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Abstract

We introduce the local martingale problem associated to semilinear stochastic evo-
lution equations driven by a cylindrical Wiener process and establish a one-to-one
correspondence between solutions of the martingale problem and (analytically) weak
solutions of the stochastic equation. We also prove that the solutions of well-posed
equations are strong Markov processes. We apply our results to semilinear stochastic
equations with additive noise where the semilinear term is merely measurable and to
stochastic reaction-diffusion equations with Hölder continuous multiplicative noise.
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1 Introduction

One of the most important tools in the study of stochastic differential equations is
the theory of associated martingale problems of Stroock and Varadhan [38]. At the
heart of their approach is the equivalence between solutions of stochastic differential
equations (i.e. stochastic processes) and solutions of the associated martingale problem
(i.e. probability measures on a function space).

This equivalence is helpful in several ways. First, it can be used to prove existence
of solutions to stochastic differential equations by means of approximation and tight-
ness arguments. Second, it plays an important role in proving uniqueness of solutions
using techniques from semigroup theory or partial differential equations. Last but not
least, the approach of Stroock and Varadhan yields, given existence and uniqueness of
solutions, the strong Markov property of the solutions. This plays an important role in
the study of further properties of the solutions, e.g. their asymptotic behavior.

In this article, we set up a theory of (local) martingale problems for stochastic evo-
lution equations

dX(t) =
[
AX(t) + F (X(t))

]
dt+G(X(t))dWH(t) , (1.1)
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on a separable Banach space E. Here, A is the generator of a strongly continuous
semigroup S on E, WH is an H-cylindrical Wiener process where H is a separable
Hilbert space and the nonlinearities F : E → E and G : E → L (H,E) satisfy suitable
measurability and (local) boundedness assumptions. In fact, we shall consider a slightly
more general situation and allow the nonlinearities to take values in a larger Banach
space Ẽ, resp. L (H, Ẽ). We will make our assumptions precise in Section 3.

Martingale problems for equations of this form on 2-smoothable Banach spaces were
studied by Ondreját [34]. The usual solution concept for equations of the form (1.1) is
that of a mild solution which involves a stochastic convolution term. We note that
to assure that this term is well-defined, one has to impose additional assumptions on
the Banach space (typically geometric assumptions such as the UMD property or 2-
smoothability) and/or the coefficients. This poses problems when extending the theory
to general Banach spaces. Here, we overcome these problems by basing our theory on
(analytically) weak solutions rather than on mild solutions.

Our approach does not only allow us to consider general Banach spaces, it also
allows us to work without additional technical assumptions (such as the J-property in
[34]) to ensure stochastic integrability of the occurring processes and to impose only
minimal assumptions on the coefficients.

Under these minimal assumptions, we introduce the local martingale problem asso-
ciated to equation (1.1) in Section 3 and establish a one-to-one correspondence between
solutions of the local martingale problem and solutions of the stochastic evolution equa-
tion in Theorem 3.6. In Theorem 4.2 we prove, given existence and uniqueness of so-
lutions, the strong Markov property for solutions of (1.1), using some abstract results
about local martingale problems presented in Section 2.

Thus, Sections 2 – 4 contain the abstract theory of martingale problems on Banach
spaces. In Sections 5 and 6 we discuss related results, which we believe are helpful to
apply the theory.

In Section 5 we extend the Yamada-Watanabe theory [39] to the setting of Ba-
nach spaces and prove that pathwise uniqueness implies uniqueness in law (this is
the uniqueness concept used in the abstract theory above) and strong existence of so-
lutions. As in finite dimensions, pathwise uniqueness can be much easier verified than
uniqueness in law in certain situations, in particular for equations with (locally) Lips-
chitz continuous coefficients.

In Section 6 we show that (analytically) weak and mild solutions coincide if either
the coefficient G is constant, i.e. in equations with additive noise, or if the Banach space
E is a UMD space. Working with mild solutions is especially helpful to prove existence
of solutions, as the standard approach via approximation and tightness often uses the
factorization method of [7] as a tool, which, in turn, requires a Banach space valued
stochastic integral. Here, we use the Banach space valued Wiener integral, see [32],
in the case of constant G and the theory of integration in UMD Banach spaces [30] in
the second case. Note that this is the only section where we make use of a stochastic
integral, all our abstract results do not depend on geometric assumptions on E.

Let us close this introduction by discussing applications of our theory to concrete
stochastic evolution equations. Techniques inspired by martingale problems can be
found frequently in the literature on infinite dimensional stochastic equations even
though, more often than not, a martingale problem is not used directly. This is most
apparent in the term martingale solution which in infinite dimensions does not refer to
solutions of the martingale problem but is used synonymously for stochastically weak
solutions (thus for stochastic processes). Such solutions were constructed, for exam-
ple, in [6, 12, 2, 41]. Concerning uniqueness, several authors [6, 11, 40] have proved
uniqueness in law for certain equations by using partial differential equations on Hilbert
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spaces.

Naturally, the results contained in this article can be used to prove, given well-
posedness, the strong Markov property for solutions of stochastic evolution equations in
arbitrary separable Banach spaces. However, the results obtained here can also be used
to establish well-posedness of a given equation. Naturally, the proof of well-posedness
of a stochastic evolution equation requires additional arguments which depend on the
equation in question. Thus, the full proofs of our applications to stochastic evolution
equations will be given elsewhere [20, 19]. We will, however, give a rough sketch in
Section 7 and discuss how the results of this article enter the arguments.

2 Markov processes and local Martingale Problems

In this section (E, d) is a complete, separable metric space. We denote the Borel
σ-algebra of E by B(E). The spaces of scalar-valued measurable, bounded measurable,
continuous and bounded continuous functions will be denoted by B(E), Bb(E), C(E)

and Cb(E) respectively. P(E) denotes the set of all probability measures on (E,B(E)).
For x ∈ E, the Dirac measure in x is denoted by δx.

By C([0,∞);E) we denote the space of all continuous, E-valued functions. The ele-
ments of C([0,∞);E) will be denoted by bold lower case letters: x,y, z. Endowed with
the metric δδδ, defined by

δδδ(x,y) :=

∞∑
k=1

2−k sup
t∈[0,k]

d(xt,yt) ∧ 1,

C([0,∞);E) is a complete, separable metric space in its own right. We denote its Borel
σ-algebra by B. It is well-known that B = σ(xs : s ≥ 0), see [16, Lemma 16.1]. Here,
in slight abuse of notation, we have identified xs with the E-valued map x 7→ xs. We
shall do so in what follows without further notice. The filtration generated by these
‘coordinate mappings’ is denoted by B := (Bt)t≥0, i.e. Bt := σ(xs : s ≤ t).

The space of probability measures on the Borel σ-algebra of C([0,∞);E) will be
denoted by P(C([0,∞);E). It will always be topologized by the weak topology, i.e.
the coarsest topology for which for all bounded continuous function Φ on C([0,∞);E)

the map P 7→
∫

Φ dP is continuous. It is well known that this topology is metrizable
through a complete, separable metric, see [36, Section II.6], i.e. P(C([0,∞);E)) is a
Polish space.

A probability measure P on (C([0,∞);E),B) is called a Markov measure if the coor-
dinate process (xt)t≥0 defined on (C([0,∞);E),B,P) is a Markov process with respect
to B, i.e. for all f ∈ Bb(E) and s, t ≥ 0 we have

E
[
f(xt+s)

∣∣Bt

]
= E

[
f(xt+s)

∣∣xt] P− a.e.,

where E denotes (conditional) expectation with respect to P. If this equation also holds
whenever t is replaced with a B-stopping time τ which is almost surely finite, i.e. the
coordinate process is a strong Markov process with respect to B, then P is called a
strong Markov measure. Here, as usual, Bτ is the σ-algebra

Bτ := {A ∈ B : A ∩ {τ ≤ t} ∈ Bt for all t ≥ 0}.

A transition semigroup is a family T := (T (t))t≥0 of positive contractions on Bb(E)

such that

1. T is a semigroup, i.e. T (0) = I and T (t+ s) = T (t)T (s) for all t, s ≥ 0.
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2. Every operator T (t) is associated with a Markovian kernel, i.e a map pt : E ×
B(E) → [0, 1] such that (i) pt(x, ·) ∈ P(E) for all x ∈ E and (ii) pt(·, A) ∈
Bb(E) for all A ∈ B(E). That T (t) is associated with pt means that T (t)f(x) =∫
E
f(y) pt(x, dy) for all f ∈ Bb(E).

The kernels pt themselves are referred to as transition functions or transition prob-
abilities. The semigroup property above is equivalent with the Chapman-Kolmogorov
equations.

A probability measure P on C([0,∞);E) is called Markov measure with transition
semigroup T if for all f ∈ Bb(E) and s, t ≥ 0 we have

E
[
f(xt+s)

∣∣Bt

]
= E

[
f(xt+s)

∣∣xt] =
[
T (s)f

]
(xt) P− a.e.

If this equation also holds whenever t is replaced with a P-a.s. finite B-stopping time τ ,
then P is called a strong Markov measure with transition semigroup T .

The connection between martingale problems and Markovian measures is well es-
tablished, see [9, Chapter 4]. However, if we want to treat stochastic evolution equa-
tions on Banach spaces, we have to consider local martingale problems rather than
martingale problems.

Definition 2.1. An admissible operator is a map L , defined on a subset D(L ) ⊂ C(E)

and taking values in B(E) such that for all f ∈ D(L ) the function L f is bounded on
compact subsets of E.

Given an admissible operator L , a probability measure P on C([0,∞);E) is said to
solve the local martingale problem for L if for every f ∈ D(L ) the process Mf defined
by [

Mf (x)
]
(t) := f(xt)− f(x0)−

∫ t

0

L f(xs) ds

is a local martingale under P. This of course means that there exists a sequence τn,
which may depend on f , of B-stopping times with τn ↑ ∞ P-almost surely such that the
stopped processes Mf

τn , defined by Mf
τn(t) := Mf (t ∧ τn), are martingales for all n ∈ N.

If an initial distribution µ ∈ P(E) is specified, we say that P is a solution to the
local martingale problem for (L , µ) to indicate that in addition to being a solution to
the local martingale problem for L , the measure P satisfies P(x0 ∈ Γ) = µ(Γ) for all
Γ ∈ B(E), i.e. under P the random variable x0 has distribution µ.

We note that by the continuity of t 7→ xt and since L f is bounded on compact
subsets of E, the process Mf is well-defined. In fact, since f is a continuous function,
it follows that Mf is a continuous process.

The proofs of our results in Section 4 are based on the following theorem.

Theorem 2.2. Let L be admissible. Suppose that for every µ ∈ P(E) any two solu-
tions P,Q of the local martingale problem for (L , µ) have the same one-dimensional
distributions, i.e. for all t ≥ 0 we have

P(xt ∈ Γ) = Q(xt ∈ Γ) ∀Γ ∈ B(E) .

Then

1. Every solution of the local martingale problem for L is a strong Markov measure.

2. For every µ ∈P(E), there is at most one solution to the local martingale problem
for (L , µ).
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If in addition to the uniqueness assumption above for every x ∈ E there exists a solution
Px to the local martingale problem for (L , δx) and if the map x 7→ Px(B) is Borel
measurable for all B ∈ B, then

(3) For every µ ∈P(E), there exists a solution Pµ of the local martingale problem for
(L , µ).

(4) Define the operator T (t) by T (t)f(x) :=
∫
f(xt) dPx for f ∈ Bb(E). Then every

solution P of the local martingale problem for L is a strong Markov measure with
transition semigroup T := (T (t))t≥0.

Proof. This Theorem is a generalization of [9, Theorem 4.4.2] to local martingale prob-
lems. Hence, we have the added difficulty that in the definition of “solution of the local
martingale problem” a sequence of stopping times appears. We only give the proof
of statement (1), the other statements are derived following the proofs of the corre-
sponding statements in [9, Theorem 4.4.2] with similar changes due to the presence of
stopping times.

Let P be a solution of the local martingale problem for (L , µ). We denote (condi-
tional) expectation with respect to P by E. Let ρ be a stopping time with ρ <∞ almost
surely and define the mappings Θρ and Ψρ : C([0,∞);E)→ C([0,∞);E) by

(Θρx)(t) := x(t+ ρ(x)) and (Ψρx)(t) := x((t− ρ(x))+) .

Then Θρ and Ψρ are measurable mappings with ΨρΘρx = x for all x ∈ C([0,∞);E).
Now fix A ∈ Bρ with P(A) > 0 and define the measures P1,P2 on C([0,∞);E) by

P1(B) :=
E
[
1AE[1Θ−1

ρ B |Bρ]
]

P(A)
and P2(B) :=

E
[
1AE[1Θ−1

ρ B |x(ρ)]
]

P(A)
.

We note that under P1 and P2 the distribution of x(0) are identical, namely for Γ ∈ B(E)

we have

P1(x(0) ∈ Γ) = P2(x(0) ∈ Γ) = P(x(ρ) ∈ Γ|A) .

Hence, if we prove that P1 and P2 solve the local martingale problem associated
with L , we can conclude from our assumption that P1 and P2 have the same one-
dimensional distributions. This will then imply that for t > 0 and Γ ∈ B(E), we have

P1(x(t) ∈ Γ) = P(A)−1E
[
1AE[x(t+ ρ) ∈ Γ|Bρ]

]
= P2(x(t) ∈ Γ) = P(A)−1E

[
1AE[x(t+ ρ) ∈ Γ|x(ρ)]

]
.

Multiplying with P(A) and observing that A with P(A) > 0 was arbitrary, it follows that
E[x(t + ρ) ∈ Γ|Bρ] = E[x(t + ρ) ∈ Γ|x(ρ)]. Since t, ρ and Γ were arbitrary, this proves
that (x(t))t≥0 is a strong Markov process under P.

It remains to prove that P1 and P2 solve the local martingale problem associated
with L . Fix f ∈ D(L ). Since P solves the local martingale problem, there exists a
sequence τn of stopping times with τn → ∞ almost everywhere with respect to P such
that Mf

τn is a martingale under P. We put σn := τn ◦Ψρ. Note that {σn ≤ t} = Ψ−1
ρ {τn ≤

t} ∈ Bt, since τn is a stopping time and since Ψ−1
ρ A ∈ Bt for all A ∈ Bt, as is easy to

see. Hence σn is a stopping time. Since ΨρΘρx = x, it follows from the definition of P1

and P2 that σn ↑ ∞ almost surely with respect to P1 and P2.
Now fix t > s and C ∈ Bs and observe that

ξ(x) :=
[(
Mf

σn(t)−Mf
σn(s)

)
1C

]
(Θρx) =

[(
Mf

τn(t+ ρ)−Mf
τn(s+ ρ)

)
1Θ−1

ρ C

]
(x)
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where Θ−1
ρ C ∈ Bs+ρ. Since Mf

τn is a continuous P-martingale, it follows from the
optional sampling theorem that E[ξ|Bρ] = 0, and hence, since σ(x(ρ)) ⊂ Bρ, also
E[ξ|x(ρ)] = 0. Recalling the definition of P1 and P2, we see that that Mf

σn is a mar-
tingale under P1 and P2.

Definition 2.3. Let L be an admissible operator. We say that the local martingale
problem for L is well-posed if for every x ∈ E, there exists a unique solution Px of the
local martingale problem for (L , δx).

We say that the martingale problem for L is completely well-posed, if (i) for every
µ ∈ P(E) there exists a unique solution Pµ of the local martingale problem for (L , µ)

and (ii) the map x 7→ Px(B) is measurable for every B ∈ B.
In the case of uniqueness, we will use the notation Px resp. Pµ for the solution of

the local martingale problem for (L , δx), resp. (L , µ).

In Theorem 4.2, we will prove that if the martingale problem for L is well-posed,
then it is already completely well-posed. Thus, we obtain the measurability of the map
x 7→ Px and existence and uniqueness of solutions for arbitrary initial distributions µ
for free.

We note that by (2) of Theorem 2.2, the uniqueness assumption in the definition of
‘completely well-posed’ can be weakened to uniqueness of one-dimensional marginals.
Similarly, by (3) of Theorem 2.2, in the definition of ‘completely well-posed’ it suffices to
assume existence of solutions only for degenerate initial distributions δx, for all x ∈ E.

By part (4) of Theorem 2.2, if the local martingale problem for L is completely
well-posed, then there exists a transition semigroup T such that every solution Pµ is
a strong Markov measure with transition semigroup T . This semigroup T is uniquely
determined by L and will be called the associated semigroup.

3 Stochastic differential equations and the associated local mar-
tingale problem

We now turn our attention to the stochastic evolution equation (1.1). In order to
stress the dependence on the coefficients, we will also refer to equation (1.1) as equa-
tion [A,F,G]. The following are our standing hypotheses on the coefficients and will be
assumed in the rest of this paper.

Hypothesis 3.1. Ẽ is a separable Banach space and A generates a strongly continuous
semigroup S := (S(t))t≥0 = (St)t≥0 on Ẽ. H is a separable Hilbert space and WH is an
H-cylindrical Wiener process. E is a separable Banach space such that D(A) ⊂ E ⊂
Ẽ with continuous and dense embeddings. Throughout, all Banach spaces are real.
Furthermore,

1. F : E → Ẽ is strongly measurable and bounded on bounded subsets of E;

2. G : E → L (H, Ẽ) is H-strongly measurable, i.e. Gh : E → Ẽ is strongly measur-
able for all h ∈ H, and G is bounded on bounded subsets of E.

Example 3.2. Let us describe typical examples in which Hypothesis 3.1 is satisfied.
In the easiest example, Ẽ = E and A is the generator of a strongly continuous

S on Ẽ. In applications, A is typically a differential operator and Ẽ is an Lp-space.
In that situation, it is also possible to replace E with a suitable Sobolev space or a
space of continuous functions. To model equations driven by (additive or multiplicative)
white noise, it is often useful to replace Ẽ with a suitable extrapolation space, see, for
example, [31].

In these situations, the semigroup S typically maps Ẽ into E and restricts to a
strongly continuous semigroup on E. Moreover, one has some control over the norms
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‖S(t)‖L (Ẽ,E) at t = 0. It should be noted, that we assume none of this in Hypothesis
3.1. However, later on (in Hypothesis 6.5) we will make precisely these assumptions.

Before defining what we mean by ‘a solution’ of equation [A,F,G], let us recall the
notion of an H-cylindrical Wiener process. Let (Ω,Σ,F,P) be a stochastic basis, i.e.
a probability space (Ω,Σ,P) together with a filtration F = (Ft)t≥0. We say that the
usual conditions are satisfied if F0 contains all P-null sets and the filtration is right
continuous.

An H-cylindrical Wiener process (with respect to F) is a bounded linear operator
WH from L2(0,∞;H) to L2(Ω,Σ,P) with the following properties:

1. for all f ∈ L2(0,∞;H) the random variable WH(f) is centered Gaussian.

2. for all t ≥ 0 and f ∈ L2(0,∞;H) with support in [0, t], the random variable WH(f)

is Ft-measurable.

3. for all t ≥ 0 and f ∈ L2(0,∞;H) with support in [t,∞), the random variable WH(f)

is independent of Ft.

4. for all f1, f2 ∈ L2(0,∞;H) we have E(WH(f1)WH(f2)) = [f1, f2]L2(0,∞;H).

We shall write

WH(t)h := WH(1(0,t] ⊗ h), t > 0, h ∈ H.

It is easy to see that for h ∈ H the process WHh := (WH(t)h)t≥0 is a real-valued Brown-
ian motion (which is standard if ‖h‖H = 1).

We now define the concept of a weak solution. The relation of weak solutions with
other solution concepts will be discussed in Section 6.

Definition 3.3. A tuple
(
(Ω,Σ,F,P),WH ,X

)
, where (Ω,Σ,F,P) is stochastic basis sat-

isfying the usual conditions, WH is an H-cylindrical Wiener process with respect to F
and X = (Xt)t≥0 is a continuous, F-progressive, E-valued process is called weak solu-
tion of (1.1) if for all x∗ ∈ D(A∗) ⊂ Ẽ∗ and t ≥ 0 we have

〈Xt, x
∗〉 = 〈X0, x

∗〉+
∫ t

0

〈Xs, A
∗x∗〉 ds+

∫ t

0

〈F (Xs), x
∗〉 ds+

∫ t

0

G(Xs)
∗x∗ dWH(s) , (3.1)

P-a.e.

Remark 3.4. Weak solutions are weak both in the analytic sense, i.e. we require (3.1)
to hold only if tested against functionals x∗ ∈ D(A∗) and in the probabilistic sense, i.e.
the stochastic basis and the cylindrical Wiener process are part of the solution. More
appropriately, we should speak of ‘analytically weak and stochastically weak solution’
or ‘weak martingale solution’. However, to shorten notation, we have settled on the
term ‘weak solution’.

By the continuity of the paths and our assumptions in Hypothesis 3.1, the Lebesgue-
integral in (3.1) is well defined. The stochastic integral in equation (3.1) is an integral
of an H ' H∗-valued stochastic processes with respect to a cylindrical Wiener process.
It is well known how to construct such an integral for progressive H-valued processes
Φ such that Φ ∈ L2(0, T ;H) almost surely for all T > 0. Namely, if (hk) is a (finite or
countably infinite) orthonormal basis of the separable Hilbert space H and we define
βk(s) := WH(s)hk, then∫ t

0

Φ(s) dWH(s) :=
∑
k

∫ t

0

[Φ(s) , hk]H dβk(s) .
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The integral process I(t) :=
∫ t

0
Φ(s)dWH(s) is a real-valued, continuous, local martingale

with with quadratic variation JIKt =
∫ t

0
‖Φ(s)‖2H ds. We also note that for an F-stopping

time τ we have almost surely I(t ∧ τ) =
∫ t

0
1[0,τ ](s)Φ(s) dWH(s) for all t ≥ 0.

In order to shorten notation, we will say that a process X is a weak solution of (1.1),
meaning that X is a continuous, progressive, E-valued process, defined on a stochastic
basis (Ω,Σ,P,F), satisfying the usual conditions, on which an H-cylindrical Wiener
process WH with respect to F is defined such that the tupel ((Ω,Σ,F,P),WH ,X) is a
weak solution of (1.1). In this case, unless stated otherwise, P will denote the measure
on the probability space and WH the H-cylindrical Wiener process. These remarks
apply, mutatis mutandis, also for the other solution concepts that we will introduce.

Remark 3.5. We note that the exceptional set in (3.1) which initially depends on x∗

and t may be chosen independently of t, since the deterministic integrals as well as the
stochastic integral in (3.1) are pathwise continuous in t.

We now establish a one-to-one correspondence between weak solutions of equa-
tion [A,F,G] and solutions of the local martingale problem for an (admissible) operator
L[A,F,G] which we call the associated local martingale problem.

The operator L[A,F,G] is defined as follows.
By D we denote the vector space of all functions f : E → R of the form

f(x) = ϕ(〈x, x∗1〉, . . . , 〈x, x∗n〉)

where n ∈ N, ϕ ∈ C2(Rn) and x∗1, . . . , x
∗
n ∈ D(A∗).

For f = ϕ(〈·, x∗1〉, . . . , 〈·, x∗n〉) ∈ D we put

L[A,F,G]f(x) :=

n∑
k=1

∂ϕ

∂uk
(〈x, x∗1〉, . . . , 〈x, x∗n〉) ·

[
〈x,A∗x∗k〉+ 〈F (x), x∗k〉

]
+

1

2

n∑
k,l=1

[G(x)∗x∗k , G(x)∗x∗l ]H
∂2ϕ

∂uk∂ul
(〈x, x∗1〉, . . . , 〈x, x∗n〉)

(3.2)

The operator L[A,F,G] is defined by D(L ) = D and L[A,F,G]f := L[A,F,G]f . Put

Dmin :=
{
〈·, x∗〉j : x∗ ∈ D(A∗), j = 1, 2

}
. We will also use the operator L min

[A,F,G] :=

L[A,F,G]|Dmin
. We note that since F and G are bounded on bounded subsets of E, the

operators L[A,F,G] and L min
[A,F,G] are admissible. We would like to point out that the

function L[A,F,G]f can be unbounded even if ϕ has compact support. This is the reason
for considering local martingale problems, rather than martingale problems.

Theorem 3.6. Suppose that X is a weak solution of equation [A,F,G]. Then the law P

of X solves the local martingale problem for L[A,F,G].
Conversely, if P solves the local martingale problem for L min

[A,F,G], then there exists a
weak solution X of equation [A,F,G] with distribution P.

Proof. First suppose that X is a weak solution of equation [A,F,G].
Let f = ϕ(〈·, x∗1〉, . . . , 〈·, x∗n〉) ∈ D and define the Rn-valued process ξ by ξk(t) =

〈X(t), x∗k〉 for all t ≥ 0 and k = 1, . . . , n. We also define Rn-valued processes V and M by

Vk(t) :=

∫ t

0

〈Xs, A
∗x∗k〉+ 〈F (Xs), x

∗
k〉 ds , Mk(t) :=

∫ t

0

G(Xs)
∗x∗k dWH(s),

for k = 1, . . . , n. Note that, almost surely, V has continuous trajectories of locally
bounded variation and that M is a continuous, local martingale. Since X is a weak
solution, it follows that ξ = ξ0 +M + V .
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Itô’s formula [9, Theorem 5.2.9] yields

f(Xt)− f(X0) = ϕ(ξt)− ϕ(ξ0)

=

n∑
k=1

∫ t

0

∂ϕ

∂uk
(ξs) dVk(s) +

1

2

n∑
k,l=1

∫ t

0

∂2ϕ

∂uk∂ul
(ξs) dJMk,MlKs

+

n∑
k=1

∫ t

0

∂ϕ

∂uk
(ξs) dMk(s)

=

∫ t

0

[
L[A,F,G]f

]
(Xs) ds+

n∑
k=1

∫ t

0

∂ϕ

∂uk
(ξs) dMk(s) ,

for all t ≥ 0. Here, we have used that JMk,MlKt =
∫ t

0
[G(Xs)

∗x∗k, G(Xs)
∗x∗l ]H ds. It thus

follows that

f(Xt)− f(X0)−
∫ t

0

[L[A,F,G]f ](Xs) ds

is a continuous local martingale with respect to F. Hence, under the distribution P of
X, the process Mf is a continuous local martingale with respect to B.

We now prove the converse. First note that if x∗ ∈ D(A∗), then for f1(x) = 〈x, x∗〉
we have L[A,F,G]f1(x) = 〈x,A∗x∗〉 + 〈F (x), x∗〉. Similarly, for f2(x) = 〈x, x∗〉2 we have

L[A,F,G]f2(x) = 2〈x, x∗〉 ·
[
〈x,A∗x∗〉 + 〈F (x), x∗〉

]
+ ‖G(x)∗x∗‖2H . If P is a solution of the

local martingale problem for L[A,F,G], then under P the processes Mf1 and Mf2 are
local martingales with respect to the canonical filtration B. Using that the coefficients
F and G are bounded on bounded subsets, an approximation argument shows that we
can use τn := inf{t > 0 : ‖x(t)‖ ≥ n} as localizing sequence for both Mf1 and Mf2 .
As in [17, Chapter 5, Problem 4.13] we see that the stopped processes Mf1

τn and Mf2
τn

are martingales with respect to filtration F := (Ft), where Ft is the augmentation of
Bt+ by the P null sets. Hence Mf1 and Mf2 are local martingales with respect to the
filtration F, which satisfies the usual conditions. It now follows from [34, Lemma 34]
that under P the process

〈xt, x∗〉 − 〈x0, x
∗〉 −

∫ t

0

〈xs, A∗x∗〉+ 〈F (xs), x
∗〉 ds

is a continuous local martingale with quadratic variation
∫ t

0
‖G(xs)

∗x∗‖2H ds. By [35,

Theorem 3.1], we find an extension (Ω,Σ, F̃,P) of (C([0,∞);E),B,F,P) on which a
cylindrical Brownian motion WH is defined such that for all x∗ ∈ D(A∗) we have

〈xt, x∗〉 − 〈x0, x
∗〉 −

∫ t

0

〈xs, A∗x∗〉+ 〈F (xs), x
∗〉 ds =

∫ t

0

G(xs)
∗x∗dWH(s)

P-almost everywhere for all t ≥ 0 This proves that x, defined on this extension, is a
weak solution of [A,F,G].

Corollary 3.7. A measure P ∈P(C([0,∞);E) solves the local martingale problem for
L[A,F,G] if and only if it solves the local martingale problem for L min

[A,F,G].

Motivated by Theorem 3.6 we will say that the local martingale problem for L[A,F,G]

is the local martingale problem associated with equation [A,F,G]. We will say that
equation [A,F,G] is (completely) well-posed if the associated local martingale problem
is (completely) well-posed.

EJP 18 (2013), paper 104.
Page 9/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2924
http://ejp.ejpecp.org/


On a class of martingale problems on Banach spaces

4 Well-posed equations and the strong Markov property

In this section we prove that if equation [A,F,G] is well-posed, then it is com-
pletely well-posed. The results of Section 2 then imply that solution of [A,F,G] is a
strong Markov process with transition semigroup T := (T (t))t≥0, where T (t)f(x) =∫
E
f(xt) dPx.
The key step in the proof is is to show that it even suffices to consider the local

martingale problem for an operator L 0
[A,F,G], defined on a countable set, cf. [9, Theorem

4.4.6].

Lemma 4.1. There exists a countable subset D0 of D such that a measure P solves the
local martingale problem associated for L[A,F,G] if and only if it solves the martingale
problem associated with L 0

[A,F,G] := L[A,F,G]|D0
.

Proof. Step 1: We construct the set D0.
First note that there exists a countable subset D of D(A∗) such that for every x∗ ∈

D(A∗) there exists a sequence (x∗n) ⊂ D with x∗n ⇀
∗ x∗ and A∗x∗n ⇀

∗ A∗x∗. Here ⇀∗

refers to weak∗ convergence in Ẽ∗. To see this, first note that there is a countable
set {z∗n : n ∈ N} ⊂ Ẽ∗ which is sequentially weak∗-dense in Ẽ∗, see §21.3 (5) of [18].
Put D := {R(λ,A∗)z∗n : n ∈ N} for some λ ∈ ρ(A∗). Using that R(λ,A∗) is σ(Ẽ∗, Ẽ)-
continuous as an adjoint operator, it is easy to see that D has the required properties.
Replacing D with the set of all convex combinations of elements of D with rational
coefficients, we may (and shall) assume that such convex combinations belong to D

again.
Now choose a sequence ϕn ∈ C2(R) with the following properties:

1. ϕn(t) = t for all −n ≤ t ≤ n and ϕn(t) = 0 for t 6∈ [−2n, 2n].

2. supn ‖ϕ′n‖∞, supn ‖ϕ′′n‖∞ <∞.

We then define

D0 :=
{
f = ϕn(〈·, x∗〉)j for some n ∈ N , x∗ ∈ D , j ∈ {1, 2}

}
.

Clearly, D0 is countable. We define L 0
[A,F,G] := L[A,F,G]|D0 .

Step 2: Now let P be a solution of the local martingale problem for L 0
[A,F,G]. We

prove that P solves the local martingale problem for L min
[A,F,G]. This finishes the proof in

view of Corollary 3.7.
First note that Mf is a local martingale for any f = 〈·, x∗〉j , x∗ ∈ D , j ∈ {1, 2}. To see

this, let σn := inf{t > 0 : |〈xt, x∗〉| ∨ ‖xt‖ ≥ n} and put fn := ϕn(〈·, x∗〉)j ∈ D0. Clearly,
Mf

σn = Mfn
σn . Since P solves the local martingale problem for L 0

[A,F,G], the process Mfn ,

hence by optional sampling also Mfn
σn , is a local martingale under P. Since F and G are

bounded on bounded sets, Mfn
σn is uniformly bounded. Thus, Mfn

σn is a true martingale
by dominated convergence. This proves that Mf

σn is a true martingale under P and
hence, since σn ↑ ∞ pointwise, that Mf is a local martingale under P.

It remains to extend this from x∗ ∈ D to arbitrary x∗ ∈ D(A∗). To that end, fix
x∗ ∈ D(A∗) and a sequence (x∗n) ⊂ D such that x∗n ⇀

∗ x∗ and A∗x∗n ⇀
∗ A∗x∗. By the

uniform boundedness principle, the sequences (x∗n) and (A∗x∗n) are bounded in Ẽ∗, say
by M . For m ∈ N put τm := inf{t > 0 : ‖x(t)‖ ≥ m}.

Let us first consider f := 〈·, x∗〉. Arguing as above, we see that for fn := 〈·, x∗n〉,
the stopped process Mfn

τm is a martingale under P for all n,m ∈ N. Furthermore, since
L[A,F,G]fn → L[A,F,G]f pointwise, it follows that Mfn

τm(t)→Mf
τm(t) pointwise as n→∞,

for all t ≥ 0. Since F is bounded on B̄(0,m), say by Cm, we find for t > s∣∣Mfn
τm(x)(t)−Mfn

τm(x)(s)
∣∣ ≤ (t− s)

[
m ·M + Cm ·M

]
+ 2m ·M
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for all n,m ∈ N. Thus, applying the dominated convergence theorem to the sequence
(Mfn

τm(t) −Mfn
τm(s))1B, where B is an arbitrary set in Bs, it follows that

∫
B
Mf

τm(t) −
Mf

τm(s)) dP = 0. Since 0 ≤ s < t and B ∈ Bs were arbitrary, Mf
τm is a B-martingale

under P. As τm ↑ ∞ almost surely, this proves that Mf is a local martingale under P.

Next consider f := 〈·, x∗〉2. For fn := 〈·, x∗n〉
2, the stopped process Mfn

τm is a martin-
gale under P for all n,m ∈ N. Similarly as above, one sees that for every m ∈ N the
difference |Mfn

τm(t) −Mfn
τm(s)| may be majorized by a bounded function independent of

n. However, due to the term ‖G(·)∗x∗n‖2H in L[A,F,G]fn, the weak convergence x∗n ⇀
∗ x∗

does not suffice to conclude that L[A,F,G]fn → L[A,F,G]f pointwise. Hence we employ a
different method here.

We fix 0 ≤ s < t and m ∈ N. The dominated convergence theorem yields weak
convergence∫ t

s

1[0,τm](r)G(xr)
∗x∗n dr ⇀

∫ t

s

1[0,τm](r)G(xr)
∗x∗ dr in L2(C([0,∞);E),P;H) .

Hence
∫ t
s
1[0,τm](r)G(xr)

∗x∗ dr belongs to the weak closure of the tail sequence

( ∫ t

s

1[0,τm](r)G(xr)
∗x∗n dr

)
n≥N ,

for any N ∈ N. By the Hahn-Banach theorem, it belongs to the strong closure of that
tail, whence we find vectors y∗N , belonging to the convex hull the sequence (x∗n)n≥N ,
such that we have strong convergence∫ t

s

1[0,τm](r)G(xr)
∗y∗N dr →

∫ t

s

1[0,τm](r)G(xr)
∗x∗ dr in L2(C([0,∞);E),P;H) .

After passing to a subsequence, we may assume that this convergence holds pointwise
P-a.e. Note that y∗N ⇀∗ x∗, as y∗N belongs to the tail (x∗n)n≥N . Hence it follows that

MgN
τm(t)−MgN

τm(s)→Mf
τm(t)−Mf

τm(s)

pointwise P-almost everywhere. Here, gN := 〈·, y∗N 〉
2.

Note that we may assume without loss of generality that y∗N is a convex combination
of the (x∗n)n≥N with rational coefficients. Hence, yN ∈ D and thus gN ∈ D0, implying
that MgN

τm is a martingale under P for all N ∈ N. Now, similarly as above, the dominated
convergence theorem shows that Mf

τm is a martingale under P for all m ∈ N. This
finishes the proof.

Now the announced result about the equivalence of well-posedness and complete
well-posedness follows similar to the finite-dimensional case, cf. [16, Theorem 21.10].

Theorem 4.2. Suppose that the local martingale problem for L[A,F,G] is well-posed.
Then it is completely well-posed. Consequently, all weak solutions of equation [A,F,G]

are strong Markov processes with a common transition semigroup T .

Proof. We first prove the measurability of the map x 7→ Px. Consider the set V :=

{Px : x ∈ E}. We claim that V is a Borel subset of P(C([0,∞);E)). Indeed, by well-
posedness, V = V1 ∩ V2, where V1 is the set of all probability measures with degenerate
initial distributions and V2 is the set of all solutions to the martingale problem.

Since the map P 7→ P ◦ x(0)−1 is measurable from P(C([0,∞);E)) to P(E), the
measurability of V1 follows from [16, Lemma 1.39].

EJP 18 (2013), paper 104.
Page 11/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2924
http://ejp.ejpecp.org/


On a class of martingale problems on Banach spaces

By Lemma 4.1, P ∈ V2 if and only if Mf is a local martingale under P for all f ∈ D0.
With τn := inf{t > 0 : ‖x(t)‖ ≥ n}, this is equivalent with∫

B

Mf (t ∧ τn) dP =

∫
B

Mf (s ∧ τn) dP ∀ s < t, B ∈ Bs , n ∈ N.

However, using continuity of t 7→ x(t) and the fact that the σ-algebra Bs is countably
generated for all s > 0, we see that Mf is a local martingale under P whenever the
above equality holds for n ∈ N, s, t ∈ Q with s < t and B in a countable subset of Bs.
Hence the set V2 is determined by countably many ‘measurable relations’ and hence
measurable. It follows that V is measurable as claimed.

Now define the map Φ : V → E by defining Φ(P) as the unique x such that P ◦
x−1

0 = δx. Clearly, Φ is injective. Furthermore, Φ is measurable as the composition of
the measurable map P ◦ x−1

0 and the inverse of the map x 7→ δx, which establishes a
homeomorphism between E and the range of that map. By the Kuratowski Theorem,
see [36, Section 1.3], the inverse Φ−1 is measurable, i.e. x 7→ Px is a measurable map
from E to P(C([0,∞);E))

It remains to prove the uniqueness of solutions with arbitrary initial distributions µ
for the martingale problem for L[A,F,G]. The existence of solutions with general initial
distributions will then follow from Theorem 2.2.

To that end, assume that P solves the local martingale problem for L[A,F,G] and
that x(0) has distribution µ ∈ P(E). Let Q : E ×B → [0, 1] be a regular conditional
probability (under P) for B given x0. Then

P(A) =

∫
E

Q(x,A) dµ(x) ∀A ∈ B .

Now let t > s ≥ 0 and B ∈ Bs be given. Then, for f ∈ D , we have∫
B

Mf (t ∧ τn)−Mf (s ∧ τn) dQ(x, ·) =

∫
B∩{x(0)=x}

Mf (t ∧ τn)−Mf (s ∧ τn) dP = 0

for µ-almost every x. We note that the null-set outside of which this equation holds
depends on t, s, n,B and the function f . However, arguing as above, we see that for
fixed f , there exists a null-set N(f), such that the above equation holds outside N(f)

for all t > s, n ∈ N and B ∈ Bs. Putting N :=
⋃
f∈D0

N(f), it follows that outside of N ,
the above holds for all t > s, n ∈ N, B ∈ Bs and f ∈ D0. This implies that for µ-a.e. x the
measure Q(x, ·) solves the local martingale problem for L 0

[A,F,G] and hence, by Lemma
4.1, the local martingale problem for L[A,F,G]. By well-posedness, Q(x, ·) = Px(·) for
µ-a.e. x. Hence we have

P(A) =

∫
E

Px(A) dµ(x) ∀A ∈ B , (4.1)

This shows that uniqueness of solutions of the local martingale problem for (L , δx) for
all x ∈ E implies uniqueness of the solution of the local martingale problem for (L , µ)

for arbitrary initial distribution µ.

We end this section by establishing a result which allows us to construct solutions
to equation [A,F,G] from solutions of approximate equations [A,Fn, Gn].

Lemma 4.3. Suppose we are given sequences (Fn)n∈N and (Gn)n∈N which satisfy the
assumptions of Hypothesis 3.1, are continuous and are uniformly bounded on bounded
sets. Furthermore, assume that Fn(x) converges to F (x) in Ẽ and Gn(x) converges to
G(x) in L (H, Ẽ), both convergences being uniform on the compact subsets of E.
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If Pn solves the martingale problem associated with equation [A,Fn, Gn] and if the
sequence (Pn)n∈N is tight, then any accumulation point of the sequence solves the
martingale problem associated with [A,F,G].

Proof. For a number M ∈ R we put τM := inf{t > 0 : ‖xt‖ ≥ M}. Now fix 0 ≤
s1 < · · · < sN ≤ s < t , N ∈ N, and for j = 1, . . . , N functions hj ∈ Cb(E) and f =

ϕ(〈·, x∗1〉, . . . , 〈·, x∗m〉) ∈ D .
We define Φn : C([0,∞);E)→ R by

Φn(x) :=
[
f(xt∧τM )− f(xs∧τM )−

∫ t

s

1[0,τM ](r)
(
Lnf

)
(xr) dr

]
·
N∏
j=1

hj(xsj ),

where Ln := L[A,Fn,Gn]. Similarly, we define the function Φ, replacing Ln with L :=

L[A,F,G].
Using the assumption that Fn and Gn are uniformly bounded on bounded subsets, it

is easy to see that the sequence Φn is uniformly bounded.
The assumptions on the convergence of Fn and Gn imply that Lnf converges to Lf ,

uniformly on the compact subsets of E. Now let a compact subset C of C([0,∞);E) be
given. By the Arzelà-Ascoli theorem, there exists a compact subset K of E such that
xr ∈ K for all 0 ≤ r ≤ t, whenever x ∈ C . Let C :=

∏n
j=1 ‖hk‖∞. Given ε > 0, pick n0

such that |Lnf(x) − Lf(x)| ≤ ε for all x ∈ K, whenever n ≥ n0. Then, for x ∈ C and
n ≥ n0 we have

|Φn(x)− Φ(x)| ≤
∫ t

s

1[0,τM ](r)|Lnf(xr)− Lf(xr)| dr · C ≤ |t− s|εC,

proving that Φn converges to Φ uniformly on compact subsets of C([0,∞);E).

Now let P be an accumulation point of the sequence (Pn). Passing to a subsequence,
we may assume that Pn converges weakly to P. In particular, the sequence (Pn) is tight.
Thus, given ε > 0, we find a compact set C of C([0,∞);E) such that 2cPn(C c) ≤ ε, where
c is such that ‖Φn‖∞ ≤ c. It follows that∣∣∣ ∫ Φ dP−

∫
Φn dPn

∣∣ ≤ ∣∣∣ ∫ Φ dP−
∫

Φ dPn
∣∣+ ε+ sup

x∈C
|Φ(x)− Φn(x)|.

To conclude that
∫

Φ dP = limn→∞
∫

Φn dPn = 0, it remains to prove that
∫

Φ dPn
converges to

∫
Φ dP. We know that Pn converges weakly to P. Unfortunately, the

function Φ is not continuous. However, it is continuous at all points y at which the map
x 7→ τM (x) is continuous. Moreover, it can be proved that the set of all M such that
P({y : τM is discontinous aty}) > 0 is countable, see [13, Lemma 3.5 and 3.6] (see also
Sections VI.2 and VI.3 of [15]). We can thus find a number M such that Φ is continuous
except for a P-null set. As is well known, see [1, Cor. 8.4.2], this together with the
weak convergence of the Pn suffices to conclude that

∫
ΦdPn →

∫
Φ dP, as desired and

it follows that
∫

Φ dP = 0.
Since the sampling points (sj) and s, t as well as the functions hj were arbitrary, it

follows from a monotone class argument that

f(xt∧τM )− f(x0∧τM )−
∫ t

0

1[0,τM ](r)Lf(xr) dr

is a martingale under P. Since f was arbitrary, and we can pick a sequence Mk ↑ ∞
such that the above is true, we have proved that P solves the local martingale problem
associated with equation [A,F,G].
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As a corollary, we obtain a sufficient condition for the Feller property of the associ-
ated transition semigroup.

Corollary 4.4. Assume that equation [A,F,G] is well-posed and that F and G are con-
tinuous. We denote by T the transition semigroup for the associated martingale prob-
lem for L[A,F,G] and by Pµ the unique solution of the local martingale problem for
(L[A,F,G], µ). The following are equivalent

1. The map µ 7→ Pµ is continuous from P(E) to P(C([0,∞);E)) where both are
endowed with their respective weak topology.

2. If xn → x in E, then the set {Pxn : n ∈ N} is tight.

In this case, the semigroup T has the Feller property, i.e. T (t)f ∈ Cb(E) for all f ∈
Cb(E).

Proof. (1) ⇒ (2): If xn → x then δxn → δx weakly. In particular, {δxn : n ∈ N} is
relatively weakly compact. By (1) the set {Pxn : n ∈ N} is relatively weakly compact
hence tight.

(2) ⇒ (1): Let xn → x. By (2), {Pxn : n ∈ N} is tight. By Lemma 4.3 any accumula-
tion point of the Pxn must solve the local martingale problem for LA,F,G. Since every
accumulation point also must have initial distribution δx, well-posedness implies that
the only accumulation point is Px. Now a subsequence-subsequence argument yields
that Pxn converges weakly to Px. This proves that the map x 7→ Px is continuous from
E to P(C([0,∞);E)).

It follows from the proof of uniqueness in Theorem 2.2, namely from equation (4.1),
that ∫

Φ dPµ =

∫
E

∫
Φ dPx dµ(x),

for all bounded, continuous functions Φ on C([0,∞);E). With this representation the
continuity of µ 7→ Pµ follows.

If (1) or, equivalently, (2) is satisfied, then the Feller property of T follows from the
identity T (t)f(x) =

∫
f ◦πt dPx and the fact that f ◦πt is a bounded, continuous function

on C([0,∞);E).

5 Yamada-Watanabe theory

In view of Theorem 3.6, the uniqueness requirement for the local martingale prob-
lem associated with (1.1) is equivalent with the requirement that whenever X1 and X2

are weak solutions of (1.1), possibly defined on different probability spaces, such that
X1(0) and X2(0) have the same distribution µ, then X1 and X2 have the same distribu-
tion as C([0,∞);E)-valued random variables. In this situation, one says that uniqueness
in law or uniqueness in distribution holds.

In some cases, in particular in the case of Lipschitz continuous coefficients, it is
easier to verify a different notion of uniqueness.

Definition 5.1. We say that pathwise uniqueness holds for solutions of equation (1.1)
if whenever ((Ω,Σ,F,P),WH ,Xj) are weak solution of (1.1) for j = 1, 2 with X1(0) =

X2(0) almost surely, then P(X1(t) = X2(t)∀ t ≥ 0) = 1.

A classical result of Yamada and Watanabe [39] asserts that in the case where
E = Rd and WH is a finite dimensional Brownian motion, i.e. H is finite-dimensional,
pathwise uniqueness implies uniqueness in law. Pathwise uniqueness also has other
far-reaching consequences, most notably, it implies the strong existence of solutions.
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Definition 5.2. We say that a weak solution ((Ω,Σ,F,P),WH ,X) exists strongly if
X is adapted to the filtration G := (Gt)t≥0, where Gt denotes the augmentation of
σ(X(0),WHhk(s) : s ≤ t, k ∈ I). Here, (hk)k∈I is a finite or countably infinite or-
thonormal basis of H.

A priori, strong existence of solutions is a mere measurability requirement. This
requirement captures the idea that the information needed to construct a solution to a
stochastic differential equation is already contained in the initial datum and the Wiener
process. Of particular importance in applications is the fact that given pathwise unique-
ness solutions can be constructed on a given stochastic basis and with respect to a given
H-cylindrical Wiener process, see Corollary 5.4.

Ondreját [33] has generalized the Yamada-Watanabe results to the situation where
E is a 2-smoothable Banach space. One of the main difficulties he had to overcome was
to prove that distributional copies of solutions are again solutions. As he was working
with the concept of mild solutions, this required a detailed study of the distributions of
Banach space valued stochastic integrals. In our situation, with the concept of weak
solutions, the proof is easier and can in fact be reduced to the finite dimensional situa-
tion.

Theorem 5.3. Pathwise uniqueness for (1.1) implies uniqueness in law. Moreover,
every solution of (1.1) exists strongly.

For the convenience of the reader, we include a full proof which follows closely the
proof in the finite dimensional situation. It is also possible to show that our situation
fits into the abstract framework considered in [22] and to obtain Theorem 5.3 from the
results proved there.

Proof. Let two weak solutions ((Ωj ,Σj ,Fj ,Pj),W
j
H ,Xj) of equation (1.1) be given such

that X1(0) and X2(0) have the same distribution µ. We first define distributional copies
of these two solutions on a common stochastic basis.

To that end, we fix an orthonormal Basis (hn)n∈N (the case where H is finite dimen-
sional is similar) of H and define the measure Pj on the Borel σ-algebra of

Ω̃ := C([0,∞);E)× E × C([0,∞);R∞),

viewed as the countable product of Polish spaces, as the image of Pj under the map

ωj 7→
(
Xj(·, ωj)−Xj(0, ωj), Xj(0, ωj), (H

j
H(·, ωj)hn)n∈N

)
A typical element of Ω̃ will be denoted by (y, x0,w). Note that the projection of Pj to
C([0,∞);R∞) is the countable product of Wiener measure; we denote this measure by
W. Thus, under Pj , the random element (x0,w) has distribution µ⊗W.

We let Qj be a regular conditional distribution of y given (x0,w) under Pj , i.e.
Qj(x0,w, ·) is a probability measure on B(C([0,∞);E)) for all x0 ∈ E,w ∈ C([0,∞);R∞)

and given sets A ∈ B(C([0,∞);E)), B ∈ B(E) and C ∈ B(C([0,∞);R∞)), we have

Pj(A×B × C) =

∫
B×C

Qj(x0,w, A) d(µ⊗W)(x0,w).

We now define distributional copies of the solutions on a common probability space. We
put

Ω := C([0,∞);E)× C([0,∞);E)× E × C([0,∞);R∞),

and denote a canonical element of Ω by (y1,y2, x0,w). We define the measure P on the
Borel σ-algebra Σ of Ω by

P(A×B × C ×D) :=

∫
C×D

Q1(x0,w, A)Q2(x0,w, B) d(µ⊗W)(x0,w).
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Finally, we define Gt := σ(x0,y1(s),y2(s),w(s) : s ≤ t), Ft as the augmentation of Gt+ by
the P-null sets and set F := (Ft)t≥0. As in the finite dimensional case, see [14, Lemma
IV.1.2], we see that for every k ∈ N the k-th component wk of w is a Brownian motion
with respect to F.

As wk and wl are independent for k 6= l, we can define an H-cylindrical Wiener
process with respect to F by setting, for f ∈ L2(0,∞;H)

WH(f) :=

∞∑
k=1

∫ ∞
0

[f(t), hk]H dwk(t).

We claim that ((Ω,Σ,F,P),WH , x0 + yj) is a weak solution of equation (1.1) for j =

1, 2. We will write xj := x0 + yj for j = 1, 2. To prove the claim, let x∗ ∈ D(A∗) be fixed.
Using the measurability of F and G, as well as the continuity of the functionals x∗ resp.
A∗x∗, it follows from the definitions above that the joint distribution of(

〈Xj(0), x∗〉, 〈F (Xj(·)), x∗〉, 〈Xj(·), A∗x∗〉, ([G(Xj(·))∗x∗, hk])k∈N, (W
j
H(·)hk)k∈N

)
under Pj is the same as that of(

〈x0, x
∗〉, 〈F (xj(·)), x∗〉, 〈xj(·), A∗x∗〉, ([G(xj(·))∗x∗, hk])k∈N, (WH(·)hk)k∈N

)
under P. Thus, for fixed t ≥ 0, we infer as in the finite dimensional situation that for
j = 1, 2 and every n ∈ N the distribution of

Zj,n(t) := Xj(t)−〈Xj(0), x∗〉 −
∫ t

0

〈Xj(s), A
∗x∗〉 ds−

∫ t

0

〈F (Xj(s)), x
∗〉 ds

−
n∑
k=1

∫ t

0

[G(Xj(s))
∗x∗, hk] dW j

H(s)hk

under Pj is the same as that of

zj,n(t); = xj(t)−〈xj(0), x∗〉 −
∫ t

0

〈xj(s), A∗x∗〉 ds−
∫ t

0

〈F (xj(s)), x
∗〉 ds

−
n∑
k=1

∫ t

0

[G(xj(s))
∗x∗, hk] dW j

H(s)hk

under P. Since Xj is a solution of equation (1.1), Zj,n(t) → 0 Pj-almost surely as
n → ∞, hence zj,n converges to 0 in distribution and thus P-almost surely. Since t ≥ 0

and x∗ ∈ D(A∗) were arbitrary, this proves that xj is indeed a weak solution.
As x0 + y1 and x0 + y2 are weak solutions defined on the same stochastic basis and

with respect to the same H-cylindrical Wiener process, pathwise uniqueness implies
that x0 + y1 = x0 + y2 P-almost surely. This, in turn, implies that the random elements
Xj have the same distribution.

As for the strong existence of solutions, define for x0 ∈ E and w ∈ C([0,∞);R∞)

the measure R(x0,w, ·) on the Borel σ-algebra S of C([0,∞);E) × C([0,∞);E) as the
product of Q1(x0,w, ·) and Q2(x0,w, ·). Then, for sets G ∈ S , C ∈ B(E) and D ∈
B(C([0, ,∞);R∞) we have

P(G× C ×D) =

∫
C×D

R(x0,w, G) d(µ⊗W)(x0,w).

Now consider Λ := {(y1,y2) : y1 = y2}. It follows from the first part of the proof
that R(x0,w,Λ) = 1 for (µ ⊗W)-almost every (x0,w), say outside the set N ∈ B(E) ⊗
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B(C([0,∞);E)) with (µ⊗W)(N) = 0. Using Fubini’s theorem, we find for (x0,w) ∈ N c

1 = R(x0,w,Λ) =

∫
C([0,∞);E)

Q1(x0,w, {y})Q2(x0,w, dy).

As all measures involved in this equation are probability measures, this can only happen
if Q1(x0,w, {y0}) = Q2(x0,w, {y0}) = 1 for a certain y0 = Φ(x0,w) ∈ C([0,∞);E).

A straightforward generalization of the proof in the finite-dimensional case, see [17,
Section 5.3.D], shows that the map Φ : E × C([0,∞);R∞) → C([0,∞);E) is B(E) ⊗
B(C([0,∞);R∞))/B([0,∞);E)-measurable. Moreover, if we define Ht as the augmen-
tation of B(E)⊗ σ(w(s) : s ≤ t) by the µ⊗W-null sets and It := σ(y(s) : s ≤ t), then Φ

is Ht/It-measurable for every t > 0.
By what was done so far, x0 + yj = x0 + Φ(x0,w) P-almost surly. Thus, for j = 1, 2,

we have Xj = Xj(0) + Φ(Xj(0), (W j
H(·)hn)n∈N) Pj-almost surely. The measurability

properties of Φ now imply that the solution ((Ωj ,Σj ,F,Pj),W
j
H ,Xj) exists strongly for

j = 1, 2.

As a consequence of pathwise uniqueness, we find solutions of equation (1.1) on a
given probability space and with respect to a given H-cylindrical Wiener process.

Corollary 5.4. Assume that pathwise uniqueness holds for equation [A,F,G] and that
for some µ ∈ P(E), there exists a weak solution of [A,F,G] with initial distribution µ.
Then, given any stochastic basis (Ω,Σ,F,P) on which an H-cylindrical Wiener process
WH with respect to F is defined and on which an F0-measurable random variable ξ

with distribution µ is defined, there exists a process X such that ((Ω,Σ,P),F,WH ,X) is
a weak solution of equation [A,F,G] with X(0) = ξ.

Proof. Let ((Ω′,Σ′,P′),F′,W ′H ,X
′) be a weak solution of [A,F,G] with X ′(0) ∼ µ. The

proof of Theorem 5.3 yields that X ′ = X(0) + Φ(X ′(0), (W ′H(·)hn)n∈N). We put X :=

ξ + Φ(ξ, (WH(·)hn)n∈N).
Then the distribution of (X ′(0),X′, (W ′H(·)hn)n∈N) under P′ is the same as the dis-

tribution of (ξ,X, (WH(·)hn)n∈N) under P. Arguing as in the first part of the proof of
Theorem 5.3, it follows that ((Ω,Σ,P),F,WH ,X) is a weak solution of equation [A,F,G]

with X(0) = ξ.

6 Stochastic integration and mild solutions

We now address the question whether weak solutions of (1.1) are also mild solutions,
i.e. for all t ≥ 0 the L (H,E)-valued process s 7→ St−sG(Xs) is stochastically integrable
(in a sense to be made precise below) and we have, almost surely,

Xt = X0 +

∫ t

0

St−sF (Xs) ds+

∫ t

0

St−sG(Xs) dWH(s) . (6.1)

Having mild solutions, rather than weak solutions, has many advantages. In par-
ticular, one can make use of the factorization method [7]. The factorization method is
useful to prove continuity of the paths of solutions which we have assumed through-
out and also to establish the tightness assumption in Lemma 4.3, thus enabling us to
construct solutions to stochastic differential equations.

In this section, we prove the equivalence of weak and mild solutions under additional
assumptions on either equation [A,F,G] or the state space E. As an intermediate step,
we first consider weakly mild solutions in which we only require (6.1) to hold when
tested against functionals x∗ ∈ Ẽ∗.
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6.1 Weakly mild solutions

Definition 6.1. A tuple
(
(Ω,Σ,F,P),WH ,X

)
, where (Ω,Σ,F,P) is stochastic basis sat-

isfying the usual conditions, WH is an H-cylindrical Wiener process with respect to F
and X is a continuous, F-progressive, E-valued process is called a weakly mild solution
of (1.1) if for all x∗ ∈ Ẽ∗ and t ≥ 0 we have

〈Xt, x
∗〉 = 〈StX0, x

∗〉+

∫ t

0

〈St−sF (Xs), x
∗〉 ds+

∫ t

0

G(Xs)
∗S∗t−sx

∗dWH(s). (6.2)

P-a.e.

Remark 6.2. By our assumptions on the coefficients A,F and G, the Lebesgue-integral
and the stochastic integral in (6.2) are well-defined for all t ≥ 0 and x∗ ∈ E∗.

Indeed, the map (s, ω) 7→ F (X(s, ω)) is measurable as a composition of two measur-
able maps. Hence, it is the limit of a sequence of simple functions fn almost everywhere
with respect to ds⊗ P. Thus

〈S(t− ·)F (X), x∗〉 = lim 〈fn, S(t− ·)∗x∗〉 ds⊗ P− a.e.

We have 〈fn, S(t− ·)∗x∗〉 =
∑Nn
j=1 1Ajn〈xjn, S(t− ·)∗x∗〉 for certain measurable sets Ajn

and vectors xjn ∈ Ẽ and this is measurable since s 7→ 〈x, S(t− s)∗x∗〉 is continuous for
all x ∈ Ẽ and x∗ ∈ Ẽ∗. Hence 〈S(t− ·)F (X), x∗〉 is the limit of measurable functions
ds ⊗ P almost everywhere and thus measurable. In view of the continuity of the paths
of X, the boundedness of F on bounded sets and the boundedness of S on finite time
intervals, it follows that for almost all ω the function s 7→ 〈S(t− s)F (X(s, ω)), x∗〉 is
bounded, hence integrable.

The stochastic integral can be dealt with similarly, using the series expansion

G(X(s, ω))∗S(t− s)∗x∗ =
∑
k

〈G(X(s, ω))hk, S(t− s)∗x∗〉Hhk

where (hk) is a finite or countably infinite orthonormal basis of H.

We now prove that the notions ‘weak solution’ and ‘weakly mild solution’ are equiv-
alent. Under additional assumptions which ensure that the stochastic convolution is
well-defined, variations of this result (for mild solutions) have been proved in various
settings, see [8, Theorem 5.4], [32, Theorem 7.1] or [37, Proposition 3.3]. Assuming
that G is constant or that E is a UMD Banach space, in the following subsection we
prove that weakly mild solutions are mild solutions. In particular, it follows that the
stochastic convolution is well-defined.

We note that the adjoint semigroup S∗ may not be strongly continuous, which causes
technical difficulties. To overcome these, we will use results about the �-dual semi-
group S�. We recall some basic definitions and properties and refer the reader to [27]
for more information.

Define Ẽ� := D(A∗). Then Ẽ� is a closed, weak∗-dense subspace of Ẽ∗ which is
invariant under the adjoint semigroup. The restriction of the adjoint semigroup to Ẽ�,
denoted by S�, is strongly continuous. In fact, one can prove that Ẽ� = {x∗ ∈ Ẽ∗ : t 7→
S(t)∗x∗ is strongly continuous}. We denote by A� the generator of S�. Note that A� is
exactly the part of A∗ in Ẽ�.

Proposition 6.3. The weak and the weakly mild solutions of (1.1) coincide.

Proof. First assume that X is a weak solution. For n ∈ N, define

τn := inf{t > 0 : ‖X(t)‖ ≥ n} .
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Since X is a weak solution, we have for x∗ ∈ D(A∗) and t ≥ 0

〈Xt∧τn , x
∗〉 = 〈X0∧τn , x

∗〉+

∫ t

0

1[0,τn](s)〈Xs, A
∗x∗〉 ds

+

∫ t

0

1[0,τn](s)〈F (Xs), x
∗〉 ds+

∫ t

0

1[0,τn](s)G(Xs)
∗x∗ dWH(s)

almost surely. In view of Remark 3.5, we may (and shall) assume that the exceptional
set does not depend on t. Below, we will suppress the statement ‘P-almost surely’.

Fix t > 0 and let f ∈ C1([0, t]) and x∗ ∈ D(A∗). Putting ϕ := f ⊗ x∗, Itô’s formula
yields

〈Xt∧τn , ϕ(t)〉 = 〈X0∧τn , ϕ(0)〉+

∫ t

0

〈Xs∧τn , ϕ
′(s)〉 ds+

∫ t∧τn

0

〈Xs, A
∗ϕ(s)〉 ds

+

∫ t∧τn

0

〈F (Xs), ϕ(s)〉 ds+

∫ t

0

1[0,τn](s)G(Xs)
∗ϕ(s) dWH(s) .

(6.3)

By linearity, the above equation holds for ϕ =
∑N
k=1 fk ⊗ x∗k where fk ∈ C1([0, t]) and

x∗k ∈ D(A∗). Since D(A�) is a Banach space with respect to the graph norm, so is
C1([0, t];D(A�)). Functions of the form ϕ :=

∑n
k=1 fk ⊗ x∗k with fk ∈ C1([0, t]) and

x∗k ∈ D(A�) for 1 ≤ k ≤ n are dense in C1([0, t];D(A�)) and hence an approximation
argument shows that (6.3) holds for all ϕ ∈ C1([0, t];D(A�)).

Now let x∗ ∈ D((A�)2) and ϕ(s) = S∗t−sx
∗. Then ϕ ∈ C1([0, t];D(A�)) with ϕ′(s) =

−S∗t−sA∗x∗. We note that
∫ t

0
〈Xs∧τn , ϕ

′(s)〉 ds =
∫ t∧τn

0
〈Xs, ϕ

′(s)〉 ds+
∫ t
t∧τn 〈Xτn , ϕ

′(s)〉 ds,
where the last term is zero if τn ≥ t. Thus equation (6.3) yields for this ϕ

〈Xt∧τn , x
∗〉 = 〈StX0∧τn , x

∗〉+

∫ t∧τn

0

〈St−sF (Xs), x
∗〉 ds

−
∫ t

t∧τn
〈St−sXτn , A

∗x∗〉 ds+

∫ t

0

1[0,τn]G(Xs)
∗S∗t−sx

∗ dWH(s) .

(6.4)

We next want to extend (6.4) to arbitrary x∗ ∈ Ẽ∗. The term
∫ t
t∧τn 〈St−sXτn , A

∗x∗〉
is obviously not well-defined for arbitrary x∗ ∈ Ẽ∗. However, using the well-known fact
that for 0 ≤ a < b and x ∈ Ẽ the integral

∫ b
a
S(s)x ds belongs to the domain of the

generator A and A
∫ b
a
S(s)x ds = S(b)x− S(a)x, it follows that∫ t

t∧τn
〈St−sXτn , A

∗x∗〉 ds = 〈St−t∧τnXτn −Xτn , x
∗〉.

Since D((A�)2) is sequentially weak∗-dense in Ẽ∗, given z∗ ∈ Ẽ∗, we find a sequence
x∗k ∈ D((A�)2) such that x∗k ⇀

∗ z∗. Arguing similar as in the proof of Lemma 4.1, we
find a sequence y∗m in the convex hull of the (x∗k) such that y∗m ⇀∗ z∗ and

1[0,τn](·)G(X(·))∗S(t− ·)∗y∗m → 1[0,τn](·)G(X(·))∗S(t− ·)∗z∗

in L2(Ω). Thus, since E
∣∣ ∫ t

0
Φ(s) dWH(s)

∣∣2 = ‖Φ‖2L2(Ω;L2([0,t];H)) we see that∫ t

0

1[0,τn]G(X(s))∗S(t− s)∗y∗m dWH(s)→
∫ t

0

1[0,τn]G(X(s))∗S(t− s)∗z∗ dWH(s)

in L2(Ω;L2(0, t;H)). Passing to a subsequence, we may assume that we have conver-
gence almost everywhere. Moreover, since (6.4) also holds for x∗ = y∗m, for all m ∈ N,
noting that

1[0,τn](s)
∣∣〈S(t− s)F (X(s)), y∗m〉

∣∣ ≤ 1[0,τn](s)Meω(t−s)Bn · sup
m∈N

‖y∗m‖,
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where M and ω are such that ‖S(t)‖ ≤ Meωt for t ≥ 0 and Bn := sup{‖F (x)‖ : ‖x‖ ≤
n}, is follows from dominated convergence that

∫ t∧τn
0

〈St−sF (Xs), y
∗
m〉 ds converges to∫ t∧τn

0
〈St−sF (Xs), z

∗〉 ds almost surely. It altogether we see that

〈Xt∧τn , z
∗〉 = 〈StX0∧τn , z

∗〉+

∫ t∧τn

0

〈St−sF (Xs), z
∗〉 ds

+ 〈Xτn − St−t∧τnXτn , z
∗〉+

∫ t

0

1[0,τn]G(Xs)
∗S∗t−sz

∗ dWH(s) .

(6.5)

Upon letting n→∞, (6.2) is proved for arbitrary x∗ = z∗.

We now prove the converse and assume that X is a weakly mild solution of (3.1). Fix
x∗ ∈ D(A∗) and t > 0. Then for 0 < s < t we have

〈Xs, A
∗x∗〉 = 〈SsX0, A

∗x∗〉+

∫ s

0

〈Ss−rF (Xr), A
∗x∗〉 dr

+

∫ s

0

G(Xr)
∗S∗s−rA

∗x∗ dWH(r)

(6.6)

almost surely. We note that the exceptional set may depend s. However, all terms in this
equation are jointly measurable in s and ω. Hence, the left-hand side and the right-hand
side of (6.6) are equal as elements of L0((0, t);L0(Ω)). By the canonical isomorphism
L0((0, t);L0(Ω)) ' L0(Ω;L0(0, t)), there exists a set N ⊂ Ω with P(N) = 0 such that
outside N equation (6.6) holds as an equation in L0(0, t), i.e. for almost every s ∈ (0, t),
where the exceptional set may depend on ω. Next note that by the continuity of the
paths, the local boundedness of S and the boundedness of F on bounded sets, the first
three terms are, as functions of s, P-almost surely bounded on (0, t) and hence belong
to L1(0, t). Possibly enlarging N , we may assume that outside N equation (6.6) holds as
an equation in L1(0, t). Integrating from 0 to t, we find that, P-almost surely, we have∫ t

0

〈Xs, A
∗x∗〉 ds =

∫ t

0

〈SsX0, A
∗x∗〉 ds+

∫ t

0

∫ s

0

〈Ss−rF (Xr), A
∗x∗〉 dr ds

+

∫ t

0

∫ s

0

G(Xr)
∗x∗S∗s−rA

∗x∗ dWH(r) ds .

(6.7)

Recall that for x∗ ∈ D(A∗) we have
∫ t

0
S(s)∗A∗x∗ ds = S(t)∗x∗ − x∗ for all t ≥ 0. Here,

the integral has to be understood as weak∗-integral. Using this, we obtain, pathwise,∫ t

0

〈SsX0, A
∗x∗〉 ds =

〈
X0,

∫ t

0

S∗sA
∗x∗ ds

〉
= 〈X0, S

∗
t x
∗ − x∗〉 = 〈StX0 −X0, x

∗〉.

Using Fubini’s theorem, we have∫ t

0

∫ s

0

〈Ss−rF (Xr), A
∗x∗〉 dr ds =

∫ t

0

〈
F (Xr),

∫ t

r

S∗s−rA
∗x∗
〉
ds dr

=

∫ t

0

〈St−rF (Xr), x
∗〉 dr −

∫ t

0

〈F (Xr), x
∗〉 dr

pathwise. Using the stochastic Fubini theorem [29, Theorem 3.5], it follows that∫ t

0

∫ s

0

G(Xr)
∗S∗s−rA

∗x∗ dWH(r) ds =

∫ t

0

∫ t

r

G(Xr)
∗S∗s−rA

∗x∗ ds dWH(r)

=

∫ t

0

G(Xr)
∗S∗t−rx

∗ dWH(r)−
∫ t

0

G(Xr)
∗x∗ dWH(r)
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P-almost surely.

Plugging these three identities into (6.7) and using that X is a mild solution, (3.1)
follows.

Since all terms appearing in (3.1) are almost surely continuous, there is no prob-
lem in writing an equation for the stopped process 〈Xt∧τ , x

∗〉 and we did this in the
proof of Proposition 6.3. On the other hand, for weakly mild solutions, the integrand in
the stochastic integral changes with t, causing problems to obtain an equation for the
stopped process. In [3, Appendix], this problem was solved under the assumption that
the stochastic convolution is almost surely continuous. In the proof of Proposition 6.3,
we have shown that for a weak solution, (6.5) holds for all x∗ ∈ Ẽ∗. Given a stopping
time τ , we can repeat the arguments with τn replaced with τn ∧ τ to obtain

Corollary 6.4. If X is a weak (equivalently, weakly mild) solution of (1.1) and τ is a
stopping time, then for all t ≥ 0 and x∗ ∈ Ẽ∗ we have

〈Xt∧τ , x
∗〉 = 〈StX0∧τ , x

∗〉+

∫ t∧τ

0

〈St−sF (Xs), x
∗〉 ds

+ 〈Xτ − St−t∧τXτ , x
∗〉1{τ<∞} +

∫ t

0

1[0,τ ](s)G(Xs)
∗S∗t−sx

∗ dWH(s) .

(6.8)

almost surely.

The question arises whether (6.2) can be extended to hold for all x∗ ∈ E∗. This is
indeed the case under the following additional assumption.

Hypothesis 6.5. Assume Hypothesis 3.1, that S(t) ⊂ L (Ẽ, E) for all t > 0 and that for
x ∈ Ẽ the E-valued map t 7→ S(t)x is continuous on (0,∞). Furthermore, assume that
for all t > 0 the function (0, t) 3 s 7→ ‖S(s)‖L (Ẽ,E) is square integrable.

Assuming Hypothesis 6.5, a slight variation of the arguments in Remark 6.2 shows
that in this case the integrals in (6.2) are well-defined for x∗ ∈ E∗.

Corollary 6.6. Assume that Hypothesis 6.5 holds. If X is a weak (equivalently, weakly
mild) solution of (1.1), then (6.2) and (6.8) hold for all x∗ ∈ E∗.

Proof. Define

V := {x∗ ∈ E∗ : (6.2) holds a.e. } .

By Proposition 6.3, Ẽ∗ ⊂ V and hence V is weak∗-dense in E∗. The claim is proved
once we show that V is weak∗-closed in E∗. By the Krein-Smulyan theorem (see, e.g.,
§21.10 (6) of [18]), V is weak∗-closed in E∗ if and only if BV := {x∗ ∈ V : ‖x∗‖E∗ ≤ 1} is
weak∗-closed in E∗. However, since the weak∗-topology is metrizable on bounded sets,
it suffices to prove that BV is sequentially weak∗-closed.

Using Hypothesis 6.5, this can be proved similarly as when extending equation (6.4)
from x∗ ∈ D((A�)2) to arbitrary x∗ ∈ Ẽ∗ in the proof of Proposition 6.3. The proof for
(6.8) is similar.

6.2 Mild solutions

We begin by recalling some facts about stochastic integration of operator-valued pro-
cesses. For time being, B denotes a general separable Banach space and H a separable
Hilbert space. We also fix a stochastic basis (Ω,Σ,F,P) satisfying the usual condition
on which an H-cylindrical Wiener process with respect to F is defined.
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An elementary process is a process Φ : [0, T ]× Ω→ L (H,B) of the form

Φ(t, ω) =

N∑
n=1

M∑
m=1

1(tn−1,tn]×Amn(t, ω)

K∑
k=1

hk ⊗ xkmn ,

where 0 ≤ t0 < · · · < tN ≤ T , A1n, · · · , AMn ∈ Ftn−1
are disjoint for all n and the vectors

h1, · · · , hK are orthonormal in H. If Φ does not depend on ω we also say that Φ is an
elementary function. For an elementary process, the stochastic integral

∫ T
0

Φ(t) dWH(t)

is defined by∫ T

0

Φ(t) dWH(t) :=

N∑
n=1

M∑
m=1

1Amn

K∑
k=1

[
WH(tn)hk −WH(tn−1)hk

]
xkmn

Now let Φ : [0, T ]×Ω→ L (H,B) be an H-strongly measurable and adapted process
which belongs to L2(0, T ;H) scalarly, i.e. Φ∗x∗ ∈ L0(Ω;L2(0, T ;H)) for all x∗ ∈ B∗.
Then Φ is called stochastically integrable (on (0, T )) if there exists a sequence Φn of
elementary processes and an C([0, T ];E)-valued random variable η such that

1. 〈Φnh, x∗〉 → 〈Φh, x∗〉 in L0(Ω;L2(0, T )) for all h ∈ H and x∗ ∈ B∗ and

2. We have

η(·) = lim
n→∞

∫ ·
0

Φn(t) dWH(t) in L0(Ω;C([0, T ];B)) .

In this case, η is called the stochastic integral of Φ and we write
∫ t

0
Φ(t) dWH(t) := η(t).

In the case where Φ does not depend on ω, we also require that the approximating
sequence Φn does not depend on ω.

Having defined stochastic integrability, we can now define what we mean by a mild
solution.

Definition 6.7. A tuple ((Ω,Σ,F,P),WH ,X) where (Ω,Σ,F,P) is stochastic basis sat-
isfying the usual conditions, WH is an H-cylindrical Wiener process with respect to F
and X is a continuous, F-progressive, E-valued process is called a mild solution of (1.1)
if for all t ≥ 0 the function s 7→ S(t − s)G(X(s)) is stochastically integrable and (6.1)
holds almost surely.

It is clear from the definition of stochastic integrability, that every mild solution of
equation [A,F,G] is also a weakly mild solution of [A,F,G] and thus, by Proposition 6.3,
also a weak solution of [A,F,G]. Moreover, if X is a mild solution, then (6.2) even holds
for all x∗ ∈ E∗ (rather than for x∗ ∈ Ẽ∗) and the exceptional set outside of which (6.2)
holds can be chosen independently of x∗. We also note that if X is a weak (hence a
weakly mild) solution and it is known a priori that s 7→ S(t− s)G(X(s)) is stochastically
integrable, then X is a mild solution.

The obvious question is whether for a weak solution X the process s 7→ St−sG(Xs) is
automatically stochastically integrable. As we shall see, this is indeed the case in two
important cases. The proof relies on a characterization of stochastic integrability of a
process Φ. Let us first discuss the case of L (H,B)-valued functions, which was consid-
ered in [32]. It was proved there that a function Φ : [0, T ] → L (H,B) is stochastically
integrable if and only if there exists an B-valued random variable ξ such that

〈ξ, x∗〉 =

∫ T

0

Φ(s)∗x∗ dWH(s). (6.9)

This, in turn, is equivalent with Φ representing a γ-Radonifying operator. We write
γ(L2(0, T ;H), B) for the space of γ-Radonifying operators from L2(0, T ;H) to B. For
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the definition of γ-Radonifying operators and more information, we refer to the survey
article [28]. That Φ represents an operator R ∈ γ(L2(0, T ;H), B) means that for all
x∗ ∈ B∗ the function t 7→ Φ∗(t)x∗ belongs to L2(0, T ;H) and we have

〈Rf, x∗〉 =

∫ T

0

[f(t),Φ∗(t)x∗]H dt ∀ f ∈ L2(0, t;H) , x∗ ∈ B∗. (6.10)

Note that if Φ is H-strongly measurable, then the operator R is uniquely determined by
Φ.

Using the results of [32], we obtain for (1.1) with additive noise:

Proposition 6.8. Assume Hypotheses 3.1 and 6.5 and that G ∈ L (H, Ẽ) is constant.
Then the weak, the weakly mild and the mild solutions of (1.1) coincide. Furthermore, if
there exist solutions, the function s 7→ St−sG represents an element of γ(L2(0, t;H), E)

for all t > 0.

Proof. Let X be a weak (equivalently, a weakly mild) solution of (1.1). If no such solution
exists, there is nothing to prove since every mild solution is also a weakly mild solution.

Arguing as Remark 6.2, using that as a consequence of Hypothesis 6.5 the map
s 7→ 〈x, S∗t−sx∗〉 is continuous even for x∗ ∈ E∗ and x ∈ Ẽ, we see that (s, ω) 7→
〈S(t− s)F (X(s, ω)), x∗〉 is measurable for all x∗ ∈ E∗. By Hypothesis 6.5, ‖Ss‖L (Ẽ,E)

is majorized on (0, t) by a square integrable function, say g. Hence, by the boundedness
of F on bounded sets we have

‖St−sF (X(s, ω))‖ ≤ g(t− s) sup
r∈(0,t)

‖F (X(r, ω)‖ ∈ L1(0, t).

This implies that
∫ t

0
St−sF (Xs) ds can be defined pathwise as an E-valued Bochner in-

tegral. Furthermore, this integral is a weakly measurable function of ω. Since E is
separable,

∫ t
0
St−sF (Xs) ds is a strongly measurable function of ω by the Pettis measur-

ability theorem. Consequently, ξ := Xt − StX0 −
∫ t

0
St−sF (Xs) ds is an E-valued random

variable. Since X is a weakly mild solution, (6.9) holds for T := t,Φ : s 7→ St−sG and all
x∗ ∈ E∗ by Corollary 6.6. The claim follows from the results of [32].

Let us now return to our discussion of stochastic integrability in a general separable
Banach space B. In order to have a powerful integration theory for L (H,B)-valued
processes, we need an additional geometric assumption on B. Of particular importance
are the so-called UMD Banach spaces. For the definition of UMD spaces and more
information, we refer to the survey article [4]. We here confine ourselves to note that
every Hilbert space is a UMD space as are the reflexive Lp and Sobolev spaces.

The importance of the UMD property for stochastic integration is that it allows for
so-called decoupling, see [10, 23]. Roughly speaking, this enables us to replace the
cylindrical Wiener process WH by an independent copy W̃H and thus use the results of
[32] pathwise. This program was carried out in [30] and yields a similar characteriza-
tion of stochastic integrability as in [32] in the case of processes which belong scalarly
to Lp(Ω;L2(0, T ;H)). We recall that Φ : [0, T ] × Ω → L (H,E)) is said to belong to
Lp(Ω;L2(0, T ;H)) scalarly, if for every x∗ ∈ E∗ the function t 7→ Φ∗(t, ω)x∗ belongs to
L2(0, T ;H) for almost every ω and the map ω 7→ Φ∗(·, ω)x∗ belongs to Lp(Ω;L2(0, T ;H)).

It is proved in [30] that an H-strongly measurable and adapted process Φ : [0, T ] ×
Ω → L (H,E) which belongs to Lp(Ω;L2(0, T ;H)) scalarly is stochastically integrable
if and only if there is a random variable ξ ∈ Lp(Ω;E) such that (6.9) holds for all
x∗ ∈ E∗. This in turn is the case if and only if Φ represents a random variable R ∈
Lp(Ω; γ(L2(0, T ;H), E)). Here ‘represents’ means that (6.10) holds for almost every ω.
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A characterization of stochastic integrability for processes Φ which belong scalarly
to L0(Ω;L2(0, T ;H)) is also contained in [30], however, in this characterization one
needs information about the whole integral process

∫ ·
0

Φ(s)dWH(s); when dealing with
weakly mild solutions, such information is not available, whence this characterization
cannot be used for our purposes. Therefore, in the proposition below, we use a stopping
time argument to reduce to the Lp(Ω)-case.

Proposition 6.9. Assume Hypotheses 3.1 and 6.5 and that E is a UMD Banach space.
Then the weak, the weakly mild and the mild solutions of (1.1) coincide. Furthermore,
if X is a weak solution, then for all t ≥ 0 the function s 7→ St−sG(Xs) represents an
element of the space L0(Ω, γ(L2(0, t;H), E)).

Proof. Let X be a weak (equivalently, a weakly mild) solution of (1.1). If no weak solu-
tion exists, there is nothing to prove.

For n ∈ N and define τn := inf{s > 0 : ‖Xs‖ ≥ n}. Fix t > 0. Arguing similar as in
the proof of Proposition 6.8, we see that

ξn := Xt∧τn − (Xτn − St−t∧τnXτn)1{τn<∞} − StX0∧τn −
∫ t

0

1[0,τn]St−sF (Xs) ds

is a well-defined, bounded, E-valued random variable. It follows from Corollary 6.6,
that for x∗ ∈ E∗,

〈ξn, x∗〉 =

∫ t

0

1[0,τn]G(Xs)
∗S∗t−sx

∗ dWH(s) .

almost surely. Since X has continuous paths and G is bounded on bounded subsets,
Φn : s 7→ 1[0,τn]St−sG(Xs) belongs to L∞(Ω;L2(0, t;H)) scalarly. Hence, by [30, Theorem
5.9], Φn is stochastically integrable and

Xt∧τn = StX0∧τn +Xτn − St−t∧τnXτn

+

∫ t∧τn

0

St−sF (Xs) ds+

∫ t

0

1[0,τn]St−sG(Xs) dWH(s) .
(6.11)

Furthermore, Φn represents an element of Lp(Ω; γ(L2(0, t;H), E)) for all p ≥ 1. Now
let N be a set with P(N) = 0 such that for ω 6∈ N the map s 7→ Φn(s, ω) represents an
element Rn(ω) of γ(L2(0, t;H), E). Such a set exists by [30, Lemma 2.7].

Note that by the continuity of the paths, Φn(s, ω) = Φ(s, ω) := St−sG(X(s, ω)) for
all s ∈ (0, t) and n ≥ n0 = n0(ω). It follows thatΦ(s, ω) represents an element R(ω)

of γ(L2(0, t;H), E) for all ω 6∈ N . Since Rn(ω) → R(ω) for all ω 6∈ N , R is a strongly
measurable γ(L2(0, t;H), E)-valued random variable. Furthermore, R is represented by
Φ. By [30, Theorem 5.9], Φ is stochastically integrable and [30, Theorem 5.5] shows
that ∫ t

0

Φn(s) dWH(s)→
∫ t

0

Φ(s) dWH(s) in L0(Ω;E) .

On the other hand,

ξn → X(t)− S(t)X(0)−
∫ t

0

S(t− s)F (X(s)) ds

pointwise a.e. and hence in L0(Ω;E). Thus, letting n → ∞ in (6.11) finishes the proof.

7 Applications

We end this article by discussing some examples of stochastic partial differential
equations where the results of this article can be applied.
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7.1 Equations with measurable semilinear term and additive noise

In [20], we are concerned with the following equation

dX(t) =
[
AX(t) + F (X(t)

]
+GdWH(t) (7.1)

where E, Ẽ,H and A are as in Hypothesis 3.1, the semilinear term F : E → E is
bounded and measurable, WH is an H-cylindrical Wiener process and G ∈ L (H, Ẽ). In
the case where F ≡ 0, this is an Ornstein-Uhlenbeck equation, which is well understood.
If the Ornstein-Uhlenbeck equation associated with (7.1), i.e. equation [A, 0, G] is well-
posed, the associated transition semigroup Tou is known explicitly. Namely,

Tou(t)f(x) =

∫
E

f(S(t)x+ y) dNQt(y)

where NQ denotes the centered Gaussian measure with covariance operator Q and
Qt : E∗ → E is given as

Qtx
∗ :=

∫ t

0

S(s)GG∗S(s)∗x∗ ds.

By HQt , we denote the reproducing kernel Hilbert space associated with Qt. In [20],
the following theorem is proved.

Theorem 7.1. Let E, Ẽ,H and A as in Hypothesis 3.1, G ∈ L (H, Ẽ) and assume that
also Hypothesis 6.5 is satisfied. Moreover, assume that the Ornstein-Uhlenbeck equa-
tion [A, 0, G] is well-posed and that S(t)E ⊂ HQt for all t > 0 with∫ T

0

‖S(t)‖L (E,HQt )
dt <∞ (7.2)

for all T > 0. Then for every bounded, measurable F : E → E equation (7.1) is
well-posed. The solutions are strong Markov processes with a strong Feller transition
semigroup.

This extends earlier results from [6, 11, 12] where the corresponding equation was
studied for bounded and continuous (resp. bounded and weakly continuous) F under
similar assumptions in the case where E = Ẽ is a Hilbert space. The assertion that
(7.1) is well-posed even for bounded measurable F appears to be new even in the case
of Hilbert spaces since existence of solutions cannot be inferred from the Girsanov
theorem, as G is, in general, not invertible.

The assumption that (7.2) holds implies that the transition semigroup Tou is strongly
Feller and is satisfied in many important examples, for example for the one-dimensional
stochastic heat equation driven by space-time white noise, i.e. A is the Lp-realization
of the Dirichlet Laplacian on the interval (0, 1) and for p ≤ 2 we set the operator G is
the injection from L2(0, 1) to Lp(0, 1). In the case p > 2 we set Ẽ = L2(0, 1) and G the
identity. It is also possible to consider the stochastic heat equation on C0(0, 1). More
examples, which include equations in higher space dimension, more general differential
operators and different noise terms are discussed in [20].

The proof of Theorem 7.1 is based on Theorem 3.6, and we prove existence and
uniqueness of solutions of the associated local martingale problem. The actual proof
of existence and uniqueness is then given using semigroup theory. In view of Theo-
rem 4.2, the strong Markov property for solutions follows automatically once we have
established well-posedness of [A,F,G].

The first step to prove uniqueness for solutions of (7.1) is to prove a Miyadera-
Voigt type perturbation result for strongly Feller semigroups. For the generator Aou
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of the Ornstein-Uhlenbeck semigroup Tou, this result can be used to show that Apert,
defined by Apertu(x) := Aouu(x) + 〈F (x),∇u(x)〉, generates a strongly Feller semigroup
Tpert. A detailed analysis of the operator Apert shows that a probability measure P on
C([0,∞);E) solves the local martingale problem associated with equation [A,F,G] if
and only if it solves the true martingale problem (in the sense of [9]) for the operator
Apert. Thus a well-known result [9, Theorem 4.4.1] yields that the one-dimensional
distributions of a solution P of the martingale problem for Apert are determined by the
distribution of x(0) under P and the semigroup Tpert. By Theorem 2.2, this implies
uniqueness in law for the solutions of equation (7.1). Moreover, if solutions exist, then
the associated transition semigroup is Tpert, which is strongly Feller.

It thus remains to prove existence of solutions. If F is additionally Lipschitz continu-
ous, then solutions can be constructed using Banach’s fixed point theorem in a standard
way. Thus, for bounded, Lipschitz continuous F , equation (7.1) is well-posed. To extend
the existence result to general bounded, measurable F , a refinement of Lemma 4.3 is
used. Indeed, making use of the strong Feller property, it can be proved that if Fn is a
sequence of bounded measurable functions such that equation [A,Fn, G] is well-posed
for every n and the sequence Fn is uniformly bounded and converges pointwise to the
bounded function F , then also equation [A,F,G] is well-posed. The tightness of the
solutions to the local martingale problem for [A,Fn, G] can be proved using that these
measures are distributions of mild solutions of the equation. Using the approximation
result, well-posedness of (7.1) can be extended from bounded, Lipschitz continuous F
to bounded, measurable F via a monotone class argument.

7.2 Stochastic reaction-diffusion systems with Hölder continuous multiplica-
tive noise

Reaction-diffusion systems and stochastic perturbations of them play an important
role in applications in chemistry, biology and physics [25]. In an abstract form, a
stochastic reaction-diffusion system takes the form (1.1), where the state space E is
a Banach space of Rr-valued functions, defined on a domain O ⊂ Rd. Typically, the
reaction term F is a vector of composition operators with polynomial entries.

Such systems with locally Lipschitz continuous multiplicative noise where studied
in [5]. In the case where the noise term G is merely Hölder continuous, only partial
results are available and, to the best of our knowledge, only for r = 1, i.e. a single
reaction-diffusion equation rather than a system. In [2], existence of solutions for such
an equation was proved under an additional boundedness assumption on G. However,
a uniqueness result is missing, except for the case of locally Lipschitz continuous G.

In [19], we prove pathwise uniqueness and strong existence of solutions for a class
of stochastic reaction-diffusion equations with Hölder continuous multiplicative noise.
Let us here present an example which fits into the framework of [19] and explain how
results of this article are used in the proof of existence and uniqueness.

Let O ⊂ Rd be an open domain with Lipschitz boundary. Moreover, we let a1 =

(a
(1)
ij ), a2 = (a

(2)
ij ) ∈ L∞(O;Rd×d) be symmetric and uniformly elliptic, i.e. there exists

η > 0 such that for all ξ ∈ Rd and almost all x ∈ O we have

d∑
i,j=1

a
(l)
ij (x)ξiξj ≥ η|ξ|2

for l = 1, 2. Let R1, R2 be Hilbert-Schmidt operators on L2(O) such that Rj is diago-

nalized by an orthonormal basis (e
(j)
n )n∈N of L2(O) which consists of functions in C(O)

and satisfies
∑∞
n=1 ‖Rje

(j)
n ‖2∞ < ∞ for j = 1, 2. Finally, we let g1, g2 : R → R be of
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linear growth and locally 1
2 -Hölder continuous. We consider the following stochastic

reaction-diffusion system{
du1(t) =

[
div(a1∇u1(t)) + u1(t)− u1(t)3 + u2(t)

]
dt+ g1(u1(t))R1dW1(t)

du2(t) =
[
div(a2∇u2(t)) + u1(t)− u2(t)

]
dt+ g2(u2(t))R2dW2(t)

(7.3)

complemented with conormal boundary conditions.
To reformulate the above system in our abstract framework, we set Ẽ = E = C(O)×

C(O) and A = diag(A1, A2), where Aj is the C(O)-realization of the differential operator
÷(aj∇·) under conormal boundary conditions. We set H = L2(O) × L2(O). By the
assumption on Rj , for h ∈ L2(O) we find that Rjh ∈ C(O). We may thus define G : E →
L (H,E) by

[G(u, v)h](x) := (g1(u(x))R1h1(x), g2(u(x))R2h2(x))

for h1, h2 ∈ L2(O) and x ∈ O. The reaction term F is given by [F (u, v)](x) := (u(x) −
u(x)3 + v(x), u(x)− v(x)). This reaction Term is of Fitzhugh-Nagumo type and equations
with this reaction term are generic excitable systems [25].

In [19] we prove

Theorem 7.2. Under the assumptions above, equation (7.3) is well-posed on the state
space E = C(O) × C(O). The solutions exist strongly, they are pathwise unique and
strong Markov processes.

The proof of Theorem 7.2 is in spirit rather different from the proof of well-posedness
of (7.1), insofar as we work directly with solutions of the equation, rather than with so-
lutions of the associated local martingale problem. In the proof, we use the equivalence
of weak and mild solutions. Indeed, in the proof of pathwise uniqueness, we use weak
solutions, whereas in the proof of existence of solutions, we use mild solutions. We also
employ the Yamada-Watanabe theory from Section 5.

The proof of pathwise uniqueness is an adaption of the proof of [39, Theorem 1].
The main difficulty in extending the proof from the finite-dimensional setting to an
infinite dimensional setting is to handle the differential operators involved in (7.3).
In [19], we use the concept of a weak solution and test solutions against functionals
x∗ = (λR(λ,A1)∗δx, 0), resp. x∗ = (0, λR(λ,A2)∗δx), where Aj are the realizations of
of the differential operator ÷(aj∇·) on C(O). This approach should be compared with
[26], where pathwise uniqueness was proved for stochastic heat equations on O = Rd,
namely

du(t) = ∆u(t) + σ(u(t))dW (t),

where ∆ is the Laplacian on Rd, W is a colored noise and σ : R → R is γ-Hölder
continuous, where the allowed value of γ depends on the noise W . To prove pathwise
uniqueness in [26], the authors convolute solutions of the stochastic heat equation with
a mollifier ϕn. In their variational framework, this yields the term u∗∆ϕn in the equation
for the resulting process. It is then used that, as a consequence of its translation invari-
ance, the Laplacian commutes with convolutions, i.e. we have u ∗ (∆ϕn) = ∆(u ∗ ϕn).
This is no longer true for differential operators with nonconstant coefficients as in (7.3).

Let us also note that a recent result [24] for the stochastic heat equation that in
the case of d = 1 shows that we cannot hope for pathwise uniqueness in the case of
space-time white noise.

Note that by Theorem 5.3, pathwise uniqueness implies uniqueness in law, hence the
strong Markov property of solutions follows from Theorem 2.2 once we have established
existence of solutions. To that end, we approximate the function f in the reaction term
and the functions g1, g2 with bounded functions by cutting off the functions. Existence
of solutions for the approximate problems with bounded coefficients and deterministic
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initial values follows from the results of [2]. We could then use Lemma 4.3 to infer
existence of solutions for the limit problem (7.3). However, in [19] we choose a different
approach and use that, as a consequence of pathwise uniqueness and Corollary 5.4, the
approximate solutions can be realized on a common stochastic basis and with respect
to a common H-cylindrical Wiener process. This allows us to adopt the strategy from
[5, 21] to prove existence of solutions. Indeed, as the approximate solutions exist on
a common stochastic basis and are pathwise unique, they can be ‘glued together’ to a
‘maximal solution’ of equation (7.3). To prove existence of solutions in the sense used
here, we have to prove that the ‘maximal solution’ exists globally. By the results of
[21], to that end, we have to prove uniform boundedness of the approximate solutions
in Lp(Ω;C([0, T ];E)) for a suitable p > 1, all T > 0 and p-integrable initial data. As the
approximate solutions are also mild solutions, the uniform boundedness can be proved
using estimates for deterministic and stochastic convolutions, see [31].

We note that, in comparison with [2], in Theorem 7.2 we do not need that the term
G is bounded. Moreover, with the above arguments, we initially prove existence of solu-
tions only for initial data with a certain integrability, thus in particular for deterministic
initial data. However, by Theorem 2.2, we automatically obtain existence of solutions
for all initial distributions.
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