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Abstract

We give a new proof of a result of Rick Kenyon that the probability that an edge in
the middle of an n×n square is used in a loop-erased walk connecting opposite sides
is of order n−3/4. We, in fact, improve the result by showing that this estimate is
correct up to multiplicative constants.
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1 Introduction

Loop-erased random walk is a process obtained by erasing loops from simple random
walk. Although the process can be defined for arbitrary Markov chains, we will discuss
the process only on the planar integer lattice Z2 = Z+iZ. We start this paper by stating
our main result which is an improvement of a result of Rick Kenyon [2].

Let
An = {j + ik ∈ Z+ iZ : −n < j < n+ 1,−n < k < n},

∂An = {z ∈ Z2 : dist(z,An) = 1)}.

LetKn denote the set of nearest neighbor paths ω = [ω0, . . . , ωk] with Re[ω0] = −n,Re[ωk] =

n + 1 and {ω1, . . . , ωk−1} ⊂ An. We write |ω| = k for the number of steps, and let
p(ω) = 4−|ω| be the simple random walk measure. Let

f(n) =
∑
ω∈Kn

p(ω).

It is known that limn→∞ f(n) = c1 ∈ (0,∞) (see, e.g., [6, Proposition 8.1.3]), where
the constant c1 can be given in terms of the Green’s function of Brownian motion on a
domain bounded by a square.

A path in Kn is a self-avoiding walk (SAW) if it does not visit any lattice point more
than once. Let Wn denote the set of SAWs η = [η0, . . . , ηk] ∈ Kn. For each ω ∈ Kn there
is a unique self-avoiding walk L(ω) ∈ Wn obtained by chronological loop-erasing (see
[6, Chapter 9] for appropriate definitions). The loop-erased measure p̂n(η) is defined by

p̂n(η) =
∑

ω∈Kn,L(ω)=η

p(ω).
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Probability that LERW uses a given edge

Note that ∑
η∈Wn

p̂n(η) = f(n).

LetW+
n denote the set of η ∈ Wn that contain the directed edge [0, 1] andW−n those that

contain [1, 0]. Let W∗n = W−n ∪ W+
n be the set of η ∈ Wn that contain the edge [0, 1] in

either direction. We write an � bn to mean that an/bn and bn/an are uniformly bounded.
In this paper we prove the following theorem.

Theorem 1.1. As n→∞, ∑
η∈W∗n

p̂n(η) � n−3/4. (1.1)

With a little more work, we could establish the existence of the limit

lim
n→∞

n3/4
∑
η∈W∗n

p̂n(η),

but we will not do it here. Our estimate is developed further in [1] to show convergence
in general simply connected domains, so for ease we will only prove (1.1) here. Our
result is a strengthening of a result of Kenyon [2] who proved that∑

η∈W∗n

p̂n(η) ≈ n−3/4, (1.2)

where ≈ indicates that the logarithms of both sides are asymptotic. Actually, his proof
shows more than this but it does not establish the up-to-constants result (1.1). His
proof used the relationship between loop-erased walks and two other models, dimers
and uniform spanning trees. Another proof of (1.2) was given by Masson [12] using the
relationship between loop-erased walk and the Schramm-Loewner evolution (SLE). We
do not need to make reference to any of these models in our proof of (1.1). There are
two main steps.

• A combinatorial identity is proved which writes the left-hand side of (1.1) in terms
of simple random walk quantities.

• The simple random walk quantities are estimated.

Our computation to obtain the exponent 3/4 uses the Brownian loop measure to
estimate the random walk loop measure. This is in the spirit of Kenyon’s calculations
[2] since the loop measure is closely related to the determinant of the Laplacian.

Although the proof is self-contained (other than some estimates for simple random
walk) it does use a key idea from Kenyon’s work as discussed in [3, Section 5.7]. For
each random walk path ω, we let J(ω) be the number of times that the path crosses
any edge of the form [−ki,−ki + 1] or [−ki + 1,−ki] where k is a positive integer. Let
q(ω) = (−1)J(ω) p(ω). Let Y+(ω) denote the number of times that ω uses the directed
edge [0, 1], Y−(ω) the number of times that ω uses the directed edge [1, 0], and Y (ω) =

Y+(ω)− Y−(ω). The combinatorial identity is obtained by writing the quantity

Λn =
∑
ω∈Kn

q(ω)Y (ω) =
∑
ω∈Kn

p(ω) (−1)J(ω) Y (ω). (1.3)

in two different ways.
The paper is written using the perspective of loop-erased walk in terms of the ran-

dom walk loop measure as in [6, Chapter 9]. We start by reviewing this perspective in
Section 2 and then we prove the identity in Section 3. Section 4 discusses the random
walk estimates. One of the main motivations for doing the estimates in this paper is to
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Probability that LERW uses a given edge

show that the loop-erased random walk converges to SLE2 in the natural parametriza-
tion [7, 9]. Up-to-constant estimates for the loop-erased walk probability can be viewed
as a step in the program to establish this result.

I thank the anonymous referees for their comments on an earlier version of this
paper.

2 Random walk loop measure

The random walk loop measure is a measure on unrooted random walk loops. A
rooted loop is a nearest neighbor path

l = [l0, l1, . . . , l2k] (2.1)

with k ≥ 0 and l0 = l2k. We call l0 the root of the loop and write |l| = 2k for the number
of steps. An unrooted loop l̄ is an equivalence class of rooted loops with k > 0 under the
equivalence relation

[lj , lj+1, . . . , l2k, l1, l2, . . . , lj ] ∼ [l0, l1, . . . , l2k]

for all j. Note that the orientation of the loops is maintained. The random walk loop
measure m is defined by

m(l̄) = 4−|l̄|
d(l̄)

|l̄|
,

where |l̄| = 2k is the number of steps and d(l̄) is the number of rooted loops in the
equivalence class of the unrooted loop l. Note that d(l̄) is always an integer dividing |l̄|.
In a slight abuse of notation, if l is a loop and A ⊂ Z2, we write l ⊂ A to mean that the
vertices of l are contained in A and l ∩A for the set of vertices in A that l visits.

One way to get the random walk loop measure is to consider the measure on rooted
loops that assigns measure

m̂(l) =
p(l)

|l|
=

1

4|l| |l|
, (2.2)

to each rooted loop. We then write

m(l̄) =
∑
l

m̂(l),

where the sum is over all rooted loops l that are representatives of l̄. We can view m̂ as
the measure on rooted loops obtained from m by assigning the root uniformly over all
vertices.

There is an equivalent way of defining this measure that we will also use. Enumerate
Z2 = {v1, v2, . . .} and let Vn = {v1, . . . , vn}. We define a different measure on rooted
loops by assigning to each unrooted loop a rooted loop by choosing uniformly over all
visits to the vertex of highest index in the loop. More precisely, we define for each
(rooted) loop as in (2.1) with k > 0, l ⊂ Vn, l 6⊂ Vn−1 measure s−1 4−2k where s = #{j :

1 ≤ j ≤ 2k, lj = vn}. This induces a measure on unrooted loops by summing over rooted
loops that generate an unrooted loop. One can check that the induced measure on
unrooted loops is the same as the loop measure above regardless of which enumeration
of Z2 is chosen. (The factor s−1 compensates for the fact that several rooted loops give
the same unrooted loop.) We will use an enumeration in which |vj | is nondecreasing.

If V = {v1, . . . , vk} ⊂ A ( Z2, we define

FV (A) = exp

 ∑
l̄⊂A,l̄∩V 6=∅

m(l̄)

 =

k∏
j=1

GUj
(vj , vj). (2.3)
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Probability that LERW uses a given edge

Here Uj = A \ {v1, . . . , vj−1} and GU denotes the usual random walk Green’s function
in the set U . That is, GU (v, v) is the expected number of visits to v of a simple random
walk starting at v before leaving U . It is well known that we can write

GU (v, v) =
∑
l

p(l) =

[
1−

∑
l

p(l)

]−1

, (2.4)

where the first sum is over all loops with |l| ≥ 0 rooted at v that stay in U and the second
sum is over all such loops with |l| > 0 that return only once to v.

The second equality in (2.3) is obtained by associating to each unrooted loop, a
rooted loop rooted at the vertex vj of smallest index. If there are multiple choices,
that is, if the loop visits the vertex of smallest index multiple times, the root is chosen
uniformly over the possibilities. See [6, Proposition 9.3.1, Proposition 9.3.2] for more
details. The loop-erased measure satisfies [6, Proposition 9.5.1]

p̂n(η) = p(η)Fη(An). (2.5)

We can also define a loop measure mq using the signed weight q(ω) = (−1)J(ω) p(ω).
In other words, the measure on paths is

q[ω0, . . . , ωn] =

n∏
j=1

q(ωj−1, ωj) =

n∏
j=1

(−1)J([ωj−1,ωj ]) = (−1)J(ω) p(ω).

The definition is the same as m except replacing p with q in (2.2). The quantities
J(l), Y (l) as defined in the introduction are functions of the unrooted loop l̄. Note that
J(l) is just the winding number of the loop around 1

2 −
i
2 . Also note that Y (l) does

depend on the orientation of l, so it is important that we are considering oriented, un-
rooted loops. Let JA denote the set of unrooted loops l̄ ⊂ A such that J(l̄) is odd. If
V ⊂ A, let JA,V denote the set of unrooted loops l̄ ∈ JA that intersect V . Let

QV (A) = exp

 ∑
l̄⊂A,l̄∩V 6=∅

mq(l̄)


= exp

 ∑
l̄⊂A,l̄∩V 6=∅

m(l̄) (−1)J(l̄)


= exp

 ∑
l̄⊂A,l̄∩V 6=∅

m(l̄)− 2
∑

l̄∈JA,V

m(l̄)

 = FV (A) exp {−2m(JA,V )} .

As in the case for F , if V = {v1, . . . , vk} ⊂ A, then by associating to each unrooted loop
a rooted loop of smallest index, we get

QV (A) =

k∏
j=1

gUj
(vj , vj). (2.6)

Here Uj = A \ {v1, . . . , vj−1} and

gU (vj , vj) =
∑
l

q(l) =
∑
l

(−1)J(l) p(l)

where the sum is over all (rooted) loops l from vj to vj staying in U . In particular, if
η ∈ Wn, then when the algebraic computation which gives (2.5) is applied to q, we get∑

ω∈Kn,L(ω)=η

q(ω) = q(η)Qη(An).
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This implies that ∑
ω∈Kn,L(ω)=η

(−1)J(ω)−J(η) p(ω) = p(η)Qη(An).

As in (2.4), we can write gAn
(0, 0) = [1− sn]

−1 where

sn =
∑
l

q(l) =
∑
l

p(l) (−1)J(l).

and the sum is over all loops l in An rooted at 0 with |l| = 1 and having no other returns
to the origin. Since simple random walk in two dimensions is recurrent, we can see that
sn → s where s = E[J ′] where J ′ = (−1)J(S[0,T0]), S is a simple random walk starting at
the the origin, and T0 = min{j ≥ 1 : Sj = 0}. Since P{J ′ = 1} > 0 and P{J ′ = −1} > 0,
we see that |s| < 1 and hence 0 < (1− s)−1 <∞. Using (2.6) with V = {0}, we get

lim
n→∞

QV (An) = lim
n→∞

gAn
(0, 0) = lim

n→∞
(1− sn)−1 = (1− s)−1 > 0.

A similar argument shows that ifZ2\U is finite and non-empty, and v is in the unbounded
component of U , then gU (v, v) is finite and strictly positive. Given this and (2.6), it is
straightforward to show that if V is finite, then

QV = QV (Z2) = lim
n→∞

QV (An) (2.7)

exists and is strictly positive. We will only use this with V = {0, 1} and we write Q01(An)

for Q{0,1}(An)

For the important computation of the random walk loop measure, we will use the
Brownian loop measure as introduced in [11] which was shown to be the scaling limit
of the random walk loop measure in [10]. We discuss the nature of the limit in Section
4. Consider the measure m̂ on rooted loops as in (2.2). We will write this in an equiv-
alent way. For each rooted loop l = [l0, . . . , l2n], we associate a triple (z, n, l′) where
z = l0, |l| = 2n and l′ is a loop of time duration 2n rooted at the origin. Then m̂ is
the same as the measure on triples (z, n, l′) where z is chosen according to counting
measure, n is chosen according to the measure λn = P{S2n = 0}/(2n) and given n, l′

is chosen according to the probability measure on random walk starting at the origin
conditioned to return to the origiun at time n. As a scaling limit we consider the mea-
sure on continuous loops γ(t), 0 ≤ s ≤ tγ . We write each such loop as a triple (z, tγ , γ

′)

where z is the root, tγ is the time duration, and γ′ is a Brownian bridge of time duration
tγ rooted at the origin. The bridge distribution can be gotten from the bridges of time
duration 1 by scaling. Using P{S2n = 0} ∼ (πn)−1, we see that the candidiate for the
scaling limit is

area×
(

1

2πt2
dt

)
× (Brownian bridge). (2.8)

(Here we use the fact that a random walk of time duration 2n corresponds to a Brown-
ian motion of time duration n.) This is the definition of the Brownian loop measure in
the plane, and the loop measure in bounded domains is obtained by restriction. The im-
portant fact is that the Brownian loop measure, considered as a measure on unrooted
loops, is conformally invariant, that is, if µD denotes the Brownian loop measure re-
stricted to a domain D and f : D → f(D) is a conformal transformation, then the image
of µD is the same as µf(D). (If we want a measure on parametrized loops, then we must
change the parametrization of the loops as usual for Brownian motion.)

We will be interested in the set of Brownian loops contained in the disk {|z| < es}
that are not contained in {|z| < es−r} and have odd winding number about the origin.
Conformal invariance of the loop measure implies that the Brownian loop measure of
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this set of loops depends only on r, say φ(r). It is also finite, nonzero, increasing in r

and satisfies φ(r + s) = φ(r) + φ(s). In partcular, φ(r) = αr for some α. We will show
that α = 1/8 by using a different form of the loop measure.

For computations, it is more convenient to use the Brownian (boundary) bubble
measure which we now describe. Let us first considers bubbles rooted at the origin in
the upper half plane H. It is the limit as ε ↓ 0 of a measure on paths from iε to 0 in H
which we now describe. Let HH(z, x) = |Im(z)|/|z|2 be π times the usual Poisson kernel
in the upper half plane. In other words, the probability that a Brownian motion starting
at z exits H at an interval I ⊂ R is

1

π

∫
I

HH(z, x) dx.

For each ε consider the measure of total mass 1/ε = HH(εi, 0) on paths whose normal-
ized probability measure is that of a Brownian h-process to 0. (An h-process can be
viewed roughly as a Brownian motion conditioned to leave H at 0.) As ε ↓ 0, the limit
measure is a σ-finite measure νH(0) on loops from 0 to 0 and otherwise in H. (More pre-
cisely, for each r > 0, we consider the limit of the measure restricted to loops that reach
the disk of radius r. This defines the bubble measure restricted to loop that reach the
disk of radius r. The limit measure is a concatenation of an excursion in rD+ := r(D∩H)

from 0 to ζ ∈ ∂(rD+) ∩H with a path in H from ζ to 0. See [5, Section 5.5].) The nor-
malization is such that the measure of bubbles that hit the unit circle equals one as can
be seen by noting that the measure of this set is is given by

lim
ε↓0+

1

ε

∫ π

0

[π−1HD+(iε, eiθ)][π−1 HH(eiθ, 0)] dθ =

∫ π

0

[(2/π) sin θ] [(1/π) sin θ] dθ = 1.

This definition can be extended to simply connected domains with smooth bound-
aries either by the analogous definition or by the following conformal covariance rule:
if f : H→ D is a conformal transformation, then

f ◦ νH(0) = |f ′(0)|2 νD(f(0)).

(In the definition of f ◦ νH(0), we need to modify the parametrization of the curve using
Brownian scaling, but the parametrization is not important in this paper.)

For each unrooted Brownian loop, we can focus on the (unique except for an set of
loops of zero measure) point z of minimal imaginary part. The corresponding rooted
loop is a “bubble” in the domain H+ z rooted at z. Using this, an alternative expresson
for the loop measure (on unrooted loops) is

1

π

∫
C

νH+z(s) dA(s).

There is a similar expression that one can obtain for the half-infinite cylinder obtained
from the equivalence relation z ∼ z + 2π for all z ∈ H. The Brownian bubble measure
νH(0) is replaced by ν̃H(0) which is the limit of the measures of total mass

∞∑
k=−∞

HH(εi, 2πk),

whose probability measure is that of an h-process conditioned to leave H at {2πk : k ∈
Z}. Again, to take the limit for each r ≤ 1 we restrict to loops of diameter at least r.
Then the Brownian loop measure on the half-infinite cylinder can be written as

1

π

∫ ∞
0

∫ 2π

0

ν̃H+iy(x+ iy) dx dy.

ECP 19 (2014), paper 51.
Page 6/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-2908
http://ecp.ejpecp.org/


Probability that LERW uses a given edge

This could also we written in the form (2.8), but the roots would be restricted to points
in the cylinder (or, equivalently, to 0 ≤ Re(z) < 2π) and the term 1/(2πt2) is replaced by

1

2πt2

∞∑
k=−∞

exp

{
− (2πk)2

2t

}
.

The half-infinite cylinder is conformally equivalent to D \ {0} and using this we get the
following description for the Brownian loop measure restricted to curves in the unit
disk D:

1

π

∫ 1

0

∫ 2π

0

νrD(reiθ) r dθ dr, (2.9)

To be more precise, the loop measure is the measure on unrooted loops induced by the
above measure on rooted loops. (This representation of the measure on unrooted loops
focuses on the rooted representative with root as far from the origin as possible.) The
Brownian loop measure is the scaling limit of the random walk loop measure in a sense
made precise in [10]. We discuss this more in Section 4.

3 A combinatorial identity

Let K′n denote the set of nearest neighbor paths ω = [ω0, ω1, . . . , ωk] with Re[ω0] =

−n, ωk = 0 and {ω1, . . . , ωk−1} ⊂ An \ [0,∞). Let K′′n denote the set of nearest neighbor
paths ω = [ω0, ω1, . . . , ωk] with Re[ω0] = n+ 1, ωk = 1 and {ω1, . . . , ωk−1} ⊂ An \ (−∞, 1].
There is a natural bijection between K′n and K′′n obtained by reflection about the line
{Re(z) = 1/2}. Let

Rn =
∑
ω∈K′n

p(ω) =
∑
ω∈K′′n

p(ω).

By considering the reversed path, we can see that Rn = P{Re(Sτ ) = −n} where S is a
simple random walk starting at the origin and τ = min{j > 0 : Sj ∈ ∂An ∪ [0,∞)}. It is
known (see e.g., [6, Proposition 5.3.2]) that

Rn � n−1/2, n→∞. (3.1)

The goal of this section is to prove the following combinatorial identity which relates
the probability that loop-erased walk uses the undirected edge {0, 1} to some simple
random walk quantities.

Theorem 3.1.
4
∑
η∈W∗n

p̂n(η) = Q01(An)R2
n exp {2m(JAn

)} .

Proof. We start by making the following topological observation:

(−1)J(η) Y (η) = 1 if η ∈ W∗n. (3.2)

To see this, consider the path η as a continuous path from {Re(z) = −n} to {Re(z) =

n + 1} in the domain D = {x + iy ∈ C : −n < x < n + 1,−n < y < n}. Then η is
a crosscut of D such that D \ η consists of two components, the “top” component D+

and the “bottom” component D−. Each ordered edge [w,w′] in η can be considered as
subsets of ∂D+ and ∂D−. If we traverse the edge from w to w′, the left-hand side of
[w,w′] (considered as a prime end) is in ∂D+ and the right-hand side is in ∂D−. Let
N+ be the set of integers k such that the ordered edge [ki, ki + 1] is contained in η,
N− the set of integers k such that the ordered edge [ki + 1, ki] is contained in η, and
N = N+ ∪ N−. We claim that if j ∈ N+ and k is the largest integer less than j with
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k ∈ N , then k ∈ N−. Indeed, since j ∈ N+, the open line segment from ji + (1/2) to
ki+(1/2) is contained in D− which implies that k ∈ N−. We now consider the smallest k
such that k ∈ N . The line segment from −ni+ (1/2) to ki+ (1/2) is contained in D− and
hence k ∈ N+. As we continue up the line {Re(z) = 1/2} we see that when we intersect
edges in η, they alternate being in N+ or N−, with the first in N+, the second in N−, the
third in N+, etc. When we reach the unordered edge {0, 1}, we see that if 0 ∈ N+, then
there have been an even number of edges before {0, 1} and if 0 ∈ N−, there have been
an odd number of edges. In other words, (−1)J(η) = 1 if η ∈ W+

n and (−1)J(η) = −1 if
η ∈ W−n . This gives (3.2).

Let Λn be defined as in (1.3). We claim that

Λn =
∑
ω∈Kn

q(ω)Y (L(ω)) =
∑
η∈W∗n

∑
L(ω)=η

p(ω) (−1)J(ω)−J(η). (3.3)

To see this, suppose that L(ω) = η = [η0, . . . , ηk]. Then we can write ω uniquely as

ω = [η0, η1]⊕ l1 ⊕ [η1, η2]⊕ l2 ⊕ · · · ⊕ [ηk−2, ηk−1]⊕ lk−1 ⊕ [ηk−1, ηk],

where lj is a loop rooted at ηj that does not enter {η1, . . . , ηj−1}. We write

J(ω) = J(η) + JL(ω), Y (ω) = Y (η) + YL(ω),

where JL, YL denote the contributions from the loops. Then

Y (ω) = Y (η) +

k−1∑
j=1

Y (lj).

For each loop lj there is the corresponding reversed loop lRj for which Y (lRj ) = −Y (lj).
Since J(lRj ) = J(lj) and Y (lRj ) = −Y (lj), we get cancellation. Doing this for all the
loops, we see that ∑

ω∈Kn,L(ω)=η

q(ω) [Y (ω)− Y (η)] = 0.

This gives the first equality in (3.3). The second equality uses (3.2) and the fact that
Y (η) = 0 if η 6∈ W∗n.

If η ∈ W∗n, then∑
L(ω)=η

p(ω) (−1)J(ω)−J(η) = p(η)
∑

L(ω)=η

p(ω)

p(η)
(−1)JL(ω)

= p(η)Qη(An)

= p(η) exp

 ∑
l̄⊂An,l̄∩η 6=∅

(−1)J(l̄)m(l̄)


= p(η)Fη(An) exp

−2
∑

l̄⊂An,l̄∩η 6=∅,J(l̄) odd

m(l̄)

 .

If J(l̄) is odd, then l̄ must include at least one unordered edge {ki, ki+1} with k ≥ 0 and
at least one unordered edge {ki, ki+1}with k < 0. Therefore, topological considerations
imply that if η ∈ W∗n, then η ∩ l̄ 6= ∅. Hence∑

l̄⊂An,l̄∩η 6=∅,J(l̄) odd

m(l̄) =
∑

l̄⊂An,J(l̄) odd

m(l̄) = m(JAn).
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Probability that LERW uses a given edge

Combining this with (3.3), we see that

Λn =
∑
η∈W∗n

p(η)Qη(An) = e−2m(JAn )
∑
η∈W∗n

p(η)Fη(An) = e−2m(JAn )
∑
η∈W∗n

p̂n(η). (3.4)

We will now compute Λn as defined in (1.3) in a different way. Let ω = [ω0, . . . , ωτ ] ∈
Kn. If ω does not visit 0 or ω does not visit 1, then Y (ω) = 0. Hence, we only need to
consider the sum over ω ∈ Kn that visit both 0 and 1. For such ω, we define T0 = min{j :

ωj = 0}, T ′0 = max{j < τ : ωj = 0}, and we define T1, T
′
1 similarly.

Suppose that T0 < T1, T
′
0 > T ′1. In this case we write

ω = ω− ⊕ l ⊕ ω+, (3.5)

where l is the loop [ωT0
, . . . , ωT ′0 ]. Note that Y (ω) = Y (l). For any such loop l, there

is the corresponding reversed loop lR = [ωT ′0 , ωT ′0−1, . . . , ωT0
] for which Y (lR) = −Y (l).

These terms cancel and hence the sum in (1.3) over ω with T0 < T1, T
′
0 > T ′1 is zero.

Similarly, the sum over ω with T1 < T0 ≤ T ′0 < T ′1 is zero.
Suppose that T0 > T1, T

′
0 > T ′1. Then we can write ω uniquely as

ω = ω− ⊕ l1 ⊕ ω′ ⊕ l0 ⊕ ω+,

with the following conditions. Here l0 is a loop in An rooted at 0, l1 is a loop in An \ {0}
rooted at 1, ω′ is a path from 1 to 0 whose other vertices are in An \ {0, 1}, ω− is a path
from {Re(z) = −n} to 1 whose other vertices are in An \ {0, 1}, and ω+ is a path from 0

to {Re(z) = n + 1} whose other vertices are in An \ {0, 1}. Let ω̃− be the reflection of
ω− about the real axis, and ω̃ = ω̃− ⊕ l1 ⊕ ω′ ⊕ l0 ⊕ ω+ . Then J(ω−) + J(ω̃−), and hence
J(ω) + J(ω̃), are odd and these terms will cancel in the sum. Hence the sum over all ω
with T0 > T1, T

′
0 > T ′1 is zero.

Let K1
n be the set of paths in Kn that visit both 0 and 1 and satisfy T0 < T1, T

′
0 < T ′1.

We have shown that
Λn =

∑
ω∈K1

n

q(ω)Y (ω).

If ω ∈ K1
n, let ρ = min{j > T ′0 : ωj = 1}. Then we can write ω uniquely as

ω = ω− ⊕ l0 ⊕ ω′ ⊕ l1 ⊕ ω+. (3.6)

Here l0 = [ωT0
, . . . , ωT ′0 ] is a loop in An rooted at 0, l1 = [ωρ, . . . , ωT ′1 ] is a loop in An \ {0}

rooted at 1, ω′ = [ωT ′0 , . . . , ωρ] is a path from 0 to 1, ω− = [ω0, . . . , ωT0
] is a path from

{Re(z) = −n} to 0, ω+ = [ωT ′1 , . . . , ωτ ] is a path from 1 to {Re(z) = n + 1}. All of the
vertices of ω′, ω−, ω+ other than the endpoints are in An \ {0, 1}. Note that Y (ω) =

Y (l0) + Y (ω′). As in the previous arguments, we can replace l0 with the reversed loop
lR0 , to see that ∑

ω∈K1
n

(−1)J(ω) Y (l0) p(ω) = 0.

Also Y (ω′) ∈ {0, 1}with Y (ω′) = 1 if and only if T ′0+1 = ρ, that is, if ω′ = [0, 1]. Therefore,
if K2

n denotes the set of paths in K1
n with ω′ = [0, 1], then

Λn =
∑
ω∈K2

n

(−1)J(ω) p(ω) =
∑
ω∈K2

n

(−1)J(ω−)+J(l0)+J(l1)+J(ω+) p(ω). (3.7)

If ω ∈ K2
n, let ξ be the smallest j such that ωj is on the positive real axis. Suppose

for the moment that ξ < T0. Then we can write

ω− = ω−,1 ⊕ ω−,2,
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by splitting the path at time ξ. The path ω−,2 is a path from the positive real axis to 0

that does not go through the point 1. Hence, J(ω−,2) + J(ω̃−,2) is odd, where ω̃−,2 is
the reflection of ω−,2 about the real axis. These terms will cancel in the sum (3.7), and
hence it suffices to sum over ω− such that ω− ∩ [1,∞) = ∅. For these ω−, we can see by
topological reasons that (−1)J(ω−) = 1. By a similar argument, it suffices to sum over
ω+ satisfying ω+ ∩ (−∞, 0] = ∅, and for these walks (−1)J(ω+) = 1. Therefore, if K3

n

denote the set of paths in K2
n satisfying

ω− ∩ [1,∞) = ∅, ω+ ∩ (−∞, 0] = ∅,

we see that
Λn =

∑
ω∈K3

n

(−1)J(l0)+J(l1) p(ω).

Let us write any ω ∈ K3
n as in (3.6). We must choose ω− ∈ K′n, (ω+)R ∈ K′′n and

ω′ = [0, 1]. Summing over all of these possibilities, gives a factor of R2
n/4. The choices

of l0, l1 are independent of the choices of ω− and ω+. The only restriction is that the
loops lie in An and l1 does not contain the origin. By our definition,∑

l0,l1

(−1)J(l0)+J(l1) p(l0) p(l1) = gAn
(0, 0) gAn\{0}(1, 1) = Q01(An).

Therefore,

Λn =
∑
ω∈K3

n

(−1)J(l0)+J(l1) p(ω) =
1

4
R2
nQ01(An).

Comparing this with (3.4) gives the theorem.

4 Estimate on the random walk loop measure

Using Theorem 3.1 and the estimates (2.7) and (3.1), we see that∑
η∈W∗n

p̂n(η) � n−1 exp {2m(JAn)} .

The proof of (1.1) is finished with the following proposition.

Proposition 4.1. There exists c <∞ such that for all n,∣∣∣∣m(JAn
)− 1

8
log n

∣∣∣∣ ≤ c.
Proof. Let Cn = {z ∈ Z2 : |z| < en}. We will prove the stronger fact that the limit

lim
n→∞

[
m(JCn

)− n

8

]
(4.1)

exists by showing that
∞∑
n=1

∣∣∣∣m(JCn+1
\ JCn

)− 1

8

∣∣∣∣ <∞. (4.2)

Let µ denote the Brownian loop measure, and let J̃ denote the set of unrooted
Brownian loops γ in the unit disk that intersect {|z| ≥ e−1} and such that the winding
number of γ about the origin is odd. We will establish (4.2) by showing that µ(J̃ ) = 1/8

and ∣∣∣m(JCn+1
\ JCn

)− µ(J̃ )
∣∣∣ = O(n−2). (4.3)
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For the Brownian loop measure, we do a computation similar to that in [4, Proposi-
tion 3.9]. Using (2.9), we write

µ(J̃ ) =
1

π

∫ 1

e−1

∫ 2π

0

φ(r, θ) dθ r dr,

where φ(r, θ) denotes the Brownian bubble measure of loops in rD rooted at reiθ with
odd winding number about the origin. Rotational symmetry implies that φ(r, θ) = φ(r, 0)

and conformal covariance implies that φ(r, 0) = r−2 φ where φ = φ(1, 0). Hence,

µ(J̃ ) =
φ

π

∫ 1

e−1

∫ 2π

0

r−2 dθ r dr = 2φ. (4.4)

By considering the (multi-valued) covering map f(z) = i log z which satisfies |f ′(1)| = 1,
we see that

φ =
∑
k odd

H∂H(0, 2πk),

where H∂H denotes the boundary Poisson kernel (normal derivative of the Poisson ker-
nel) in the upper half-plane H normalized as before so that H∂H(0, x) = x−2. Therefore,

2φ = 2

∞∑
k=−∞

1

[2π(2k + 1)]2
=

1

π2

[
1 +

1

32
+

1

52
+ · · ·

]
=

1

8
.

If s > 2, let Ũs denote the set of Brownian loops (both odd and even winding number)
in D that intersect both {|z| ≥ e−1} and {|z| ≤ e−s}. We claim that as s→∞,

µ(Ũs) = s−1 +O(s−2), (4.5)

µ[J̃ ∩ Ũs] = (2s)−1 +O(s−2). (4.6)

To see this, we first consider the boundary bubble measure λs of loops in D rooted at
1 that enter {|z| ≤ e−s}. An exact expression is given as follows. Let Bt be a Brownian
motion and σs = inf{t : |Bt| = e−s}. Then,

λs = lim
ε↓0

ε−1E1−ε [HD(Bσs
, 1);σs < σ0] .

(We write Ez,Pz for expectations and probabililties assuming B0 = z.) The Poisson
kernel in the disk is well known; for our purpose we need only know that

HD(e−s+xi, 1) =
∑
k∈Z

HH(x+ 2πk + is, 0) =
∑
k∈Z

s

(x+ 2πk)2 + s2
=

1

2
+O(e−s),

(recall that HD(z, 1) is π times the hitting density which is uniform on the circle), and a
standard estimate for Brownian motion gives

P1−ε{σs < σ0} =
log(1− ε)
−s

∼ ε

s
.

Therefore, λs = (2s)−1 +O(e−s). Using rotational invariance, and conformal covariance,
if r ≥ e−1 and λ(r, θ, s) denotes the bubble measure of bubbles in rD rooted at reiθ that
enter {|z| ≤ e−s}, then

λ(r, θ, s) = r−2 (2s)−1 [1 +O(s−1)].

If we compute as in (4.4), we get (4.5). The relation (4.6) is done similarly except that
we have to worry about the winding number of the loop. Here we use∑

k even
HH(x+ 2πk + is, 0) =

∑
k even

s

(x+ 2πk)2 + s2
=

1

4
+O(e−s),
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Probability that LERW uses a given edge

to see that

µ[J̃ ∩ Ũs] =
1

2
µ[Ũs] [1 +O(e−s)]. (4.7)

For each unrooted random walk loop l̄ ∈ JCn \ JCn−1 , there is a corresponding
continuous unrooted loop l̄(n) in D obtained from linear interpolation and Brownian
scaling. We will write d(l̄, γ) ≤ δ, if we can parametrize and root the loops l̄(n) and
γ such that the loops are within δ in the supremum norm. In [10] it was shown that
there exists α > 0 and a coupling of the random walk and Brownian loop measures
in D, restricted to loops of diameter at least 1/e, so that the total masses agree up to
O(e−nα) and such that in the coupling, except for a set of paths of size O(e−nα), we
have d(l̄, γ) < e−nα. (Actually, a more precise estimate is given in [10], but this is all we
need for this paper.) We would like to say that in the coupling, the Brownian loop has
odd winding number if and only J(l̄) is odd. If the loops stay away from the origin, this
holds. However, if the loops are near the origin, it is possible for the winding numbers
of the continuous and the discrete walks to be different. However, and this is why we
can prove what we need, it is also true that if a macroscopic loop (either continuous or
discrete) gets close to the origin, then it is just about equally likely to have an odd as
an even winding number. Let us be more precise.

Let β < α and let Un denote the set of random walk loops contained in Cn+1, that in-
tersect both Cn+1\Cn and {|z| ≤ e−βn en+1} Using the coupling, random walk estimates,
and (4.6), we see that

m(Un) = µ(J̃ ′βn) +O(n−2) = (βn)−1 +O(n−2).

Let us split U into two sets: loops for which dist(0, γ) ≤ 2e−nα and those for which
dist(0, γ) > 2e−nα. If dist(0, γ) > 2e−nα and d(l̄, γ) ≤ e−nα, then J(l̄) is odd if and only if
the winding number of γ is odd. Therefore

m((JCn+1
\ JCn

) \ Un) = µ(J̃ \ J̃ ′βn) +O(n−2).

(The error term O(n−2) is comparable to the measure of loops γ such that e−nβ ≤
dist(0, γ) ≤ 2e−nβ .)

A coupling argument can be used to give a random walk analogue of (4.7),

m
[
Un ∩ (JCn+1

\ JCn
)
]

=
1

2
m(Un) [1 + o(n−1)].

We sketch the proof which, in fact, gives an error of O(e−un) for some u. We use the
definition of the loop measure using an enumeration of Z2 = {z1, z2, . . .} such that |zj |
increases. Then an unrooted loop in Un is obtained from a loop rooted in Cn+1 \Cn. Let
us call the root zk and so the loops lies in Vk = {z1, . . . , zk}. Let us stop the walk at the
first time it reaches a point, say z′, in {|z| ≤ e−βn en+1}. The remainder of the loop acts
like a random walk started at z′ conditioned to reach zk without before leaving Vk. Let
J ′ denote the number of times such a walk crosses the half line {(1/2) + iy : y < 0}.
We claim that the probability that J ′ is odd equals 1

2 +O(e−un) for some u > 0. Indeed,
we can couple two walks starting at the point so that each walk has the distribution of
random walk conditioned to reach zk before leaving Vk and that, except for an event of
probability O(e−δ), the parity of J ′ is different for the two walks. This uses a standard
technique. The key estimate is the following. There exists c > 0 such that if S is a
simple random walk starting at z ∈ Cj−1 and T = min{j : Sy ∈ Cj}, then for all w ∈ ∂Cj
with Im(w) > 0,

P{S(T ) = w, J ′ odd} ≥ c e−j ,

P{S(T ) = w, J ′ even} ≥ c e−j .
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Without the restriction of the parity of J ′, see, for example, [6, Lemma 6.3.7]. To get
the result with the restriction, we just note that there is a positive probability of making
a loop in the annulus Cj \ Cj−1, and this increases J ′ by one. Hence, we can find a
coupling and a ρ > 0 such that at each annulus there is a probability ρ of a successful
coupling given that the walks have not yet been coupled. Since there are of order
β n annuli, we can couple the processes so that the probability of not being coupled is
(1− ρ)βn = O(e−un) for some u.

From the last two estimates and (4.6), we see that∣∣∣µ(J̃ )−m(JCn+1
\ JCn

)
∣∣∣ ≤ c n−2.

This gives (4.3).
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