0. Denote by Cεn,p(v) the connected component containing v in the network Gεn(p)

constructed with the attachment rule f . Let κ > 0 and (cn : n ∈ N) be a sequence with

lim
n→∞

[ 1
2κ(1− ε)pδcn − log n] =∞ and lim

n→∞
c2n/n = 0.

Suppose that

1

n− bεnc

n∑
v=bεnc+1

1{|Cεn,p(v)| ≥ 2cn} ≥ κ with high probability.

Then there exists a coupling of the networks (Gεn(p))n and (Gεn(p))n such that Gεn(p) ≤
Gεn(p) and, with high probability, all connected components in Gεn(p) with at least 2cn
vertices belong to one connected component in Gεn(p).

Lemma 4.11 in the case ε = 0 and p = 1 is Proposition 4.1 in [15]. The proof is valid
for ε ∈ [0, 1), p ∈ (0, 1] up to obvious changes and is therefore omitted.

Proof of Theorem 2.1. Choose cn = (log n)2. By Lemma 4.9, we have in probability

lim sup
n→∞

|Cεn,p|
(1− ε)n

≤ lim sup
n→∞

max
{ cn

(1− ε)n
,M ε

n,p(cn)
}
≤ ζε(p).

Moreover, for δ ∈ (0, f(0)), another application of Lemma 4.9 implies that M ε
n,p(2cn, f −

δ) converges to ζε(p, f − δ) in probability. Hence, Lemma 2.11 and Lemma 4.11 imply
that for all δ′ > 0, |Cεn,p| ≥ (n−bεnc)(ζε(p)− δ′) with high probability. This concludes the
proof.

5 Variations and other models

We study the preferential attachment network with a non-linear attachment rule in
Section 5.1, and inhomogeneous random graphs and the configuration model in Sec-
tions 5.2.2 and 5.2.1, respectively.
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5.1 Proof of Theorem 1.4

Theorem 1.4 is an immediate consequence of Theorem 1.1 and a stochastic domina-
tion result on the level of the networks. We make use of the notation and terminology
introduced in Section 1.4.

Proof of Theorem 1.4. First suppose that f is a L-class attachment rule with f ≥ f ≥ f

for two affine attachment rules given by f(k) = γk + βu and f(k) = γk + βl for k ∈ N0.

There exists a natural coupling of the networks generated by these attachment rules
such that

Gn ≥ Gn ≥ Gn for all n ∈ N.

This ordering is retained after percolation and implies and ordering pc(ε) ≤ pc(ε) ≤ p
c
(ε)

of the critical percolation parameters of the networks. Applying Theorem 1.1 to f and
f , we obtain positive constants C1, . . . , C4 such that, for small ε ∈ (0, 1),

C1

log(1/ε)
≤ pc(ε) ≤ C2

log(1/ε)
if γ = 1

2 , C3ε
γ−1/2 ≤ pc(ε) ≤ C4ε

γ−1/2 if γ > 1
2 ,

and the result follows.

Now let f be a C-class attachment rule. Concavity of f implies that the increments
γk := f(k + 1) − f(k), for k ∈ N0, form a non-increasing sequence converging to γ. In
particular, with f(k) := γk + f(0), we get f(k) =

∑k−1
l=0 γl + f(0) ≥ γk + f(0) = f(k), for

all k ∈ N0. To obtain a corresponding upper bound, let βj := f(j) − γjj. Then βj > 0

and for all k ∈ N0,

f(k)−βj = f(k)−f(j)+γjj =

{
−
∑j−1
l=k γl + γjj ≤ −(j − k)γj + γjj if k ≤ j∑k−1
l=j γl + γjj ≤ (k − j)γj + γjj if k ≥ j

}
= γjk.

Hence, the attachment rule given by f j(k) := γjk + βj , for k ∈ N0, satisfies f j ≥ f , and
we can use the same coupling as in the first part of the proof to obtain

p(j)
c (ε) ≤ pc(ε) ≤ p

c
(ε),

where p(j)
c (ε) corresponds to the network with attachment rule fj . Since γj ↓ γ, we have

γj ∈ [ 1
2 , 1) for large j. Theorem 1.1 yields, for γ > 1

2 , constants C,Cj > 0 such that

logCj + (γj − 1/2) log ε ≤ log pc(ε) ≤ logC + (γ − 1/2) log ε.

Dividing by log ε and then taking first ε ↓ 0 and then j → ∞ yields the claim for γ > 1
2 .

In case γ = 1
2 it could happen that γj >

1
2 for all j ∈ N. In this situation, Theorem 1.1

does not give a bound on the right scale. Therefore, we can use only the upper bound
on pc(ε) which gives the stated result.

5.2 Other models

In this section, we study vulnerability of two other classes of robust network models.

5.2.1 Configuration model

The configuration model is a natural way to construct a network with given degree
sequence. Its close connection to the uniformly chosen simple graph with given de-
gree sequence is explained in Section 7.4 in [23]. Existence of a giant component in
the configuration model has been studied by Molloy and Reed [30] and Janson and
Luczak [26, 25]. Recall from Section 1.5.1 that we write D for the weak limit of the
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degree of a uniformly chosen vertex. Janson and Luczak [26] showed that if (1.6) holds
and P(D = 2) < 1, then

(G(CM)

n : n ∈ N) has a giant component ⇔ E[D(D − 1)] > ED.

Janson [25] found a simple construction that allows to obtain a corresponding result
for the network after random or deterministic removal of vertices (or edges), where
the retention probability of a vertex can depend on its degree. Let π = (πk)k∈N be a
sequence of retention probabilities with πkP(D = k) > 0 for some k. Every vertex i

is removed with probability 1 − πdi and kept with probability πdi , independently of all
other vertices. Janson describes the network after percolation as follows [25, page 90]:
For each vertex i replace it with probability 1−πdi by di new vertices of degree 1. Then
construct the configuration model G(CM),π

n corresponding to the new degree sequence
and larger number of vertices and remove from this graph uniformly at random vertices
of degree 1 until the correct number of vertices for G(CM)

n after percolation is reached.
The removal of these surplus vertices cannot destroy or split the giant component since
the vertices are of degree 1. Hence, it suffices to study the existence of nonexistence of
a giant component in G(CM),π

n .

To construct G(CM),ε
n (p), we remove the bεnc vertices with the largest degree from

G(CM)
n and then run vertex percolation with retention probability p on the remaining

graph. In general, this does not fit exactly into the setup of Janson. To emulate the
behaviour, we denote by nj the number of vertices with degree j in the graph and let
Kn = inf{k ∈ N0 :

∑∞
j=k+1 nj ≤ bεnc}. Then all vertices with degree larger than Kn

are deterministically removed in G(CM),ε
n (p), i.e. πj = 0 for j ≥ Kn + 1. In addition,

we deterministically remove bεnc −
∑∞
j=Kn+1 nj vertices of degree Kn, while all other

vertices are subject to vertex percolation with retention probability p. In particular,
πj = p for j ≤ Kn − 1. Denote by F (x) := P(D ≤ x), for x ≥ 0, and by [1 − F ]−1 the
generalized inverse of [1 − F ], that is [1 − F ]−1(u) = inf{k ∈ N0 : [1 − F ](k) ≤ u} for all
u ∈ (0, 1). One easily checks thatKn ∈ {m,m+1} for all large n, wherem := [1−F ]−1(ε).
Using this observation, it is not difficult to adapt Janson’s proof to show that

(G(CM),ε
n (p) : n ∈ N) has a giant component ⇔ p > pc(ε),

where

pc(ε) :=
ED

E[D(D − 1)1D≤m]−m(m− 1)(ε− [1− F ](m))
.

Proof of Theorem 1.6. Let U be a uniformly distributed random variable on (0, 1). Then
[1− F ]−1(U) has the same distribution as D and

E[D(D − 1)1{D≤m}]−m(m− 1)(ε− [1− F ](m))

= E
[
[1− F ]−1(U)

(
[1− F ]−1(U)− 1

)
1{U≥ε}

]
� E

[
[1− F ]−1(U)2

1{U≥ε}
]
.

The assumption [1 − F ](k) ∼ Ck−1/γ as k → ∞ implies that [1 − F ]−1(u) ∼ Cγu−γ as
u ↓ 0. Let u0 > 0 such that

1

2
≤ [1− F ]−1(u)

Cγu−γ
≤ 3

2
for all u ≤ u0.

Since [1− F ]−1(u)2 is not integrable around zero, but bounded on [u0, 1), we deduce

E
[
[1− F ]−1(U)2

1{U≥ε}
]

=

∫ 1

ε

[1− F ]−1(u)2 du �
∫ u0

ε

[1− F ]−1(u)2 du

�
∫ u0

ε

u−2γ du �

{
log(1/ε) if γ = 1

2 ,

ε1−2γ if γ > 1
2 .
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5.2.2 Inhomogeneous random graphs

The classical Erdős-Rényi random graph can be generalized by giving each vertex a
weight and choosing the probability for an edge between two vertices as an increas-
ing function of their weights. Suppose that κ : (0, 1] × (0, 1] → (0,∞) is a symmetric,
continuous kernel with ∫ 1

0

∫ 1

0

κ(x, y) dx dy <∞ (5.1)

and recall from (1.7) that in the inhomogeneous random graph G(κ)
n , the edge {i, j} is

present with probability 1
nκ( in ,

j
n )∧ 1, independently of all other edges. We assume that

vertices are ordered in decreasing order of privilege, i.e. κ is non-increasing in both
components. Bollobás et al. show in Theorem 3.1 and Example 4.11 of [6] that

(G(κ),ε
n (p) : n ∈ N) has a giant component ⇔ p > pc(ε) := ‖Tκ‖−1

L2(ε,1), (5.2)

where

Tκg(x) =

∫ 1

ε

κ(x, y)g(y) dy, for all x ∈ (ε, 1),

for all measurable functions g such that the integral is well-defined, and ‖ · ‖L2(ε,1) de-
notes the operator norm on the L2-space with respect to the Lebesgue measure on
(ε, 1). The same result holds for a version of the Norros-Reittu model in which edges
between different vertex pairs are independent and edge {i, j} is present with prob-
ability 1 − e−κ(i/n,j/n)/n for all i, j ∈ {1, . . . , n}. Consequently, the estimates given in
Theorem 1.7 hold for this model, too.

Proof of Theorem 1.7. Since κ(CL) and κ(PA) are positive, symmetric, continuous kernels
satisfying (5.1), the first part of the theorem follows immediately from (5.2). By defini-
tion

‖Tκ‖L2(ε,1) = sup
{
‖Tκg‖L2(ε,1) : ‖g‖L2(ε,1) ≤ 1

}
.

For a rank one kernel κ(x, y) = ψ(x)ψ(y), the operator norm of Tκ is attained at the
function ψ/‖ψ‖L2(ε,1) with ‖Tκ‖L2(ε,1) = ‖ψ‖2L2(ε,1). Hence,

‖Tκ(CL)‖L2(ε,1) =

∫ 1

ε

x−2γ dx =

{
log(1/ε) if γ = 1/2,

1
1−2γ

[
1− ε1−2γ

]
if γ 6= 1

2 ,

and

p(CL)

c (ε) =


(1− 2γ) 1

1−ε1−2γ if γ < 1
2 ,

1
log(1/ε) if γ = 1

2 ,

(2γ − 1)ε2γ−1 1
1−ε2γ−1 if γ > 1

2 .

Now suppose that γ > 1/2. By Cauchy-Schwarz’s inequality and the symmetry of κ(PA),

‖Tκ(PA)‖2L2(ε,1) ≤
∫ 1

ε

∫ 1

ε

κ(PA)(x, y)2 dy dx = 2

∫ 1

ε

∫ x

ε

x2(γ−1)y−2γ dy dx

≤ 2

∫ 1

0

x2(γ−1) dx

∫ ∞
ε

y−2γ dy =
2

(2γ − 1)2
ε1−2γ .
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For the lower bound, let cε =
√

2γ − 1εγ−1/2 and g(x) = cεx
−γ . Then ‖g‖L2(ε,1) ≤ 1 and

‖Tκ(PA)‖|2L2(ε,1) ≥ ‖Tκ(PA)g‖|2L2(ε,1) ≥
∫ 1

ε

(∫ x

ε

κ(PA)(x, y)g(y) dy
)2

dx

=
c2ε

(2γ − 1)2

∫ 1

ε

x2(γ−1)[ε1−2γ − x1−2γ ]2 dx

≥ c2ε
(2γ − 1)2

∫ 1

ε

x2(γ−1)
[
ε2(1−2γ) − 2ε1−2γx1−2γ

]
dx

=
ε1−2γ

(2γ − 1)2

[
1− ε2γ−1 + 2(2γ − 1)ε2γ−1 log ε

]
.

The claim follows.
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