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Abstract

In this paper we translate Talagrand’s solution of the K-sat model at high tempera-
ture into the language of asymptotic Gibbs measures. Using exact cavity equations in
the infinite volume limit allows us to remove many technicalities of the inductions on
the system size, which clarifies the main ideas of the proof. This approach also yields
a larger region of parameters where the system is in a pure state and, in particular,
for small connectivity parameter one can prove the replica symmetric formula for the
free energy at any temperature.
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1 Introduction

The replica symmetric solution of the random K-sat model at high temperature was
first proved by Talagrand in [9], and later the argument was improved in [10] and,
again, in [11]. The main technical tool of the proof is the so called cavity method, but
there are several other interesting and non-trivial ideas that play an important role. In
this paper, we will translate these ideas into the language of asymptotic Gibbs measures
developed by the author in [8]. The main advantage of this approach is that the cavity
equations become exact in the infinite volume limit, which allows us to bypass all subtle
inductions on the size of the system and to clarify the essential ideas. Using the exact
cavity equations, we will also be able to prove that the system is in a pure state for
a larger region of parameters. Another approach to prove the validity of the replica
symmetric solution was developed by Montanari and Shah in [6] and (although we will
not do this here) their argument can be translated into the language of the asymptotic
Gibbs measures as well.

Consider an integer p ≥ 2 and real numbers α > 0, called the connectivity parameter,
and β > 0, called the inverse temperature parameter. Consider a random function

θ(σ1, . . . , σp) = −β
∏

1≤i≤p

1 + Jiσi
2

(1.1)
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Replica symmetric solution of the K-sat model

on {−1, 1}p, where (Ji)1≤i≤p are independent random signs, P(Ji = ±1) = 1/2. Let
(θk)k≥1 be a sequence of independent copies of the function θ, defined in terms of
independent copies of (Ji)1≤i≤p. Using this sequence, we define a Hamiltonian HN (σ)

on ΣN = {−1, 1}N by

−HN (σ) =
∑

k≤π(αN)

θk(σi1,k , . . . , σip,k), (1.2)

where π(αN) is a Poisson random variable with the mean αN and the indices (ij,k)j,k≥1

are independent uniform on {1, . . . , N}. This is the Hamiltonian of the random K-sat
model with K = p, and our goal will be to compute the limit of the free energy

FN =
1

N
E log

∑
σ∈ΣN

exp
(
−HN (σ)

)
(1.3)

as N → ∞ in some region of parameters (α, β). It will be convenient to extend the
definition of the function θ from {−1, 1}p to [−1, 1]p as follows. Since the product over
1 ≤ i ≤ p in (1.1) takes only two values 0 and 1, we can write

exp θ(σ1, . . . , σp) = 1 + (e−β − 1)
∏

1≤i≤p

1 + Jiσi
2

.

At some point, we will be averaging exp θ over the coordinates σ1, . . . , σp independently
of each other, so the resulting average will be of the same form with σi taking values in
[−1, 1]. It will be our choice to represent this average again as exp θ with θ now defined
by

θ(σ1, . . . , σp) = log
(

1 + (e−β − 1)
∏

1≤i≤p

1 + Jiσi
2

)
. (1.4)

Of course, on the set {−1, 1}p this definition coincides with (1.1). Note that this function
takes values in the interval [−β, 0].

Let us denote by Pr[−1, 1] the set of probability measures on [−1, 1]. Given ζ ∈
Pr[−1, 1], let (zi)i≥1 and (zi,j)i,j≥1 be i.i.d. random variables with the distribution ζ and
let

P(ζ) = log 2 + E log Av exp
∑

k≤π(pα)

θk(z1,k, . . . , zp−1,k, ε)

− (p− 1)αEθ(z1, . . . , zp), (1.5)

where π(αp) is a Poisson random variable with the mean αp independent of everything
else and Av denotes the average over ε ∈ {−1, 1}. The functional P(ζ) is called the
replica symmetric formula in this model. Our first result will hold in the region of
parameters

min(4β, 1)(p− 1)pα < 1. (1.6)

In this case, we will show that asymptotically the system is always in a pure state in the
sense that will be explained in Section 3 and the following holds.

Theorem 1.1. If (1.6) holds then

lim
N→∞

FN = inf
ζ∈Pr[−1,1]

P(ζ). (1.7)

Notice that when the connectivity parameter α is small, (p − 1)pα < 1, the formula
(1.7) holds for all temperatures, which is a new feature of our reformulation of Tala-
grand’s proof, although the argument of Montanari and Shah in [6] gives a better region
of parameters α for which the replica symmetric solution holds at all temperatures.

EJP 19 (2014), paper 67.
Page 2/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2963
http://ejp.ejpecp.org/


Replica symmetric solution of the K-sat model

One can say more under the additional assumption that

1

2
(eβ − 1)(p− 1)pα < 1. (1.8)

In particular, in this case one can show that the asymptotic Gibbs measure, which will
be defined in the next section, is unique and, as a result, the infimum in (1.7) can
be replaced by P(ζ), where ζ can be characterized as a fixed point of a certain map
arising from the cavity computations. For r ≥ 1, let us consider a (random) function
Tr : [−1, 1](p−1)r → [−1, 1] defined by

Tr
(
(σj,k)j≤p−1,k≤r

)
=

Av ε expA(ε)

Av expA(ε)
, (1.9)

where
A(ε) =

∑
k≤r

θk(σ1,k, . . . , σp−1,k, ε). (1.10)

We set T0 = 0 and define a map

T : Pr[−1, 1]→ Pr[−1, 1] (1.11)

in terms of the functions (Tr) as follows. Given ζ ∈ Pr[−1, 1], if we again let (zj,k)j≤p−1,k≥1

be i.i.d. random variables with the distribution ζ then T (ζ) is defined by

T (ζ) = L
(
Tπ(αp)

(
(zj,k)j≤p−1,k≤π(αp)

))
=
∑
r≥0

(αp)r

r!
e−αpL

(
Tr
(
(zj,k)j≤p−1,k≤r

))
, (1.12)

where L(X) denotes the distribution of X. In the second line, we simply wrote the
distribution as a mixture over possible values of π(αp), since this Poisson random vari-
able is independent of everything else. The following is essentially the main result in
Chapter 6 in [11].

Theorem 1.2. If (1.8) holds then the map T has a unique fixed point, T (ζ) = ζ. If both
(1.6) and (1.8) hold then limN→∞ FN = P(ζ).

After we prove this result, we will explain the meaning of the fixed point ζ in this
theorem, which is simply the distribution of spin magnetizations of the system in the
thermodynamic limit. As we already mentioned, the main ideas of the proof we give
here will be the same as in [11] but, hopefully, more transparent. Of course, there is
a trade-off in the sense that, instead of working with approximate cavity computations
for systems of finite size and using the induction on N , one needs to understand how
these cavity computations can be written rigorously in the infinite volume limit, which
was the main point of [8]. However, we believe that passing through this asymptotic
description makes the whole proof less technical and more conceptual. Moreover, the
results in [8] hold for all parameters, and here we simply specialize the general theory
to the high temperature region using methods developed in [9, 10, 11].

In the next section, we will review the definition of asymptotic Gibbs measures and
recall the main results from [8], namely, the exact cavity equations and the formula for
the free energy in terms of asymptotic Gibbs measures. In Section 3, we will prove that,
under (1.6), all asymptotic Gibbs measures concentrate on one (random) function (so
the system is in a pure state) and in Section 4 we will deduce Theorem 1.1 from this
fact. Finally, in Section 5, we will prove Theorem 1.2 by showing that, under (1.6) and
(1.8), the asymptotic Gibbs measure is unique. Of course, as in [11], the same proof
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Replica symmetric solution of the K-sat model

works for diluted p-spin models as well but, for simplicity of notations, we will work
only with the Hamiltonian (1.2) of the p-sat model.

Acknowledgments. The author would like to thank the referee for several helpful
comments and suggestions.

2 Asymptotic Gibbs measures

In this section we will review the main results in [8] starting with the definition of
asymptotic Gibbs measures. The Gibbs measure GN corresponding to the Hamiltonian
(1.2) is a (random) probability measure on {−1, 1}N defined by

GN (σ) =
1

ZN
exp
(
−HN (σ)

)
(2.1)

where the normalizing factor ZN is called the partition function. Let (σ`)`≥1 be an i.i.d.
sequence of replicas drawn from the Gibbs measure GN and let µN denote the joint
distribution of the array of all spins on all replicas, (σ`i )1≤i≤N,`≥1, under the average
product Gibbs measure EG⊗∞N . In other words, for any choice of signs a`i ∈ {−1, 1} and
any n ≥ 1,

µN

({
σ`i = a`i : 1 ≤ i ≤ N, 1 ≤ ` ≤ n

})
= EG⊗nN

({
σ`i = a`i : 1 ≤ i ≤ N, 1 ≤ ` ≤ n

})
.

(2.2)
Let us extend µN to a distribution on {−1, 1}N×N simply by setting σ`i = 0 for i ≥ N + 1.

LetM be the sets of all possible limits of (µN ) over subsequences with respect to weak
convergence of measures on the compact product space {−1, 1}N×N. We will call these
limits the asymptotic Gibbs measures. One crucial property that these measures inherit
from µN is the invariance under the permutation of both spin and replica indices i and `.
Invariance under the permutation of the replica indices is obvious, and invariance under
the permutation of the spin index holds because the distribution of the Hamiltonian (1.2)
is invariant under any such permutation. In other words, there is symmetry between
coordinates in distribution, which is called symmetry between sites.

Because of these symmetries, all asymptotic Gibbs measures have some special
structure. By the Aldous-Hoover representation [1, 4], for any µ ∈ M, there exists
a measurable function σ : [0, 1]4 → {−1, 1} such that µ is the distribution of the array

s`i = σ(w, u`, vi, xi,`), (2.3)

where random variables w, (u`), (vi), (xi,`) are i.i.d. uniform on [0, 1]. The function σ is
defined uniquely for a given µ ∈ M, up to measure-preserving transformations (Theo-
rem 2.1 in [5]), so we can identify the distribution µ of array (s`i) with σ. Since, in our
case, σ take values in {−1, 1}, the distribution µ is completely encoded by the function

σ̄(w, u, v) = Exσ(w, u, v, x) (2.4)

where Ex is the expectation in x only. The last coordinate xi,` in (2.3) is independent
for all pairs (i, `), and we can think of it as flipping a coin with the expected value
σ̄(w, u`, vi). In fact, given the function (2.4), we can always redefine σ by

σ(w, u`, vi, xi,`) = 2I
(
xi,` ≤

1

2

(
1 + σ̄(w, u`, vi)

))
− 1.

One can think of the function σ̄ in a more geometric way as a Gibbs measure on the
space of functions, as follows. It is well known that asymptotically the joint distribution
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µ ∈M of all spins contains the same information as the joint distribution of all so called
multi-overlaps

RN`1,...,`n =
1

N

∑
1≤i≤N

σ`1i · · ·σ
`n
i (2.5)

for all n ≥ 1 and all `1, . . . , `n ≥ 1. This is easy to see by expressing the joint moments
of one array in terms of the joint moment of the other. In particular, one can check that
the asymptotic distribution of the array (2.5) over a subsequence of µN converging to
µ ∈M coincides with the distribution of the array

R`1,...,`n = Ev σ̄(w, u`1 , v) · · · σ̄(w, u`n , v) (2.6)

for n ≥ 1 and `1, . . . , `n ≥ 1, where Ev denotes the expectation in the last coordinate v
only. The average of replicas over spins in (2.5) has been replaced by the average of
functions over the last coordinate, and we can think of the sequence (σ̄(w, u`n , ·))`≥1 as
an i.i.d. sequence of replicas sampled from the (random) probability measure

Gw = du ◦
(
u→ σ̄(w, u, ·)

)−1
(2.7)

on the space L2([0, 1], dv) ∩ {‖σ̄‖∞ ≤ 1} with the topology of L2([0, 1], dv). Here, both
du and dv denote the Lebesgue measure on [0, 1]. Thus, thanks to the Aldous-Hoover
representation, to every asymptotic Gibbs measure µ ∈ M we can associate a function
σ̄ on [0, 1]3 or a random measure Gw of the above space of functions. One can find a
related interpretation in terms of exchangeable random measures in [2].

The main idea introduced in [8] was a special regularizing perturbation of the Hamil-
tonian HN (σ) that allows to pass some standard cavity computations for the Gibbs mea-
sure GN to the limit and state them in terms of the asymptotic Gibbs measures µ ∈ M.
We will refer to [8] for details and only mention that the perturbation mimics adding to
the system a random number (of order logN ) of cavity coordinates from the beginning.
Because of this perturbation, treating a finite number of coordinates as cavity coordi-
nates is “not felt" by the Gibbs measure, which results in a number of useful properties
in the limit. The perturbation is small enough and does not affect the limit of the free
energy FN . In the rest of this section, we will describe the cavity equations in terms of
the functions σ in (2.3) and state some of their consequences.

Let us introduce some notation. We will often need to pick various sets of different
spin coordinates in the array (s`i) in (2.3), and it is quite inconvenient to enumerate
them using one index i ≥ 1. Instead, we will use multi-indices (i1, . . . , in) for n ≥ 1 and
i1, . . . , in ≥ 1 and consider

si1,...,in = σ(w, u, vi1,...,in , xi1,...,in), (2.8)

where (vi1,...,in), (xi1,...,in) are i.i.d. uniform on [0, 1]. In addition to (2.8), we will need

ŝi1,...,in = σ(w, u, v̂i1,...,in , x̂i1,...,in), (2.9)

for some independent copies v̂ and x̂ of the sequences v and x. Let (θi1,...,in) and
(θ̂i1,...,in) be i.i.d. copies of the random function θ.

Take arbitrary integer n,m, q, r ≥ 1 such that n ≤ m. The index q will represent the
number of replicas selected, m will be the total number of spin coordinates and n will be
the number of cavity coordinates. The parameter r ≥ 1 will index certain terms in the
cavity equations that are allowed because of the stability properties of the Hamiltonian
(1.2); these terms played an important role in [8] and will appear in the formulation of
the mains results from [8], but will not be used throughout this paper after that. For
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Replica symmetric solution of the K-sat model

each replica index ` ≤ q we consider an arbitrary subset of coordinates C` ⊆ {1, . . . ,m}
and split them into cavity and non-cavity coordinates

C1
` = C` ∩ {1, . . . , n}, C2

` = C` ∩ {n+ 1, . . . ,m}. (2.10)

The following quantities represent the cavity fields for i ≥ 1,

Ai(ε) =
∑

k≤πi(αp)

θk,i(s1,i,k, . . . , sp−1,i,k, ε), (2.11)

where ε ∈ {−1, 1} and (πi(αp))i≥1 are i.i.d. Poisson random variables with the mean
αp. Let E′ denote the expectation in u and the sequences x and x̂, and Av denote the
average over (εi)i≥1 in {−1, 1}N with respect to the uniform distribution. Define

U` = E′
(

Av
(∏
i∈C1

`

εi exp
∑
i≤n

Ai(εi)
) ∏
i∈C2

`

si exp
∑
k≤r

θ̂k(ŝ1,k, . . . , ŝp,k)
)
,

V = E′
(

Av
(

exp
∑
i≤n

Ai(εi)
)

exp
∑
k≤r

θ̂k(ŝ1,k, . . . , ŝp,k)
)
. (2.12)

The following result proved in Theorem 1 in [8] expresses some standard cavity compu-
tations in terms of the asymptotic Gibbs measures.

Theorem 2.1. For any µ ∈M and the corresponding function σ in (2.3),

E
∏
`≤q

E′
∏
i∈C`

si = E

∏
`≤q U`

V q
. (2.13)

The left hand side can be written using replicas as E
∏
`≤q
∏
i∈C`

s`i , so it represent
an arbitrary joint moment of spins in the array (2.3). The right hand side expresses what
happens to this joint moment when we treat the first n spins as cavity coordinates. As
in [8], we will denote byMinv the set of distributions of exchangeable arrays generated
by functions σ : [0, 1]4 → {−1, 1} as in (2.3) that satisfy the cavity equations (2.13) for
all possible choices of parameters. Theorem 2.1 shows thatM ⊆Minv, which was the
key to proving the formula for the free energy in terms of asymptotic Gibbs measures.
Let us consider the functional

P(µ) = log 2 + E logE′Av exp
∑

k≤π(pα)

θk(s1,k, . . . , sp−1,k, ε)

− (p− 1)αE logE′ exp θ(s1, . . . , sp). (2.14)

The next result was proved in Theorem 2 in [8].

Theorem 2.2. The following holds,

lim
N→∞

FN = inf
µ∈M

P(µ) = inf
µ∈Minv

P(µ). (2.15)

Remark. This result was stated in [8] for even p ≥ 2 only, where this condition was
used in the proof of the Franz-Leone upper bound [3]. However, in the case of the p-sat
model the proof works for all p without any changes at all, as was observed in Theorem
6.5.1 in [11]. The condition that p is even is needed in the corresponding result for
the diluted p-spin model, and that is why it appears in [7, 8], where both models were
treated at the same time.
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For some applications, it will be convenient to rewrite (2.13) in a slightly different
form. From now on, we will not be using the terms θ̂k in (2.12), so we will now set r = 0.
Let us consider some function f(σ1, σ2) on {−1, 1}m×q of the arguments

σ1 = (σ`1, . . . , σ
`
n)1≤`≤q ∈ {−1, 1}n×q,

σ2 = (σ`n+1, . . . , σ
`
m)1≤`≤q ∈ {−1, 1}(m−n)×q. (2.16)

For example, if we consider the function

f(σ1, σ2) =
∏
`≤q

∏
i∈C`

σ`i =
∏
`≤q

(∏
i∈C1

`

σ`i
∏
i∈C2

`

σ`i

)
(2.17)

then the left hand side of (2.13) can be written as Ef(s1, s2), where s1 and s2 are the
corresponding subarrays of (s`i) in (2.3). To rewrite the right hand side, similarly to
(2.8), let us consider

s`i1,...,in = σ(w, u`, vi1,...,in , x
`
i1,...,in), (2.18)

where, as always, all the variables are i.i.d. uniform on [0, 1] for different indices and
define, for ε = (ε`i)i≤n,`≤q ∈ {−1, 1}n×q,

E(ε) =
∏
`≤q

exp
∑
i≤n

Ai,`(ε
`
i), (2.19)

where
Ai,`(ε

`
i) =

∑
k≤πi(αp)

θk,i(s
`
1,i,k, . . . , s

`
p−1,i,k, ε

`
i). (2.20)

Then, with this notation, the equation (2.13) can be rewritten as

Ef(s1, s2) = E
E′Avf(ε, s2)E(ε)

E′Av E(ε)
. (2.21)

Simply, we expressed a product of expectations E′ over replicas ` ≤ q by an expectation
of the product, using replicas of the random variables u and x that are being averaged.
Since any function f on {−1, 1}m×q is a linear combination of monomials of the type
(2.17), (2.21) holds for any such f . From here, it is not difficult to conclude that for any
functions f1, . . . , fk on {−1, 1}m×q and any continuous function F : Rk → R,

EF
(
E′f1(s1, s2), . . . ,E′fk(s1, s2)

)
= EF

(E′Avf1(ε, s2)E(ε)

E′Av E(ε)
, . . . ,

E′Avfk(ε, s2)E(ε)

E′Av E(ε)

)
.

(2.22)
It is enough to prove this for functions F (a1, . . . , ak) = an1

1 · · · a
nk

k for integer powers
n1, . . . , nk ≥ 0, and this immediately follows from (2.21) by considering f on q(n1 + . . .+

nk) replicas given by the product of copies of f1, . . . , fk on different replicas, so that
each fi appears ni times in this product.

3 Pure state

In this section, we will show that in the region (1.6) the function σ̄(w, u, v) in (2.4)
corresponding to any µ ∈ Minv essentially does not depend on the coordinate u. In
other words, for almost all w, the Gibbs measure Gw in (2.7) is concentrated on one
function in L2([0, 1], dv) ∩ {‖σ̄‖∞ ≤ 1}. This is expressed by saying that the system is in
a pure state.

Theorem 3.1. Under (1.6), σ̄(w, u, v) = Euσ̄(w, u, v) for almost all w, u, v ∈ [0, 1], where
Eu denotes the expectation in u only.
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When the system is in a pure state, we will simply omit the coordinate u and write
σ̄(w, v). In this case, a joint moment of finitely many spins,

E
∏
i,`

s`i = E
∏
i,`

σ̄(w, u`, vi) = E
∏
i,`

σ̄(w, vi),

does not depend on replica indices, which means that we can freely change them, for
example, Es1

1s
2
1s

1
2s

2
2 = Es1

1s
2
1s

3
2s

4
2. As in [11], the strategy of the proof will be to show

that we can change one replica index at a time,

Es1
1

∏
(i,`)∈C

s`i = Es`
′

1

∏
(i,`)∈C

s`i , (3.1)

where a finite set of indices C does not contain (1, 1) and (1, `′). Using this repeatedly,
we can make all replica indices different from each other, showing that any joint mo-
ment depends only on how many times each spin index i appears in the product. Of
course, this implies that

E
∏
i,`

s`i = E
∏
i,`

Euσ̄(w, u, vi),

so we could replace the function σ̄(w, u, v) by Euσ̄(w, u, v) without changing the distri-
bution of the array (s`i). This would be sufficient for our purposes, since we do not really
care how the function σ̄ looks like as long as it generates the array of spins (s`i) with
the same distribution. However, it is not difficult to show that, in this case, the function
σ̄(w, u, v) essentially does not depend on u anyway. Let us explain this first.

Proof of Theorem 3.1 (assuming (3.1)). If (3.1) holds then Es1
1s

2
1s

1
2s

2
2 = Es1

1s
2
1s

3
2s

4
2. This

can also be written in terms of the asymptotic overlaps R`,`′ defined in (2.6) as

ER2
1,2 = ER1,2R3,4.

Since R`,`′ is the scalar product in (L2[0, 1], dv) of replicas σ` and σ`
′

drawn from the
asymptotic Gibbs measure Gw in (2.7),

0 = ER2
1,2 − ER1,2R3,4 = EVarGw(σ1 · σ2),

which implies that for almost all w the overlap is constant almost surely. Obviously, this
can happen only if Gw is concentrated on one function (that may depend on w) and this
finishes the proof.

In the rest of the section we will prove (3.1). The main idea of the proof will be almost
identical to Section 6.2 in [11], even though there will be no induction on the system
size. One novelty will be that the cavity equations (2.13) for the asymptotic Gibbs
measures will allow us to give a different argument for large values of β, improving the
dependence of the pure state region on the parameters. We will begin with this case,
since it is slightly simpler.

Without loss of generality, we can assume that `′ = 2 in (3.1). Given m, q ≥ 1, for
j = 1, 2, let us consider functions fj(σ1, σ2) on {−1, 1}m×q with σ1 and σ2 as in (2.16).
We will suppose that

0 < f2 and |f1| ≤ f2. (3.2)

Let us fix n ≤ m and, as before, we will treat the first n coordinates as cavity coordi-
nates. Consider the map

T : {−1,+1}m×q → {−1,+1}m×q (3.3)
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Replica symmetric solution of the K-sat model

that switches the coordinates (σ1
1 , . . . , σ

1
n) with (σ2

1 , . . . , σ
2
n) and leaves other coordinates

untouched. The statement of the following lemma does not involve β, but it will be used
when β is large enough.

Lemma 3.2. If (p− 1)pα < 1 and the function f1 satisfies f1 ◦ T = −f1 then

E

∣∣∣E′f1(s1, s2)

E′f2(s1, s2)

∣∣∣ = 0. (3.4)

To see that (3.4) implies (3.1) with `′ = 2, take n = 1, f2 = 1 and f1 = 0.5(σ1
1 −

σ2
1)
∏

(i,`)∈C σ
`
i .

Proof. By (3.2), the function f2 on {−1, 1}m×q is strictly separated from 0, so we can use
(2.22) with k = 2 and F (a1, a2) = a1/a2 to get

E

∣∣∣E′f1(s1, s2)

E′f2(s1, s2)

∣∣∣ = E

∣∣∣E′Avf1(ε, s2)E(ε)

E′Avf2(ε, s2)E(ε)

∣∣∣. (3.5)

Recall that Av is the average over ε = (ε`i)i≤n,`≤q ∈ {−1, 1}n×q and

E(ε) =
∏
`≤q

exp
∑
i≤n

Ai,`(ε
`
i), where Ai,`(ε

`
i) =

∑
k≤πi(αp)

θk,i(s
`
1,i,k, . . . , s

`
p−1,i,k, ε

`
i). (3.6)

For a moment, let us fix all the random variables πi(αp) and θi,k and let r :=
∑
i≤n πi(αp).

Observe right away that if r = 0 then E(ε) = 1 and

Avf1(ε, s2)E(ε) = Avf1(ε, s2) = 0. (3.7)

This is because the average Av does not change if we switch the coordinates (ε1
1, . . . , ε

1
n)

with (ε2
1, . . . , ε

2
n) (in other words, just rename the coordinates) and, by assumption,

Avf1(ε, s2) = Av
(
f1(ε, s2) ◦ T

)
= −Avf1(ε, s2).

Now, let us denote the set of all triples (j, i, k) that appear as subscripts in (3.6) by

J =
{

(j, i, k) : j ≤ p− 1, i ≤ n, k ≤ πi(αp)
}
. (3.8)

If we denote by s̃1 = (s`e)e∈J,`≤q all the coordinates of the array s that appear in E(ε)

then, for r ≥ 1, we can think of the averages on the right hand side of (3.5) as functions
of s2 and s̃1,

f̃j = f̃j(s̃1, s2) := Avfj(ε, s2)E(ε). (3.9)

Even though s2 and s̃1 are random variables, for simplicity of notation, here we think of
them also as variables of the functions f̃j . First of all, since |f1| ≤ f2,

|f̃1| ≤ Av|f1(ε, s2)|E(ε) ≤ Avf2(ε, s2)E(ε) = |f̃2|.

Similarly to T , let T̃ now be the map that switches the vectors of spins (s1
e)e∈J and

(s2
e)e∈J in s̃1 corresponding to the first and second replica. Let us show that f̃1◦T̃ = −f̃1.

First, we write
f̃1 ◦ T̃ = Av

(
f1(ε, s2) (E(ε) ◦ T̃ )

)
.

As above, we will use that the average Av does not change if we switch the coordinates
(ε1

1, . . . , ε
1
n) with (ε2

1, . . . , ε
2
n), so

f̃1 ◦ T̃ = Av
(
(f1(ε, s2) ◦ T )(E(ε) ◦ T̃ T )

)
.
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By assumption, f1 ◦ T = −f1 and it remains to notice that E(ε) ◦ T̃ T = E(ε), because
T̃ T simply switches all the terms Ai,1 and Ai,2 in the definition of E(ε). We showed that
(3.5) can be rewritten as

E

∣∣∣E′f1(s1, s2)

E′f2(s1, s2)

∣∣∣ = E

∣∣∣E′f̃1(s̃1, s2)

E′f̃2(s̃1, s2)

∣∣∣, (3.10)

and, conditionally on πi(αp) and θi,k, the pair of functions f̃1, f̃2 satisfies the same prop-
erties as f1, f2. The only difference is that now n is replaced by the cardinality of the
set J in (3.8), equal to (p − 1)r. For a fixed n, let us denote by D(n) the supremum
of the left hand side of (3.5) over m ≥ n and all choices of functions f1, f2 with the
required properties. Then, the equation (3.10) implies (first, integrating the right hand
side conditionally on all πi(αp) and θi,k)

D(n) ≤ ED((p− 1)r) = ED
(
(p− 1)π(nαp)

)
, (3.11)

where π(nαp) := r =
∑
i≤n πi(αp) is a Poisson random variables with the mean nαp.

Recall that, by (3.7), f̃1 = 0 when r = 0, so we can set D(0) = 0. Also, the assumption
|f1| ≤ f2 gives that D(n) ≤ 1 and, thus, D(n) ≤ n. Then, (3.11) implies

D(n) ≤ E(p− 1)π(nαp) = (p− 1)pαn.

Using (3.11) repeatedly, we get, by induction on j ≥ 1, that D(n) ≤
(
(p − 1)pα

)j
n. By

assumption, (p− 1)pα < 1, so letting j →∞ proves that D(n) = 0 for all n. This finishes
the proof.

For small values of β, we will give a slightly different argument, following Section 6.2
in [11].

Lemma 3.3. In the notation of Lemma 3.2, suppose that n = 1 and

(p− 1)pαβ exp
(
2β + αp(e2β − 1)

)
< 1. (3.12)

If f1 ◦ T = −f1 then (3.4) still holds.

Proof. The first part of the proof proceeds exactly the same way as in Lemma 3.2, and
we obtain (3.10) for the functions f̃1, f̃2 defined in (3.9). Since n = 1, we can rewrite
(3.6) as

E(ε) =
∏
`≤q

expA`(ε
`
1), where A` =

∑
k≤π1(αp)

θk(s`1,k, . . . , s
`
p−1,k, ε

`
1), (3.13)

and the set (3.8) now becomes

J =
{

(j, k) : j ≤ p− 1, k ≤ π1(αp)
}
. (3.14)

Its cardinality is (p− 1)r, where r = π1(αp). Even though we showed that f̃1 ◦ T̃ = −f̃1,
we can not draw any conclusions yet since the map T switches only one spins in the first
and second replicas, while T̃ switches (p− 1)r spins (s1

e)e∈J and (s2
e)e∈J in s̃1, of course,

conditionally on π1(αp) and θk. We will decompose f̃1 into the sum f̃1 =
∑
e∈J f̃e, where

each f̃e satisfies f̃e ◦ T̃e = −f̃e with some map T̃e that switches s1
e and s2

e only. We begin
by writing

f̃1 =
1

2

(
f̃1 − f̃1 ◦ T̃

)
=

1

2

(
f̃1 − f̃1 ◦

∏
e∈J

T̃e

)
.
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If we order the set J by some linear order ≤ then we can expand this into a telescopic
sum,

f̃1 =
∑
e∈J

1

2

(
f̃1 ◦

∏
e′<e

T̃e′ − f̃1 ◦
∏
e′≤e

T̃e′
)
.

Then we simply define

f̃e :=
1

2

(
f̃1 ◦

∏
e′<e

T̃e′ − f̃1 ◦
∏
e′≤e

T̃e′
)

and notice that f̃e ◦ T̃e = −f̃e, since T̃eT̃e is the identity. Equation (3.10) implies

E

∣∣∣E′f1(s1, s2)

E′f2(s1, s2)

∣∣∣ ≤ E∑
e∈J

∣∣∣E′f̃e(s̃1, s2)

E′f̃2(s̃1, s2)

∣∣∣. (3.15)

We keep the sum inside the expectation because the set J is random. Recalling the
definition of f̃j in (3.9), we can write (for simplicity of notation, we will write E instead
of E(ε) from now on)

f̃e(s̃1, s2) =
1

2
Av
(
f1(ε, s2)

(
E ◦

∏
e′<e

T̃e′ − E ◦
∏
e′≤e

T̃e′
))
.

All the maps T̃e switch coordinates only in the first and second replica. This means that
if we write E defined in (3.13) as E = E ′E ′′ where

E ′ = exp(A1 +A2), E ′′ =
∏

3≤l≤q

expA`

then

f̃e(s̃1, s2) =
1

2
Av
(
f1(ε, s2)E ′′

(
E ′ ◦

∏
e′<e

T̃e′ − E ′ ◦
∏
e′≤e

T̃e′
))
. (3.16)

If e = (j, k) then the terms in the last difference only differ in the term θk(s`1,k, . . . , s
`
p−1,k, ε

`
1).

Since θk ∈ [−β, 0] and A1 +A2 ≤ 0, we can use that |ex − ey| ≤ |x− y| for x, y ≤ 0 to get
that ∣∣∣E ′ ◦ ∏

e′<e

T̃e′ − E ′ ◦
∏
e′≤e

T̃e′
∣∣∣ ≤ 2β.

Therefore, from (3.16) we obtain

|f̃e(s̃1, s2)| ≤ βAv
(
|f1(ε, s2)|E ′′

)
≤ βAv

(
f2(ε, s2)E ′′

)
.

Similarly, using that A1 +A2 ∈ [−2βπ1(αp), 0] we get that

f̃2(s̃1, s2) = Av
(
f2(ε, s2)E

)
= Av

(
f2(ε, s2)E ′E ′′

)
≥ exp(−2βπ1(αp))Av

(
f2(ε, s2)E ′′

)
,

and together the last two inequalities yield

|f̃e(s̃1, s2)| ≤ β exp(2βπ1(αp))f̃2(s̃1, s2). (3.17)

Let D be the supremum of the left hand side of (3.15) over all pairs of functions f1, f2

such that |f1| ≤ f2 and f1 ◦ T = −f1 under switching one coordinate in the first and
second replicas. Then conditionally on π1(αp) and the randomness of all θk, each pair
f̃e, f̃2 of the right hand side of (3.15) satisfies (3.17), and we showed above that f̃e ◦ T̃e =

−f̃e under switching one coordinate in the first and second replicas. Therefore, (3.15)
implies that

D ≤ DE
∑
e∈J

β exp(2βπ1(αp)) = Dβ(p− 1)Eπ1(αp) exp(2βπ1(αp)). (3.18)
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Even though, formally, this computation was carried out in the case when π1(αp) ≥ 1,
it is still valid when π1(αp) = 0 because of (3.7). Finally, since π1(αp) has the Poisson
distribution with the mean αp,

Eπ1(αp) exp(2βπ1(αp)) =
∑
k≥0

ke2βk (αp)k

k!
e−αp = αp exp

(
2β + αp(e2β − 1)

)
.

The condition (3.12) together with (3.18), obviously, implies that D = 0 and this finishes
the proof.

To finish the proof of Theorem 3.1, it remains to show that the region (1.6) is in the
union of the two regions in the preceding lemmas.

Lemma 3.4. If (1.6) holds then either p(p− 1)α < 1 or (3.12) holds.

Proof. If β ≥ 1/4 then p(p − 1)α < 1. Now, suppose that β ≤ 1/4 and p(p − 1)αβ < 1/4.
First of all, we can bound the left hand side of (3.12) by

(p− 1)pαβ exp
(
2β + αp(e2β − 1)

)
<

1

4
exp
(
2β + αp(e2β − 1)

)
.

Using that e2β − 1 ≤
√
e2β for β ≤ 1/4 and pαβ < 1/4, we can bound the right hand side

by
1

4
exp
(1

2
+ 2
√
epαβ

)
≤ 1

4
exp
(1

2
+

1

2

√
e
)
≈ 0.94 < 1,

and this finishes the proof.

4 Inside the pure state

Suppose now that the system is in a pure state and, for each µ ∈ Minv, the corre-
sponding function σ̄(w, u, v) does not depend on the second coordinate, in which case
we will write it as σ̄(w, v). Let us begin by proving Theorem 1.1.

Proof of Theorem 1.1. When the system is in a pure state, we can rewrite the functional
P(µ) in (2.14) as follows. First of all, since the expectation E′ is now only in the random
variables x, which are independent for all spin and replica indices, we can write

E′ exp θ(s1, . . . , sp) = 1 + (e−β − 1)
∏

1≤i≤p

1 + Jiσ̄i
2

= exp θ(σ̄1, . . . , σ̄p),

where σ̄i = E′si = E′σ(w, u, vi, xi) = E′σ̄(w, u, vi) = σ̄(w, vi). Similarly,

E′Av exp
∑

k≤π(pα)

θk(s1,k, . . . , sp−1,k, ε) = Av exp
∑

k≤π(pα)

θk(σ̄1,k, . . . , σ̄p−1,k, ε),

where σ̄i,k = σ̄(w, vi,k). Therefore, the functional P(µ) in (2.14) can be written as

P(µ) = log 2 + E log Av exp
∑

k≤π(pα)

θk(σ̄1,k, . . . , σ̄p−1,k, ε)

− (p− 1)αEθ(σ̄1, . . . , σ̄p). (4.1)

Replacing the average over w ∈ [0, 1] by the infimum, this is obviously bigger than

inf
w∈[0,1]

Ev

(
log 2 + log Av exp

∑
k≤π(pα)

θk(ε, σ̄1,k, . . . , σ̄p−1,k)− (p− 1)αθ(σ̄1, . . . , σ̄p)
)
,
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where Ev is the expectation only in the random variables (vi) and (vi,k). For a fixed w,
the random variables σ̄i and σ̄i,k are i.i.d. and, comparing with (1.5), this infimum is
bigger than infζ∈Pr[−1,1] P(ζ). Since this lower bound holds for all µ ∈ Minv, Theorem
2.2 then implies that

lim
N→∞

FN ≥ inf
ζ∈Pr[−1,1]

P(ζ).

The upper bound follows from the Franz-Leone theorem [3] by considering functions
σ̄(w, u, v) that depend only on the coordinate v (see Section 2.3 in [8], and also [7, 11]).
As we mentioned above, it was observed in Theorem 6.5.1 in [11] that the upper bound
holds for all p ≥ 2.

Let us also write down one consequence of the cavity equations (2.13) for a system in a
pure state. Again, let σ̄i = σ̄(w, vi) and denote σ̄j,i,k = σ̄(w, vj,i,k). Let

σ̄′i =
Av ε expAi(ε)

Av expAi(ε)
, (4.2)

where
Ai(ε) =

∑
k≤πi(αp)

θk,i(σ̄1,i,k, . . . , σ̄p−1,i,k, ε). (4.3)

We will now show that the cavity equations (2.13) imply the following,

Lemma 4.1. If the system is in a pure state, for example in the region (1.6), then(
σ̄i
)
i≥1

d
=
(
σ̄′i
)
i≥1

. (4.4)

Proof. This can be seen as follows. Take r = 0 and n = m in (2.13), so all coordinates
will be viewed as cavity coordinates. Since the expectation E′ is now only in the random
variables x, which are independent for all spin and replica indices, as in the proof of
Theorem 1.1 we can write (slightly abusing notation)

U` = Av
∏
i∈C`

εi exp
∑
i≤n

Ai(εi) and V = Av exp
∑
i≤n

Ai(εi),

where Ai(ε) are now given by (4.3) instead of (2.11), i.e. after averaging the random
variables x. Therefore, U`/V =

∏
i∈C`

σ̄′i. Since E′
∏
i∈C`

si =
∏
i∈C`

σ̄i, (2.13) becomes

E
∏
`≤q

∏
i∈C`

σ̄i = E
∏
`≤q

∏
i∈C`

σ̄′i.

By choosing q and the sets C` so that each index i appears ni times gives E
∏
i≤n σ̄

ni
i =

E
∏
i≤n σ̄

′ni
i and this finishes the proof.

5 Proof of Theorem 1.2

In this section we will prove Theorem 1.2 and we begin with the following key esti-
mate. For a moment, we fix the randomness of (θk) and think of Tr defined in (1.9) as a
nonrandom function.

Lemma 5.1. The function Tr defined in (1.9) satisfies∣∣Tr((σj,k)
)
− Tr

(
(σ′j,k)

)∣∣ ≤ 1

2
(eβ − 1)

∑
j,k

|σj,k − σ′j,k|. (5.1)
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Proof. Let us compute the derivative of Tr with respect to σ1,1. If denote the derivative
of

θ1(σ1,1, . . . , σp−1,1, ε) = log
(

1 + (e−β − 1)
1 + Jp,1ε

2

∏
1≤j≤p−1

1 + Jj,1σj,1
2

)
with respect to σ1,1 by

θ′1 = exp(−θ1)(e−β − 1)
J1,1

2

1 + Jp,1ε

2

∏
2≤j≤p−1

1 + Jj,1σj,1
2

then
∂Tr
∂σ1,1

=
Av εθ′1 expA(ε)

Av expA(ε)
− Av ε expA(ε)

Av expA(ε)

Av θ′1 expA(ε)

Av expA(ε)
.

Since θ1 ∈ [−β, 0], we see that J1,1θ
′
1 ∈ [(1− eβ)/2, 0] and∣∣∣θ′1 − Av θ′1 expA(ε)

Av expA(ε)

∣∣∣ ≤ 1

2
(eβ − 1),

which implies that |∂Tr/∂σ1,1| ≤ (eβ − 1)/2. The same, obviously, holds for all partial
derivatives and this finishes the proof.

Proof of Theorem 1.2. Step 1. Let us first show that, under (1.8), there exists unique
fixed point T (ζ) = ζ. The claim will follow from the Banach fixed point theorem once we
show that the map T is a contraction with respect to the Wasserstein metric W (P,Q)

on Pr[−1, 1]. This metric is defined by

W (P,Q) = inf E|z1 − z2|, (5.2)

where the infimum is taken over all pairs (z1, z2) with the distribution in the family
M(P,Q) of measures on [−1, 1]2 with marginals P and Q. It is well known that this
infimum is achieved on some measure µ ∈ M(P,Q). Let (z1

j,k, z
2
j,k) be i.i.d. copies for

j ≤ p− 1 and k ≥ 1 with the distribution µ. By (5.1) and Wald’s identity,

E
∣∣Tπ(αp)

(
(z1
j,k)
)
− Tπ(αp)

(
(z2
j,k)
)∣∣ ≤ 1

2
(eβ − 1)E

∑
j≤p−1,k≤π(αp)

|z1
j,k − z2

j,k|

=
1

2
(eβ − 1)(p− 1)pαE|z1

1,1 − z2
1,1| =

1

2
(eβ − 1)(p− 1)pαW (P,Q).

On the other hand, by the definition (1.12), the pair of random variables on the left hand
side, (

Tπ(αp)

(
(z1
j,k)
)
, Tπ(αp)

(
(z2
j,k)
))
,

has the distribution in M(T (P), T (Q)) and, therefore,

W
(
T (P), T (Q)

)
≤ 1

2
(eβ − 1)(p− 1)pαW (P,Q).

The condition (1.8) implies that the map T is a contraction with respect to W . Since the
space (Pr[−1, 1],W ) is complete, this proves that T has a unique fixed point ζ.

Step 2. Now, suppose that both (1.6) and (1.8) hold. Let ζ be the unique fixed point
T (ζ) = ζ and let σ̄(w, v, u) be the function corresponding to a measure µ ∈ Minv in the
statement of Theorem 2.2. By Theorem 3.1, we know that σ̄ does not depend on u and,
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therefore, σ̄(w, v) satisfies Lemma 4.1. Recall that σ̄i = σ̄(w, vi) and let (zi)i≥1 be i.i.d.
random variables with the distribution ζ. We will now show that(

σ̄i
)
i≥1

d
=
(
zi
)
i≥1

, (5.3)

which together with (4.1) will imply that P(µ) = P(ζ) for all µ ∈ Minv, finishing the
proof. (By the way, the fact that (σ̄i)i≥1 are i.i.d. does not mean that the function
σ̄(w, u) does not depend on w; it simply means that the distribution of (σ̄(w, vi))i≥1 is
the same for almost any fixed w.) To show (5.3), we will again utilize the Wasserstein
metric. For any n ≥ 1, we will denote by D(n) the Wasserstein distance between the
distribution of (σ̄i)i≤n and the distribution of (zi)i≤n (equal to ζ⊗n) with respect to the
metric d(x, y) =

∑
i≤n |xi− yi| on [−1, 1]n. For any r = (r1, . . . , rn) ∈ Nn (we assume now

that 0 ∈ N), let us denote

pr = P
(
π1(αp) = r1, . . . , πn(αp) = rn

)
=
∏
i≤n

(αp)ri

ri!
e−αp.

Since ζ = T (ζ), recalling the definition of T (ζ) in (1.12), we get

ζ⊗n = T (ζ)⊗n =
∑
r∈Nn

pr
⊗
i≤n

L
(
Tri
(
(zj,k)j≤p−1,k≤ri

))
, (5.4)

where the random variables zi,k are i.i.d. and have distribution ζ. Next, similarly to
(1.9), let us define

Ti,ri
(
σ1,k, . . . , σp−1,k

)
=

Av ε expAi(ε)

Av expAi(ε)
, (5.5)

where

Ai(ε) =
∑
k≤ri

θk,i(σ1,k, . . . , σp−1,k, ε).

In other words, Ti,ri is defined exactly as Tri , only in terms of independent copies (θk,i)

of (θk). Then, Lemma 4.1 and (4.2) imply that(
σ̄i
)
i≤n

d
=
∑
r∈Nn

pr L
((
Ti,ri

(
(σ̄j,i,k)j≤p−1,k≤ri

))
i≤n

)
. (5.6)

Using the fact that Ti,ri are copies of Tri defined independently over i, we can rewrite
(5.4) by expressing the product measure as a distribution of a vector with independent
coordinates,

ζ⊗n =
∑
r∈Nn

pr L
((
Ti,ri

(
(zj,i,k)j≤p−1,k≤ri

))
i≤n

)
, (5.7)

where the random variables zj,i,k are i.i.d. with the distribution ζ. For a given r ∈ Nn,
let us denote by Pr and Qr the laws on the right hand side of (5.6) and (5.7). Since the
Wasserstein metric satisfies an obvious inequality for convex combinations of measures

W
(∑
r∈Nn

prPr,
∑
r∈Nn

prQr

)
≤
∑
r∈Nn

prW
(
Pr,Qr

)
, (5.8)

it remains to estimate the distance between Pr and Qr. By Lemma 5.1,

n∑
i=1

∣∣∣Ti,ri((σ̄j,i,k)j≤p−1,k≤ri
)
−Ti,ri

(
(zj,i,k)j≤p−1,k≤ri

)∣∣∣ ≤ 1

2
(eβ−1)

n∑
i=1

ri∑
k=1

p−1∑
j=1

∣∣σ̄j,i,k−zj,i,k∣∣.
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Choosing the vectors (σ̄j,i,k) and (zj,i,k) on the right hand side with the optimal joint
distribution that achieves the infimum in the definition of Wasserstein distance and
taking expectations proves that

W
(
Pr,Qr

)
≤ 1

2
(eβ − 1)D

(
(p− 1)

∑
i≤n

ri

)
.

Plugging this into (5.8) and using (5.6) and (5.7) proves that

D(n) ≤ 1

2
(eβ − 1)

∑
r∈Nn

prD
(

(p− 1)
∑
i≤n

ri

)
=

1

2
(eβ − 1)ED

(
(p− 1)π(αpn)

)
, (5.9)

where π(αpn) is a Poisson random variable with the mean αpn. We start with an obvious
bound D(n) ≤ 2n. Then, by induction on j, (5.9) implies that

D(n) ≤ 2
(1

2
(eβ − 1)(p− 1)pα

)j
n

for all j ≥ 1. Letting j →∞ proves that D(n) = 0 for all n, since we assumed (1.8), and
this finishes the proof.

Let us now mention that the meaning of the distribution ζ in this theorem is simply
the distribution of spin magnetizations (〈σi〉)i≥1 in the thermodynamic limit, where 〈 · 〉
is the average with respect to the (perturbed) Gibbs measure. To see this, let us for
simplicity compute just one joint moment

E〈σ1〉2〈σ2〉3 = E〈σ1
1σ

2
1σ

3
2σ

4
2σ

5
2〉,

which we rewrote using replicas. If σ̄ is the function in (2.4) that encodes an asymptotic
Gibbs measure over any subsequence then we can write the limit of the above joint
moment over this subsequence as

Eσ̄(w, u1, v1)σ̄(w, u2, v1)σ̄(w, u3, v2)σ̄(w, u4, v2)σ̄(w, u5, v2).

Using that our system is in a pure state together with (5.3), this can be written as

Eσ̄(w, v1)2σ̄(w, v2)3 = Ez2
1z

3
2 .

In particular, this proves that the limit does not depend on the subsequence (in the
region considered in the theorem) and

lim
N→∞

E〈σ1〉2〈σ2〉3 = Ez2
1z

3
2 .

Clearly, other joint moments can be computed similarly, and this implies that (〈σi〉)i≥1

converges to (zi)i≥1 in distribution.
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