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REPRESENTATION THEOREMS FOR INTERACTING MORAN MODELS,
INTERACTING FISHER–WRIGHT DIFFUSIONS AND APPLICATIONS

ANDREAS GREVEN, VLADA LIMIC, AND ANITA WINTER

Abstract. We consider spatially interacting Moran models and their diffusion limit which are interacting Fisher-
Wright diffusions. The Moran model is a spatial population model with individuals of different type located on

sites given by elements of an Abelian group. The dynamics of the system consists of independent migration of
individuals between the sites and a resampling mechanism at each site, i.e., pairs of individuals are replaced by
new pairs where each newcomer takes the type of a randomly chosen individual from the parent pair. Interacting

Fisher-Wright diffusions collect the relative frequency of a subset of types evaluated for the separate sites in the
limit of infinitely many individuals per site. One is interested in the type configuration as well as the time-space

evolution of genealogies, encoded in the so-called historical process. The first goal of the paper is the analytical
characterization of the historical processes for both models as solutions of well-posed martingale problems and

the development of a corresponding duality theory.
For that purpose, we link both the historical Fisher-Wright diffusions and the historical Moran models by the

so-called look-down process. That is, for any fixed time, a collection of historical Moran models with increasing
particle intensity and a particle representation for the limiting historical interacting Fisher-Wright diffusions

are provided on one and the same probability space. This leads to a strong form of duality between spatially
interacting Moran models, interacting Fisher-Wright diffusions on the one hand and coalescing random walks on

the other hand, which extends the classical weak form of moment duality for interacting Fisher-Wright diffusions.
Our second goal is to show that this representation can be used to obtain new results on the long-time

behavior, in particular (i) on the structure of the equilibria, and of the equilibrium historical processes, and (ii)

on the behavior of our models on large but finite site space in comparison with our models on infinite site space.
Here the so-called finite system scheme is established for spatially interacting Moran models which implies via the

look-down representation also the already known results for interacting Fisher-Wright diffusions. Furthermore

suitable versions of the finite system scheme on the level of historical processes are newly developed and verified.

In the long run the provided look-down representation is intended to answer questions about finer path
properties of interacting Fisher-Wright diffusions.
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1. Introduction

1.1. Motivation and background. In this paper we analyze two related classes of spatial multi-type popula-
tion models, which we call the spatially interacting Moran models and the ensembles of interacting Fisher-Wright
diffusions. In spatial population models one considers individuals having a genetic type and a location in ge-
ographic space where the number of particles and the genetic decomposition at any particular location change
according to random dynamics.

The spatially interacting Moran models (IMM) on an Abelian group (with group elements representing possible
locations in geographic space) can be described as follows: the group consists of finitely or countable many sites.
Each site is populated by an a.s. finite number of individuals, which carry one of the possible genetic types.
Individuals migrate between the sites independently of each other according to a continuous time random walk
(RW). Furthermore, at a given site each pair of individuals is replaced according to a resampling mechanism by
a new pair of individuals with types chosen independently at random from one of the parents.

For many purposes sufficient information about the population in the IMM is given by the functional of the
proportions of a supported subset of the type space evaluated for the separate sites (see, for example, Shiga
(1980) [43]). In the large local population limit of this functional an ensemble of interacting Fisher–Wright
diffusions (IFWD) arises, that interact due to a drift of each single component to an average over the neighbors.
The average is given by the jump rates of a random walk modeling migration in the finite or countable site-space.

The basic ergodic theory (on the long-term behavior) for IMM and IFWD is the same as that for a wide class
of interacting spatial processes with components indexed by Zd, by Rd, or by the hierarchical group. The class
of processes with such long-term behavior includes on the one hand interacting particle models, for example the
voter model (Holley and Liggett (1975) [34]), branching random walk (Kallenberg (1977) [35], Durrett (1979)
[23]), branching Brownian motion (Fleischman (1978) [26], Gorostiza and Wakolbinger (1991) [29]), and on the
other hand, interacting diffusions, for instance the Fisher–Wright stepping stone model (Shiga (1980) [43]), the
Ornstein–Uhlenbeck process (Deuschel (1988) [17]), the case of a general diffusion function (Cox and Greven
(1994) [9] and Cox, Fleischmann and Greven (1996) [6]) and finally super Brownian motion (Dawson (1977)
[12], Etheridge (1993) [24]). It can be stated as a metatheorem that the long-term behavior for the interacting
spatial systems depends on whether the underlying (symmetrized) migration kernel is recurrent or transient;
hence it differs sharply in high and low dimensions. In high dimensions each process has a one-parameter family
of invariant measures indexed by the “density” of the system which is preserved for every finite time t and
in the limit as t → ∞. In low dimensions the invariant measures are “degenerate”, that is, steady states are
concentrated on the traps of the stochastic evolution (e.g., for the two-type IMM these traps are the monotype
configurations, for branching models the trap is the zero configuration). In this case one says that the systems
cluster.

The above described dichotomy and the results for IFWD on the structure of the equilibria in the high-
dimensional case, and the structure of the clusters in the low-dimensional case, were obtained via a moment
calculation which is based on a duality to (delayed) coalescing random walks. This duality holds for IMM only
under special initial conditions. Nevertheless this duality is more than a clever trick! In fact there is a much richer
structure available, namely an embedding in a model where each individual and its historical evolution is defined.
The objective to treat IMM and IFWD in a unified way, motivated by a few natural open problems, suggests that
indeed we should change our point of view, and embed both processes into these so-called historical processes
which allows one to define the genealogies corresponding to particles/masses evaluated at time t. This provides
a powerful tool whenever these histories viewed backward from a reference time t form again a Markov process.
In order to carry out this program we have to first lay some analytical foundations and provide characterizations
of these random processes via martingale problems.

The idea of taking into account information about the evolution of the individuals in the system up to
time t has been explored in the context of branching models (compare Dawson and Perkins (1991) [16], and
Duquesne and Le Gall (2002) [22]) and for the voter model by Cox and Geiger (2000) [7]. Strong results on
support and regularity properties were derived based on the decomposition into family clusters corresponding
to different degrees of relationship. The previous analysis was based on the concept of infinite divisibility and
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graphical representations. However, exploiting the fact that, due to the exchangeability of the individuals, the
time-reversed process becomes Markovian allows one to define such a family decomposition also for IMM and
IFWD. It turns out that for both processes, IMM and IFWD, the genealogies evolve as a spatially structured
coalescent process. This gives a much stronger form of duality than just the usual moment duality, resulting in
a historical form of duality which provides a powerful tool.

Based on our construction we may think of clusters, which build up in the low-dimensional site spaces for
t→∞, as groups of individuals having the same type due to the same ancestor back at time 0, and according to
the same principle we can decompose the equilibrium state, arising in high-dimensional cases, into infinitely old
family clusters. In order to analyze the historical process in the diffusion limit we use the particle approximations
and random embeddings of the historical Moran processes in the historical Fisher-Wright process.

Hence the first goal of the paper is to give an analytical description for the historical processes, which will
be via well-posed martingale problems. This allows us to construct a countable particle representation on the
level of the historical process of both the approximating particle models and the diffusion limit in such a way
that one can be naturally embedded in the other. We then apply this construction to answer questions on the
long-time behavior of such systems. For the construction, we adapt the idea of look-downs given by Donnelly
and Kurtz (1996) [19] to our setting with interacting components.

Our second goal is to study the longtime behavior of the IMM and IFWD processes by applying the strong
duality on a historical level. Here we focus mainly on the high dimensional case, and in particular the following
two applications: (i) Based on the genealogies we investigate the structure of the equilibrium states by providing
a stochastic representation of the lines of descent in an infinitely old population. (ii) We describe the longtime
behavior of the historical systems indexed by large but finite subsets of the infinite geographic space, and its
connection to the equilibrium states of the corresponding system on Zd, d ≥ 3. For performing this analysis Cox
and Greven (1990) suggested a method, the finite system scheme, compare e.g. [8], and [10]. Our approach to
IMM and IFWD based on the look-down construction allows us to verify this strong form of the finite system
scheme for IMM and IFWD in a unified way and to develop the historical finite system scheme. At the same time
this allows us to develop a rigorous renormalization analysis of such models including the historical structure.
(Compare [30] for a survey on the problem of renormalization and universality).

Before outlining the rest of the paper, we describe some perspectives the new approach has in the the low-
dimensional case. Much work on clustering phenomena has been centered on thinking of clusters as regions
where most of the population – in the sense of averages over huge blocks – are of the same type. In this spirit the
large scale correlation structure of IFWD on the hierarchical group is studied in Fleischmann and Greven (1994),
(1996) [27] [28]. The results in these papers are proved by a moment calculation relying on the duality of the
evolution of these moments to a system of delayed coalescing random walks. Again the look-down construction
provides a powerful tool to explain the clustering phenomena for the IMM, and to give a unified approach to both
IMM and IFWD yielding stronger convergence results in both cases. This analysis will be done in a forthcoming
paper by the authors [31].

Moreover, it turns out that a number of interesting questions concerning the shape and the time structure
of a cluster cannot be answered by moments or deduced fairly directly from the look-down construction. These
include the following open problems:

• Let the underlying migration be recurrent. What is the behavior of the holding times between two
sucessive upcrossings of a component over [ ε, 1− ε ]?

• Cox and Griffeath (1986) [11] observed for the voter model on Z2 that if a block average at time t on
a box of side length tγ is near zero, then a box of side length tγ−ε must have no 1’s with overwhelming
probability. Does a similar statement hold for interacting Fisher-Wright diffusions as well?

The look-down construction on the level of historical processes should open eventually new possibilities. For that
purpose one has to extend the genealogy spanned by the population of a fixed time t to include the information on
those individuals which had lived before time t but do not have descendants at time t. This leads to genealogical
forests, which can be analysed based on the concept of R-trees. An analytic characterization for this kind of
genealogical forests is developed in the forthcoming paper [32] by Greven, Pfaffelhuber and Winter.
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Outline We continue by specifying our models rigorously in Subsection 1.2. Then in Subsection 1.3 we
construct the historical processes explicitly. Finally, in Subsection 1.4 the historical look-down process and the
enriched historical IMM are introduced which will provide a suitable framework to discuss both the particle
model and its diffusion limit.

In Sections 2 the historical processes are characterized analytically through well-posed martingale problems
and as a consequence a particle representation based on the historical look-down process is given. In Section 3
we will apply the analytical representations to construct in Subsection 3.1 a strong duality which will be used to
investigate the genealogical structure of equilibrium states in Subsection 3.2, and to study the behavior of large
finite systems from the point of view of historical processes in Subsection 3.3. The proofs of the main results
are given in Sections 4 through 8.

1.2. The models. We will study two models, a particle model called the spatially interacting Moran models
(IMM), and its diffusion limit called the interacting Fisher-Wright diffusions (IFWD), which we define below in
(i) and (ii), respectively.

The basic ingredient for our processes is a random walk (RW) on a countable Abelian group G: let (Rn)n∈N
be a non-degenerate and irreducible RW in discrete-time with transition probability a(x, y) = a(0, y − x). We
denote its n-step transition probabilities by a(n)(x, y), x, y ∈ G. The transition kernel of its continuous time
version, R := (Rt)t≥0, is then given by

(1.1) at(x, y) :=
∑

n≥0

a(n)(x, y)
tne−t

n!
, x, y ∈ G.

(i) The spatially interacting Moran model, ξ, on G is a locally finite population model where individuals of
the population are assumed to be of one of the possible genetic types chosen from the type-space, K ⊆ R. It is
defined by the following two mechanisms which act independently of each other as follows:

Migration Each individual moves in G independently of the other individuals according to the law
of R.
Resampling Each pair of individuals situated at the same site dies at rate γ and is instantaneously
replaced by a new pair of individuals, where each new individual adopts a type by choosing the parent
independently at random from the “dying pair”. All such resampling events are independent of each
other. This defines a branching mechanism where the size of the population in a branching step is
preserved.

Remark Note that the local population size remains constant during time intervals without a migration step.
Therefore, the resampling part of the evolution during intervals without migration steps is the same as in the
traditional fixed size population models. ¤

Following this description we can define the stochastic evolution of all the individuals and their descendants
via collections of independent versions of R, of exponential waiting times, and of a sequence of {0, 1}-valued
random variables used for choosing parents, provided that the initial state is chosen suitably (we discuss this
below). The result generates a tree-indexed random walk by associating with each individual the path of its
descendants, the edges corresponding to the individuals and the edge length to the life-time.

Remark These rules of evolution have, due to the exchangeability of individuals, an important projection
property. If we start with a set of types K and combine certain types to a new type resulting in a new set
K ′ of fewer types, we obtain the same process by first running the dynamics with types K and then relabeling
according to K ′, as by first relabeling according to K ′ and then running the dynamics. ¤

Very often we are only interested in the numbers of particles of a certain type at certain sites. For this purpose
note that the individuals generate a random population at time t > 0, inducing an integer-valued measure whose
restriction on finite sets are atomic, i.e.,

(1.2) ηt ∈ N (G×K).
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Of course, in order to construct a countable particle system with always finitely many particles per site, it is
in general necessary to impose some growth restrictions on the initial configuration of the process at infinity: fix
a strictly positive and finite measure α on G such that for some finite constant Γ we have for all x ∈ G,

(1.3)
∑

y∈G

a(x, y)α({y}) ≤ Γα({x}).

Take for instance a strictly positive and finite measure β on G and set

(1.4) α({y}) :=
∑

n≥0

Γ−n
∑

z∈G

a(n)(y, z)β({z}).

Use as possible initial configurations those configurations which give rise to a measure η ∈ EG if each individual
is associated with a δ-measure on its current position and type, and here EG is given by

(1.5) EG := {η ∈M(G×K) : ‖ η ‖`1α :=
∑

x∈G

η({x} ×K)α({x}) <∞}.

Note that in the context of particle models, EG was first introduced in Liggett and Spitzer (1981) [40], and is
therefore referred to as the Liggett-Spitzer space.

The stochastic process η = (ηt)t≥0 can be described as a Markov process with state space EG. The well-
posedness of the process can be established by coupling techniques (see Leopold (2001) [38]), or alternatively
will be a consequence of our results in Subsection 2.1.

It is obvious that the projection of η on the location coordinate simply yields a countable system of independent
random walks,

(1.6) χ := (χt)t≥0.

(ii) Next we derive the second model, namely interacting Fisher-Wright diffusions (IFWD) as the high density
limit of a functional of the particle model previously discussed. The exact statement is given in Theorem 0 below.

We introduce the candidate for the scaling limit as follows: define the interacting Fisher-Wright diffusion
(IFWD), ζ = (ζt)t≥0, as the Markov process with the following pregenerator. Let C2

0 ([0, 1]
G) be the set of twice

continuously differentiable functions depending only on finitely many coordinates of ϕ = (ϕx)x∈G ∈ [0, 1]G.
Then for each f ∈ C2

0 ([0, 1]
G) set

(1.7) Lζf = Lχf +
γ

2

∑

x∈G

(1− ϕx)ϕx
∂2f

∂ϕ2x
,

where

(1.8) Lχf :=
∑

x∈G

(
∑

y∈G

(ā(x, y)− δ(x, y))ϕy)
∂f

∂ϕx
,

and ā(x, y) := a(y, x) denotes the reversed kernel. Note that C2
0 ([0, 1]

G) is a core for Lζ and Lχ, a fact which is
established in Shiga (1980) [43]. Thus one has existence and uniqueness of the process ζ.

Remark The law of IFWD, ζ, is given by the solution of the (Lζ , C
2
0 ([0, 1]

G))-martingale problem which is
well-posed. That is, for each f ∈ C2

0 ([0, 1]
G),

(1.9)

(
f(ζt)−

∫ t

0

Lζf(ζs)ds

)

t≥0

is a continuous martingale for the canonical filtration. ¤
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Remark IFWD can also be obtained as the law of the unique strong solution of a countable system of
stochastic differential equations:

(1.10) dζt(x) =
∑

y∈G

(a(x, y)− δ(x, y)) ζt(y)dt+
√
g(ζt(x))dw

x
t , x ∈ G,

where ζ0 ∈ [0, 1]G, and {wx := (wxt )t≥0; x ∈ G} is a collection of independent standard Brownian motions on
the real line, and g(z) := γz(1− z). ¤

We wish to relate the IMM and the IFWD via a limit theorem. Set K := {0, 1}, fix θ ∈ [0, 1], and let (ηρ)ρ∈R+

be a family of IMM on G ×K satisfying the following set of conditions: (i) Assume that L[η(· ×K)] ∈ EG is
translation invariant and ergodic with total mass per site intensity ρ > 0, and (ii) that L[η(· × {1})] ∈ EG is
translation invariant and ergodic with total mass per site intensity θρ, θ ∈ [0, 1].

Define then the functional η̂ρ of ηρ by

(1.11) η̂ρt (x) :=
ηρt ({x} × {1})

ηρt ({x} ×K)
1{ηρt ({x}×K)6=0},

i.e., η̂ρt represents the relative frequency of type 1 individuals.

Remark If the initial distribution satisfies the assumptions (i) and (ii) above, then at every time t > 0
the conditions are satisfied as well. This can be verified using truncation arguments together with moment
calculations, which are tedious but standard and are omitted here. ¤

Then η̂ρ converges in law in Skorokhod topology. That is:

Theorem 0. (Diffusion limit) Under the above assumption on the initial state η, we have

(1.12) Lη[η̂ρ]
D

=⇒
ρ→∞

Lθ[ζ],

where the convergence means weak convergence onM1(D([0,∞); [0, 1]G)), and where Lθ on the right hand side
indicates that the initial state of the IFWD ζ is ζ0(x) = θ, for all x ∈ G.

Proof of Theorem 0 See Theorem 3 in Leopold (2001) [38]. ¤

Remark If the type space K is larger than {0, 1} the analog of (1.12) still holds where the limiting Markov
process is the so-called interacting Fleming-Viot model. In order to keep notation as simple as possible we
concentrate on the two type case, but in terms of the techniques, the case of general K can be handled by the
very same methods. ¤

1.3. Historical processes. As motivated in Subsection 1.1, it is helpful to have detailed information on the
genealogies which is contained in the description of IMM, ξ := (ξt)t≥0, as defined in (i) in Subsection 1.2. This
description was given by specifying migration and resampling of individual particles at random times but is lost
after passing to the functional η. In (i) below we introduce therefore another functional of ξ, namely the historical
IMM, η∗ = (η∗t )t≥0, which does not contain all information about particular individuals but nevertheless allows us
to give a complete description of the statistics of genealogies. A characterization of η∗ via a martingale problem
is given in Theorem 1 in Subsection 2.1. The latter characterization will then justify to pass in Paragraph (ii)
below to the diffusion limit of historical IMM and obtain historical IFWD, ζ∗ := (ζ∗t )t≥0. Both these historical
processes are time-inhomogeneous Markov processes.

(i) The historical process of the IMM arises through the following construction which we present in three
steps.

Step 1 (Lines of descent) For the first step fix a time horizon t. With every individual present in the population
at time t we associate its path of descent. This path follows the random walk in reversed time from the time t
location until the birth time of the individual. At that time the parent particle from whom the type has been
inherited provides the continuation of the path back to its birth place. This is continued until we reach time 0.
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Observe that this procedure gives at time t only information about those individuals which were able to pass
on their type to at least one individual alive at time t. In order to obtain a state space for the path process
which is independent of t we use the convention: for times s < 0 and s > t the path is simply continued as the
constant path.

Building blocks for the process describing the evolution of all paths of descent are the paths of descent
processes for each individual. In this way we associate with every individual alive at time t a path in D(R, G),
that is its line of descent. At the same time the individual has a type in K. In order to keep our framework
somewhat general, for example to allow for mutation, it is best to encode both the path of descent and the type
as a path in G×K denoted by y, i.e.,

(1.13) y ∈ D(R, G×K).

The path of descent of a single tagged individual is a time-inhomogeneous Markov process on D(R, G×K),
and is called the path process associated with the model.

Step 2 (Exchangeable measures on lines of descent) The next step is to associate for each time t with the path
process of each individual a δ-measure on D(R, G×K). Then we can summarize the relevant information about
the population at time t by forming the sum of these δ-measures. In this way, we obtain the random measure

(1.14) η∗t ∈ N (D(R, G×K)).

Step 3 (Historical IMM, η∗) Now we let the time horizon t vary. The associated stochastic process η∗ = (η∗t )t≥0
is called the historical IMM. This process is a Markov process on a suitable subset of N (D(R, G×K)).

In the historical process the ordinary IMM are embedded by the relation

(1.15) ηt({x} × {k}) = η∗t ({y ∈ D(R, G×K)|yt = (x, k)}),

(x, k) ∈ G × K. Hence, define the state space E∗G in terms of the Liggett-Spitzer state space (recall EG from
(1.5)) by

(1.16) µ∗ ∈ E∗G ⊂M(D(R, G×K))

if and only if, for each t ∈ R,

(1.17) µt(·) := µ∗({y ∈ D(R, G×K)|yt ∈ ·×K}) ∈ EG.

This implies that if the process starts at time 0 with a population corresponding to a measure in EG then for
any t > 0, η∗t ∈ E

∗
G, and in particular, η∗t is a.s. locally finite (that is, σ-finite).

(ii) Motivated by Theorem 0 we define the historical IFWD, ζ∗, by the diffusion limit procedure: let
K := {0, 1} and let for each A ⊆ G,

(1.18) EA,t := {y ∈ D(R, G×K) : yt ∈ A×K},

and

(1.19) E{1},t := {y ∈ D(R, G×K) : yt ∈ G× {1}}

denote the set of paths which are at site x ∈ A at time t and the set of paths which have type 1 at time t,
respectively. Consider a family of historical IMM, (η∗,ρ)ρ∈[0,∞), satisfying the following conditions: (i) The law
of η∗,ρ(·) is translation invariant and the induced (via (1.15)) configuration ηt is shift ergodic for all t. (ii) The
law of η∗,ρ(· ×K) has mass-(per site)-intensity ρ > 0, i.e., E[η∗,ρ0 (E{x},t)] = ρ. (iii) Assume furthermore that

E
[
η∗,ρ0 (E{x},t ∩ E

{1},t)
]
= θρ.

Define then the functional η̂∗,ρ of η∗,ρ in analogy to (1.11) as follows: for each measurable subset A{x},t ⊆
E{x},t,

(1.20) η̂∗,ρt (A{x},t) :=
η∗,ρt (A{x},t)

η∗,ρt (E{x},t)
1{η∗,ρt (E{x},t)>0}.
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Then the limiting process,

(1.21) ζ∗ := (ζ∗t )t≥0,

obtained by letting ρ → ∞, is a M(D(R, G × K))-valued process with the following additional property: for
each x ∈ G, ζ∗t (E{x},t) = 1.

It turns out that the resulting limit process can again, as on the level of the non-historical processes η and ζ,
be described by a martingale problem. We carry this out in Subsection 2.1.

Remark Once more we can use arbitrary type spaces, e.g.K := [0, 1], in order to obtain the so-called historical
interacting Fleming-Viot model without much further mathematical input. ¤

1.4. The historical look-down process and the enriched historical IMM. The main tool for establishing
analytical characterizations via well-posed martingale problems and for constructing duality relations for the
historical processes will be the so-called historical look-down process. With this process one can realize on the
underlying probability space a whole collection of historical IMM with a given type intensity θ and total mass
intensities ρ ∈ R+, as well as the diffusion limit the historical IFWD. For such a construction to be possible it is
essential to use the exchangeability between all lines of descent. The historical look-down process corresponds to
a representation of the enriched IMM, ξ, as a historical process ξ∗ (the enriched historical IMM), i.e., a collection
of random paths, which we give subsequently.

(i) Fix a countable index set I representing the reservoir of individuals we shall have to consider for every
fixed value of t. Note that we would need a larger set of indices if we wished to label all individuals present in
the population at any time! The historical look-down, X∗ := (X∗t )t≥0, is a process where

(1.22) X∗t = {X∗, ιt ; ι ∈ I} ∈ (D(R, G×K)× U)I ,

with label set U := {uι; ι ∈ I} a countable subset of [0,∞) which will play a rôle in defining the dynamics,
in particular it determines the look-down order and this in addition allows us to work with a “maximal” type
space.

The initial state of X∗ will be given by specifying initial positions in G, {xι; ι ∈ I}, and labels, {uι; ι ∈
I}, which have to be chosen such that for each ρ ∈ (0,∞), the spatial configuration arising from positions
corresponding to labels less than or equal to ρ lies in the Liggett-Spitzer space (recall (1.5)). That is, for each
ρ ∈ (0,∞),

(1.23) πG ◦

(
∑

ι∈Iρ

δ{xι}

)
∈ EG,

where for each ρ ∈ R+,

(1.24) Iρ := {ι ∈ I : uι ≤ ρ}.

Notice that condition (1.23) is preserved if the individuals perform independently RW with kernel a(x, y).

Convention Moreover we choose as initial types kι := uι, that is, as mentioned above we use at this point

(1.25) K = U := {uι; ι ∈ I}. ¤

The initial state is then defined as follows:

(1.26) X∗0 := {(constant path through (xι, kι), uι); ι ∈ I} .

The initial positions, types, and labels are random and defined on (Ω0,F0,P0).

Next we give an explicit construction of the dynamics of the process X∗. The construction is split into three
steps.

Step 1 (Migration) We assume there is a probability space (Ω1,F1,P1) supporting the following construction.
There is a P(G) × B(R+) × F1–measurable mapping R : G × R+ × Ω1 → G such that R(x, 0, ω) = x, for each
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x ∈ G, P1-a.s., and (R(z, t, ·))t≥0 is a Markov process with transition function at(x, y) (recall (1.1)) starting in
z. We abbreviate R(x, s) for the random variable R(x, s, ·).

Let now on (Ω1,F1,P1)

(1.27) {Rι; ι ∈ I}

be a collection of independent realizations of R.

Step 2 (Resampling) Let

(1.28) {N ι1, ι2 ; ι1, ι2 ∈ I, u
ι1 < uι2},

be independent realizations of rate γ Poisson processes, defined on a probability space (Ω2,F2,P2).

Each time t ∈ N ι1, ι2 , ι1, ι2 ∈ I such that uι1 < uι2 , is a candidate time for a resampling event at which
the particle with index ι1 copies its path of descent and type and pushes the path of descent and type with
index ι2 out of the configuration and this transition is realized if both individuals are sharing the same site, i.e.,
Rι1(xι1 , t) = Rι2(xι2 , t).

Next we combine migration and resampling.

Step 3 (Migration and resampling combined) Consider the probability space (Ω,F ,P) which is the product
of the (Ωi,Fi,Pi), i = 0, 0, 1. That is, on (Ω,F ,P) the initial configuration X∗0 , the random walks R, and the
Poisson processes N are all independent of each other.

We define each coordinate of {(X∗, ιt )t≥0; ι ∈ I} as a random element of D(R, G ×K) × U in the following
way. Between two look-down events the individual indexed by ι2 moves according to the law of R on G, while
at the jump times it looks down at the individual sharing the same site and indexed by ι1 (uι1 < uι2) in order
to adopt both the path of descent and the type of ι1 (which is actually a constant path through the type space).
The individual always keeps its label. Formally this is done as follows.

Let for ι1, ι2 ∈ I such that uι1 < uι2 ,

(1.29)
Bι1, ι2([0, t]) :=

#{s ∈ [0, t] : Rι1(xι1 , s) = Rι2(xι2 , s), N ι1, ι2([0, s]) = N ι1, ι2([0, s)) + 1}.

Then Bι1, ι2 measures the number of look-down events between the individuals with index ι1 and ι2. Whenever
the particle with index ι2 looks down at the particle with index ι1 the particle with index ι2 adopts both the
type and the spatial path of the particle with index ι1, but it never changes its label. This defines effectively a
resampling event.

For ι, ι1, ι2 ∈ I, n ≥ 1, let us denote by

(1.30) γ1ι := min{s > 0 :
∑

ι′∈I:uι′<uι

Bι′, ι([0, s]) = 1}

the time of the first look-down event of the particle with index ι to some particle (with a smaller label than uι),
by

(1.31) τnι1, ι2 := min{s > 0; Bι1, ι2([0, s]) = n}

the time of the nth look-down event in which the particle indexed by ι2 looks down at the particle indexed by
ι1, and by

(1.32) γnι1, ι2 := min{τn
′

ι′, ι2 > τnι1, ι2 ; ι
′ ∈ I, uι

′

< uι2 , n′ ≥ 1}

the first time after τnι1, ι2 at which the particle with index ι2 looks down at some particle.

At time t ≥ 0, for any ι ∈ I, the random “path” X∗, ιt is defined by requiring that X∗, ιt is a “path” which is
constant before time 0 and after time t, and is defined for intermediate times depending on t as follows:

• for 0 ≤ t < γ1ι ,

(1.33) (X∗,ιt )s := (Rι(xι, s), kι, uι) ∀ s ∈ [0, t],
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• and for τkι′, ι ≤ t < γkι′, ι,

(1.34) (X∗,ιt )s :=





(π∗G×K(X∗,ι
′

t )s, u
ι) s ∈ [0, τkι′, ι)

(Rι(xι, s), π∗K(X∗,ι
′

τk
ι′, ι

), uι) s ∈ [τkι′, ι, t]
,

where π∗G×K resp. π∗K denotes the projection of elements in D(R, G×K)× U into D(R, G×K) resp. K.
This construction makes use of the facts that for each ι ∈ I, and fixed time t ≥ 0, there exist k ≥ 1, and ι′

such that uι
′

< uι and t fits in one of the two cases above, and that the particle with index ι looks down at most
finitely often up to time t. The latter allows one to keep track all of its ancestors, and reconstruct the path of
descent in a unique way.

The precise statement, which implies that the whole construction is well-defined, will be stated and proved
in Section 4 (Proposition 4.1).

Remark The historical look-down denoted by X∗ is the analogue of the look-down process by Donnelly and
Kurtz (1996) first given in [19], extended in Donnelly, Evans, et. al. (1999) [18], and in Kurtz (1998) [37].

Our construction differs from the one in [19] in two aspects. First, in the setting of [19] the labels are smaller
than a given value, and the total number of particles in each of the approximating particle systems is finite,
which is not the case for IMM if G is infinite. Secondly, what is called migration in [19] describes mutation and
is not the same kind of migration which we have here between colonies. That is, the resampling rate in [19] is
the same for all particles, which is not the case for IMM since resampling takes place only if a pair of individuals
is sharing the same site. The latter condition is dropped in [18] but previously the look-down approach has not
been used in a historical setting. ¤

(ii) Having constructed the historical look-down, we construct next the enriched historical IMM, denoted
by ξ∗. In fact we need a whole sequence of such historical processes, {ξ∗,ρ; ρ > 0}, to finally approximate the
historical IFWD ζ∗. In other words we explicitly construct the IMM including all genealogical data for every
parameter value ρ, and get from these data also the historical IFWD, as ρ → ∞. Furthermore as a functional
of ξ∗ we get a specific version of η∗ on that probability space.

Fix a countable index set Ĩ. The enriched historical IMM, i.e. the historical IMM which distinguishes between
the individuals, ξ∗ := (ξ∗t )t≥0, is a process with:

(1.35) ξ∗t = {ξ∗,ι̃t ; ι̃ ∈ Ĩ} ∈ (D(R, G×K))Ĩ .

The law of ξ∗ is constructed by prescribing initial state and dynamics as follows.

The initial state of ξ∗ will be specifying the initial locations and the initial types. The initial positions,

{x̃ι̃; ι̃ ∈ Ĩ}, have to be chosen such that

(1.36) πG ◦
(∑

ι̃∈Ĩ

δ{x̃ι̃}
)
∈ EG.

Notice that if x ∈ (G ×K)I satisfies (1.36) then (1.23) holds as well. However, since (1.36) does not allow
for locally infinite configurations, (1.23) is a stronger condition than (1.36).

The initial state is then given via the two above ingredients defined as follows:

(1.37) ξ∗0 :=
{
constant path through (x̃ι̃, k̃ι̃); ι̃ ∈ Ĩ

}
.

The positions and types are random and defined on (Ω̃0, F̃0, P̃0).

Next we specify the dynamics of the process consisting of the two mechanisms, migration and resampling.

We assume therefore that there are two probability spaces (Ω̃1, F̃1, P̃1) and (Ω̃2, F̃2, P̃2) supporting a collection

of independent realizations of RW with transition kernel at(x, y), denoted by {R̃ι̃; ι̃ ∈ Ĩ}, and a collection of

rate γ/2 Poisson point processes, {Ñ ι̃1,ι̃2 ; ι̃1 6= ι̃2 ∈ Ĩ}, respectively.
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Consider then the probability space (Ω̃, F̃ , P̃) which is the product of (Ω̃i, F̃i, P̃i), i = 0, 1, 2. Again individuals

perform random walks based on R̃ι and ι̃1, ι̃2 resample at the points of Ñ ι̃1,ι̃2 and the initial state is given via
(1.37). Precisely proceed as follows.

As done before, let B̃ ι̃1,ι̃2 be the random measure which counts the jumps of Ñ ι̃1,ι̃2 at which the positions

R̃ι̃1 and R̃ι̃2 coincide. We denote by γ̃1ι̃ the time of the first jump of
∑

ι̃′ 6=ι̃ B̃
ι̃′,ι̃, by τ̃nι̃1,ι̃2 the nth jump time of

B̃ ι̃1,ι̃2 , and by γ̃nι̃1,ι̃2 the first jump time after τ̃nι̃1,ι̃2 which involves the particle with index ι̃2.
Define then for given t,

• for 0 ≤ t < γ̃1ι̃ ,

(1.38) (ξ∗,ι̃t )s :=
(
R̃ι̃(x̃ι̃, s), k̃ι̃

)
∀ s ∈ [0, t],

• and for τ̃kι̃′,ι̃ ≤ t < γ̃kι̃′,ι̃,

(1.39) (ξ∗,ι̃t )s :=





(ξ∗,ι̃
′

t )s s ∈ [0, τ̃kι̃′,ι̃)(
R̃ι̃(x̃ι̃, s), π∗K(ξ∗,ι̃

′

τ̃k
ι̃′,ι̃

)

)
s ∈ [τ̃kι̃′,ι̃, t]

.

Then once more by Proposition 4.1, ξ∗ is well-defined. We then consider

(1.40) η∗t :=
∑

ι̃∈Ĩ
δ
ξ∗,ι̃t

.

2. Main results I: Analytical characterizations

In this section we develop the concepts necessary to provide martingale problem characterizations for the
various historical processes introduced in Subsections 1.3 and 1.4. In Subsection 2.1 we state in Theorems 1 and 2
the well-posedness of the martingale problems for X∗, ξ∗, η∗, respectively ζ∗. The given analytic representation
allows one (cf. Theorem 3 in Subsection 2.2) to embed a family of enriched historical IMM, {ξ∗,ρ; ρ ∈ [0,∞)}, into
the historical look-down process, X∗, and consequently to represent the historical IFWD, ζ∗, and the historical
IMM {η∗,ρ; ρ ∈ [0,∞)} as its a.s. functional. Once we have established this structure we apply it to solving
concrete problems which we then present in Section 3.

2.1. The martingale problem characterization (Theorems 1 and 2). For many purposes it is necessary
to have instead of the explicit construction an analytically more manageable description of the law of the his-
torical processes X∗, ξ∗, η∗, and ζ∗ at hand. Here the key observation is that we can describe the evolution
of the historical process without referring back to the random evolution of all the individuals or to a graphical
construction. Namely, we describe the processes as solutions to well-posed martingale problems. In this subsec-
tion we formulate in several steps the martingale problems for our various historical processes, and state the key
results on the well-posedness.

Note that the path processes and hence the historical processes are time inhomogeneous. Therefore we enlarge
the state space, by including time, to obtain a homogeneous Markov process which we can characterize by the
generator of the corresponding semigroup. For a Markov process X := (Xt)t≥0 the time-space process of X is
given by (t,Xt)t≥0.

The construction of the martingale problems is a bit complex and we proceed in several steps. We start giving
the key ingredient for all of them, which is the historical migration process in Step 1, and then we write down
the martingale problem for the various processes in Steps 2–5, first in Steps 2 and 3 specifying the generator
and then in Steps 4 and 5 the martingale problems.

Step 1 (The historical migration process) The key element of the evolution in time and space is the path process
describing the positions in space taken by the various individuals. The description of this evolution is the aim
of Step 1.
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The first object we need to define is the generator Ã of the (time-space) path process, which arises from the

migration. We now specify the domain of Ã. The action of the operator Ã is defined on functions of the special
form,

(2.1) Φ(s, y), s ∈ R, y ∈ D(R, G×K),

given as follows. Consider for n ∈ N the collection of functions:

(2.2) gj : R×G×K → R, j = 1, . . . , n,

where gj are bounded and C1 in the time variable, j = 1, . . . , n. Fix a collection 0 < t1 < t2 < · · · < tn, n ∈ N,
of time points. Now define the function

(2.3) Φ(t, y) =
∏n

j=1
gj(t, yt∧tj ).

Then we look at the algebra Ã of functions generated by the functions given in (2.3), where n ∈ N, tj , and gj ,

j = 1, ..., n, vary over all possibilities described above. Observe that this algebra Ã is measure determining on
D(R, G×K).

To define the action of Ã (note that Ã and Ã are different symbols) we use the generator A of the RW on
G×K given by

(2.4) Af(x, k) =
∑

z∈G

(a(x, z)− δ(x, z))f(z, k),

for all f bounded on G×K. The action of the operator Ã on a given function Φ in the algebra Ã, is given, for
each t ∈ (tk, tk+1], by

(2.5)

ÃΦ(t, y) =
k∏
j=1

gj(t, yt∧tj )[(
∂
∂t +A)

n∏
j=k+1

gj(t, yt∧tj )]

+[ ∂∂t

k∏
j=1

gj(t, yt∧tj )] [
n∏

j=k+1

gj(t, yt∧tj )].

In order to formulate the martingale problems we need one more ingredient: denote by yr the path y stopped
at time r, i.e.,

(2.6) yr· = y·∧r, y ∈ D(R, G×K).

This map of D(R, G ×K) into itself induces a map on M(D(R, G ×K)) into those measures on D(R, G ×K)
which are supported on paths staying constant after time r. That is, (2.6) induces the map

(2.7) η∗ 7→ η∗,r,

and η∗,r is concentrated on that subset of paths, which describes paths of descent of a possible population of
individuals alive at time r and which therefore can evolve further at time r. We finally denote by

(2.8) π∗Gy and π∗Ky

the projections of a path y onto D(R, G) and onto D(R,K), respectively.

Step 2 (Generator for X∗ and ξ∗) The basis of the characterization of X∗ is the following observation con-
cerning this process. By construction X∗ is Markovian but time inhomogeneous, and the time-space process
determines a Feller semigroup on C(R+ × (D(R+, G ×K)× U)I). We can identify the generator L(t,X∗) of the
time-space process of X∗ on certain functions explicitly. The action of L(t,X∗) is determined via two ingredients
related to migration and resampling, which we define next.

Start with the migration part. Recall next from (2.4) the migration generator A acting on bounded functions
f : G ×K → R+. In an obvious way we extend the generator to a generator AI which acts now on bounded
functions fI : (G ×K)I → R+ which depend on finitely many coordinates (indices), ι ∈ I, only. Namely, for
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each ι ∈ I, we let Aι denote the generator which acts on fI as a function of the ιth coordinate as defined in
(2.4), and set then

(2.9) AI :=
∑

ι∈I

Aι.

Having done this we extend the definition of the historical migration generator, Ã, given in (2.5), which acts on
functions of type (2.3), to an operator

(2.10) ÃI (historical migration generator).

The operator ÃI acts on functions Φ as in (2.5) where gj are now defined on R+ × (D(R, G ×K) × U)I as a
product of functions on R+ ×D(R, G×K)×U which have form (2.3) and which are constant in the U-variable
as functions on R+×D(R, G×K), and by replacing A by AI in (2.5). This definition is extended to the algebra,
denoted by A∗,look, which is generated by functions of this type.

Now turn to the resampling part. We use the following notation. We write an element in (D(R, G×K)×U)I

as an underlined object with an entry for each ι ∈ I. Define for each (t, (y, u)) ∈ R+ × (D(R+, G ×K) × U)I ,

and ι1, ι2 ∈ I, θ̃ι1, ι2(t, (y, u)) as the element in R+ × (D(R+, G × K) × U)I obtained by replacing the ι2−th

path-coordinate of (t, (y, u)) by its ι1-th path-coordinate. That is, in symbols,

(2.11)
θ̃ι1, ι2 : (t, (..., (yι1 , uι1), ..., (yι2 , uι2), ...))

7→ (t, (..., (yι1 , uι1), ..., (yι1 , uι2), ...)) .

We then define for a function F on the state space of X∗:

(2.12) Θ̃ι1, ι2F := F ◦ θ̃ι1, ι2 .

With the above two ingredients the generator L(t,X∗) is defined on functions in A∗,look which are bounded

functions F : R+ × (D(R+, G×K)×U)I → R+, the depend on finitely many coordinates only. We set then for
F ∈ A∗,look,

(2.13)

L(t,X∗)F (s, (y, u))

= ÃIF (s, (y, u)) + γ
∑

ι1, ι2∈I;

uι1<uι2

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃ι1, ι2F − F )(s, (y, u)).

Note that this specifies L(t,X∗) on a dense subset of C(R+ × (D(R+, G×K)× U)I).

Define the algebra, A∗,ind, of functions consisting of functions in A∗,look which are constant in the U-label
variables. Note that if we symmetrize the resampling, we obtain on A∗,ind the operator which will generate the
enriched historical IMM:

(2.14)

L(t,ξ∗)F (s, y)

= ÃIF (s, y) +
γ

2

∑

ι1, ι2∈I

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃ι1, ι2F − F )(s, y).

Step 3 (Generator for historical IMM) We can now describe the generator for the martingale problem defining
η∗. We start by specifying the domain of the generator. Consider the algebra A∗ which is generated by functions
F on the state-space of the time-space process (t, η∗)t≥0, i.e., on R×N (D(R, G×K)),

(2.15) F (t, η∗) := f (〈η∗,Φ(t, ·)〉) , f ∈ C2
b (R),Φ ∈ Ã.

Introduce for every pair of parameters y, y′ ∈ D(R, G×K) the operator ∆y,y′ acting on functions F ∈ A∗ by

(2.16) ∆y,y′F (t, η∗) :=

{
F (t, η∗ − δy + δy′)− F (t, η∗) if η∗({y}) ≥ 1

0 otherwise
.
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Denote for each (t, z) ∈ R+ ×G, and y ∈ D(R, G×K),

(2.17) y(t,z)s :=

{
ys, if s < t

ys + (z, 0), if s ≥ t
.

Furthermore let {It; t ∈ R+} be functions on (D(R, G×K))2 defined as follows:

(2.18) It(y, y′) =

{
1 if (π∗Gy)t = (π∗Gy

′)t
0 otherwise

.

Define now the operator L(t,η∗) on A
∗ by (recall (2.7) for µ∗,s)

(2.19)

L(t,η∗)F (s, µ∗) :=
∂

∂t
F (s, µ∗)

+

∫

D(R,G×K)

µ∗,s(dy)
∑

z∈G

a(0, z)∆y,y(t,z)F (s, µ∗)

+
γ

2

∫

(D(R,G×K))2
∆y,y′F (s, µ∗) Is(y, y′)µ∗,s(dy)(µ∗,s(dy′)− δy(dy

′)).

Step 4 (Martingale problems historical IMM, look-down) Recall the notion of a solution of a martingale prob-
lem. We say that a law on D([0,∞), E∗G) satisfies the (L(t,η∗),A

∗)-martingale problem with initial value µ∗0, if
for each F ∈ A∗ the canonical process (µ∗s)s≥0 satisfies that:

(2.20)

(
F (s, µ∗s)− F (0, µ∗0)−

∫ s

0

duL(t,η∗)F (u, µ∗u)

)

s≥0

is a martingale with respect to the canonical filtration. The martingale problems for X∗, ξ∗ are defined similarly.
We then define

Definition 2.1. (Historical look-down and IMM) The law of the historical look-down process X∗, the pro-
cess ξ∗ and the historical spatially interacting Moran models, η∗, are given by the unique solutions of the
(L(t,X∗),A

∗,look), (L(t,ξ∗),A
∗,ind) and (L(t,η∗),A

∗)-martingale problems, respectively.

The above definition makes sense, if we can show that the martingale problems are well-posed.

Theorem 1. (Martingale problem; historical IMM) The (L(t,η∗),A
∗)-martingale problem is well-posed and the

process defined in (1.14) is a version of the solution. A similar statement holds for the (L(t,ξ∗),A
∗,ind)-martingale

problem and the process ξ∗,ρ, respectively for (L(t,X∗),A
∗,look)-martingale problem and the look-down process X∗

constructed in Subsection 1.4.

Step 5 (Martingale problem for historical IFWD) Next we give the analog description for the IFWD. Let the

algebra Ã and the operator Ã be defined as in (2.3) and (2.5), respectively.

Definition 2.2. (Historical IFWD) For a given initial state at time s, ζ∗s = ζ∗,ss , such that for each x ∈ G,
ζ∗s (E{x},s) = 1, the historical process ζ∗ is the solution of the following martingale problem on C([s,∞), E∗G).

For every Φ ∈ Ã and every pair (t, s) with t ≥ s:

(2.21)

{
〈ζ∗t ,Φ(t, ·)〉 − 〈ζ

∗
s ,Φ(s, ·)〉 −

∫ t

s

〈ζ∗,rr , (ÃΦ)(r, ·)〉dr

}

t≥s

is a martingale with increasing process

(2.22)

(∫ t

s

∫

(D(R,G×K))2
Ir(y, y′)Φ(r, y)Φ(r, y′) ζ∗,r(dy)(ζ∗,r(dy′)− δy(dy

′)) dr

)

t≥s

.

This definition makes sense since we shall prove:
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Theorem 2. (Martingale problem; historical IFWD) The martingale problem (2.21) to (2.22) is well-posed.
The solution arises as the diffusion limit (see (1.21)) of η∗.

2.2. The particle representation (Theorem 3). We are now ready to outline the philosophy in our approach
to interacting Fisher-Wright diffusions, which has three aspects: First we use our knowledge about the Moran
model to derive properties of the diffusion limit. In particular, we relate the long-term behavior of η and ζ.
Secondly, in order to obtain representations for the family decomposition, we evaluate the whole information
about genealogies contained in the historical processes. A third point is that the analysis of the historical
process becomes more manageable if we construct the approximating IMM and their diffusion limit IFWD on
the same probability space. The link is given by the historical look-down process, X∗, introduced in Subsection
1.4, i.e., a particle system with locally infinitely many particles whose genealogy contains the genealogies of
the approximating IMM as random subgenealogies and is therefore rich enough to “generate” the genealogy of
IFWD.

The idea behind such a construction, which goes back to Donnelly and Kurtz, is to reorder for a fixed time t
the individuals in the population according to the time they will remain in the population. That means in the
non-spatial case, the individuals are labeled in such a way that an individual with a smaller label will be replaced
later than the one with a larger label, and therefore during any resampling event the type is always passed from
the individual with the smaller label to the individual with the larger label. We will below develop the necessary
concepts to make similar ideas work in a spatial context with countably many approximating particles.

More precisely we will give now in (i) a representation for a collection of {ξ∗,ρ, ρ > 0} on the same probability
space on which we introduced the historical look-down, X∗. The historical IFWD is then obtained as an a.s.
limit of functionals of the historical look-down process X∗. This will be stated in Theorem 3 below. We conclude
in (ii) with a discussion concerning the random configurations as initial states of our processes.

(i) The nice point observed first by Donnelly and Kurtz in the models without migration is that both
processes, X∗t and ξ∗,ρt can be defined on the same probability space and we denote this space by

(2.23) (Ω̄, F̄ , P̄).

In order to construct this object we take the probability space (Ω,F ,P) defined in the sequel of (1.26) and
enrich it (independently from everything we already have) by an independent countable collection of coin flipping
experiments.

On this space we can now, via the next theorem, also define a whole collection {(ξ∗,ρt )t≥0; ρ > 0} which then
allows us to represent also the historical IFWD on that probability space.

Theorem 3. (IMM and IFWD as functionals of the look-down process) Consider the probability space (Ω̄, F̄ , P̄)
as basic space.

(a) Fix some ρ > 0. Then there exist random bijections σρt := {σρt (ι); ι ∈ I
ρ} from Iρ onto Iρ on the basic

space such that the following holds: Define for each X∗ ∈ (D(R, G×K)×U)I and each t ≥ 0 the random
map:

(2.24) ΣρtX
∗ := {π∗G×KX

∗,(σρt )
−1(ι̃); ι̃ ∈ Iρ}.

Furthermore introduce the random variable

(2.25) ξ̃∗,ρt := ΣρtX
∗
t .

Then for fixed t, ξ̃∗,ρt is a version of an enriched historical IMM with Ĩ = Iρ at time t .
The random bijections σρt are given explicitly in Proposition 5.1 in Section 5.

(b) Assume that we have an initial state for X∗ such that

(2.26)
1

ρ

∑

ι∈Iρ

δπ∗
G×K(X∗, ι

0 ) converges L(X
∗
0 )-a.s., as ρ→∞,
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to the random element denoted by ζ∗0 with values in M(D(R, G × K)) concentrated on constant paths
such that ζ∗0 ({y ∈ D(R, G×K) : y0 ∈ {x} ×K}) = 1 for all x ∈ G.

Then for each t ≥ 0,

(2.27) ζ̃∗t := lim
ρ→∞

1

ρ

∑

ι∈Iρ

δπ∗
G×K(X∗, ι

t )

exists a.s. where the limit is taken in the weak topology on M(D(R, G)) and L[ζ̃∗t ] is the law of the
historical IFWD at time t started in ζ∗0 .

Remark The basic idea behind the construction of the random bijections σρt is to successively and locally
symmetrize the pecking order introduced by the look-down through coin-flipping experiments. ¤

(ii) The above theorem relates the historical look-down to the historical IMM and IFWD. In the applications
that follow (on the strong form of duality, the long-term behavior, and the finite system scheme) we consider
the latter starting in a random configuration which is typically associated with a random set of labels.

Another reason why one would like to introduce a random set of labels rather than a deterministic one arises
when we consider as type space an uncountable set like [0, 1] which is often done in Fleming-Viot models, and
concentrate on the random countable set of types which exist in the system for strictly positive time.

However, in both cases one could try to transfer the situation to the case of a deterministic set of labels.
There are in principle two strategies one can follow: either to code the random set of labels by a deterministic
set of labels using a clever device, or to define the dynamics based on the set of possible labels in such a way
that it is possible to answer the same questions as in a model with a fixed set of labels.

Since we are interested in a countable representation but would still like to have the Fleming-Viot model in
mind, we follow a mixed strategy in enriching the notation by enumerating the individuals deterministically but
choosing for each individual a random label from an uncountable set. However, the label set and the index set
are supposed to be closely related by the fact that there is a concrete random bijection which maps one into the
other.

We next describe the procedure of choosing jointly the initial positions and the labels corresponding to the
initial types.

Step 1 (Initial state of X∗) Fix I countable, θ ∈ [0, 1], and let K := {0, 1}. Sample a Poisson field on
G×K × [0,∞) with intensity n⊗ {(1− θ)δ0 + θδ1} ⊗ λ, where n is counting measure on G, and λ is Lebesgue
measure on [0,∞). Enumerate the countably many sampled points by I, and let for the ιth point, ι ∈ I, xι, kι

and uι be its G-valued, K-valued, and U-valued coordinate. This defines by considering constant paths through
an element in G×K uniquely a I-indexed collection of D(R,Ω×K)×U-valued random variables which we can
use as initial state for X∗. We denote this initial state as

(2.28) Ψ(θ) := {(constant path through (xι, kι), uι); ι ∈ I} .

Step 2 (Initial state of ξ∗,ρ, ηρ and η∗,ρ) Fix ρ ∈ R+, Ĩ countable, θ ∈ [0, 1], and let K := [0, 1]. Sample a
Poisson field on G ×K with intensity ρn ⊗ {(1 − θ)δ0 + θδ1}. Enumerate the countably many sampled points

by Ĩ. Once more for ι̃ ∈ Ĩ, let x̃ι̃ and k̃ι̃ be ι̃’s G-valued and K-valued coordinate, respectively. Each of these
points defines a constant path in G×K. We then start the IMM distinguishing individuals in the corresponding

element of D(R, G×K)Ĩ . The initial state of ηρ is then given by:

(2.29) Ψ̃(ρ, θ) :=
∑

ι̃∈Ĩ
δ(x̃ι̃,k̃ι̃).

Note that our sampling procedure ensures that the πG×K-projections of

(2.30) Ψ(ρ, θ) :=
∑

ι∈Iρ
δ(xι,kι,uι)
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equal in law Ψ̃(θ, ρ).

Remarks Sometimes we choose Poisson random fields specifying initial positions only for notational con-
venience, while sometimes we are going to make use of the fact that for G countably infinite those laws are
invariant under the migration dynamics. We will remark on this as we go on. ¤

3. Main results II: Applications

In the present section we establish, as the first application of our results, based on the main embedding
theorem for the historical look-down process (see Theorem 3), a strong form of duality between the historical
IMM and the historical IFDW on the one hand, and a spatially structured coalescent on the other. This duality
relation is presented in Subsection 3.1, and then we give a representation of the genealogies via the spatially
structured coalescent. All representation theorems are presented for (historical) IMM, IFDW and look-down
process in a unified way. In Subsection 3.2 we will then apply the duality to state representations for the
equilibrium historical processes. Finally, in Subsection 3.3 we present the so-called finite system scheme for the
various historical processes.

3.1. Representation of genealogies via coalescents, strong duality. We next explain how the look-down
construction can be used and extended to create a strong duality, i.e. to define the historical process and its
dual process both on the same probability space which provides in particular a historical form of duality. This
is a powerful tool for the analysis of the particle model and its diffusion limit, and is a key to the applications
we give in the sequel.

The duality relation we have in mind will be a special case of a relation between the genealogies of the
population alive at a reference time t > 0 which are an object obtained looking at the process in reversed time
from t back to 0 and on the other hand a Markov process generating them, which is running forward in time.

Fix a reference time point t > 0. We are interested in the paths of descent of the population alive at time t.
We wish to describe the evolution of these paths viewed in reversed time from the fixed reference time point t,
in particular we record the times when they merge into one ancestral line, and their movement through space.
Provided we can specify the dynamics for this random object , we will call the obtained process “the dual
process”.

In order to answer these questions we proceed in steps. We start in Step 1 with considering the genealogy in
the historical look-down X∗, and then in Step 2 the genealogy of the enriched historical IMM ξ∗,ρ. In Step 3 we
construct the dual dynamics which is a spatially marked coalescent. Finally (Step 4) this can be used to derive
stronger versions of duality than the moment duality between IMM or IFWD and the coalescing random walks.

Step 1 (Genealogy of X∗t ) Let I be the index set of all individuals. Fix a time t, and consider X∗t . For each
s ∈ [0, t], define an equivalence relation ≈X

∗

s on I: for ι1, ι2 ∈ I,

(3.1) ι1≈
X∗

s ι2,

if at time t the individuals with indices ι1 and ι2 possess a common ancestor at time t − s meaning that if we
had assigned each individual a separate type at time t − s (recall (1.25)), then types of these two individuals
would agree at time t. This gives a decomposition into family clusters where the corresponding partition of I
at time 0 ≤ s ≤ t is denoted by Γts. With each cluster (partition element) $ ∈ Γts we can then associate its
position `ts($) ∈ G, and denote the collection of positions by

(3.2) `ts :=
{
`ts($); $ ∈ Γts

}
.

The latter allows us to define the genealogical process

(3.3) (Γts, `
t
s)s≤t,

which contains the information we need about the paths of descent of X∗.

Step 2 (Genealogy of ξ∗,ρt ) Fix ρ ∈ R+. We define further equivalence relations ≈ξ
∗,ρ

s in the set of labels Ĩ for
the enriched historical IMM ξ∗,ρ, by the same principle as in (3.1).
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This results in the corresponding genealogical process,

(3.4) (Γ̃t,ρs , ˜̀t,ρs )s≤t.

Remark Suppose now we have constructed X∗ and ξ∗,ρ as described in Theorem 3. It will turn out that
by applying the maps ((σρt−s)

−1)0≤s≤t from Theorem 3 we can get an equivalent way to describe this relation.

Namely, for ι̃1, ι̃2 ∈ Ĩ, 0 ≤ s ≤ t,

(3.5) ι̃1 ≈
ξ∗,ρ

s ι̃2, iff (σρt−s)
−1ι̃1 ≈

X∗

s (σρt−s)
−1ι̃2.

¤

We will now relate the two genealogies for X∗ and ξ∗ just defined. Consider pairs (Γ, `) of two objects, on one
hand partitions Γ of I, and on the other hand corresponding positions, `(π) ∈ G, where π ∈ Γ. Suppose now
we have given a subset of indices, I1 ⊂ I. Then we define the restriction of (Γ, `) on I1, denoted

(3.6) φI1
(Γ, `) = (φI1

(Γ), `),

by removing all ι 6∈ I1, and ignoring empty partition elements and their locations.

Then by Theorem 3, we can relate the objects defined in (3.3) and (3.4):

Corollary 3.1. (Representation of family decomposition)

(3.7)
∑

$∈φIρ (Γts)

δ($,`ts($))
d
=

∑

$̃∈Γ̃t,ρs

δ($̃,˜̀t,ρs ($̃)).

This allows us in many situations to work with the genealogy of the historical look-down process.

The decomposition of X∗t into family clusters can be analyzed due to a “duality relation” involving a partition
valued coalescent with spatial motion which we introduce next.

Step 3 (Coalescent) This process is introduced in two parts, we first introduce a locally finite process and then
the process that starts from a locally countable state. Now we turn to the first construction. Fix a countable
index set I. Let ΠI define the partitions of I. We shall equip this set with a metric (see (3.28)) which generates
a topology together with the induced σ-algebra that gives us the needed structure to introduce probability
measures on this metric space.

Definition 3.2. (The I-coalescent) The EG-marked I-coalescent,

(3.8) (Ct, Lt)t≥0,

is a Markov process with values in the marked partitions P ∈ ΠI of I, where for a partition element π ∈ P,
the marks L(π) are positions in G. They start at time 0 in the partition C0 ∈ ΠI , where the partition elements
π ∈ P are marked by L0(π) such that the corresponding configuration lies in the Liggett-Spitzer space, i.e.,

(3.9)
∑

π∈C0

πG ◦ δ{L0(π)} ∈ EG.

The dynamics of the EG-marked I-coalescent with coalescence rate γ is given by the following two independent
mechanisms:

Migration The marks of the partition elements perform independent rate 1 RW on G with kernel
ā(x, y), where ā(x, y) := a(y, x) denotes the reversed kernel.
Coalescence Each pair of partition elements merges into one partition element at rate γ whenever their
marks coincide.
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Remark If I is finite, then each possible spatial configuration lies in the Liggett-Spitzer space, and therefore
the I-coalescent is well-defined. ¤

A key property of the EG-marked I-coalescent is that the definition can be extended to the setting where the
starting configuration has countably many partition elements with the same mark. The restriction φI′P of a
partition P ∈ ΠI on a subset I ′ ⊆ I is once more defined by removing all ι′ 6∈ I ′, and ignoring empty partition
elements.

We now enrich our marked I-coalescent by assigning to each individual a label u ∈ U . This will allow us in
particular to define locally finite coalescents embedded in coalescents which are locally countable at time t = 0.
Fix a countable subset U := {uι; ι ∈ I} of [0,∞). Once more, let for each ρ ∈ [0,∞), Iρ := {ι ∈ I : uι ≤ ρ}.
We then define:

Definition 3.3. (The (I,U)-coalescent) The E↑G-marked (I,U)-coalescent, (Ct, Lt)t≥0, is a Markov process with
values in marked partitions of I with marks in G such that for each ρ ∈ R+, the restriction φIρ(Ct, Lt) =
(φIρ(Ct), Lt) is a EG-marked Iρ-coalescent.

The following proposition holds under an abstract assumption on the migration space G which is formulated
in Condition 6.1 in Subsection 6.1, and which ensures that the group G may be approximated by finite groups.

Proposition 3.4. (The coalescent is well-defined) Assume that G fulfills Condition 5.1, let I be finite or

countable, and U := {uι : ι ∈ I} be a finite or countable subset of [0,∞). Then the E↑G-marked (I,U)-coalescent
starting in C0 = {{ι}; ι ∈ I} is well-defined, and for each t > 0, the coalescent yields a configuration in the
Liggett-Spitzer space, i.e.,

(3.10)
∑

π∈Ct
πG ◦ δ{Lt(π)} ∈ EG.

In particular, for each t > 0, the coalescent is locally finite.

Remark Since the E↑G-marked (I,U)-coalescent is defined via a projective limit procedure, if (Ct, Lt) is a

E↑G-marked (I,U)-coalescent, then for each ρ ∈ R+, the restriction φIρ(Ct, Lt) on individuals with indices in Iρ

is the EG-marked Iρ-coalescent. That means, the coalescent and the “thinning” procedure commute. ¤

Step 4 (Strong duality) We obtain a strong duality relation between the ancestral tree of X∗
t and the above

spatially structured coalescent as follows. Let (C,L) be the E↑G-marked (I,U)-coalescent. This duality relation
requires a particular way of choosing the labels from U . Then we get the following representation.

Proposition 3.5. (Coalescent representation for the historical look-down) For a fixed time t, choose the initial
state of a (I,U)-coalescent according to the device specified in the paragraph containing (2.28). Then

(3.11) L
[
(Γts, `

t
s)s∈[0,t]

]
=L{({ι},x

ι); ι∈I}
[
(Cs, Ls)s∈[0,t]

]
.

We next establish a relation giving a strong duality for the enriched IMM. Recall that Poisson systems are
the equilibria for both: the system of independent random walks with the kernel a(x, y) and the system of
independent random walks with the reversed kernel ā(x, y). Therefore, if the IMM starts in a Poisson system,
then the genealogy of the IMM particle process is generated by the coalescent started in a Poisson system as
stated next.

Corollary 3.6. (Strong duality: historical IMM) For a fixed time t, and ρ ∈ R+ and initial positions given by
locations from a Poisson system with intensity ρ,

(3.12) L
[
(Γ̃t,ρs , ˜̀t,ρs )s∈[0,t]

]
=L{({ι},x

ι); ι∈I}
[
φIρ(Cs, Ls)s∈[0,t]

]
.
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Remark If ξ∗ would not start according to a Poisson configuration, provided that for each ρ ∈ R+,

(3.13)
∑

ι′∈Iρ

δxι′
d
=
∑

ι′∈Iρ

δ
π∗
G
(ξ∗, ι

′

t )t
,

(3.11) still holds if we replace the reversed kernel ā(x, y) for the time-reversed migration by the law of a migrating
system of particles conditioned on (3.13). However, we would loose time-homogeneity of the migrating particles.
¤

How does this statement relate to classical moment duality relations? By picking a generic k-tuple of different
individuals located at sites x1, x2, ..., xk we see that their genealogy is described by the corresponding finite
coalescent. This implies the usual moment duality. Namely, define for ι1, ι2, ..., ιk ∈ I, the quantity

(3.14) µ(x1, ..., xk) := {({ι1}, x1), ({ι2}, x2), ..., ({ιk}, xk)}.

Then we can conclude from (3.12) that:

Corollary 3.7. (Weak duality: moment duality)

(a) Let the IMM start in a Poisson system with total intensity ρ ∈ R+, and type 1 intensity ρθ. Then

(3.15) E




k∏

j=1


ηt({xj} × {1})−

k∑

l=j+1

1{xl=xj}




 = ρkEµ(x1,...,xk)

[
θ|Ct|

]
.

(b) Consequently, for the initial state ζ0({x}) ≡ θ, x ∈ G, we have:

(3.16) E

[∏k

j=1
ζt({xj})

]
= Eµ(x1,...,xk)

[
θ|Ct|

]
.

Remark Notice that correction terms in the moment expression for the diffusion limit disappear since there
are locally infinitely many particles which ensures that each particle is sampled at most once, almost surely. ¤

3.2. Application I: Equilibria of IMM and IFWD (Theorems 4 and 5). The aim of this subsection is to
give a representation of the family structure of the equilibrium historical processes including the look-down, IMM
and IFWD, in terms of the spatially structured coalescent. This is our first joint application of the representation
given in Theorem 3 and of the strong historical duality relation. For that purpose we first recall in (i) the basic
ergodic theory of IMM and IFWD with type space K := {0, 1}, and we then state the results in (ii) for IMM
and in (iii) for IFWD.

(i) It turns out that the long-time behavior of IMM depends on the strength of interaction between sites x
and y described by the symmetrized migration kernel, i.e.,

(3.17) â(x, y) :=
1

2
(a(x, y) + a(y, x)).

We start the IMM with a Poisson configuration of particles with intensity ρ ∈ R+ and types 0 and 1 assigned

independently with probability 1 − θ and θ, respectively (recall Ψ̃(θ, ρ) from (2.29)). (Since it is known that
pure random walk systems have as extremal invariant measures the Poisson systems, it would be possible to
discuss general translation invariant measures with standard methods, using the knowledge from this special
initial states, we omit this here).

If â(x, y) is recurrent, then the duality in (3.12) implies that the system converges locally to one of the
monotype configurations. That is,

(3.18) LΨ̃(ρ,θ) [ηt] =⇒
t→∞

(1− θ)H̃ρ,0 + θH̃ρ,1,

where H̃ρ,i, i = 0, 1, are the laws of Poisson fields on G× {0, 1} with intensity measures ρni, and where ni are
the counting measures supported by the subsets G× {i}, i = 0, 1, respectively.

On the other hand, the transience of â(x, y) implies that a coalescent restricted to any set of more than one
individual has a number of partition elements converging to a random number which is bigger than one with
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positive probability. With the same reasoning as in [15] concerning the locations of this coalescent this gives
equilibria with coexistence of both types, i.e.,

(3.19) LΨ̃(ρ,θ) [ηt] =⇒
t→∞
H̃ρ,θ,

where H̃ρ,θ ∈ P(N (G×K)) is a homogeneous, shift ergodic, and invariant distribution with

(3.20) EH̃ρ,θ
[η({x} × {k})] =

{
(1− θ)ρ if k = 0
θρ if k = 1

.

The same dichotomy is known to be valid for the IFWD and follows again from the duality. Namely, if â(x, y)
is recurrent, then for all translation invariant initial states, Φθ, with intensity θ ∈ [0, 1] the following holds:

(3.21) LΦθ [ζt] =⇒
t→∞

(1− θ)δ0 + θδ1.

On the other hand, if â(x, y) is transient, there exist exactly one spatially homogeneous and ergodic probability

law with intensity θ, Ĥθ. Moreover, for all translation invariant initial states, Φθ, with intensity θ ∈ [0, 1] the
following holds:

(3.22) LΦθ [ζt]=⇒
t→∞
Ĥθ,

where Ĥθ is an equilibrium measure which is a translation invariant, shift ergodic with intensity θ.

(ii) A similar dichotomy as described in (i) can be observed for the long-term behavior of the historical
look-down process, X∗, and hence of the historical processes, η∗,ρ and ζ∗ (recall Definition 2.1 and 2.2).

Let

(3.23) H∗θ(s, t), and H̃∗ρ,θ(s, t)

be the law of X∗t and η∗,ρt started at time s in a collection of constant paths, the constants generated by Ψ(θ),

and by Ψ̃(ρ, θ), respectively (recall (2.28) and (2.29)).
If one is interested in the structure of a process η or ζ in equilibrium, one can first construct the entrance law

for that process (by letting the starting time s→ −∞ in (3.23)) to obtain a stationary process with time running
from −∞ to +∞ and then consider the corresponding historical process, which we call equilibrium historical
process.

In order to define the convergence in law for a system described by H∗θ(s, 0) as s→ −∞ we need to find the
topology which is suited best. Namely, we observe our system at time 0 locally, that is, we pick individuals at
that time in a given spatial window and follow their ancestral lines back. This means the labels of the individuals
we are interested in are actually random. To resolve this, we assign new indices which still allow us to use the
product topology as follows.

Given that the system X∗ started in s ≤ 0 and observed at time 0 as described above we define a new system

X̃∗ by reindexing. We assign indices in G× N by observing for each path with index ι at time 0 its position in
G and the rank of that index (according to the corresponding labels) at this random position. This results in
the new system

(3.24) X̃∗t := {X̃∗,ιt ; ι ∈ G× N},

which we can consider as an element of

(3.25) (D(R, G×K)× U)G×N
.

On the space of paths we have the Skorokhod topology and on U the discrete topology. Then on the state space

we use the product topology of (D(R, G×K)× U)G×N
to define the weak topology of measures on that state

space. This induces a natural topology of laws for the original objects.

Note that considering limits of H∗θ(s, t) for s→ −∞ results in objects which are only different by a time shift
so that w.l.o.g. we may put t = 0. The following is easily verified using the duality of Proposition 3.5.
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Lemma 3.8. (Entrance laws of the historical processes) The laws (with w-lim as explained above)

(3.26) H∗θ := w- lim
s→−∞

H∗θ(s, 0), and H̃∗ρ,θ := w- lim
s→−∞

H̃∗ρ,θ(s, 0),

are well defined, and are supported on paths whose type coordinate is constant.

(iii) In order to prepare for our next theorem we need the long-time behavior of the coalescent. Choose from
now on, unless stated otherwise,

(3.27) I := G× N,

and recall from Definition 3.3 the E↑G-marked (I,U)-coalescent, (Ct, Lt)t≥0. Obviously, on the set of partitions
ΠI of I a partial order is defined by declaring that P ≤ P ′ if P ′ is a refinement of P, i.e., if the partition
elements of P are obtained by aggregating one or more elements of P ′.

Define the distance between two partitions P1 and P2 of I by

(3.28) dl(P1,P2) :=
1

2

∑
(ι1, ι2)∈I×I

αι1, ι2 {1{ι1≈P1
ι2, ι1 6≈P2

ι2} + 1{ι1 6≈P1
ι2, ι1≈P2

ι2}}

with (strictly positive) weights normalized such that
∑

ι1, ι2
αι1, ι2 = 1 and ≈P denoting the equivalence of

individuals with respect to the partition P. (Notice that since I is countable there is a bijection n from I to N
which gives an order relation on I. The above topology induces a convergence where for any such ordering the
partitions restricted to the first k elements converge in law.)

We are going to start in the maximal partition, i.e.,

(3.29) (C0, L0) := {({ι}, x
ι); ι ∈ I}.

The dynamics of (Ct, Lt)t≥0 results in a non-increasing sequence of partitions (with respect to ≤) and it is clear
that

(3.30) C∞ := lim
t→∞

Ct, exists a.s.

Notice that C∞ differs for transient migration kernel â(x, y) from the minimal partition, {I}, with probability
1, and even still consists of countably many partition elements, while in the recurrent case C∞ = {I}, a.s.

It is now very natural to go beyond the sheer decomposition in family clusters and to ask where the individuals
observed at time 0 came from, for a system that was started at time −∞. For that we need to take into account
the historical information in the coalescent. We therefore define the historical coalescent, (C∗t , L

∗
t )t≥0, by setting

(recall (3.29)):

(3.31) C∗t :=
(
C(s∨0)∧t

)
s∈R ,

and L∗ := {(L
∗,{ι}
t )t≥0; ι ∈ I}) where

(3.32) L
∗,{ι}
t :=

(
L(s∨0)∧t

(
C
{ι}
(s∨0)∧t

))
s∈R

,

and where the C
{ι}
s , s ≥ 0, ι ∈ I, denotes the partition element in Cs which contains ι. On the space where

L∗ is defined we use the product topology and in fact in D(R, G ×K) the Skorokhod topology on the space of
paths. Taking the product of the topology on pairs of a path of partitions (3.31) and its path through space
defines the convergence for the object (C∗t , L

∗
t ) as t→∞.

We can now let t→∞ to obtain with (3.30) an object we will need in the sequel and which we denote:

(3.33) (C∗∞, L
∗
∞).

The notion of the historical coalescent allows one to even strengthen the duality relation further. Namely we
can consider the paths of descent together with the resampling times, and obtain this way the full tree-indexed
random walks describing the family relations of a given time t population. Their law is described by the historical
coalescent. We will exploit the full strength of this object further in Section 7.
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The historical process is then a functional of the historical coalescent. Therefore, in order to describe the
equilibrium historical process, it suffices to consider a random functional of the historical coalescent. The extra
randomness is used to capture the type structure associated with the population. Hence in the final step we
enrich our probability space on which the coalescent is defined by a collection,

(3.34) {∆θ(π); π ⊆ I},

of independent Bernoulli random variables with parameter θ. Now associate with the coalescent tags in K =
{0, 1} which specify the particles’ types. Namely

(3.35) ∆θ(C
∗
∞, L

∗
∞) :=

{(
L∗,{ι}∞ ,∆θ((C

∗,{ι}
∞ )∞)

)
; ι ∈ I

}
,

where for each ι ∈ I, C
∗,{ι}
∞ takes values in the set of paths which map R into subsets of I, and for each s ∈ R,

(C
∗,{ι}
∞ )s denotes the partition element of C∗s which contains ι.

(iv) Now we can formulate our next result. Recall Ψ(θ) from (2.28), and denote by Ψ the configuration where
we ignore the K-valued component, i.e.,

(3.36) Ψ := {(constant path through xι, uι); ι ∈ I} .

We then have in equilibrium a representation of the law of the paths of descent in terms of paths of the coalescent
as follows:

Theorem 4. (Representation of equilibrium historical look-down via the coalescent) The look-down equilibrium
historical process has the form:

(3.37) H∗θ = L
Ψ [∆θ(C

∗
∞, L

∗
∞)] .

This leads to the following dichotomy:

(a) If â(x, y) is recurrent then C∞ = {I}, a.s. Hence if we consider for θ the two extreme values i which
are either 0 or 1, then the H∗θ are clan measures, i.e.,

(3.38) H∗i ({for all pairs of paths ∃ t0 : paths agree for t ≤ t0; and have type i}) = 1.

Thus the law of ∆θ(C
∗
∞, L

∗
∞) is a mixture of H∗0 and H

∗
1, i.e.,

(3.39) H∗θ = (1− θ)H∗0 + θH∗1.

(b) On the other hand, if â(x, y) is transient then under each law H∗θ and all θ ∈ [0, 1] the probability that
for any two given paths starting at time 0 there is no t0 < 0 such that the paths agree for all t < t0 is
positive. Thus the equilibrium state decomposes in countably many clusters with i.i.d. types.

Now two questions arise. Firstly, what can one conclude from the representation of the historical look-
down process for the equilibrium historical process of the IMM? The second question is related to the following
observation. The theorem above gives a global representation of the genealogies of the equilibrium process. If
we are only interested in the law of the population which we observe in a local spatial window, can one get more
explicit results? To answer these questions we need some preparation.

We introduce the (random) map on the range of the historical coalescent by assigning to each path of
∆θ(C

∗
∞, L

∗
∞) a δ-measure, i.e.,

(3.40) ∆̃ρ,θ(C
∗
∞, L

∗
∞) :=

∑

ι∈Iρ

δ
(L

∗,{ι}
∞ ,∆θ(C

∗,{ι}
∞ ))

,

where once more C
∗,{ι}
∞ denotes the path corresponding to the partition elements of C∗∞ which contain ι. Recall

EA,t from (1.18). For a measure η define rA(η) as a measure

(3.41) rA(η)(·) = η(· ∩ EA,0),

which is η restricted to paths which are located in A ⊆ G at time 0. For a measure valued random variable Y
taking values inM(D(R, G×K)) with law L write r̂AL for the law of rA(Y ).
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Then we can represent the law of the paths of descent observed in a local window in the equilibrium distribution
of IMM as follows.

Corollary 3.9. (Equilibrium historical IMM and the coalescent) Theorem 4 stays valid if we replace the historical

look-down equilibrium, H∗θ, by the historical IMM equilibrium, H̃∗ρ,θ, and ∆θ by ∆̃ρ,θ, respectively.
Furthermore we get a simple local representation. For each fixed bounded A ⊆ G:

(3.42) r̂AH̃
∗
ρ,θ = L

µ
[
∆̃ρ,θ(C

∗
∞, L

∗
∞)
]
,

where the initial condition µ arises by putting

(3.43) C0 = {{1}, . . . , {N}},

N is Poisson distributed with intensity ρ|A|, and the initial positions of the N points are uniformly sampled from
A.

(iii) Next we use Theorem 3 to obtain the analogue of Theorem 4 for IFWD, i.e. to represent the equilibrium
configuration of the IFWD, ζ∞, and of the historical IFWD, ζ∗∞.

For this purpose, consider once more the E↑G-marked (I,U)-coalescent, (Ct, Lt)t≥0, with (3.29), where U , and
{xι; ι ∈ I} are sampled according to Ψ (recall (3.36)), and let the EG-marked Iρ-coalescent be the functional,
φIρ(Ct, Lt), which is obtained by the restriction of (Ct, Lt) to the individuals with index ι ∈ Iρ (recall (1.24)).

Note once more that in particular for this initial state the limit, C∞ := limt→∞ Ct, exists a.s., and recall ∆̃ρ,θ

from (3.40).

Theorem 5. (Representation of the equilibrium historical IFWD via the coalescent) With the above choices for

(C0, L0), there exists almost surely a unique random variable ζ̃∗∞ ∈ M(D(R, G ×K)) such that for each Borel
set A ⊆ D(R, G×K),

(3.44) ζ̃∗θ,∞(A) := lim
ρ→∞

ρ−1∆̃ρ,θ(C
∗
∞, L

∗
∞)(A) a.s.

Moreover,

(3.45) L[ζ̃∗θ,∞] = w- lim
s→−∞

Lθ,s[ζ∗0 ],

where Lθ,s denotes the law of a historical Fisher-Wright diffusion started at time s ≤ 0 in a measure ζ∗ ∈
M(D(R, G×K)) such that ζ∗{y ∈ D(R, G×K) : yt ∈ {x}×{1}} = 1−ζ∗{y ∈ D(R, G×K) : yt ∈ {x}×{0}} = θ
for all x ∈ G and t ≥ s.

Remark Note that the above implies that taking the diffusion limit with the IMM-equilibrium historical
process gives the IFWD-equilibrium historical process. The limits ρ→∞ and t→∞ interchange. ¤

Corollary 3.10. (Representation for the equilibrium of the IFWD) The law of the random measure on G,
defined by

(3.46) ζ̃θ,∞ = lim
ρ→∞

ρ−1
∑

ι∈Iρ

δ
(L

{ι}
0 ,∆θ(C

{ι}
∞ ))

, a.s.

is equal to Ĥθ (recall (3.22)).

3.3. Application II: Finite system scheme (Theorems 6 and 7). A question of fundamental interest is
the relation between the long-time behavior of the IMM and the historical IMM defined on finite but large
subsets of an infinite group G in comparison with behavior of the corresponding processes on the whole group
G. Since on a finite subset of G, which has the group structure, the migration is always recurrent, at least for
transient â(x, y) the long-term behavior differs sharply in the two situations. The first question of interest is
therefore how does the system feel the finiteness of the group (geographical space)?
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The second point is that the determination of this behavior is the key step in the renormalization analysis of
this class of models on the level of historical processes. We will not go into more detail on this topic here but
refer an interested reader to [30].

Let us return to the first question above. We use as an approach the so-called finite system scheme which
was used in Cox, Greven and Shiga (1995) [10] to answer the same question for the diffusion limit, IFWD. In
that scheme we observe a sequence of finite systems of increasing size on a size dependent time scale. The
starting point of these considerations is that if we relate the system size and the time of observation we expect
the following: on short time scales (compared to the system size) a large system looks locally like an infinite one,
and after a long time (compared to the system size) we see the typical behavior of a finite system. In between
some intermediate behavior occurs, which can be described explicitly.

Our particular task here is twofold: (a) we develop the finite system scheme for the historical look-down
process and apply our representation of the enriched IMM and the duality with the coalescent to carry out the
analysis needed to establish the finite system scheme for the IMM in such a way that we obtain as a consequence
the result for IFWD; (b) we extend this kind of analysis to the historical process and obtain the historical finite
system scheme which will imply the results for the ordinary non-historical case. This construction has not been
carried out previously in any model.

We proceed as follows. We construct next in (i) the “finite” systems, then we derive in (ii) the finite system
scheme for the historical look-down process, historical IMM and historical IFWD. In part (iii) we formulate some
consequences for the ordinary non-historical processes.

(i) In order to keep the arguments transparent and to minimize the notation we focus on the case G = Zd,
even though we could treat fairly general groups including in particular the so-called hierarchical group (compare
e.g. with [15]). We also assume from now on that d ≥ 3, that is, we are in the transient regime.

We begin by defining the finite systems corresponding to IMM on Zd. Recall the migration kernel a(x, y)
from (1.1). Consider the subsets

(3.47) GN = [−N,N ]d ∩ Zd,

and let

(3.48) (ηNt )t≥0, and (η∗,Nt )t≥0,

be the IMM and the historical IMM on GN with random walk kernel

(3.49) aN (x, y) =
∑

z∼y

a(x, z), x, y ∈ GN ,

where ∼ denotes equivalence modulo 2N + 1 in each coordinate.
Fix θ ∈ [0, 1], and ρ ∈ R+. In order to avoid certain technicalities we assume for the remaining results that

L[ηN0 ], and L[η0] are Poisson systems on GN ×K, and Zd ×K, with intensity measure ρnN ⊗ ((1− θ)δ0 + θδ1),
and ρn⊗ ((1− θ)δ0 + θδ1), where n

N and n are the counting measures on GN ×K and Zd ×K, respectively.
Furthermore, in order to be in a position to have the local central limit theorem for the symmetrized kernel,

we restrict our attention to random walk kernels with

(3.50)
∑

x

â(0, x)|x|d+2 <∞.

This way we obtain a sequence of finite systems {(ηNt )t≥0, N ∈ N} or {(η∗,Nt )t≥0, N ∈ N}, and an infinite
system (ηt)t≥0 or (η∗t )t≥0, respectively, which are related as follows: for every fixed finite time T ,

(3.51) L[(ηNt )t∈[0,T ]] =⇒
N→∞

L[(ηt)t∈[0,T ]],

and

(3.52) L[(η∗,Nt )t∈[0,T ]] =⇒
N→∞

L[(η∗t )t∈[0,T ]],

where here the convergence is weak convergence in D([0, T ], EG), and D([0, T ], E
∗
G), respectively.
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(ii) To formulate the main result for the historical processes, we need four closely related ingredients:
namely, the proper time scale, the resulting limits of our spatially structured coalescent, the local equilibria of
our system appearing in that scale and finally the mixing measure given the proportions at which the local
equilibria appear. We conclude in the final step 5 with formulating the main result.

Step 1 (The critical time scale) The critical time scale distinguishing the behavior of the finite systems from
the infinite system is given by

(3.53) βN (t) = (2N + 1)d t, d ≥ 3,

rather than the order of the time needed for uniformly started particles to hit the boundary of the torus, N 2 or
N (if the underlying random walks have drift), as one might naively guess. The intuitive reason is that in d ≥ 3
two random walk particles on a large torus, started at randomly sampled points, meet (and therefore interact)
only after time of the order of the volume. Observe that two independent particles spend time of order of the
inverse volume of the torus in the same site, and therefore their interaction occurs on a scale βN (t).

More precisely, the mean time until they interact is of order κ times the volume (see Lemma 7.3 for a stronger
statement), where

(3.54) κ := (1/γ + g/2)−1,

and g is the expected number of returns to 0 by the random walk on Zd. Note that g <∞ if and only if â(x, y) is
transient. The constant is related to the resampling rate and the chance for two fixed individuals to be related.
The following claim is standard and easy.

Lemma 3.11. (Interpretation of κ) Let ι1, ι2 ∈ I, and let (C,L) be the {ι1, ι2}-coalescent (with delay rate γ).
Then

(3.55) κ = γP{({ι1},0),({ι2},0)}[C∞ = {{ι1}, {ι2}}],

where C∞ is defined in (3.30).
Step 2 (Kingman’s coalescent) To describe the asymptotic behavior of the spatially structured coalescent
processes we will need another coalescent process, namely the well-known Kingman’s coalescent, K := (Kt)t≥0.
This process is a special case of the I-coalescent where we identify all sites in G, that is, we use the site space
with the trivial group {0}. The Kingman coalescent can therefore equivalently be described as a process with
values in the partitions of I which is the entrance law (at time t = 0) of a Markov process with the following
dynamics:

Kingman’s coalescence Each pair of partition elements coalesces at rate 1.

We write

(3.56) Kt(C)

for the Kingman’s coalescent started in the partition C of I.
This object arises in our model as follows. Consider the genealogies of two individuals, started at the origin,

in the process on the (large) torus. Their ancestral paths try to coalesce as they would do on Zd. If they do not
succeed they finally drift apart, and start wrapping around the torus. This probability is given by

(3.57) P{({ι1},0),({ι2},0)}[C∞ = {{ι1}, {ι2}}] = (γg/2 + 1)−1.

Given that our two individuals have not coalesced without wrapping around, they have forgotten all the infor-
mation about their initial spatial distance, they are both uniformly distributed on the torus. On times of the
order of the volume they come to a common point again and then their coalescence dynamics restarts. The time
intervals during which the particles are at distance O(1) from each other are very short when compared to the
time intervals until wrapping around. This means that they now try to coalesce (on the critical time scale ) at
rate γ according to the Kingman’s coalescent.
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Step 3 (The local equilibria on the scale βN (t)) Above we have indicated the asymptotics for the genealogical
relation of two individuals. Our goal is to understand the asymptotics of the full genealogical structure. For
that purpose we come to the third ingredient, the collection H∗1,θ(C,P) of measures with C,P running over
partitions.

Suppose we are given the family structures C which can be observed based on spatial paths before wrapping
around the torus, and that we are also given P describing at the same instant the coarser picture based on
the ancestral relations due to the wrapping around the torus. Conditioned on these observations the laws of
the finite historical look-down processes observed on scales βN (t) look approximately like a law H∗1,θ(C,P) and

unconditioned the state of the system at βN (t) has approximately a law which is the mixture (over C,P) of such
laws. It turns out that the H∗1,θ(C,P) arise as the entrance law of the historical look-down process at −∞ if we
condition the entrance configuration to have a particular family structure C and type structure induced by P
(coarser than C). This suggests the following structure, which we introduce in definition 3.12 formally.

For that purpose we shall need here and in the sequel frequently the operator τ ∗t which is defined by the
requirement that it is induced on measures on path space by the time-shift operator on paths, which maps a
path y as follows:

(3.58) (τ∗t y)· := y(·−t).

Definition 3.12. (Clan measures conditioned on family structures) Given a partition C of G × N, and θ ∈
[0, 1], pick a partition P coarser than C with |P| < ∞ and proceed as follows (Recall (3.3), (3.26), (3.34) for
definitions).

• Condition H∗1 on having Γ0
−∞ = C. Fix a regular version of this conditional law.

• Take each D(R × {1} × U)G×N-valued realization according to the above (conditional) law, and reset in
each family given by the partition P the type equal to ∆θ(P).

• Now consider the configuration induced on (D(R, G×K)× U)G×N by this random map.
• Associate with (C,P) the law of the above random collection.

This whole procedure results in a measurable, probability measure-valued map:

(3.59) (C,P) 7→ H∗1,θ(C,P),

where the measure on the right hand side is a measure on the σ-algebra of the space of collections of labeled
paths, i.e. (D(R, G×K)× U)G×N.

Remark We introduce the above object with the following picture in mind. Suppose we observe the system
at time βN (t). Recalling the relationship we described between two individuals we have to realize that due to
wrapping around the torus common ancestors occur on two different scales. Individuals are either unrelated or
related due to resampling events which occur either in the time interval [βN (t)−L(N), βN (t)], here L(N) ↑ ∞ and
L(N) = o(N), or during the time interval [0, βN (t)−M(N)] (with M(N) ↑ ∞ and N2 logN ¿M(N)¿ Nd as
N →∞), or during the time interval [βN (t)−M(N), βN (t)−L(N)] in which wrapping around the torus occurs.
The first type of families will look exactly like families of the equilibrium historical process on the whole group,
the second type of families will have a distribution which is spatially a superposition of independent versions
of the first kind, and the individuals involved in resampling events of the third kind above will asymptotically
become negligible. To give the whole picture we therefore still need a way to describe the second type of families.
¤

Step 4 (Mixing measure) Having defined the local limiting law for given family and type structure we come
to the fourth ingredient. The following theorem states that the laws of the finite historical look-down processes
observed on scales βN (t) look like a mixture over (C,P) of the laws H∗1,θ(C,P). The mixing measure, Q̄∗κt, is
given by the joint law of the two coupled random variables C∞ and Kingman’s coalescent K at time κt and
started at time 0 in state C∞, i.e.,

(3.60) Q̄∗t [d(C,P)] := P[C∞ ∈ dC; Kt(C∞) ∈ dP].
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Observe that Q̄∗t [d(·, ·) ] is supported on those pairs of partitions (C,P), where P has finitely many partition
elements for t > 0 and is always coarser than C.

Step 5 (Main result) Now we have all four ingredients needed to formulate the next theorem saying that on
the given time scale the historical configurations consist of the clans of the infinite system but the types are kept
equal in P, which means they are not assigned simply as i.i.d. random variables to each element in C (as in the
infinite system) but rather some of them are coupled as follows:

Theorem 6. (Finite systems scheme for historical look-down) Let θ ∈ [0, 1], t ∈ [0,∞], and t(N) ↑ ∞ such that
t(N)/|GN | → t, as N →∞. Then

(3.61) LΨ(θ),0
[
τ∗t(N)X

∗,N
t(N)

]
=⇒
N→∞

∫
Q̄∗κt[d(C,P)]H

∗
1,θ(C,P).

Remark The result says that as macroscopic time increases in the critical time scale, the path of descent
stops determining the genealogical relation alone, as time progresses the family structure on a large torus is
made coarser compared to the infinite system via applying a Kingman coalescent which forces more and more
“family clusters” in the infinite system to have the same type. ¤

Remark The scenario above can be even stated in more detail with stronger statements which also bring into
view the build-up of the genealogies through the various degrees of kinship. See for details Proposition 7.6 in
Subsection 7.3. ¤

As before we can also derive from this theorem on the look-down process X∗, results on η∗ and also on ξ∗,ρ,
which finally allows us to obtain results on ζ∗.

We first consider the historical IMM, i.e. η∗. Here we need a new object for the description replacingH∗1,θ(C,P)

above, which will be denoted by H̃∗π,ρ,1(C). In order to understand the sequel recall the discussion at the
beginning of Step 3 and the following fact. The weak topology of probability measures on paths on larger and
larger tori leads to a convergence of end-pieces of arbitrary length but we never catch properties of the path
after wrapping around. We distinguished three degrees of kinship, one of which is asymptotically negligible and
we the other two prevail in the limit. The first degree of kinship occurs when two individuals have coalesced
in near past, and so their ancestral paths have a common beginning piece, while the second degree of kinship
occurs when two individuals managed to coalesce with the help of wrapping around the torus, so that even
though their types agree one can not conclude their relation by observing (in the limit) their ancestral paths
only. (The reader should be aware that there is a grey zone in which individuals manage to coalesce without
wrapping around but still long time ago so that one can not conclude their relation by observing their ancestral
paths only. However, after rescaling the coalescent events that occur during this time period will not contribute
substantially.)

Now C runs through the set of partitions of Iρ and should be read as the final partition restricted to individuals
with label smaller than ρ where equivalence is with respect to first degree of kinship, while for a given C, π runs
through the set of unions of partition elements of C and plays the role of a family patch in the rougher partitions

than C where equivalence is with respect to the second degree of kinship. We derive H̃∗π,ρ,1(C) from H∗1,i,
i ∈ {0, 1}, by decomposing the random measures induced by the individuals in Iρ into independent components.

Precisely, consider the representation of H̃∗ρ,i, i = 0, 1, (recall (3.32)) by the coalescent. Let for ρ ∈ R+, C be a
partition of Iρ, P be a coarser partition than C which satisfies |P| <∞, let π ∈ P, and i ∈ {0, 1}. Then carry

out the following steps. (i) Consider under H̃∗ρ,i a regular version of the conditional distribution given Γ0
−∞ = C,

for each C this is a law on measures on D(R, G×K). (ii) When forming the empirical measure on path space,
use only individuals with index ι ∈ π. We denote the version of the conditional law taken in (i) resulting from

this restriction by H̃∗π,ρ,i(C).
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By the strong form of duality, we have the alternative description of H̃∗π,ρ,i(C):

(3.62)

H̃∗π,ρ,i(C)

:= LΨ

[
∑

ι∈π∩Iρ

δ
(L

∗,{ι}
∞ ,i)

∣∣∀ ι1 ≈C∞ ι2 ∃ t ≥ 0 : (L∗,{ι1}∞ )s≥t = (L∗,{ι2}∞ )s≥t

]
,

where i denotes the path throughK which is constant i ∈ K. Observe that the map (C,P) 7→ ∗ π∈P(θH̃
∗
π,ρ,1(C)+

(1− θ)H̃∗π,ρ,0(C)) where ∗ denotes convolution is measurable.
In particular, we conclude then from Theorem 6 the following for η∗:

Corollary 3.13. (Finite systems scheme for historical IMM) Let θ ∈ [0, 1], t ∈ [0,∞], and t(N) ↑ ∞ such that
t(N)/|GN | → t , as N →∞. Then

(3.63) LΨ(θ,ρ),0
[
τ∗t(N)η

∗,N
t(N)

]
=⇒
N→∞

∫
Q̄∗κt[d(C,P)]

{

∗
π∈P

(
θH̃∗π,ρ,1(C) + (1− θ)H̃∗π,ρ,0(C)

)}
.

Analogously, as a second consequence of Theorem 6 we obtain a statement about large finite systems of
historical IFWD. We first need to define the limiting distributions appearing, i.e., we need an analogue of (3.62).
Since this object involves taking a limit, we cannot (and need not) define it for every pair (C,P) but only for
those pairs which appear as Kt(C) and hence are due to an exchangeable selection among the elements of C.

Lemma 3.14. (Conditioned historical IFWD equilibria) Let (C∗∞, L
∗
∞) be as introduced in (3.33). For a partition

C of I, take an exchangeable random selection (independent of everything else) of a partition P coarser than C
with |P| < ∞. Take π ⊆ I such that π is element of P. Then the following limit exists a.s. w.r.t. the law of
C∗∞ and the random selection:

(3.64) lim
ρ→∞

ρ−1
∑

ι∈π∩Iρ
δ
(L

∗,{ι}
∞ ,i)

,

where once more i denotes the path through K which is constant i ∈ K. Then consider for (C,P) and every
π ∈ P a version of

(3.65) L

[
lim
ρ→∞

ρ−1
∑

ι∈π∩Iρ
δ
(L

∗,{ι}
∞ ,i)

∣∣∀ ι1 ≈Cι2 ∃ t ≥ 0∀ s ≥ t : (L∗,{ι1}∞ )s = (L∗,{ι2}∞ )s

]
,

which is denoted by Ĥ∗π. Assigning to each path either type 0 or 1 results in Ĥ∗π,i with i = 0, 1. This results in
the transition kernel, say K:

(3.66) K((C,P), ·) = ∗
π∈P

(
θĤ∗π,1(C) + (1− θ)Ĥ∗π,0(C)

)
(·).

Applying the fact that P can be selected through Kingman’s coalescent Kκt yields the following.

Theorem 7. (Finite systems scheme for historical IFWD) Let θ ∈ [0, 1], t ∈ [0,∞], and t(N) ↑ ∞ such that
t(N)/|GN | → t, as N →∞. Then we have:

(3.67) Lθ,0
[
τ∗t(N)ζ

∗,N
t(N)

]
=⇒
N→∞

∫
Q̄∗κt[d(C,P)]

(

∗
π∈P

(
θĤ∗π,1(C) + (1− θ)Ĥ∗π,0(C)

))
.

(iii) So far we have considered the historical processes. However, by projection of the historical process at
time t on the time t configuration, the results on historical processes can be specialized to yield results on the
configurations ηt and ζt. These already appear in the literature on particle systems [5] and [8] and interacting
diffusions [10]. Let us revisit these results from a perspective of the historical look-down construction.

By projecting on the time t configuration the only relevant information should sit in the density of types and
in the equilibria of the system η and ξ, respectively. To derive this from our theorem the key structural element
is exchangeability. Namely start observing that given C∞, the random partition Kκt(C∞) is exchangeable for
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each t > 0, that is, its distribution is invariant under renumbering finitely many of the indices. So the same
holds for the collections of {0, 1}-random variables {∆θ(K

π
κt(C∞)); π ∈ C∞} and {∆θ(K

π
κt(C∞)); π ∈ φIρC∞}

(recall (3.34)).
Hence by de Finetti’s theorem, given C∞, {∆θ(K

π
κt(C∞)); π ∈ C∞} is a random mixture of i.i.d. {0, 1}-

random variables.
If â(x, y) is transient, C∞ is countably infinite, i.e., C∞ := {π1, π2, ...}. Therefore, given C∞, the frequency

of 1’s in the array, denoted zt, arises as:

(3.68) zt := lim
n→∞

1

n

n∑

k=1

∆θ(K
πk
κt (C∞)), a.s.,

and

(3.69) zρt := lim
n→∞

1

n

n∑

k=1

∆θ(φIρ(K
πk
κt (C∞))), a.s.,

respectively.
From the construction of Kingman’s coalescent via the genealogy of a (single) Fleming-Viot process, which is

the non-spatial and non-historical version of our strong duality, it is well-known (see Proposition 3.3 in [19]) that
the laws of zt and z

ρ
t are the same and equal to the law of the Fisher-Wright diffusion (FWD) with resampling

rate κ, started in θ. A FWD is the unique strong solution of the stochastic initial value problem

(3.70) dzs =
√
κ zs(1− zs)dws; z0 = θ ∈ [0, 1],

where w = (ws)s≥0 is a standard Brownian motion on the real line.
We denote the transition kernel of FWD by

(3.71) Qt[θ,d · ] := Pθ[zt ∈ d · ].

In order to apply above observations to obtain the finite system scheme for η and ζ we need one more
observation. The fact that on the critical time scale the number of families which are building up the equilibrium
is finite but random, is reflected at a fixed time t in the phenomenon that the empirical density, Dρ,N ∈ [0, 1], is
fluctuating at that scale. Let for any x ∈ GN , σNx denote the image measure induced by the shift by x, that is,

(3.72) (σNx η)(y, k) = η(z, k), z = (x+ y) mod (2N + 1).

Then define

(3.73) Dρ,N (ηN ) := (ρ |GN |)
−1

∑

x∈GN

(
σNx η

N
) (

(0, 1)
)
, t ≥ 0.

Recall Ψ̃(θ, ρ) from (2.29). We are now in a position to formulate the following:

Corollary 3.15. (Finite system scheme; IMM and IFWD) Assume that â(x, y) is transient.

(a) Then given the density the system equilibrates locally into the same (in law) state as the infinite system,
i.e.,

(3.74) LΨ̃(θ,ρ)
[
ηNβN (t)

]
=⇒
N→∞

∫

[0,1]

Qt[θ, dθ
′] H̃ρ,θ′ ,

and

(3.75) Lθ
[
ζNβN (t)

]
=⇒
N→∞

∫

[0,1]

Qt[θ, dθ
′] Ĥθ′ .



REPRESENTATION THEOREMS FOR IMM AND IFWD 1317

(b) The empirical density observed at the macroscopic time scale satisfies

(3.76) LΨ̃(θ,ρ)
[
(Dρ,N (ηNβN (t)))t≥0

]
=⇒
N→∞

Lθ [(zt)t≥0] ,

and

(3.77) Lθ
[
(D1,N (ζNβN (t)))t≥0

]
=⇒
N→∞

Lθ [(zt)t≥0] .

Remark This means the empirical density fluctuates in the scale βN (t) like the FWD and the local configu-
ration is now coupled to that macroscopic variable and is approximately equal to the equilibrium corresponding
to the current density. ¤

4. Wellposedness of the historical martingale problems

In this section we establish the well-posedness of the martingale problems for ξ∗, X∗, η∗, and ζ∗ stated in
Subsection 2.1. We prove the existence for the ξ∗, X∗ and η∗ in Subsection 4.1. The uniqueness statements
together with the existence for the diffusion limit ζ∗ are dealt with in in Subsection 4.2.

4.1. The graphical construction of the enriched historical processes. The key in proving the existence
of a solution to the above martingale problems for X∗, ξ∗,ρ and η∗,ρ is to verify that the look-down construction
we gave in Subsection 2.2 is well-defined and then check that the construction provides indeed a solution for
the X∗-problem and induces as well solutions for the ξ∗,ρ and η∗,ρ problems. The existence of the solution of
the ζ∗ martingale problem is difficult since ζ∗ arises as diffusion limit and therefore existence and uniqueness
(approximations converge) are closely related. We therefore discuss this in Subsection 4.2 where we prove
uniqueness to the martingale problems.

We first give in Subsection 4.1.1 the main tool, Subsection 4.1.2 contains the arguments showing that con-
struction is well-defined and that the process constructed is a solution to the martingale problem.

4.1.1. The graphical point of view. In order to show that the look-down process is well-defined, we shall make
use of a graphical representation in the spirit of Harris’ graphical construction of the voter model (compare with
[33]). Consider a random space-time diagram on I × [0,∞). Let gen(X∗) be a point process on I × I × [0,∞)
satisfying the requirement that the random points should represent the information at which times and from
whom the individuals adopt a type. Therefore we define

(4.1) (ι1, ι2, t) ∈ gen(X∗) iff Bι1, ι2 [0, t] = Bι1, ι2 [0, t) + 1.

For (ι1, ι2, t) ∈ gen(X∗) we draw an arrow from (ι1, t) to (ι2, t) in our space-time diagram describing the “flow”
of types.

From gen(X∗) we can then recover a family relationship by reversing the perspective. We call the individual
ι1 at time t1 related to the individual ι2 at time t2 ≥ t1 if we can reach (ι1, t1) by moving downwards along
vertical lines starting at (ι2, t2), jumping to the tail of an arrow, whenever we encounter its head.

Notice that the look-down process is well-defined iff we can attach with each individual ι at time t ≥ 0 a type
in a unique way, which means actually that ι at t is related to exactly one individual, A(ι,t)(0), at time 0. The
latter will be shown in the next subsection.

4.1.2. The look-down construction is well defined. Recall from (1.30) to (1.32) the notation for the time points
of look-down events.

In order to ensure that the construction of X∗ makes sense we have to show that:

Proposition 4.1. (Look-down construction is well-defined)

(a) (i) For each ι ∈ I, γ1ι > 0, P-a.s.
(ii) For each ι1, ι2 ∈ I, and n ≥ 1, γnι1, ι2 > τnι1, ι2 , P-a.s.

(iii) For each ι ∈ I, and t > 0, there is a finite number n = n(t, ι, ω) ∈ N such that γnι ≤ t < γn+1
ι .

(b) In particular, X∗ is well-defined by (1.33) and (1.34).
(c) L(X∗) solves the (L(t,X∗),A

∗)-martingale problem.
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(d) Furthermore ξ∗ and η∗ are well-defined by the construction following (1.38).

Proof (a) Since for (ι1, ι2) ∈ I × I, B
ι1, ι2 can jump only if the two individuals with index ι1 and ι2 are

sharing the same site, it is sufficient to prove that up to each fixed time horizon a tagged particle meets a.s. only
finitely many other individuals with a smaller label.

Fix ι ∈ I, and denote by χι := (χιt)t≥0 the random field which counts for each site x ∈ G the current number
of individuals with a label ≤ uι regardless of their types, i.e.,

(4.2) χιt(·) :=
∑

ι′∈I;uι′<uι

1{Rι
′

(xι
′

, t) ∈ ·}.

For a given t > 0, we follow the individual with index ι in reversed time. The migration of an individual with
a specified label is independent of the evolution of all other particles. This means, the number of individuals with
a smaller label which the individual with index ι meets along the way is stochastically smaller than the following
object. Take a particle, say started in y ∈ G, which is wandering as a reversed random walk, R̄, where R̄ arises
as R but with transition kernel ā(x, y) := a(y, x) through a fluctuating configuration evolving as (χιt−s)s≥0 and
observe the number of particles observed from the perspective of this particle. Then

(4.3)

P[γ1ι > 0] = lim
t↓0

P[γ1ι > t]

≥ lim
t↓0

E

[
exp−

{
γ

∫ t

0

ds χιt−s(R̄s)
}]

.

It suffices to show that the above time integral goes to zero in probability. Observe that for each ι ∈ I, y ∈ G,

(4.4)

Ey[χιt−s(R̄s)] =
∑

z∈G

Py[R̄s = z]E[χιt−s({z})]

=
∑

ι′∈I;uι′<uι

∑

z∈G

ās(y, z)at−s(x
ι′ , z)

=
∑

x∈G

χι0({x})at(x, y).

The right hand side of (4.4) is finite since we know by assumption that the initial state is in the Liggett-Spitzer
space, and hence

(4.5)

∑

y∈G

Ey[χιt−s(R̄s)]α({y}) ≤ e(Γ−1)t
∑

x∈G

χι0({x})α({x}) <∞.

Therefore
∫ t
0
ds χιt−s(R̄s) ↓ 0 in probability, as t ↓ 0. Thus the right hand side of (4.3) is equal to 1.

The proofs of (ii) and (iii) can be based on similar reasoning which we skip here.

(b) Recall from (4.1) the random point process, gen(X∗). We start by showing that each individual ι at
time t is related with exactly one individual at time 0, P-a.s. Notice that we can find all individuals at some
time s ≤ t related to ι at time t by moving downwards along the diagram.

For ι ∈ I, t ≥ 0, let

(4.6) β̄1(ι,t) := min{s > 0 : ∃ ῑ1(ι,t) ∈ I s.t. (ῑ1(ι,t), ι, t− s) ∈ gen(X∗)}.

By part (a)(ii) ῑ1(ι,t) is uniquely determined, P-a.s.

We therefore can define inductively (ῑn(ι,t))n∈N and (β̄n(ι,t))n∈N by

(4.7) β̄n+1
(ι,t) := β̄1(ῑn

(ι,t)
,t−β̄n

(ι,t)
).

Once more, this definition makes sense on a set C(ι,t) of full P-measure. Obviously, for each s ∈ [t−β̄n+1
(ι,t) , t−β̄

n
(ι,t))

the individual ι at time t is related to the individual ῑn(ι,t) at time s. Moreover, C(ι,t) can be chosen such that

there exists a finite number,

(4.8) m(ι,t)(0) ∈ N,
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referred to as the degree of kinship between

(4.9) A(ι,t)(0) := ῑ
m(ι,t)(0)

(ι,t)

at time 0 and ι at time t, such that there is no individual of a smaller label than A(ι,t)(0) which is related with
ι at some (non-negative) time. Hence, on Ct := ∩ι∈IC(ι,t), we may define

(4.10) kι(t) = kA(ι,t)(0),

and for s ∈ [t− β̄n+1
(ι,t) , t− β̄

n
(ι,t)), β̄

0
(ι,t) := 0, and 0 ≤ n ≤ m(ι,t)(0),

(4.11) (π∗GX
∗, ι
t )s := Rῑ

n
(ι,t)(xῑ

n
(ι,t) , s).

The latter fulfills obviously (1.34). Thus the given construction of X∗ is well-defined.

(c) Next we deal with the problem of existence of a solution to the martingale problem. Observe that the
existence of the historical look-down follows by verifying that indeed the process (X∗

t )t≥0, which we constructed
explicitly above satisfies the properties required by the martingale problem. This is a straightforward explicit
calculation with the generator which we omit here. Recall that it is at this point that the initial state has to be
chosen with some care. The tools for that are developed in the theory of interacting particle systems, namely
in order to avoid explosion of rates we have to use the Liggett-Spitzer space E∗G as we explained in detail in
Subsection 1.3 (recall (1.16)).

(d) It remains to show that also ξ∗ and η∗ are well-defined by the construction we gave and that the solutions
satisfy the respective martingale problems. This however is essentially the same as above, since η∗ is a functional
of ξ∗ and in the construction of ξ∗ the only difference to X∗ is the symmetrization of the resampling mechanism
which does not change the estimates which involve solely the random walks. ¤

4.2. Proof of Theorems 1 and 2. Here we have to establish the well-posedness of the historical martingale
problem for the IMM, the look-down, the enriched IMM, and the IFWD. Based on these facts we show that the
historical IFWD is the diffusion limit of the historical IMM. With the previous work this boils down to proving
uniqueness of the solution which is the key problem. We proceed here in three parts. We begin in (i) with the
process X∗. The uniqueness for ξ∗ and η∗ can be then derived very quickly in (ii) as a direct consequence of the
look-down uniqueness. In (iii) we discuss existence and uniqueness of the diffusion limit.

(i) The proof for the uniqueness of the martingale problem forX∗ proceeds in five steps. We will use knowledge
about classical martingale problems which guarantees uniqueness for finite index sets and then utilize the special
structure of our process to reduce the problem of uniqueness via coupling to the finite particle case. Recall the
generator L(t,X∗) for the historical look-down process given in (2.13). We refer to the corresponding martingale
problem as the (I,U)-martingale problem.

Step 1 (Finite index set and its consequences) The first observation is that for a situation where |I| <∞ we
see that we can decompose L(t,X∗) into two components L1 and L2, where L1 is the generator associated with the
path process of the migration process and the operator L2 corresponds to the resampling and involves pure jumps
with bounded rates. Then by the results of Ethier and Kurtz (compare with Theorem 4.4.1, Corollary 4.4.4,
and Problem 4.11.3 in [25]), L1 +L2 specifies a well-posed martingale problem. Now we use this |I| <∞ result
to obtain uniqueness for the case |I| =∞ as well.

The reduction from |I| = +∞ to |I| < ∞ comes in two steps. First we reduce everything to a locally
finite system. Namely by restricting the index set in (2.13) from I to Iρ one obtains a new generator with the
corresponding martingale problem, which we call the (Iρ,Uρ)-martingale problem, that has locally only finitely
many individuals. Note that the evolution of any solution to the historical look-down martingale problem
restricted to individuals with indices in Iρ is a solution to the Iρ-martingale problem. Therefore, to show
uniqueness of the solution for the (I,U)-martingale problem, it suffices to show uniqueness of the solution for
the (Iρ,Uρ)-martingale problem for each ρ ∈ (0,∞). Finally note that one solution to the (Iρ,Uρ)-martingale
problem is given by the evolution of all individuals with indices in Iρ in the historical look-down process from
Subsection 1.4.
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The strategy of the proof for uniqueness of the (Iρ,Uρ)-martingale problem is to reduce this infinite (locally
finite) case to the finite case, for which we have uniqueness. This reduction is by approximation using that (as it
turns out) any solution of the historical look-down martingale problem has the property that in any finite time
interval one particle interacts with at most finitely many particles, and therefore, in any finite time interval, any
finite collection of particles interacts with at most finitely many particles. Before giving a rigorous argument,
we sketched the proof in the next three paragraphs.

Note that two solutions of the (Iρ,Uρ)-martingale problem will be equal in law, if for any finite collection
ι̃1, ι̃2, · · · , ι̃n of individuals, the laws of processes restricted to the evolution of this collection inside the two
solutions are equal. Consider therefore a finite number of tagged individuals. Next choose a finite subset of the
site space, say B. The idea is now that the dynamics of the tagged individuals in the two systems is for a finite
time horizon very well approximated by the dynamics of the tagged individuals in the system consisting only
of those individuals in the Iρ-system which start initially in B if we make B sufficiently large. To make this
comparison precise we have to estimate the influence of all the individuals not initially in B on the evolution of
the tagged ones which is the main content of the next steps.

The comparison estimate is based on a coupling of the (Iρ,Uρ)-evolution and the one of the individuals which
are initially in B which we denote X∗,ρ,fin (which depends of course also on B). Coupling means here realization
on some common probability space. More precisely, given any solution X∗,ρ to the (Iρ,Uρ)-martingale problem,
one constructs a solution (X∗,ρ, X∗,ρ,fin) to the coupled martingale problem. This construction we carry out in
Step 3 below. The migration process in X∗,ρ,fin is for the finitely many individuals considered to be the same as
in X∗,ρ, but the resampling occurs only for individuals with indices initially located in the finite set B. Therefore
the law of X∗,ρ,fin is uniquely determined via its martingale problem by the result on the finite case.

The key property however is that for the coupling (X∗,ρ, X∗,ρ,fin) the migration and resampling dynamics of
given tagged particles ι̃1, ..., ι̃n coincide in X∗,ρ and X∗,ρ,fin except on events of arbitrarily small probability
(due to Lemma 4.2 in Step 2) by choosing B sufficiently large.

Next we give a rigorous argument. Fix n ≥ 1, indices ι̃1, ..., ι̃n ∈ I
ρ, and T > 0. Assume that the solution to

the (Iρ,Uρ)-martingale problem is not unique. The Steps 2 and 5 below will imply that for all fixed T and all
fixed n, the law of the evolution of the individuals ι̃1, ..., ι̃n, on the interval [0, T ], is the same in both processes.
Since this holds for every finite collection of tagged individuals , this yields a contradiction. Hence we have
uniqueness.

Step 2 (Estimate for influence of infinite set onto finite set) For the coupled process we construct in Step 3 we
will need to know for a solution of the (Iρ,Uρ)-martingale problem the influence of the individuals not initially
in B on those tagged individuals , which are assumed initially in B, in order to estimate the distance of the
coupling between X∗,ρ and X∗,ρ,fin from the diagonal. For convenience we choose B from the set of all balls
with large radius. A ball with radius R is denoted by BR.

Fix ε > 0 and a time horizon T . Now consider solutions to the (Iρ,Uρ)-martingale problem and denote by P
any such law. In other words whenever we write an estimate involving P, it holds for all such P.

We shall now pick two parameters 0 < r < R. First we choose r large enough so that

(4.12) P[{(π∗Gy
ι̃i)s ∈ Br, ∀ s ∈ [0, T ], i = 1, ..., n}] ≥ 1− ε.

Then choose R > r such that

(4.13)
∑

ι∈Iρ: (π∗
G
yι)0 6∈BR

P[{(π∗Gy
ι)s ∈ Br, for some s ∈ [0, T ]}] ≤ ε.

Observe that such an R always exists since we have assumed that the initial positions of X∗
0 fulfill (1.23), a.s.

We have to estimate the influence of all individuals with label less than ρ and initial positions outside the
large ball BR during the fixed time interval [0, T ] on those individuals with indices ι ∈ Iρ and initial positions
in Br with r < R which we have tagged. We need to show that this influence becomes small for fixed r as
R → ∞. For this purpose we estimate the expected rate at which a tagged particle interacts with individuals
starting outside of BR by time t on the event that the tagged individuals all stay in Br during time [0, T ]. We
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call this quantity

(4.14) d{ι̃1,··· ,ι̃n},r,R(t).

With this in mind we consider the random variable which describes at which rate interaction occurs between
the tagged individuals with indices ι̃1, . . . , ι̃n on the one hand, and individuals which had interacted with a
particle with index ι ∈ Iρ and initial positions outside BR (also indirectly individuals which had interacted with
individuals which had interacted with individuals initially outside BR, and so on) on the other hand. Here we
only need to count interactions which have the property that the individual from outside BR has the smaller
label, since only then a path starting outside of BR may influence the path of a tagged individual. Define the
event Ar,t(t) that the path of the tagged particles remain in Br till time T ∧ t.

(4.15) D{ι̃1,...,ι̃n},r,R(t) := γ1Ar,t(t)

n∑

i=1

∑

ι∈Iρ:(π∗
G
yι)0 6∈BR

∫ T∧t

0

ds 1
{y

ι̃i
s =yιs}

,

We claim that

(4.16) d{ι̃1,··· ,ι̃n},r,R(t) = E
[
D{ι̃1,··· ,ι̃n},r,R(t)

]
.

A quick look at the above formula may puzzle the reader, since the interactions of individuals ι̃1, . . . , ι̃n
with individuals that started inside of BR and furthermore interacted with individuals that started outside of
BR etc. do not seem to be accounted for. However, we are using here the “2 versus 0 rule” that says: after
each resampling event involving a particle that started inside of BR and a particle interacted with individuals
started outside of BR, with probability 1/2 the number of individuals that started inside of BR but interacted
with individuals outside of BR increases by 1, and with probability 1/2 the same number decreases by 1, so on
average there is exactly one interaction contribution term coming from each of the individuals started outside
of BR. This argument uses the fact that the positions and indices are chosen independently of the labels.

Note that for any solution of the (Iρ,Uρ)-martingale problem, the evolution of the path of an individual is
given by a random walk with transition kernel a(x, y) and jump rate 1 which is uniquely determined by these
data and the starting point. Applying the martingale problem we shall see later that the migration of paths
disregarding the type is indeed a system of independent random walks. This combined with standard random
walk estimates immediately gives the following.

Lemma 4.2. (Interaction with distant individuals is small) If the spatial configuration corresponding to X ∗
0

fulfills (1.23) then for every solution to the (L(t,X∗),A
∗,look)-martingale problem we have:

(4.17) E[D{ι̃1,...,ι̃n},r,R(T )] ≤ γnTε,

with R satisfying (4.13).
In particular, by (4.16),

(4.18) d{ι̃1,··· ,ι̃n},r,R(t) ≤ γnTε.

This allows an important conclusion. Namely using (1 − e−x) ≤ x, for x > 0, together with (4.12) and with
CR denoting the event that a tagged particle changes type due to an (direct or indirect) interaction with a particle
starting outside BR (recall (4.12)) we conclude that

(4.19) P[CR] ≤ ε+ γnTε.

Estimate (4.19) will be used later in step 5 for showing via coupling that finite index set processes approximate
the infinite index set ones.

Step 3 (Construction of coupling) In this step we define the coupled dynamics explicitly. The coupled dynamics
will be a process on

(4.20) R+ × (D(R+, G×K)× U)I
ρ

× (D(R+, G×K)× U)I
ρ
1 .

Here Iρ1 is a finite subset of Iρ which we choose (deterministically and hence not by simply taking individuals
with position in BR which would be random) according to the following observation. Note that since for all
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solutions P of the Iρ-martingale problem we have the prescribed initial law, we can find for R fixed as above an
integer n̄(R) ≥ n such that

(4.21) Iρ1 := {ι̃1, ι̃2, . . . , ι̃n, ι̃n+1, . . . , ι̃n̄(R)}

has the property that

(4.22) P [{ι ∈ Iρ : (π∗Gy
ι)0 ∈ BR} ⊆ I

ρ
1 ] ≥ 1− ε.

The idea for the coupled dynamics is to produce as marginals the processes we wish to compare and to make
as many transitions as possible jointly in both processes. The process will be defined by specifying the generator
consisting of a migration part and a resampling part. We discuss first the migration and then the resampling.

Recall “migration” generators A describing the motion of one individual and Ã describing the evolution of the
path of one individual, both defined in (2.4)-(2.5). Furthermore recall from (2.9) and (2.10) how, based on these

operators, we defined new operators AI , ÃI for collections of individuals respectively paths. In analogy to (2.9)

define Acou,Iρ,Iρ1 (where “cou” stands for coupling) as follows for bounded functions F : (G×K)I
ρ

×(G×K)I
ρ
1 →

R+:

(4.23)

Acou,Iρ,Iρ1F ((x1, k1), (x2, k2))

=
∑

ι∈Iρ1

∑

z∈G

(a(0, z)− δ(0, z))F ((xz,ι1 , k1), (x
z,ι
2 , k2))

+
∑

ι∈Iρ\Iρ1

∑

z∈G

(a(0, z)− δ(0, z))F ((xz,ι1 , k1), (x2, k2)),

where for x ∈ GI
ρ

, z ∈ G, ι ∈ Iρ, the object xz,ι ∈ GI
ρ

is defined by

(4.24) (xz,ι)ι̃ :=

{
xι̃ + z if ι = ι̃
xι̃ if ι 6= ι̃

Now define based on Acou,Iρ,Iρ1 the operator Ãcou,Iρ,Iρ1 in the way analogous to (2.10).
Next we discuss the resampling part. In analogy to (2.11)-(2.12), define for each

(4.25) (t, (y1, u1), (y2, u2)) ∈ R+ × (D(R+, G×K)× U)I
ρ

× (D(R+, G×K)× U)I
ρ
1

and ι1 ∈ I
ρ, ι2 ∈ I

ρ
1 the following operators

(4.26)
θ̃1,2ι1, ι2 : (t, (..., (yι11 , u

ι1
1 ), ..., (yι21 , u

ι2
1 ), ...), (..., (yι12 , u

ι1
2 )..., (yι22 , u

ι2
2 )...))

7→ (t, (..., (yι11 , u
ι1
1 )..., (yι11 , u

ι2
1 ), ...), (..., (yι12 , u

ι1
2 ), ..., (yι12 , u

ι2
2 ), ...)) ,

and

(4.27)
θ̃1ι1, ι2 :

(
t, (..., (yι11 , u

ι1
1 ), ..., (yι21 , u

ι2
1 ), ...), (y2, u2)

)

7→
(
t, (..., (yι11 , u

ι1
1 )..., (yι11 , u

ι2
1 ), ...), (y2, u2)

)
,

and analogously to (2.12) their corresponding operators Θ̃1,2
ι1, ι2 , Θ̃

1
ι1, ι2 on the space of functions given by (4.25).

With these two ingredients we define now the generator of the “bivariate” process generating the coupling. As
in (2.13), denote by (y1, u1) the Iρ-indexed vectors of (y, u)’s, and let in addition (y2, u2) be a copy of (y1, u1)

but restricted to indices in Iρ1 . Consider as test functions the members of the algebra of functions which is
generated by products of functions in the two respective groups of variables as they appear in the formulation
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of the ordinary martingale problem. Define:

(4.28)

Lcou
(t,X∗,ρ,X∗,ρ,fin)F (s, (y1, u1), (y2, u2))

= Ãcou,Iρ,Iρ1F (s, (y1, u1), (y2, u2))

+ γ
∑

ι1, ι2∈I
ρ
1 ;

uι1<uι2

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃

1,2
ι1, ι2F − F )(s, (y1, u1), (y2, u2))

+ γ
∑

ι1∈I
ρ\I

ρ
1 ,ι2∈I

ρ;

uι1<uι2

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃

1
ι1, ι2F − F )(s, (y1, u1), (y2, u2)).

Call the martingale problem corresponding to the above generator Lcou
(t,X∗,ρ,X∗,ρ,fin) the coupled martingale prob-

lem.
Note that by construction of the operator in (4.28) we know that for every solution of the coupled martingale

problem the first marginal of the solution satisfies the (Iρ,Uρ)-martingale problem and the second marginal
satisfies the (Iρ1 ,U

ρ
1 )-martingale problem, where U1 := {uι; ι ∈ Iρ1}.

Step 4 (Coupled process exists for given first marginal) The next result is crucial for our uniqueness argument
since it guarantees that for a given solution of the Iρ-martingale problem, we can construct a solution of the
coupled martingale problem.

Lemma 4.3. (Coupling exists and determines second coordinate uniquely) For any solution X∗,ρ of the (Iρ,Uρ)-
martingale problem, there exists a process X∗,ρ,fin on the same probability space, so that (t,X∗,ρ, X∗,ρ,fin) is a
solution of the coupled martingale problem and X∗,ρ,fin solves the (Iρ1 ,U

ρ
1 )-martingale problem (with Iρ1 as defined

in (4.21)).

Proof of Lemma 4.3 Proceed stepwise as follows. (i) We define on the same probability space as the given

solution X∗,ρ a new process X̃∗,ρ (with the same state space as X∗,ρ) by suppressing all resampling events
between individuals where one of the individuals has an index not in Iρ1 . We will have to argue that this is

possible, since countably many individuals contribute to the dynamics. (ii) We restrict the process X̃∗,ρ to indices

in Iρ1 , to obtain a process denoted by X̃∗,ρ,fin on the same probability space. (iii) We then form (t,X∗,ρ, X̃∗,ρ,fin)

and prove that the pair (t,X∗,ρ, X̃∗,ρ,fin) is a version of the coupled process.
What has been achieved once we have carried out this construction? Since the second component has only

finitely many indices involved, its law agrees then by our reasoning in Step 1 with the unique solution of the
Iρ1 -martingale problem on the same probability space. Step 5 uses this to prove the Lemma.

Hence it remains to construct

(4.29) (t,X∗,ρ, X̃∗,ρ) on R+ × (D(R, G×K)× U)I
ρ

× (D(R, G×K)× U)I
ρ

on the probability space where X∗,ρ is defined, such that the process in (4.29) satisfies the martingale problem
with generator:

(4.30)

L̃(t,X∗,ρ,X̃∗,ρ)F (s, (y1, u1), (y2, u2))

= Ãcou,Iρ,IρF (s, (y1, u1), (y2, u2))

+ γ
∑

ι1, ι2∈I
ρ
1 ;

uι1<uι2

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃

1,2
ι1, ι2F − F )(s, (y1, u1), (y2, u2))

+ γ
∑

ι1, ι2∈I
ρ×Iρ\I

ρ
1×I

ρ
1 ;

uι1<uι2

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̃

1
ι1, ι2F − F )(s, (y1, u1), (y2, u2)).

Fix a solution X∗,ρ of the (Iρ,Uρ)-martingale problem and realize it on some probability space. We now

construct X̃∗,ρ and verify that its claimed properties are satisfied. This involves two arguments. We first deduce
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some useful properties of solution X∗,ρ of the (Iρ,Uρ)-martingale problem, in order to construct the process
from (4.29) and (4.30).

We begin now to deduce properties of X∗,ρ from the martingale problem. What we first need is to establish
that the motion is a system of independent random walks and secondly that resampling events occur for each

given pair at most finitely often at distinct times during a finite period [0, T ] in order to be able to define X̃∗,ρ as
described in the beginning. Finally we have to verify that the constructed process satisfies the martingale problem
(4.30). We establish for this purpose that the resampling events arise from appropriate Poisson processes. For
that latter purpose we look at the migration part and the resampling part of the evolution separately and
combine the argument with the first, respectively second, task just mentioned.

Start with the migration. As mentioned above, the migration dynamics of individuals in X∗,ρ, that is the
process obtained by ignoring the types associated with the paths, is uniquely determined and is given by in-
dependent random walks, which we denote by R = {Rι(t), t ≥ 0, ι ∈ Iρ}. Let R∗ = {R∗, ι, ι ∈ Iρ} be the
“historical process” corresponding to the process R. The law of R∗ is uniquely determined by the martingale
problem (this is classical, see [16]).

The following consequence of this fact on the migration part will be important for analyzing the resampling
part. Fix indices ι1, ι2, corresponding to labels uι1 < uι2 . Then the total amount of time when individuals with
indices ι1, ι2 share location during [0, T ] is well defined for X∗,ρ. That is, its law is uniquely determined. We
denote this quantity by

(4.31) Dι1,ι2(t) :=

∫ t

0

ds 1{(π∗
G
X∗,ρ, ι1 )s=(π∗

G
X∗,ρ, ι2 )s .

Recall that these times are specifying time slots where resampling between ι1, ι2 is possible.
However, notice that not all look-down events are between paths of different types which is necessary if one

would like to observe them. We will therefore introduce an enrichment of our process, namely we enrich the type
by a second component such that throughout every individual has a different type initially and changes upon
look-down only the first component of the type. This turns all possible look-down events in the original process
into observable ones in the enriched process.

We turn now to the resampling part and verify three facts. (α) We shall show that since by assumption the
initial state X∗,ρ0 is in the Liggett-Spitzer space, there will be only finitely many look-down interactions between
each pair of individuals during [0, T ] , and that there are no simultaneous look-down interactions, almost surely.
(β) We show that given Dι1, ι2(T ), the number of look-down interactions between the individuals ι1 and ι2 during
the time interval [0, T ] is Poisson (rate γDι1, ι2(T )). (γ) Finally, the numbers of look-down interactions between
different pairs of individuals are conditionally independent given the total location sharing times.

A basic tool in verifying these properties is to formulate them as martingale properties. Recall that the
Poisson (rate λ) process (N(t), t ≥ 0) is characterized uniquely by the Laplace transforms specified at all times.
Hence we have a unique characterization by requiring that the process W := (W (t))t≥0 with

(4.32) W (t) := exp
{
−θN(t) + λt(1− e−θ)

}

is a martingale for every θ > 0.
Now we prove the three facts (α)− (γ) based on the definition of the (Iρ,Uρ)-martingale problem.
Define, for ι1 and ι2 with uι1 < uι2 , x∗ := (x∗,ιt ; ι ∈ Iρ)t≥0 in (D(R+, G×K))I

ρ

the function

(4.33) f ι1, ι2(t, x∗) := #{s ∈ [0, t] : π∗Kx
∗, ι2
s− 6= π∗Kx

∗, ι1
s− , π∗Kx

∗, ι2
s = π∗Kx

∗, ι1
s }.

(α) Let N ι1, ι2(t) := f ι1, ι2(t,X∗,ρt ) be the number of “look-down interactions” for the pair ι1, ι2 during [0, t].
From the martingale property (2.20), (2.13) applied to f ι1, ι2 , we get EN ι1, ι2(t) ≤ γt so there are only finitely
many look-down interactions for X∗,ρ involving ι1 and ι2 during [0, t].

(β) The martingale property (2.20), (2.13) implies that

(4.34)
(
exp{−θN ι1, ι2(t) + γDι1, ι2(t)(1− e

−θ)}
)
t≥0
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is a martingale. Define as usual D−1ι1, ι2(t) := inf{s > 0 : Dι1, ι2(s) > t}, and let Ñ ι1, ι2(t) := N(D−1ι1, ι2(t)). Then
by (4.34) we have

(4.35)
(
exp{−θÑ ι1, ι2(t) + γt(1− e−θ)}

)
t≥0

is a martingale for each θ > 0, and therefore by (4.32) (Ñ ι1, ι2(t), t ≥ 0) is a Poisson (rate γ) process.
(γ) Next we need to verify that different pairs interact independently given the location sharing times. Suppose

that ι3 < ι4 are given in addition to ι1 and ι2, and suppose that either ι1 6= ι3 or ι2 6= ι4. Denote by N ι3, ι4 the
analogue of N ι1, ι2 where ι3 (resp. ι4) replaces ι1 (resp. ι2). We introduce a further enrichment of our probability

space. Define two auxiliary processes (N̂ ι1, ι2(t), t ≥ 0) and (N̂ ι3, ι4(t), t ≥ 0) so that N̂ ι1, ι2 (resp. N̂ ι3, ι4) given a
solution X∗,ρ, is a Poisson (rate γ) process evolving only at times when ι1 and ι2 (resp. ι3 and ι4) individuals do

not share the same location and assume without loss of generality that N̂ ι1, ι2 , N̂ ι3, ι4 are otherwise independent

of X∗,ρ. Hence N̂ ι1,ι2 , (resp. N̂ ι3,ι4) have generator: for f bounded functions on N,

(4.36)
LN̂ι1, ι2 f(x) = γ1{(π∗

G
yι1 )s 6=(π∗

G
yι2 )s}(f(x+ 1)− f(x))

(resp. LN̂ι3, ι4 f(x) = γ1{(π∗
G
yι3 )s 6=(π∗

G
yι4 )s}(f(x+ 1)− f(x))).

Then clearly for (M ι1, ι2(t), t ≥ 0), where M ι1, ι2(t) := N ι1, ι2(t) + N̂ ι1, ι2(t), we have that

(4.37) exp
{
−θM ι1, ι2(t) + λt(1− e−θ)

}

is a martingale for each θ > 0, so that M ι1, ι2 is a Poisson (rate γ) process. Similarly (M ι3, ι4(t), t ≥ 0), where

M ι3, ι4(t) := N ι3, ι4(t) + N̂ ι3, ι4(t), is a Poisson (rate γ) process.
Moreover calculating explicitly with the generator, the process

(4.38) exp
{
−θ1M

ι1, ι2(t) + γt(1− e−θ1)
}
· exp

{
−θ2M

ι3, ι4(t) + γt(1− e−θ2)
}

is a martingale for all θ1, θ2 > 0 so M ι1, ι2 and M ι3, ι4 are independent processes. The above procedure can
be performed for any k different pairs of labels (ι1, ι2), . . . , (ι2k−1, ι2k) to determine that their corresponding
processes M ι1,ι2 , . . . ,M ι2k−1,ι2k are mutually independent.

Now we have verified properties (α)− (γ) for the process X∗,ρ and we are ready to define (X̃∗,ρt )t≥0. Set first

(4.39) X̃∗,ρ0 = X∗,ρ0

and then define (X̃∗,ρt )t≥0 separately for ι ∈ Iρ1 , and for ι ∈ Iρ \ Iρ1 , in the following way.

Case 1 For fixed ι ∈ Iρ denote by γ1ι , γ
2
ι , . . . the interaction times in X∗,ρ of the particle ι with another particle

having a lower label. These times are well defined by the discussion above which allows one to use the estimates
we gave in constructing our process.

For fixed ι 6∈ Iρ1 , let X̃
∗,ρ, ι
t = (R∗, ι(xι, t), kι, uι), t ≥ 0, or equivalently, for t ∈ [0, γ1ι ) ∩ [0, T ] let X̃∗,ρ, ιt :=

X∗,ρ, ιt , for t ∈ {γ1ι , γ
2
ι , . . .} ∩ [0, T ], let X̃∗,ρ, ιt := X̃∗,ρ, ιt− , and for t ∈ (γj−1ι , γjι ) ∩ [0, T ], j ≥ 2, let

(4.40) (X̃∗,ρ, ιt )s :=

{
(X̃∗,ρ, ιt )s s ∈ [0, γj−1ι )

(Rι(xι, s), π∗K(X̃∗,ρ, ι
γj−1
ι

), uι) s ∈ [γj−1ι , t]
,

(compare with (1.34)).

Case 2 Here we have ι ∈ Iρ1 . First reorder the indices in Iρ1 in increasing order according to their labels. This
is always possible since Iρ1 is finite. The construction is now carried out piece by piece in increasing order of ι.

First take the index ι with the lowest label. Define X̃∗,ρ, ιt , t ∈ [0, T ] as in the last paragraph. In words, the
particle with index ι does not look-down at any other particle during the time interval [0, T ], and its migration
dynamics is inherited from Rι.

Inductively define X̃∗,ρ, ιt , t ∈ [0, T ] for higher order indices as follows. For t ∈ [0, γ1ι ) set X̃
∗,ρ, ι
t := X∗,ρ, ιt . For

t ∈ {γ1ι , γ
2
ι , . . .} let either X̃∗,ρ, ιt := X∗,ρ, ιt− if X∗,ρ, ιt = X∗,ρ, ι1t− for ι1 6∈ I

ρ
1 (i.e. in X∗,ρ ι-indexed particle looks
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down at another particle with index in Iρ \ Iρ1 ), or X̃
∗,ρ, ι
t := X̃∗,ρ, ι1t− if X∗,ρ, ιt = X∗,ρ, ι1t− for ι1 ∈ I

ρ
1 (i.e. in X∗,ρ

the ι-indexed particle looks down at another particle with index in Iρ1 ). For t ∈ (γj−1ι , γjι ), j ≥ 2, let

(4.41) (X̃∗,ρ, ιt )s :=

{
(X̃∗,ρ, ι

γj−1
ι

)s s ∈ [0, γj−1ι )

(Rι(xι, s), π∗K(X̃∗,ρ, ι
γj−1
ι

), uι) s ∈ [γj−1ι , t]
.

This concludes the construction of X̃∗,ρ.
By the discussion in (4.31) to (4.39) we obtain that the constructed process satisfies the martingale problem

in (4.30) and hence as we also saw the coupled martingale problem if we restrict the second component to Iρ1 .
This completes the proof of Lemma 4.3. ¤

Step 5 (Coupling estimate) Now we are ready to conclude the proof by showing that indeed the tagged
individuals in both marginals of the coupled process agree with probability arbitrarily close to one.

Clearly the laws of (X∗,ρ,fin, ιt ; ι ∈ {ι̃1, . . . , ι̃n})t≥0 and (X̃∗,ρ, ιt ; ι ∈ {ι̃1, . . . , ι̃n})t≥0 are equal. Now by (4.19),

(4.17) and (4.22) the laws of (X∗,ρ, ιt ; ι ∈ {ι̃1, . . . , ι̃n})t∈[0,T ] and (X∗,ρ,fin, ιt ; ι ∈ {ι̃1, . . . , ι̃n})t∈[0,T ], differ by at

most (2 + γnT )ε in the variational distance. Therefore, the laws of (X∗,ρ, ι,it ; ι ∈ {ι̃1, . . . , ι̃n})t∈[0,T ], i = 1, 2
coming from two different solutions of the (Iρ,Uρ)-martingale problem, differ by at most 2(2 + γnT )ε in the
variational distance. Since ε > 0 is arbitrary the laws of the tagged individuals are in fact equal for both solutions
of the (Iρ,Uρ)-martingale problem. Then the uniqueness follows as discussed above in Step 1. ¤

(ii) The proof of the well-posedness for ξ∗,ρ is of course the same as the one given above since only the direction
of the interaction (i.e. the look-down) becomes now symmetric, but here to begin with we only consider indices
ι ∈ Iρ.

The argument for the uniqueness of the solution of the martingale problem for η∗ uses the above result for the
X∗-, and the ξ∗,ρ-martingale problems in a standard way. Namely we need to associate with each η∗-solution
a ξ∗,ρ-process which then are automatically different and hence we obtain a contradiction. We can now extend
a solution η∗ to obtain a process ξ∗,ρ. The state of η∗ is an atomic measure on the state of paths. If for η∗ we
have initially that the state is purely atomic and weights of atoms are 1, this is straightforward by labeling the
atoms with U . If this is not the case and we have an atomic initial state with weights in N but not necessarily
1 we have to consider a refinement of the states by assigning randomly extra types, i.e., we have to enrich the
probability space by independent randomizing experiments to sample the transitions of the types involved. Then
use the projection property (recall the first remark in Subsection 1.2) of the model to see that we can construct
a ξ∗,ρ-process for a larger set of labels, to which nevertheless we can apply the uniqueness results.

(iii) The existence of the historical IFWD is obtained by verifying that the prescription we gave for the
diffusion limit gives a tight sequence of laws and that weak limit points satisfy the martingale problem. For that
purpose one calculates the generator L(t,ξ∗) on functions F of finitely many individuals, which are symmetric and
twice continuously differentiable in these variables. Using the Taylor expansion one verifies that all weak limit
points must satisfy the L(t,ζ∗)-martingale problem. Since the latter turns out to have unique solutions it suffices
to establish tightness. This is again a calculation involving generators. Since both these points are carried out
in a non-spatial context in monographs (see for example in [25]) and in the spatial (but non-historical) situation
in [38] we omit here the details.

A bit more subtle is the verification of the uniqueness. The basic idea here is to first consider only reduced
information about the path, namely to fix a set of time points s1 < s2 < · · · < sn and to record only the position
of the path at these times. This information can be encoded as additional component of the type. However the
evolution of this process between the picked types s1, . . . , sn can be described as the dynamics of some multitype
IFWD. Here the type space is of course bigger than the original one and bigger than two. Nevertheless we
can first use duality to get the uniqueness of the evolution between the time points s1, . . . , sn from which we
get uniqueness of the historical process observed at the skeleton of time points. Passing then to finer and finer
subdivisions will give in the limit the uniqueness for the real historical processes. This scheme was given in
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Dawson and Greven (2003) in [14] for (even time inhomogeneous) Fleming-Viot processes. We refer the reader
to that paper for details. ¤

5. Particle representation of the historical processes (Proof of Theorem 3)

In this chapter we prove the representation theorem (Theorem 3). The first part concerns the IMM where
individuals are distinguished, and the second part shows a consequence for the historical IFWD, ζ∗.

In the theorem the process ξ∗,ρ is given as a (random) functional of the look-down process X∗ and some
independent coin flipping. We will show that the process obtained by applying the bijections is a solution to the
(L(t,ξ∗),A

∗,ind)-martingale problem given in Definition 2.1. In order to recognize the constructed process as the
historical IMM, we then use that we have verified in Section 4 that the martingale problem is well-posed.

Fix ρ ∈ R+. The proof proceeds in steps. In the first one the random bijection process σρ := {(σρt (ι))t≥0; ι ∈
Iρ} is constructed, and in the subsequent ones the claimed relation between ΣρX∗ and ξ∗,ρ, and (ΣρX∗)ρ∈R+

and ζ∗, are established. A key element is the characterization of X∗ as a solution to a martingale problem given
in (2.13).

Step 1 (Construction of Σρ and a version of ξ∗,ρ) Our starting point is the construction of the process X∗

on the probability space (Ω,F ,P) given in Subsection 2.2. We shall enlarge this probability space by i.i.d.
coin flipping experiments to (Ω̄, F̄ , P̄ ). We next construct on this probability space the process σρ of random
bijections from Iρ to Iρ such that for each t ≥ 0, ΣρtX

∗
t is a version of the enriched historical IMM ξ∗,ρt . The

two processes ξ∗,ρt and X∗t have the same migration mechanism. In order to remove the preference inherent in
the look-down, the task we face in constructing σρ is to symmetrize the components in a suitable way. For this
purpose we need a “random permutation” among all individuals .

Observe there are at most countably many individuals which have interacted during time interval [0, t] for
some time t > 0. In order to handle this problem we construct a process generating the needed permutations by
using the fact that there are locally only finitely many individuals . To carry this out we need a second set of
labels. In other words with every individual ι we have to associate a new random label vρt (ι) depending on the
history of the process X∗ up to time t.

Start X∗ in the same initial state as given in the construction, cf. Subsection 4.1. We provide a random
“permutation” σρ : Iρ → Iρ of our countable index set Iρ such that for each time t ≥ 0 and each ι1 6= ι2 with

x
σρt (ι1)
t = x

σρt (ι2)
t , we have:

(5.1) P[uσ
ρ
t (ι1) < uσ

ρ
t (ι2)] = P[uσ

ρ
t (ι1) > uσ

ρ
t (ι2)] =

1

2
.

For that we initially sample for each individual, independently of the others and independent of the initial
state, a second label uniformly from [0, ρ]. Set

(5.2) vρ, ι := second label of the individual with index ι.

Next we introduce the initial state of the random permutation process σρt . Initially we set

(5.3) σρ0(ι, v) = σρ0(ι) := ι̃

iff xι0 = xι̃0, and ι has the same rank in {uι
′

; ι′ ∈ Iρ s.t. xι
′

0 = xι0} as ι̃ in {v
ι̃′ ; ι̃′ ∈ Iρ s.t. xι̃

′

0 = xι̃0}.
In order to define the dynamics of σρt we enrich our probability space (Ω,F ,P) by defining independently of

everything else a family L := {Lι1, ι2,n; ι1, ι2 ∈ Iρ, n ∈ N} of independent {0, 1}-valued random variables with

(5.4) P[Lι1, ι2,n = 0] = P[Lι1, ι2,n = 1] =
1

2
.

We then define, based on L, random mappings M = (M ι1, ι2,n; ι1, ι2 ∈ N) from ([0, ρ])I
ρ

to ([0, ρ])I
ρ

given by:

(5.5)

M ι1, ι2,n : (..., vι1 , ..., vι2 , ...)

7→

{
(..., vι1 , ..., vι2 , ...) if Lι1, ι2,n = 0
(..., vι2 , ..., vι1 , ...) if Lι1, ι2,n = 1

.
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Based on these ingredients we then define a process (vρt )t≥0 with

(5.6) vρt := {vρt (ι); ι ∈ I
ρ},

such that for each ι ∈ Iρ, the ιth component of this configuration is Iρ-valued, starts in vρ(ι), and is constant
except for possible jump times τnι′, ι or τ

n
ι, ι′ , for some n ≥ 1, ι′ ∈ Iρ (recall the notation from (1.31) resp. the

corresponding notation for ξ∗ given in (1.37) through (1.39)). In particular, up to a finite time horizon t ≥ 0,
it jumps only finitely often. This means that the configuration (vρt )t≥0 is locally constant up to positive jump
times. Set for ι1, ι2 ∈ I

ρ, n ∈ N, (here ι1, ι2 are ordered according to their label)

(5.7) Tnι1, ι2 := τnι1∧ι2, ι1∨ι2 .

Then the jumps of vρ, ι at time points Tnι′, ι are defined by the relation (and we verify in Proposition 5.1 that

this is possible):

(5.8) vρTn
ι′, ι

:=M ι′, ι,n(vρTn
ι′, ι
−).

With these ingredients we can now define the random bijection σρt of Iρ where the randomness is through
that dependence on vρt . Namely we extend (5.3) for all t ≥ 0 in such a way that (5.1) holds, i.e.,

(5.9) σρt (ι) = σρt (ι, v
ρ) := σρ0(ι, v

ρ
t ).

In particular,

(5.10) σρt (ι) := ι̃,

iff xιt = xι̃t, and ι the rank of ι in {uι
′

; ι′ ∈ Iρ s.t. xι
′

t = xιt} and the rank of ι̃ in {v ι̃
′

t ; ι̃
′ ∈ Iρ s.t. xι̃

′

t = xι̃t} are
equal.

This completes the construction of
∑ρ

t provided we can show:

Proposition 5.1. (Second label process construction is well-defined) Fix (I,U), Vρ := {vι; ι ∈ Iρ}, and let
ρ ∈ R+.

(a) There is a uniquely determined process, vρ := (vρt )t≥0, with values in the set of bijections from Iρ onto Iρ

which starts in {vρ,ι; ι ∈ Iρ}, and fulfills relation (5.8).
(b) For each time t ≥ 0, σρt defined by (5.10) is a bijection from Iρ to Iρ.

Proof (a) The reasoning is similar to that for Proposition 4.1 where we constructed the genealogies of the
look-down via a graphical device. Recall from (4.1) the random point process gen(X∗) which encodes the
genealogy of X∗.

Proceeding from gen(X∗), and using the {0, 1}-valued random variables L defined in (5.4), we define a further
point process I × I × [0,∞), denoted by tr(σρ), which encodes the traces of second labels. Namely, with T nι1, ι2
as defined in (5.7), for t ≥ 0, and ι1, ι2 ∈ I

ρ,

(5.11) (ι1, ι2, t) ∈ tr(σρ) iff
∃n ∈ N such that t = T nι1, ι2 ,

and Lnι1, ι2 = 1
.

That is, in the present construction we first ignore the direction of an arrow (ι1, ι2, t), and establish potential
bridges between two individuals no matter what the order of the labels is. Secondly we open or close inde-
pendently of each other every potential bridge depending on whether the random variable associated with the
potential bridge, say Lι1, ι2,n, satisfies Lι1, ι2,n = 0 or 1.

In order to determine now the value σρ, ιt we proceed analogously to the construction of the look-down process.
Start from the point (ι, t) ∈ I ×R+, and look back in time for the first (ι′, s) related to (ι, t), that is, and follow
the diagram downwards along vertical lines until in encountering a bridge which is open. To make this precise
define

(5.12) β̃1(ι,t) := min{s > 0 : ∃ ι̃1(ι,t) ∈ I
ρ s.t. (ι̃1(ι,t), ι, t− s) ∈ tr(σρ)}.

Since by Assumption (1.23) for all times t ≥ 0 there are locally only a finite number of individuals with label

≤ ρ, the same reasoning as in the proof of Proposition 4.1(a) yields that β̃1(ι,t) is associated with an, P-a.s.,
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uniquely determined label ι̃1(ι,t) ∈ I
ρ satisfying the condition on the right hand side of (5.12). Next continue

from (ι̃1(ι,t), t− β̃
1
(ι,t)), going downwards, crossing bridges (whenever they are not turned down), and so on, until

we stop at (ι̃, 0), P-a.s., for some uniquely determined ι̃ ∈ I. We then set

(5.13) vρ,ιt := vρ,ι̃.

This way the process vρ is obviously well-defined.

(b) Notice that the above construction is such that if we start with different labels at time t then we end up
with different labels at time 0. Hence for each t ≥ 0, vρt : Vρ → Vρ is injective. Surjectivity follows via a similar
argument by using upward traversal of the graph. Therefore by (5.10) in particular, for each t ≥ 0, σρt : Iρ → Iρ

is a bijection. ¤

Step 2 (Relations between ξ̃∗,ρ = ΣρX∗ and ξ∗,ρ) . We begin this step by defining a candidate for a version
of ξ∗,ρt . Let (σρt )

−1 : Iρ → Iρ denote the inverse of σρt . Based on the above construction, for each t > 0, σρt
induces a map Σρt : (D(R+, G×K)×U)I

ρ

→ (D(R+, G×K))I
ρ

defined by (recall that π∗G×K means projection
on the D(R, G×K)-component)

(5.14) Σρt : {X
∗, ι; ι ∈ Iρ} 7→ {π∗G×KX

∗,(σρt )
−1(ι̃); ι̃ ∈ Iρ}.

We then define a process, ξ∗,ρ, such that for each t ≥ 0, ξ∗,ρt is a collection {ξ∗,ρ,ι̃t ; ι̃ ∈ I} of D(G×K)-valued
components. Namely, for given t ≥ 0, we set

(5.15) ξ̃∗,ρt := ΣρtX
∗,ρ
t .

Now we have to prove that ξ̃∗,ρ is a version of our process ξ∗,ρ, this means based on the construction on the

right hand side in (5.15) we have to show that ξ̃∗,ρ satisfies the martingale problem given in Subsection 2.1.
The following Lemma is similar to that of Lemma 2.1 in [19] and completes the proof of the first part of the
representation theorem.

Recall Θ̃ from (2.11), and let Θ : C(R+ × (D(R+, G×K))I
ρ

)→ C(R+ × (D(R+, G×K))I
ρ

) be Θ̃ restricted
to functions which are constant in the U-valued coordinates.

Lemma 5.2. (Characterization of the permuted process)

(a) The process ξ̃∗,ρ as defined in (5.15) is Markovian and its time-space process determines a Feller semi-
group on C(R+ × (D(R+, G×K))I

ρ

).
(b) We denote the generator of the corresponding time-space process by L(t,ξ̃∗,ρ). This operator has a domain

which includes functions F : R+ × (D(R+, G × K))I
ρ

→ R+, which are bounded, and depend only on
finitely many coordinates. The specified set of functions are dense in C(R+ × (D(R+, G ×K))I

ρ

). The
action of the operator on F is given by:

(5.16)

L(t,ξ̃∗,ρ)F (s, y)

= ÃI
ρ

F (s, y) +
γ

2

∑

ι̃1 6=ι̃2∈Iρ

1{(π∗
G
yι̃1 )s=(π∗

G
yι̃2 )s}

(Θι̃1,ι̃2F − F )(s, y).

Proof of Part (a) of Theorem 3 Lemma 5.2 gives a characterization which identifies ΣρX∗ as unique
solution to a martingale problem. This already implies that we have a Markov process with the prescribed
generator. That is, we have proved the first assertion of Theorem 3. ¤

Proof of Lemma 5.2 Fix (I,U), and ρ ∈ R+. Observe that our construction of the random permutations is
only based on the graphical representation for the Markov process X∗ up to a fixed time and on the initial choice
of second labels, Vρ := {vι; ι ∈ Iρ} (recall (5.2)). Denote the σ-algebra generated by these random elements up
to time t by Ft. In addition the character of the construction is such that at time t+ s the construction given
Ft relies in fact only on X∗t , σ

ρ
t (or by (5.9) equivalently on vρt defined in (5.13)), and random variables which
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are independent of everything what happened up to time t. According to (5.15) we consider the new process
(recall X∗,ρt = (X∗,ιt , ι ∈ Iρ))

(5.17) (t,X
∗,ρ,(σρ(·,vρt ))

−1

t , vρt )t≥0

which is then automatically Markovian with respect to the canonical σ-algebra.

As a consequence, the distribution of this trivariate process (t,X
∗,(σρ(·,vρt ))

−1

t , vρt )t≥0 can be characterized by

a corresponding martingale problem of the form:

(
f(Ys)−

s∫
0

(Lf)(Yu)du

)

s≥0

is a martingale for f varying in a

distribution determining set of functions. We shall determine the generator of the martingale problem denoted
L(t,X∗,(σρ(·,v))−1 ,v), on certain functions next.

We specify first the set of functions on which we shall write the generator. Consider F : R+ × (D(R+, G ×
K)× U × [0, ρ])I

ρ

, bounded and depending on finitely many individuals only.

Next we give the ingredients needed to write the generator. Define Θ̂0
ι1,ι2F , and Θ̂1

ι1,ι2F similar as in (2.11)

and (2.12): for (t, (y, u, ι̃) ∈ R+ × (D(R+, G×K)× U × [0, ρ])I
ρ

, let

(5.18)
θ̂0ι1,ι2 : (t, (..., (yι1 , uι1 , vι1), ..., (yι2 , uι2 , vι2), ...))

7→ (t, (..., (yι1 , uι1 , vι1), ..., (yι1 , uι2 , vι2), ...)) ,

and

(5.19)
θ̂1ι1,ι2 : (t, (..., (yι1 , uι1 , vι1), ..., (yι2 , uι2 , vι2), ...))

7→ (t, (..., (yι1 , uι1 , vι2), ..., (yι1 , uι2 , vι1), ...)) ,

and based on these maps we obtain the induced operators on functions F on these path spaces, which we denote

by Θ̂0
ι1,ι2 , resp. Θ̂

1
ι1,ι2 . Furthermore since the migration step is decoupled from the random permutation step we

define (misusing notation a bit) ÃI by the same recipe as before simply ignoring the [0, ρ]I
ρ

-valued coordinate
in the argument of F .

The generator L(t,X∗,(σρ(·,v))−1 ,v) acts on F as follows:

(5.20)

L(t,X∗,(σρ(·,v))−1 ,v)F (s, (y, u, v))

= ÃI
ρ

F (s, (y, u, v))

+
γ

2

∑

ι1,ι2∈I
ρ;

uσ
ρ(·,v)−1(ι1)<uσ

ρ(·,v)−1(ι2)

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̂

0
ι1,ι2F − F )(s, (y, u, v))

+
γ

2

∑

ι1,ι2∈I
ρ;

uσ
ρ(·,v)−1(ι1)<uσ

ρ(·,v)−1(ι2)

1{(π∗
G
yι1 )s=(π∗

G
yι2 )s}(Θ̂

1
ι1,ι2F − F )(s, (y, u, v))

Recall from (5.9) that there is a one to one correspondence between u and vρ. In particular, the sums on the
right hand side of (5.20) run over indices ι1, ι2 such that vρ,ι1 < vρ,ι2 .

The next step now is to see what we can conclude from the characterization of the process defined in (5.17) by

a martingale problem for the process (t, ξ̃∗,ρt )t≥0 we are interested in. We start with the following observation.
Since F depends on finitely many individuals only, we may renumber the indices. To make this precise, we define
a probability measure on ([0, ρ]I

ρ

,B[0, ρ])I
ρ

with density

(5.21) Υρ[dv] :=
⊗

ι∈Iρ
Φρ,ι[dv̂ι],
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where Φρ, ι[d·] are uniform distributions on [0, ρ]. Integration with respect to Υ gives the identity,

(5.22)

γ

2

∫
Υρ[dv̂]

∑

ι1,ι2∈I
ρ;

v̂ι1<v̂ι2

1{(π∗
G
yι̃
ι1 )s=(π∗

G
yι̃
ι2 )s}

(Θ̂1
ι1,ι2F − F )(s, (y, u, v̂))

=
γ

2

∫
Υρ[dv̂]

∑

ι1,ι2∈I
ρ;

v̂ι1>v̂ι2

1{(π∗
G
yι̃
ι1 )s=(π∗

G
yι̃
ι2 )s}

(Θ̂0
ι1,ι2F − F )(s, (y, u, v̂)).

We can use this relation in (5.20) if we integrate in (5.22) with respect to Υρ, and then eliminate the transition
in (5.19). We apply this fact next by replacing F by functions G depending on t and y only.

Since (t,X∗,(σ
ρ(·,vρ))−1

, (vρ)−1) is Markovian, and the functional (t, ξ̃∗,ρ) is obtained from the graph defining
X∗ by random permutations depending only on the paths evolved up to time t, and on a collection of random

variables independent of everything else, (t, ξ̃∗,ρ) also solves a martingale problem for a specific set of functions.
Namely, consider all functions G : R+ × (D(R+, G × K))I

ρ

which arise from the functions F , which do not
depend on u, by integration as follows:

(5.23) G(t, y) :=

∫
Υρ[dv̂]F (t, (y, u, v̂)).

Then by (5.20) the process given by:

(5.24)


G(t, ξ̃∗,ρt )−

t∫

0

ds ÃI
ρ

G(s, ξ̃∗,ρs )

−
γ

2

t∫

0

ds
∑

ι̃1 6=ι̃2∈Iρ

1{(π∗
G
yι̃1 )s=(π∗

G
yι̃2 )s}(Θι̃1,ι̃2G−G)(s, ξ̃∗,ρs )



t≥0

,

is a martingale with respect to the filtration FN,R,Mt := σ((Ns, Rs,Ms)s≤t). Here Ns, Rs,Ms are the collections
of Poisson processes and random walks used to construct X∗ up to time s respectively the process of the {0, 1}-

valued variables used till time s (recall (1.28), (1.27), (5.5), and (2.12)). Since (s, ξ̃∗s )s≤t is F
N,R,M
t -measurable

by construction, the processes in (5.24) are also martingales w.r.t. the filtration generated by the process ξ∗,ρ

itself.
Now in order to conclude that ξ̃∗,ρ solves the martingale problem given in (2.14), we have to observe that by

(5.23) we have produced a class of functions, which is sufficiently large to be measure determining for random
measures on the path space under consideration. To see this observe that we start from a class reach enough to
be distribution determining for paths and permutations.

Hence the law of the process (t, ξ̃∗,ρ) solves the martingale problem corresponding to the generator specified in
(2.14). The coefficients of these operators imply a unique solution of the martingale problem (recall Theorem 1).

Furthermore the coefficients depend only on the current state of (t, ξ̃∗,ρ) and hence the solution has the Markov
property.

We need to verify the Feller property. Since we use the product topology and one path resamples only with
finitely many others in finite time, and since the sharing times of a finite collection of paths is a continuous
functional of the corresponding path processes, this follows from the Feller property of the path process. The
Feller property of the path process holds here, since the migration is given by random walks. This finally proves
the claim of Lemma 5.2. ¤

Step 3 (The empirical measures coincide) By (5.15), for any t ≥ 0, there is a random bijection from the set

of paths {ξ̃∗,ρ,ι̃t ; ι̃ ∈ Iρ} to that of {X∗, ιt ; ι ∈ Iρ} based on additional random coin flipping independent of
everything. Hence the empirical measures of both processes coincide. To be more precise, consider finite random
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subsets Iρi ⊆ I
ρ, i = 1, 2, and let

(5.25) ZX
∗

t (Iρ1 ) :=
∑

ι∈Iρ1

δπ∗
G×KX

∗, ι
t
, and Z ξ̃

∗,ρ

t (Iρ2 ) :=
∑

ι̃∈Iρ2

δ
ξ̃∗,ρ,ι̃t

.

Then for any t ≥ 0,

(5.26) ZX
∗

t (Iρ1 ) = Zξ
∗,ρ

t (σρt (I
ρ
1 )).

Step 4 (Particle representation of ζ∗) We are now in a position to state the main consequence.

Assume that K := {0, 1}.

Proposition 5.3. (Particle representation of historical IFWD) Suppose we have constructed X∗ and {ξ∗,ρ; ρ >
0} on the same probability space as described above. Given X∗ = (X∗, ιt , ι ∈ I)t≥0, let Z

∗,ρ := (
∑

x∈G Z
∗,ρ,x
t )t≥0

where for each x ∈ G, Z∗,ρ,xt is the finite random measure supported on those paths in D(R, G ×K) which are
located at x at time t given by

(5.27) Z∗,ρ,xt := ρ−1
∑

ι∈Iρ:π∗
G
(X∗, ι

t )t=x

δπ∗
G×KX

∗, ι
t

= ρ−1
∑

ι̃∈σρt ({ι∈I
ρ:π∗

G
(X∗, ι

t )t=x})

δ
ξ̃∗,ρ,ι̃t

.

Then there exists a C(R,M(D(R, G×K)))-valued process, Z∗ := (
∑

x∈G Z
∗,x
t )t≥0, such that for each t > 0 (here

M is equipped with the weak topology),

(5.28) Z∗,ρt −→
ρ→∞

Z∗t , a.s.,

In particular, Z∗ := (Z∗t )t≥0 is a version of the historical IFWD.

Proof of Part (b) of Theorem 3. The above proposition is the second part of the assertion of Theorem 3.
Therefore, the proof of Theorem 3 is now completed. ¤

Proof of Proposition 5.3. Recall E{x},t from (1.18). Notice that for each x ∈ G and t ≥ 0, the family

{X∗,ιt ; ι such that X∗,ι ∈ E{x},t} is exchangeable. Almost surely convergence follows then by the formulation
of de Finetti’s theorem for random measures (compare e.g. Theorem 11.2.1 in [13]). Then Proposition 5.3 is
a consequence of Theorem 0 and (5.26) and the fact that ζ∗ arises as the diffusion limit of ξ∗,ρ as ρ → ∞ as
described earlier. ¤

6. Strong duality and the coalescent

In this section we prove the results concerning our first set of applications. We begin in Subsection 6.1 by
showing that the coalescent is well-defined and continue in Subsection 6.2 with verifying the strong duality. In
Subsection 6.3 we prove the representation theorem for the genealogy of the equilibrium historical process via
the historical coalescent.

6.1. Construction of the coalescent (Proof of Proposition 3.4). In this section we prove Proposition 3.4.

The idea is to show that each E↑G-marked (I,U)-coalescent gives a configuration in the Liggett-Spitzer space for
each positive time t provided that the geographical space G is finite. We then approximate the coalescent on the
infinite Abelian group G with the coalescents on arbitrarily large finite sets, and show that the configurations
for a positive time stay uniformly stochastically bounded in terms of their sizes (numbers of partitions).

In order to make the approximation work, we introduce an additional condition on the group.

Condition 6.1 (Condition on the group). The group G is assumed to have the following property. For each
N ∈ N there exists a sub-group U := UN ⊆ G and a set Λ := ΛN of representatives of the quotient group G

/
U

such that (ΛN )N∈N is increasing to the full group.
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Remark Notice that Condition 6.1 is obviously fulfilled for the groups one is mainly interested in, i.e., G := Zd

or the hierarchical group G = ΩN given as
⊕

N ZN , with ZN = {0, 1, . . . , N − 1} where addition is modulo N .
For the latter group we have the n-balls {ξ ∈ ⊕NZN |ξk = 0 for k > n} as an exhausting increasing system of
subgroups. To see that Condition 6.1 holds for G = Zd, choose UN := (2N + 1)Zd, and ΛN := [−N,N ]d. ¤

Proof of Proposition 3.4 Let (Ct, Lt)t≥0 be a E↑G-marked (I,U)-coalescent.
Recall the finite reference measure α from the definition of the Liggett-Spitzer space (1.5) and denote by |α|

the total mass of α. For t > 0 and g ∈ G, let

(6.1) #gt := #{π ∈ Ct : L
π
t = g}

be the number of partition elements located at site g at time t. Consider the coalescent (C,L) at time t > 0 and
the Liggett-Spitzer norm of its spatial configuration

∑
π∈Ct

δLπt ,

(6.2) ‖ (Ct, Lt) ‖`1α=
∑

g∈G

#gtα(g).

Proposition 3.4 will be proved if we show that this object is almost surely finite, since this implies in particular
local finiteness. In order to obtain bounds on ||(Ct, Lt)||`1α we use the approximation of G by finite sets and
coalescents on these finite sets. We shall proceed in three steps. We begin by reducing the problem to a uniform
estimate (6.7) of spatially finite coalescents, and then we obtain the estimate in steps 2 and 3.

Step 1 (Approximation) Choose for each N ∈ N a subgroup UN and a finite set ΛN which represents the
quotient group G/UN from Condition 6.1, such that ΛN ↑ G.

We define then a family of ΛN -marked coalescents, (CN
t , L

N
t )t≥0, as follows:

• We start the N th approximating coalescent by restricting the initial state of the coalescent to the
configuration corresponding to ΛN .

• Recall that for an Abelian subgroup U ⊆ G an equivalence relation in G is given by

(6.3) g1 ≡U g2 iff g1 − g2 ∈ U.

Based on the {≡UN ; N ∈ N} we couple for each N the migration steps in each of the approximating
coalescents taking the migration on G and then identifying sites which are equivalent modulo ≡UN .

• We couple the coalescence events by using for each pair ι1, ι2 the exponential clocks of the coalescent
on G and in addition exponential clocks for the additional sharing times occurring on sites that are
equivalent with respect to ≡U .

Since ΛN ↑ G we have with respect to the metric dl(·, ·) defined in (3.28) that

(6.4) (CN , LN ) −→
N→∞

(C,L), a.s..

Fix t > 0 and let P and PUN denote the laws of the coalescent on G and the one induced by UN (and living on
the geographic space ΛN ), respectively and for each time t > 0 and N ∈ N define

(6.5) µNt :=
∑

π∈C
UN
t

δ
L
UN
t (π)

α({LUN (π)})

to be the partition location counting measure relative to α. We now write (compare with (6.2))

(6.6) |µNt | =
∑

g∈ΛN

#gNt α(g)

for the norm (possibly infinite) of µNt .
The goal is to show that |µt| is a proper random variable, i.e., |µt| < ∞, a.s. by showing that |µNt | is

stochastically bounded uniformly in the parameter N . For this purpose we construct in the next two steps a
deterministic function b : (0, 1]× (0,∞) 7→ (0,∞) such that

(6.7) lim inf
N→∞

PUN [|µNt | < b(δ, t)] ≥ (1− δ)2.
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Step 2 (Upper bound on the mean time to reach finite intensity) Fix N , identify gNt = gt, and suppose there
are countably many individuals present at each site of ΛN at the initial time 0. For each m ≥ 1 define τm to
be the first time at which there are at most m|ΛN | partition elements present in ΛN . We think of τm as the
moment when the “density of partition elements in ΛN” first drops down to m.

The next calculation shows that uniformly in N ∈ N, a sequence c(m) can be chosen so that:

(6.8) EUN [τm−1 − τm] ≤ c(m), m ≥ 4, and
∑

m≥4

c(m) <∞.

This implies of course in a straightforward way that in positive time only finitely many elements remain a.s.
Denote by Am(s) the event that #gs ∈ {m,m− 1} for each g ∈ UN . Equivalently,

(6.9) Am(s) = {τm ≤ s ≤ τm−1} ∩

{∣∣∣∣#ḡs −
∑

g#gs

|ΛN |

∣∣∣∣ < 1, for all ḡ ∈ ΛN

}
.

Observe that on Am(s) the infinitesimal rate of a coalescence is greater than |ΛN |(m− 1)(m− 2)/2 since there
are |ΛN | sites and each contributes a rate greater than (m − 1)(m − 2)/2. Now we argue that in fact on all of
{τm ≤ s ≤ τm−1} the infinitesimal coalescence rate is higher than (m− 1)(m− 2)/2 for all m ≥ 4 .

For this it suffices to show that

(6.10) |ΛN |

∑
g xg

|ΛN |
(

∑
g xg

|ΛN |
− 1)

2
≤
∑

g

xg(xg − 1)

2
,

for all xg ≥ 0, g ∈ ΛN , or equivalently

(6.11)
∑

g

xg(
∑

g

xg − |ΛN |) ≤ |ΛN |
∑

g

xg(xg − 1).

By Jensen’s inequality

(6.12) |ΛN |
∑

g

x2g ≥ (
∑

g

xg)
2,

and now (6.12) implies (6.11) and (6.10) for all s ≤ τ3.

Now we bound the expectation of τm−1 − τm by splitting it according to the successive jump times. Let

τm =: τ0m < τ1m < τ2m < . . . < τ
|ΛN |
m := τm−1 be the times of successive coalescents of pairs of individuals

during the period where the density drops down from m to m− 1. The above calculation implies that for each
i = 1, . . . , |ΛN |, and m ≥ 4 the random variable τ im − τ

i−1
m is stochastically dominated by an exponential (rate

|ΛN |(m− 1)(m− 2)/2) random variable. Therefore

(6.13) EUN [τ im − τ
i−1
m ] ≤ 2/(|ΛN |(m− 1)(m− 2)),

and

(6.14) EΛN [τm − τm−1] ≤
2|ΛN |

|ΛN |(m− 1)(m− 2)
=

2

(m− 1)(m− 2)
=: c(m).

Step 3 (Density drops uniformly in N ∈ N) For δ > 0 and t > 0, choose m0 := m0(t, δ) such that

(6.15) lim inf
|UN |→∞

PΛN [τm0
≤ t] ≥ 1− δ.

For example, use (6.14) and Chebyshev inequality and take m large enough such that
∑

k≥m c(k) < tδ. Let k

be large enough such that 1/k < δ and set

(6.16) b(δ, t) := km|α|.
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Now we use the group structure. Observe next that

(6.17) EUN [#0t|τn ≤ t < τn−1] = EUN [#gt|τn ≤ t < τn−1],

for all g ∈ ΛN , by the translation invariance of the coalescent transitions. Then since EΛN [
∑

g∈ΛN
#gt|τn ≤ t <

τn−1] ≤ n|ΛN | one gets EUN [#0t|τn ≤ t < τn−1] ≤ n, and therefore

(6.18) EUN
[
|µNt

∣∣ |τn ≤ t < τn−1
]
= EUN

[ ∑

g∈ΛN

#gtα(g)
∣∣τn ≤ t < τn−1

]
≤
∑

g∈ΛN

nα(g) ≤ n|α|.

This implies via Chebyshev inequality that:

(6.19) PUN
[
|µNt | < kn|α|

∣∣τn ≤ t < τn−1
]
≥ 1− 1/k.

Now we get the following chain of estimates:

(6.20)

PUN
[
|µNt | < b(δ, t)

]
≥ PUN

[
|µNt | < b(δ, t), τm ≤ t

]

≥
m∑

n=1

PUN
[
|µNt | < km|α|

∣∣τn ≤ t < τn−1
]
PUN

[
τn ≤ t < τn−1

]

≥
m∑

n=1

PUN
[
|µNt | < kn|α|

∣∣τn ≤ t < τn−1
]
PUN

[
τn ≤ t < τn−1

]

≥
m∑

n=1

(
1−

1

k

)
PUN

[
τn ≤ t < τn−1

]
≥

(
1−

1

k

)
PUN

[
τm ≤ t

]
≥ (1− δ)2.

Since δ > 0 was arbitrary and b = b(δ, t) < ∞ does not depend on N , we have (6.7) and the proposition
follows. ¤

6.2. Proofs of duality relations (including Proposition 3.5 and Corollary 3.7).

Proof of Proposition 3.5 First consider the system with γ = 0 (i.e. pure migration). Note that under
the law of X∗0 , the position at time t of the individual indexed by ι ∈ I is precisely Rι(xι, t) and its reversed
path is generated by a(x, y). Moreover, the joint law for the paths of any collection of individuals in reversed
time from t back to 0, is the same as the joint law for the paths of this collection of individuals in forward time
from 0 to t, if started from Ru(xu, t), u ∈ I and using R

u
(xu, t). Now we use the special form of the construction

of the individuals’ labels to get information about the initial state of the reversed system.
Since Poisson systems are equilibria both for a(x, y) and ā(x, y), the positions are Poisson at time t if they

are Poisson at time t = 0.
Therefore if we now incorporate the resampling, we see immediately from the construction of the resampling

times via Poisson point processes that:

(6.21) (Γts, `
t
s)s∈[0,t]

d
= (Cs, Ls)s∈[0,t]. ¤

Proof of Corollary 3.6 This is a consequence of Identity (3.7) if we note that by construction of the initial
state X∗0 , the restriction to individuals with labels less than ρ gives positions forming a Poisson system with
intensity ρ. ¤

Proof of Corollary 3.7 (a) Fix time t > 0 and sites x1, x2, ..., xk, and let

(6.22) χρt := {η
ρ
t ({x} ×K); x ∈ G}

be the total number of individuals located at the sites of G at time t. W.l.o.g. we assume that we are on the

event {
∏k
j=1

(
χρt ({xj})−

∑k
l=j+1 1{xl=xj}

)
≥ 1} (otherwise the functional under consideration is zero anyway).

We then order the individuals at each site in some arbitrary but fixed way. Now use the fact that the probability
that a k-tuple of different individuals sampled at time t from x1, ..., xk has type 1 equals the probability that all
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Γtt independent families, which this k-tuple forms by tracing back the genealogy, are of type 1. Hence since the
spatial configurations are independent of the initial types,

(6.23)

E

[∏k

j=1

(
ηρt ({xj} × {1})−

∑k

l=j+1
1{xl=xj}

)]

= E
[ ∑

ι1∈Iρ

∑

ι2 6=ι1∈Iρ

...
∑

ιk 6∈{ι1,...,ιk−1}∈Iρ

k∏

j=1

1{x
ιj
t = xj ; k

ιj
t = 1}

]

= E

[∏k

j=1

(
χρt ({xj})−

∑k

l=j+1
1{xl=xj}

)
Eµ(x1,...,xk)

[
θ|Γ

t
t|
]]

= ρk Eµ(x1,...,xk)
[
θ|Ct|

]
.

Notice that the second equality above follows by Proposition refL4.1a, since θ|Γ
t
t| is the probability that family

clusters of size |Γtt| have the same type 1. For the third equality we use that Poisson systems are preserved under
migration and that E[X(X − 1) · · · (X − k + 1)] = ρk for X Poisson distributed with parameter ρ.

(b) Part(b) is a consequence of part(a), Theorem 0 and uniform integrability, combined with the fact that,
for a fixed t and θ,

(6.24)

∏k
j=1

(
χρt ({xj})−

∑k
l=j+1 1{xl=xj}

)

∏k
j=1 χ

ρ
t ({xj})

−→
ρ→∞

1, a.s. ¤

6.3. Representations for the historical look-down (Proof of Theorem 4). In this section we prove
Theorem 4 and Corollary 3.9.

Proof of Theorem 4. We have to prove here (3.37) only, since the remaining claims in (a) and (b) are
immediate consequences of the definitions and the properties of the coalescent C, and in particular C∞, in the
case of recurrent and transient kernel â(x, y).

The basic idea now is to obtain the result from the result for systems started in Poisson systems at time −s via
the strong form of duality and the restriction property of coalescents. For that purpose we need to approximate
our system X∗ by such special ones.

Recall the metric dl(·, ·) defined in (3.28), via non-negative numbers αι1, ι2 , ι1, ι2 ∈ I such that
∑

ι1, ι2
αι1, ι2 =

1.
Fix a time −s. Each individual in G has index ι ∈ I, label uι, some initial type kι in K, some initial position

xι in G, and also some rank in N such that no two individuals located initially at the same site are of equal
rank. To the individual located at g of rank i ∈ N assign the random variable Eg,i, where {Eg,i : g ∈ G, i ∈ N} is
a family of independent exponential (rate 1) random variables.

Pick ρ ∈ [0,∞) large, use the exponential random variables Eg,i to tag only Poisson(ρ) many individuals from
each site. More precisely, a particle at site g of rank j is tagged iff

∑
i≤j Eg,i ≤ ρ. Call the (random) subset of

indices picked in this way V(ρ). With probability higher than 1− ε(ρ),

(6.25)
∑

ι1,ι2∈I∩V(ρ)

αι1, ι2 ≥ 1− ε(ρ),

where ε(ρ)→ 0 as ρ→∞.
Since the initial (time −s) configuration of individuals with indices in V(ρ) is a Poisson(ρ) field, the paths

of these individuals followed in reversed time are independent random walk paths with transitions according to
the reversed kernel ā. Therefore it is clear that the distribution of the system of tagged individuals is equal to
the distribution of

(6.26) ∆θ(φV(ρ)(C
∗
s , L

∗
s)).
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As s→∞ we get that

(6.27) ∆θ(φV(ρ)(C
∗
s , L

∗
s))⇒ ∆θ(φV(ρ)(C

∗
∞, L

∗
∞)).

Since with ρ → ∞, ε(ρ) → 0, (6.25) implies that for every partition P of I we have for the restriction
dl(φν(ρ)P,P)→ 0 in probability, as ρ→∞. Therefore as ρ→∞, we get

(6.28) ∆θ((C
∗
∞, L

∗
∞)),

which proves the statement (3.37) of the theorem. ¤

Proof of Corollary 3.9. Let {∆θ(π); π ⊆ I} be a family of independent and identically distributed {0, 1}-
valued random variables with P[∆θ(π) = 1] = θ. For each ρ ∈ [0,∞), define fρ : (D([−∞, 0], G × K))I

ρ

→
N (D([−∞, 0], G×K)) by

(6.29) fρ(y) :=
∑

ι∈Iρ
δyι .

By continuity of fρ with respect to the metric on (D((−∞, 0], G×K))I introduced above Lemma 3.8 (which
is the product topology of Skorokhod topologies on the path space obtained by a suitable choice of the index set
I and weak topology on N (D([−∞, 0], G×K)), (6.27) implies also that, for s→∞,

(6.30) (fρ)−1∆θ(φV(ρ)(C
∗
s , L

∗
s))⇒ (fρ)−1∆θ(φV(ρ)(C

∗
∞, L

∗
∞)).

Since ∆̃∗ρ,θ = (fρ)−1∆θ(φV(ρ)(C
∗
∞, L

∗
∞)), the latter yields H̃∗ρ,θ = L

Ψ[∆̃].

Fix A ⊆ G. Recall rA from (3.41) and (1.18). Then

(6.31) r̂AH̃
∗
ρ,θ = L

Ψ
[
(fρ)−1∆θ(φV(ρ)(C

∗
∞, L

∗
∞))(EA,0)

]
.

Now under Ψ, N := #{ι ∈ Iρ : yι ∈ EA,0} is Poisson distributed with parameter ρ|A|, and given N the set of
positions {(yι)0; ι ∈ I

ρ : yι ∈ EA,0} consists of independent and on A uniformly distributed points. This gives
(3.42). ¤

7. The finite system scheme for historical IMM

In this chapter we prove the theorems about large finite systems. We begin by constructing the whole sequence
of processes and the limiting infinite system on one probability space, i.e., we give an explicit coupling. Then
we analyze the corresponding look-down processes using the strong duality with the coalescent. We define the
coupling in Subsection 7.1, we analyze the coalescent in Subsection 7.2 and Subsection 7.3, and, based on these
results, we prove Theorem 6 and two corollaries in Subsection 7.4.

7.1. Coupled representations for the look-down genealogies. Recall the look-down process as introduced
in Subsection 2.2. The goal of this subsection is to construct the look-down process, X∗, on the countable group
Zd, and a sequence of look-down processes, X∗,N , on the finite groups GN = [−N,N ]∩Zd, N ∈ N, with addition
modulo 2N + 1, on one and the same probability space. More specifically, this will be on the probability space
for the infinite system.

For a given N ∈ N, the coupling is achieved

• by using as initial state the initial state of X∗ but restricted to all individual paths initially positioned
on GN . In particular, use as index set IGN ⊂ I obtained by that restriction,

• by sampling for each index ι ∈ I independently of the others a realization of the RW, and restrict the
achieved collection to the sub-collection associated with a index ι ∈ IGN belonging to the restricted
configuration on GN ,

• by identifying two positions of an individual for the process X∗,N if they are equal modulo (2N + 1),
• and by choosing the sampling symmetrization variables L as in (5.4) for the infinite system, and using

for the finite system the ones obtained by restricting to pairs of individuals both located initially on GN .
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This gives us all the ingredients we need for the representation of the genealogy processes gen(X∗) and
gen(X∗,N ), (compare with (4.1)) on one and the same probability space. As done before in (3.3), for a fixed
time t, we define for each s ∈ [0, t] the equivalence relation, ≈X

∗

s , on I by relating labels which are going back
to a common ancestor at time t − s. This defines again the genealogy process, (Γts, `

t
s)s≤t, which reflects the

equivalence classes, called family clusters, and the clusters’ positions. The genealogy process,

(7.1) (Γt,Ns , `t,Ns )s≤t,

for the system on the torus is then achieved by defining ≈X
∗,N

s based on gen(X∗,N ).

We apply now the strong duality. Recall from Definition 3.3 the E↑G-marked (I,U)-coalescent, (Ct, Lt)t≥0.

If (CN
t , L

N
t )t≥0 is an E↑GN -marked (IGN ,UGN )-coalescent then it is clear from the construction that the strong

duality stated in Proposition 3.5 applies as follows:

Lemma 7.1. (The IGN -coalescent is generated by the IGN -genealogy) Assume that the look-down process starts
from initial state such that the labels from U are chosen as explained before Proposition 3.5. Then

(7.2) Lµ
N
[(

Γ
t(N),N
t(N) , `

t(N),N
t(N)

)]
= Lµ

N
[(
CN
t(N), L

N
t(N)

)]
,

where µ arises by the construction given in (3.36) and

(7.3) µN := µ
∣∣
GN

.

We therefore see that in order to prove our theorems on large finite systems all we have to do is to analyze
the behavior of the coalescent on the right hand side of (7.2) and combine it with what we know about the
coalescent (Ct, Lt)t≥0 for the infinite system.

Remark Note furthermore that again we can construct all processes

(7.4) {(CN , LN ); N ∈ N} and (C,L)

on one and the same probability space, following the device given above for the IMM. The straightforward
modification is left to the reader. We shall in the sequel in this chapter refer to P as the probability law of these
coupled processes. ¤

7.2. Preliminaries: Asymptotic analysis of the coalescent. Since by Proposition 3.5 the scaling behavior
for the systems on the tori is translated to the scaling behavior for the genealogy, it is enough to study the
asymptotic behavior of the coalescent. In this subsection we therefore focus on a description of the coalescent.
Recently the coalescent results of this section were extended and generalized in the setting of spatial coalescents
with multiple collisions, cf. [41].

Recall Kingman’s coalescent, (Kt)t≥0, from (3.56).

Recall the topology introduced previous to (3.33). Now we can study the behavior of (CN
t(N), L

N
t(N)) in various

time scales t(N) as N →∞ and get the following.

Proposition 7.2. (Coalescent asymptotics) Fix a sequence t(N) ↑ ∞, as N → ∞. If K is a version of the
Kingman’s coalescent K independent of C∞, then

(7.5) L(C0,L0)|GN [CN
t(N)] =⇒

N→∞





L(C0,L0)[C∞], if t(N) = o((2N + 1)d),

L(C0,L0)[Kκt(C∞)], if t(N) ∼ t(2N + 1)d,

L[K∞], if t(N)À (2N + 1)d.

Proof The proof splits into several steps: The basic idea is to assume in the beginning that |C0| is finite and
then to upgrade the results to the general case. We treat the finite case in Steps 2 and 3 after some preparation
in Step 1, and conclude with the general case in Steps 4 and 5 where we verify an estimate on the decay of E[CN

t ]
needed during the reasoning. Throughout the argument we can use extensions of some ideas and calculations
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which were developed by Bramson and Griffeath [4] and Cox [5] to study the longtime behavior of the Voter
model.

Step 1 (Preparation) The argument relies on coalescing random walk estimates given in Cox (1989) [5] for
the special case of simple symmetric random walk and for instantaneously coalescing individuals rather than
coalescence with a rate γ delay as in our situation. These two obstacles have to be removed. The first one is
technical, while the second one changes things quantitatively, i.e., the constant g has to be replaced by g+ 2/γ.

Let us turn to the first point. By checking the proofs in [5], one sees that what is really needed is the
expansion of the transition kernel of the random walk by Corollary 22.3 in Bhattacharya and Rao (1976) [2].
These are however valid, even in continuous time, if we assume (3.50). Therefore we can use the assertions in
[5] throughout our argument.

Now we come to the new part of the argument, namely analyzing the delayed coalescent. Assume that for
every N ≥ 1,

(7.6) |CN
0 | = k.

Suppose furthermore that N is large enough so that the given initial positions, zi(0), i = 1, ..., k, are contained
in GN . Say that a random walk particle on the torus GN wraps around GN by time t, if it visits the complement
of the box [−N,N ]d before time t. The steps that this particle makes before it wraps around GN are identical
to the steps of a random walk particle on Zd before the first visit to the complement of [−N,N ]d. Moreover, we
will see that if we let

(7.7) τ̂N := inf{s > 0 : sup
π∈CNs

|LNs (π)| ≥ N},

then

(7.8) lim
ε→0

inf
N
P[τ̂N > εN2] = 1.

In words, by time εN2 no partition elements have positions that have wrapped around the torus GN , with high
probability. Again the paths of (CN , LN ) and (C,L) can be made identical until time τ̂N . Since there are only
k individuals present at time 0 (due to coalescence there may be even fewer partition elements present at time
εN2), it suffices to show (7.8) for a single particle, i.e.,

(7.9) lim
ε→0

inf
N
P[ sup

0≤s≤εN2

|Xs| < N ] = 1 ,

where Xs is a random walk on Zd started at 0. The last statement is true due to the functional CLT.
Let aN be a sequence such that aN = o(N), as N →∞. In order to make use of estimates in [5], we need for

every fixed ε > 0:

(7.10) lim
N→∞

P[|LNεN2(π)− LNεN2(π′)| ≥ aN , ∀π, π
′ ∈ CN

εN2 , π 6= π′] = 1.

In words, at time εN2, all the partition individuals are at mutual distance greater than aN , with high probability.
For (7.10) it is again enough to show that

(7.11) lim
N→∞

P[|X1
εN2 −X2

εN2 | < aN ] = 0,

where X1, X2 are two independent random walks on Zd started at 0, which again holds due to functional CLT,
and the assumption that aN = o(N).

Step 2 (Finite case with distant individuals ) The next ingredient in the proof of Proposition 7.2 is the following
lemma analogous to Theorem 5 in [5].

Lemma 7.3. (Asymptotics for distant individuals ) Let (CN , LN ) be the {1, ..., n}-coalescent, and fix a sequence
(aN ) −→

N→∞
∞ such that aN = o(N), as N → ∞, and T ∈ (0,∞). Then uniformly in 0 ≤ t ≤ T , and initial
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positions LN0 := {LN0 ({i}), i = 1, ..., n} such that |LN0 ({i})−LN0 ({j})| ≥ aN , for i 6= j, and uniformly in cylinder
events B on the space of partitions of {1, 2, . . . , n},

(7.12) P[CN
t(2N+1)d ∈ B] −→

N→∞
P[K2t/(g+2/γ) ∈ B].

Proof The argument is based on estimates given in [5], but it is adapted to the delayed coalescence. First
consider the above system with n = 2. Then it suffices to show

(7.13)

P[CN
t(2N+1)d = {1, 2}] = P[|CN

t(2N+1)d | = 2]

−→
N→∞

1− e−2t/(g+2/γ)

= P[K2t/(g+2/γ) = {1, 2}] .

Let

(7.14) τN = inf{s ≥ 0 : |CN
s | = 1}

be the coalescing time for the two individuals. We turn now to the look-down processes and claim that

(7.15) P[τN > (2N + 1)dt] −→
N→∞

e−2t/(g+2/γ).

In our setting the coalescing random walks coalesce only after an exponential time if located at the same site.
In order to estimate the total length of time “in contact” up to time t(2N + 1)d, we make use of the following
coupling.

Let X1, X2 (we suppress here the N dependence in the notation) be two non coalescing independent random
walks on the torus GN with initial states X i

0 = LN ({i}), i = 1, 2. Let Z be an exponential (rate γ) random

variable independent of X1, X2. One can construct a pair (Ỹ 1, Ỹ 2) of coalescing random walks as a function of

X1, X2 and Z by letting Ss :=
∫ s
0
1{X1

u=X
2
u}
du, and putting (Ỹ 1

s , Ỹ
2
s ) = (X1

s , X
2
s ) for Ss < Z and (Ỹ 1

s , Ỹ
2
s ) =

(X1
s , X

1
s ) for Ss ≥ Z. Clearly we have τN

d
= inf{s : Ss = Z}. Consider the difference process

(7.16) Y := (X1
s −X

2
s )s≥0.

Note that |Y0| > aN . The time interval [0, τN ] decomposes into excursions of Y away from 0 where the first
“excursion” is incomplete. We call excursions “small” if Y stays bounded by aN during their lifetime, and we
call it “large” otherwise. Let

(7.17) σN1 := inf{s ≥ 0 : Ys = 0},

and βn1 := σN1 , and for k ≥ 2,

(7.18) αNk := inf{s ≥ βNk−1 : |Ys| > aN},

and

(7.19) βNk := inf{s ≥ αNk : Ys = 0}.

In this way the stopping times βN1 , β
N
2 , β

N
3 , . . . form a sequence of end-times of successive “large” excursions for

the process Y . Define for k ≥ 2,

(7.20) σNk := βNk − α
N
k .

During the intervals [βNk , α
N
k+1] there may (and typically will) be many small excursions of the process Y . We

will soon estimate their number and combined lengths.
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Figure 1

Let εN0 := σN1 , δN1 := inf{s > βN1 : |Ys| > 0} and define recursively the following stopping times: for k ≥ 1,
let εNk := inf{s > δNk : Ys = 0 or |Ys| > aN} and if YεN

k
= 0 then let δNk+1 := inf{s > εNk : |Ys| > 0}, while if

|YεN
k
| > aN in which case εNk must equal αNj for some (random) j almost surely, let δNk+1 := inf{s > βNj : |Ys| > 0}.

The realization of Y in Figure 1 has εN3 = αN2 .
Note that almost surely σNk and all the stopping times above are finite for all k ≥ 1.

Moreover the random number JN := inf{j ≥ 1 : |YεNj | > aN} has geometric distribution with success

probability

(7.21) pN := P[|YεN1 | > aN ].

Also note that given JN = m the sequence (Zj := δNj − ε
N
j−1; m ≥ j ≥ 1), i.e., the time lengths of successive

intervals during which Y equals 0 prior to the first large excursion, are independent and identically distributed
according to a rate 2 exponential random variable. Let g denote the expected number of returns of Y to zero,
and

(7.22) p∗ := (g − 1)/g

be the probability that the underlying random walk on Zd ever returns to its starting point. Then obviously

(7.23) pN −→
N→∞

p∗.

Let KN := max{k : βNk ≤ τN} be the number of large excursions before τN (recall from (7.14)). Since the
migration and resampling are independent, for an i.i.d. sequence (Zi)i≥1 with P[Z1 ≥ t] = exp[−2t], it easy to
see that KN is a geometric random variable, independent of σNj , j ≥ 1, and (Zi)i≥1, with success probability

(7.24)

p(KN ) = 1−E[exp[−γ
JN∑

j=1

Zj ]]

= 1−
∑

k≥1

(1− pN )(pN )k−1
(

2

2 + γ

)k

= γ (2(1− pN ) + γ)−1 −→
N→∞

g(g + 2/γ)−1.

Let LN := max{k : εNk ≤ τN} be the total number of excursions of Y before time τN . Since the migration and
resampling are independent, LN is a geometric random variable with success probability γ/(2+ γ) (which is the
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probability to leave distance zero before the coalescence may happen). Finally note that with Z an independent
rate γ exponential random variable which bounds from above the time Y spends in zero without coalescing,

(7.25)

KN∑

j=1

σNj ≤ τN ≤
KN∑

j=1

σNj +

LN∑

j=1

(εNj − δ
N
j ) + Z.

The asymptotic result (1.9) in [5] says that uniformly in 0 ≤ u ≤ T and k we have

(7.26) P[σNk > (2N + 1)du] −→
N→∞

e−2u/g

which implies that uniformly in 0 ≤ t ≤ T ,

(7.27) P[

KN∑

k=1

σNk > t(2N + 1)d] −→
N→∞

e−2t/(g+2/γ).

At the same time, E[εNj − δ
N
j ] = o(a2N ) so that E[

∑LN
j=1(ε

N
j − δ

N
j )] = o(a2N ).

Therefore

(7.28) P[

LN∑

j=1

(εNj − δ
N
j ) + Z > ε(2N + 1)d] −→

N→∞
0, for all ε > 0.

The above estimates together with (7.25) gives (7.15), or equivalently (7.13). Hence we are done with the case
|CN

0 | = 2.

Now the same induction argument as in the proof of [5], Theorem 5 gives for n = |CN
0 | ≥ 2 and 1 ≤ k ≤ n

that

(7.29) P
[
|CN
t(2N+1)d | = k

]
→ P [|Kt| = k] ,

uniformly in 0 ≤ t ≤ T , and the initial positions as in the assumptions of the lemma. A simple calculation shows
that under the assumptions of the lemma, the conditional probability

(7.30) P
[
CN
t(2N+1)d = πi,j0

∣∣|CN
t(2N+1)d | = n− 1

]
−→
N→∞

(
n

2

)−1
, i < j,

where πi,j0 := {{i, j}, {1}, . . . , {i− 1}, {i+ 1}, . . . , {j − 1}, {j + 1}, . . . , {n}}.
Furthermore

(7.31) P
[
CN
t(2N+1)d ∈ B

∣∣ |CN
t(2N+1)d | = l

]
−→
N→∞

P
[
Kt ∈ B

∣∣ |Kt| = l
]
,

for all B sets of partitions with l equivalence classes, implying the lemma. ¤

Step 3 (Conclusion finite case) We now prove Proposition 7.2 for finite initial states. Recall τ̂N from (7.7),
and define events

(7.32)

EN
1 = {τ̂N > εN2}

EN
2 = {|LNεN2(π)− LNεN2(π′)| ≥ aN ,∀π, π

′ ∈ CN
εN2 , π 6= π′}

EN
3 = {C∞ = CεN2}.

Recall (7.8) and (7.10) to see that we can fix a small δ > 0, and choose some small enough ε > 0 and large
enough Nε <∞ so that (using transience in d ≥ 3) for this ε and for all N ≥ Nε,

(7.33) inf
N
P[EN

1 ] ≥ 1− δ/4

and

(7.34) min{inf
N
P[EN

2 ], inf
N
P[EN

3 ]} ≥ 1− δ/4.
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We have then by the construction that there exists ε > 0 and a large enough Ñε <∞ such that for all N ≥ Ñε

(7.35)

1− 3
δ

4
≤ P[EN

1 ∩ E
N
2 ∩ E

N
3 ]

≤ P
[{

(CN
εN2 , LNεN2) = (CεN2 , LεN2)

}
∩ EN

2 ∩ E
N
3

]

= P
[{

(CN
εN2 , LNεN2) = (C∞, LεN2)

}
∩ EN

2 ∩ E
N
3

]

≤ P
[{
CN
t(N)−ε2N (CN

εN2 , LNεN2) = CN
t(N)−ε2N (C∞, L

N
εN2)

}
∩ EN

2 ∩ E
N
3

]
.

Therefore, if B is a cylinder event on the space of partitions of {1, . . . , k}, then

(7.36) P[CN
t(N) ∈ B] = P[{CN

t(N)−ε2N (C∞, L
N
εN2) ∈ B} ∩ EN

2 ∩ E
N
3 ] + rN (B),

where the remainder rN (B) satisfies:

(7.37) sup
N≥Nε

sup
B
|rN (B)| ≤ 3δ/4.

Now suppose that t(N)/(2N + 1)d −→
N→∞

s, where s > 0 is fixed. Since (t(N)−εN2)
(2N+1)d −→

N→∞
s (recall d ≥ 3),

Lemma 7.3 yields that on EN
2 ∩ E

N
3 ,

(7.38)
(
P[CN

t(N)−εN2(C∞) ∈ B|C∞, L
N
εN2 ]−P[K2s/(g+2/γ)(C∞) ∈ B|C∞, L

N
εN2 ]

)
−→
N→∞

0.

Hence

(7.39)
E
[
P[CN

t(N)−εN2(C∞) ∈ B|C∞, L
N
εN2 ]1EN2 ∩EN3

]

−P[K2s/(g+2/γ)(C∞) ∈ B,EN
2 ∩ E

N
3 ] −→

N→∞
0,

which finally implies that

(7.40) lim
N→∞

∣∣∣P[{CN
t(N)−εN2(C∞) ∈ B} ∩ EN

2 ∩ E
N
3 ]−P[K2s/(g+2/γ)(C∞) ∈ B]

∣∣∣ ≤ 3δ/4.

The last equation together with (7.36) gives

(7.41) lim
N→∞

∣∣∣P[CN
t(N) ∈ B]−P[K2s/(g+2/γ)(C∞) ∈ B]

∣∣∣ ≤ |r̃N (B)|,

where

(7.42) sup
N≥Nε

sup
B
|r̃N (B)| ≤ 6δ/4.

Letting δ → 0 gives the intermediate behavior in (7.5).
The behaviors for t(N) = o((2N + 1)d) and t(N)À (2N + 1)d now follow from the properties of Kingman’s

coalescent and the sandwich principle. ¤

Step 4 (General case) From earlier arguments on the coalescent and its local finiteness we know already that
at positive time and hence in particular by time ε(2N + 1)d, with ε > 0 arbitrary, we have only finitely many
partition elements left. We can analyze the behavior of this configuration using the previous step, provided we
can prove the following two facts.

(i) The number of the partition elements at time ε(2N + 1)d is stochastically bounded in N , and
(ii) the positions of these partition elements at time ε(2N + 1)d are at mutual spatial distance of order N .

Then the assertion of part(a) of Proposition 7.2 follows from Lemma 7.3 by first establishing for each ε > 0 the
desired convergence of the rescaled process for t ≥ ε, and then taking ε→ 0 relying on existence and uniqueness
of Kingman’s coalescent. Part (b) is established separately in Step 5 below. Now we conclude this step by
verifying (i) and (ii).
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Fact (i) To establish the first fact, we need some control over the mean number of partition elements left in
the coalescent CN

t given a configuration of partition elements,
∑

π∈CN0
δL0(π). The following lemma is similar to

Theorem 1 in [4] and the proposition in Section 5 of [5]. We are going to prove it in Step 5.

Lemma 7.4. (Number of partition elements in the coalescent) There is a finite constant cd such that uniformly
in sequences (|CN

0 |)N∈N such that |CN
0 | ≥ (2N + 1)d, and uniformly in N ∈ N,

(7.43) E
[
|CN
t |
]
≤ cdmax

{
1,
|CN

0 |

t

}
.

By Proposition 3.4, for each given ε > 0, CN
ε(2N+1)d is locally finite. Now Lemma 7.4 implies in particular, that

for each given ε > 0, |CN
ε(2N+1)d | is moreover uniformly stochastically bounded in N since we can for every δ > 0

control |CN
δ |/(2N + 1)d uniformly in N , using the spatial homogeneity, and local finiteness (recall the proof of

Proposition 3.4).

Fact (ii) The second fact follows immediately observing that by times of order δN 2, where δ is large, (i.e.,
t(N) = o((2N + 1)d)) two independent random walks are with probability tending to 1 in distance of order N ,
as N →∞.

Step 5 (Proof of Lemma 7.4.) W.l.o.g. we may assume that |CN
0 | <∞. Otherwise the estimate (7.43) would

hold trivially.
The reasoning relies on that for the coalescing random walk estimates given in [5]. Once more it differs due

to the facts that our partition elements coalesce with a rate γ delay, and that we may have more than 1 particle
per site.

Observe that

(7.44) |CN
t | = |C

N
0 | − Z

N
t ,

where ZNt denotes the number of jumps of (CN
s )s∈[0,t]. Since for a fixed π0 ∈ C

N
0 ,

(7.45) ZNt ≥
∑

π∈CN0 \{π0}

1{π≈
CNt

π0},

its expectation is greater than or equal to

(7.46) E[ZNt ] ≥ (|CN
0 | − 1) min

π 6=π0∈CN0

P[π ≈CNt π0],

In particular, if we start the coalescent such that all positions of partition elements are contained in a subset
A ⊆ GN , then the right hand side of (7.46) can be bounded below as follows.

Let XN be a rate 2 continuous time random walk on GN , σN the hitting time of the origin, furthermore Y1,
Y2 independent rate γ and rate 2 exponential random variables and

(7.47) ht(A) := min
x∈A

Px[σN ≤ t].

Then

(7.48) P[π ≈CNt π0] ≥ P[Y1 ≤ t/2;Y1 ≤ Y2]ht/2
(
χ(CN

0 , L
N
0 )
)
,

where

(7.49) χ(CN
0 , L

N
0 ) := {x− y : ∃π1 6= π2 ∈ C

N
0 : L0(π1) = x, L0(π2) = y}.

Hence since P[Y1 ≤ t/2;Y1 ≤ Y2] =
∫ t/2
0

ds γ e−γs e−2s,

(7.50)

E[|CN
t |]

≤ |CN
0 | − (|CN

0 | − 1)
γ

2 + γ

(
1− exp

[
−
2 + γ

2
t

])
ht/2

(
χ(CN

0 , L
N
0 )
)
.
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In the next step we will use the latter estimate to control the decay rate of
E[|CNt |]

|CN0 |
t. The following lemma

has again an analogue in [5].

Lemma 7.5. (Upper bound for the decay rate of partition elements) If

(7.51) f(t) :=
E[|CN

t |]

|CN
0 |

t,

then there exists a finite constant Md ≥ 1 such that uniformly in N ∈ N and uniformly in t ∈ [0, |CN
0 |],

(7.52) f(t) ≤Md,

or

(7.53) f(2t) ≤ max{Md, f(t)}.

Proof of Lemma 7.4 (Continuation) Observe that Conditions (7.52) and (7.53) together imply immediately that
for each t ∈ [0, |CN

0 |], f(t) ≤ Md. This proves then Lemma 7.4 with cd := Md. Indeed, define n(t) := inf{m ∈
N ∪ {0} : f(t/2m) ≤ Md}, t ≥ 0, and notice that n(t) < ∞ for all t ≥ 0 since f(t) ≤ t for all t. Hence, for all
t ∈ [0, |CN

0 |] we have

(7.54)

f(t) ≤ max{Md,max{Md, f(t/2)}} = max{Md, f(t/2)}

≤ ...

≤ max{Md, f(t/2
n(t))} =Md. ¤

Proof of Lemma 7.5 Once more if CN
0 = ∞ then f(t) ≡ 0 and the conditions hold trivially. Assume

therefore that CN
0 <∞.

Fix t0 ∈ [0, |CN
0 |]. We shall show the assertion for a constant Md ≥ 16d to be constructed below. For that we

may assume w.l.o.g. that

(7.55) E[|CN
t0 |] ≥ 8d,

and

(7.56) E[|CN
2t0 |] ≥ 2 · 4−dE[|CN

t0 |].

Indeed, if one of the two conditions would fail, then the assertion of Lemma 7.5 holds for t0 with any Md ≥ 8d.
Next we are going to cover the torus GN by nt0 disjoint cubes, {Bi

t0 ; i = 1, ..., nt0}, where side length not
larger than some at0 ≥ 8 with

(7.57) at0 := b8(
|CN

0 |

E[|CN
t0 |]

)
1
d c ∧ (2N + 1).

Let now t0 ≤ r ≤ r+ s ≤ 2t0. If we ignore the coalescence of partition elements starting in different boxes, Bi
t0 ,

then by the Markov property:

(7.58) E
[
|CN
r+s|

]
≤ E

[nt0∑

i=1

E
φ
Bit

(CNr ,L
N
r ),r [

|CN
r+s|

]
]
,
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where φBi
t0
(CN

r , L
N
r ) is the restriction of CN

r to those partition elements π with LNr (π) ∈ Bi
t0 . Then by (7.50),

(7.59)

E[|CN
r+s|]

≤ E[|CN
r |]− (E[|CN

r |]− nt0)
γ

2 + γ

(
1− exp[−

2 + γ

2
s]

)
hs/2

(
B1
t0

)

≤ E[|CN
r |]

(
1−

γ

2(2 + γ)
(1− exp[−

2 + γ

2
s])hs/2

(
B1
t0

))

≤ E[|CN
r |] exp

[
−

γ

2(2 + γ)
(1− exp[−

2 + γ

2
s])hs/2

(
B1
t0

)]
,

where we have used that by (7.55) and (7.56), E[|CN
r |] ≥ E[|CN

2t0 |] ≥ 2E|CN
t0 |/4

d, and therefore (E[|CN
r |]−nt0) ≥

1
2E[|C

N
r |], and that 1− e−x ≤ x for all x ≥ 0. Furthermore observe that hs/2(B

1
t0) depends on B

1
t0 only via the

side length at0 , and B
1
t0 represents therefore a box of side length at0 .

Iterating the latter one obtains

(7.60)

E[|CN
2t0 |]

≤ E[|CN
t0 |] exp

[
−

⌊
t0
s

⌋
γ

2(2 + γ)
(1− exp[−

2 + γ

2
s])hs/2

(
B1
t0

)]
.

To employ (7.60) effectively, we still may choose s := st0 . By the rescaling analysis for random walks with
finite second moments there exists a constant αd ∈ (0,∞) such that for a box B := [−b, b]d ∩ Zd of side length
b ≥ 8,

(7.61) hb2(B) ≥ αdb
2−d.

To be in a position to apply the latter on (7.60), we choose

(7.62) st0 := 2 a2t0 ,

and consider w.l.o.g. the case st0 ≤
t0
2 . Otherwise we are done since by (7.57),

(7.63) f(t0) ≤ 8d a−dt0 t0 ≤ 8d · 2
d
2 · s

− d
2

t0 · t0 ≤ 8d · 2
d
2 · 2

d
2 · t

− d
2

0 · t ≤ 16d.

Then by (7.57) and (7.62),

(7.64) bt0/st0c ≥ t0/2st0 ≥
E[|CN

t0 |]
2/d

256 |CN
0 |

2/d
t0.

Therefore by (7.61),

(7.65) hst0/2(B
1
t0) ≥ αd a

2−d
t0 ≥ αd 8

2−d

(
E[|CN

t0 |]

|CN
0 |

)1− 2
d

,

and since st0/2 = a2t0 ≥ 64 (for N sufficiently large),

(7.66)
γ

2 + γ
(1− exp[−

2 + γ

2
st0 ]) ≥

γ

2 + γ
(1− exp[−(2 + γ) 64]) =: β.

This finally yields

(7.67) f(2t0) ≤ f(t0) exp
[
log 2− αd β 8−(d+1) f(t0)

]
,

and so (7.52) or (7.53) holds with Md := max{16d, 8
(d+1) log 2
αd β

}. Together with (7.63) this gives the claim. ¤
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7.3. Preliminaries: Asymptotic analysis of the historical coalescent. In this subsection we lift the
results of the previous subsection to the level of the historical coalescent which actually gives stronger results
than we have claimed in our theorems. Recall the historical coalescent (C∗t , L

∗
t ) and its topology from (3.31)

and (3.32) and define the historical Kingman’s coalescent, K∗
t , analogously.

Denote by C∗∞ the limit of C∗t as t→∞ in the following topology on paths. On paths with values in partitions
we use the Skorokhod topology induced by the metric on the partitions defined in (3.28), but we consider here
only the paths on (0,∞) excluding the point 0.

We now have to scale paths of the partition-valued process CN
t in time between times 0 and times of order

(2N + 1)d or in the language of the historical coalescent we have to rescale C∗t . Therefore we define for a path
y ∈ D(R, E), where E is a Polish space, the scaling operation

(7.68) sβ : y(·) 7→ y(β·).

Proposition 7.6. (Historical coalescent asymptotics) Fix a sequence t(N) ↑ ∞ as N →∞.

(a) Let K∗ be a version of the historical Kingman’s coalescent started in C̃∗∞ which is the constant path equal to
C∞. Let βN (t) = t(2N + 1)d. Then

(7.69) L(C0,L0)|GN

[
sβN (1)C

∗,N
βN (t)

]
=⇒
N→∞

L(C0,L0)
[
K∗κt(C̃

∗
∞)
]
.

If t(N)→∞ but t(N) = o((2N + 1)d), then

(7.70) L(C0,L0)|GN

[
C∗,Nt(N)

]
=⇒
N→∞

L(C0,L0) [C∗∞] .

(b) For the path process we obtain no matter on which scale t(N) tends to ∞ the following:

(7.71) LΨ[L∗,Nt(N)] =⇒
N→∞

LΨ[L∗∞].

Proof We start with the first assertion of part (a). Observe that the partition valued paths of the coalescents
are processes whose paths have a monotonicity property. Namely, as time proceeds we can only jump to coarser
partitions. This means that the sequence of laws of the paths is tight if we can establish that in finite time
intervals [s(2N +1)d, t(2N +1)d] with t > s > 0 only finitely many jumps can occur. For this it suffices to know
that

(7.72) lim sup
N→∞

P[|CN
ε(2N+1)d | ≥ n]−→

n→∞
0.

However we have proved that the partition valued part of the coalescent converges to Ks(C∞) and we know
that Kε(C∞) has only finitely many partition elements. Therefore the probability to have more than K jumps
after time ε(2N + 1)d goes to zero as K → ∞ uniformly in N . This establishes tightness of the process

(C∗,N
t(2N+1)d

)t>0 (note 0 is excluded).

We are now left with proving that the finite dimensional distributions of the processes (C∗,N
t(2N+1)d

)t≥0 converge

to those of Kt(C
∗
∞). In Proposition 7.2 we proved the assertion for the one-dimensional marginal distributions.

But the proof of this statement showed more. First of all the locations of the partition elements at times t(2N+1)d

are uniformly distributed on the torus for any such configuration we get that if we follow the partition for an
additional time s(2N + 1)d then the law conditioned on the configuration at t(2N + 1)d to be C (some finite
partition) converges to Ks(C). This gives (7.69).

For the second assertion of part (a) we need that the law of CN
T converges to CT as N →∞ by the coupling we

have constructed. This gives immediately that (C∗,Nt )t≤T converges in law to (C∗t )t≤T for N →∞. Furthermore
we know that CT → C∞ a.s. as T → ∞. Hence we are done if we can show that the probability that a
coalescence occurs between time T and time t(N) is bounded by εT with εT → 0 as T →∞. This we have done
in the previous Subsection 7.3.

The weak convergence in (7.71) is trivial due to our coupling construction in which the path for the process
on [−N,N ] ∩ Zd is obtained from the path of the infinite system by taking the position modulo (2N + 1). ¤



1348 ANDREAS GREVEN, VLADA LIMIC, AND ANITA WINTER

7.4. Asymptotic analysis of the look-down process (Proof of Theorem 6). Our goal is to prove here
Theorem 6. This means that we need to describe asymptotically the time-space picture of the genealogy of
the time t population. Namely, for the time t population consider for every s ≤ t the ancestors of the present
population and their decomposition in related individuals and their paths followed in geographic space. We
assert that the resulting time-space picture can be rescaled as a function of the final time horizon t such that it
converges to the historical coalescent. We make this precise in the proposition below.

Consider the look-down process started in the configuration given by (2.28). We next focus on the genealogy,

(Γ
t(N),N
t(N) , `

t(N),N
t(N) ), of the look-down process (recall (7.1)). The object Γtt is the partition at time t induced by

merging all related individuals of the time t population in one partition element. The object Γts is the partition
arising by merging all individuals which have a common ancestor at the time s.

Recall from (3.31) and (3.32) the historical coalescent, (C∗t , L
∗
t )t≥0, and its topology from prior of (3.33).

Define similarly,

(7.73) Γ∗,tt :=
(
Γt(s∨0)∧t

)
s∈R

,

and

(7.74) `∗,tt :=
(
`t(s∨0)∧t

(
Γt(s∨0)∧t({ι}); ι ∈ I

))
s∈R

,

where Γts({ι}) denotes the family at time t−s consisting of ι and its relatives. Moreover, define Γ∗,t,Nt and `∗,t,Nt

analogously on the torus.

With the duality formulated in Proposition 3.5 we can conclude immediately from Proposition 7.6 that one
has (recall τ∗t is the time shift of paths by t and sβ the rescaling given in (7.68)):

Proposition 7.7. ( Asymptotics of the genealogy in d ≥ 3.)
Assume that the labels are chosen as in (2.28) and that d ≥ 3.

(a) With the same notation as used in Proposition 7.6 we have

(7.75) L
[
(sβN (1)τ

∗
βN (t)Γ

∗,t(N),N
βN (t) )

]
=⇒
N→∞

L
[
K∗κt(C̃

∗
∞)
]
.

For t(N)→∞ but t(N) = o((2N + 1)d),

(7.76) L
[
τ∗t(N)Γ

∗,t(N),N
t(N)

]
=⇒
N→∞

L [C∗∞] .

(b) For the second component we obtain for each t(N) ↑ ∞ the following:

(7.77) L
[
`
∗,t(N),N
t(N)

]
=⇒
N→∞

L [L∗∞] .

Based on the above Proposition we prove Theorem 6, i.e. the statement on the look-down process. We then
conclude Corollary 3.13 by a projection on the time horizon at which the first interaction takes place after the
individuals start feeling the boundary.

Proof of Theorem 6 Once more we restrict our attention to the intermediate scale, βN (t) := t (2N + 1)d.
The other cases will then follow from the properties of the historical Kingman’s coalescent and the sandwich
principle.

Observe that X∗,NβN (t) can be reconstructed from the genealogy (Γ
∗,β(N),N
β(N) , `

∗,β(N),N
β(N) ) and the assignment of

the types at time 0. In fact we don’t need the full “historical genealogy”, we only need the value of this “path”

at time βN (t) and then we have to add the types of the family clusters as follows. The law of τ ∗βN (t)X
∗,N
βN (t) is

given by assigning each family cluster independently of the others the type 1 or 0 with probability θ or 1 − θ,
respectively. Hence (recall ∆θ from (3.35))

(7.78) LΨ(θ)[τ∗βN (t)X
∗,N
βN (t)] = L

Ψ(θ)[∆θ

(
(Γ
∗,βN (t),N
βN (t) , `

∗,βN (t),N
βN (t) )βN (t)

)
].
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Then by Proposition 7.7 the right hand side of (7.78) converges as N →∞ to

(7.79) LΨ(θ)[∆θ(Kκt(C∞), L∗∞)] =

∫
Q̄∗κt[d(C,P)]L

Ψ(θ)[∆θ(Kκt(C∞), L∗∞)|C∞ = C,Kκt(C∞) = P]

and by Definition 3.12 this equals

(7.80)

∫
Q̄∗κt[d(C,P)]H

∗
1,θ(C,P).

This is the claim of the Theorem in the intermediate time scale. ¤

Proof of Corollary 3.13 By Theorem 3 the genealogy of the enriched historical IMM, ξ∗,ρ,N , which we

denoted by (Γ̃∗,t,ρ,Ns , ˜̀∗,t,ρ,Ns )s≤t (compare also with (3.4)), can be reconstructed from the genealogy of the look-
down process together with an additional construction of random permutations of the labels. This allows analog
to the situation for the proof of Theorem 6 above to represent the law of the configuration in terms of ∆θ and
the genealogy. This genealogy is then in law equal to the one which is defined on the probability space of the
look-down process enriched with the coin flipping variables for generating the symmetrization. These variables
are independent of everything else. Hence again

(7.81)

LΨ(ρ,θ)[τ∗βN (t)ξ
∗,ρ,N
βN (t)] = L

Ψ(θ)[∆θ((Γ̃
∗,βN (t),ρ,N
βN (t) , ˜̀∗,βN (t),ρ,N

βN (t) )βN (t))]

= LΨ(θ)[∆θ(φIρ(Γ
∗,βN (t),N
βN (t) , `

∗,βN (t),N
βN (t) )βN (t))]

=⇒
N→∞

LΨ(θ)[∆θφIρ(Kκt(C∞), L∗∞)].

Next we turn to η∗,ρ,N . Recall ∆̃ρ,θ from (3.40). Then by (1.40), the law of η∗,ρ,NβN (t) satisfies

(7.82) LΨ(ρ,θ)[τ∗βN (t)η
∗,N
βN (t)] =⇒

N→∞
LΨ(θ)[∆̃ρ,θ(Kκt(C∞), L∗∞)].

Applying the family decomposition on the random variable on the right hand side, we get

(7.83)

∆̃ρ,θ(Kκt(C∞), L∗∞) =
∑

ι∈Iρ

δ
(L

∗,{ι}
∞ ,∆θ(K

{ι}
κt (C∞)))

=
∑

π∈Kκt(C∞)

∑

ι∈π∩Iρ

δ
(L

∗,{ι}
∞ ,∆θ(K

{ι}
κt (C∞)))

=
∑

π∈φIρKκt(C∞)

∆̃ρ,θφπ(Kκt(C∞), L∗∞).

Hence, by independence in the assignment of types to the different families, and the fact that φπKκt(C∞) is
maximal, i.e., φπKκt(C∞) = {π}, if π ∈ Kκt(C∞),

(7.84)

LΨ(ρ,θ)[τ∗βN (t)η
∗,N
βN (t)]

=⇒
N→∞

∫
Q̄∗κt[d(C,P)]

{

∗
π∈φIρP

(
θH̃∗π,1(C) + (1− θ)H̃∗π,0(C)

)}
. ¤

Proof of Corollary 3.15. At this stage we will give the proof for IMM only. The transfer from IMM to
IFWD is given in Section 8. Before we prove the two assertions of the corollary, we verify a key relation (7.86)
below.

First observe that given a realization of {∆θ(π);π ⊆ I} (recall (3.34)), X
∗,N
βN (t) can be constructed from the

genealogy, (Γ
βN (t),N
βN (t) , `

βN (t),N
βN (t) ), by assigning the type ∆θ($) to the final family cluster $ ∈ Γ

βN (t),N
βN (t) . Hence, by

Proposition 7.7,

(7.85) LΨ(θ)[(X∗,NβN (t))βN (t)] =⇒
N→∞

LΨ[∆θ(Kκt(C∞), (L∗∞)0)].
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Recall ∆̃ρ,θ from (3.40). Then by Proposition 3.5 the same holds for IMM, i.e.,

(7.86) LΨ(ρ,θ)[ηNβN (t)] =⇒
N→∞

LΨ[∆̃ρ,θ(Kκt(C∞), L0)].

Now we are ready to prove the two parts of the Corollary concerning IMM.

(a) Recall that φIρC∞ consists of countably many partition elements, a.s. Hence by Proposition 3.3(c) in [19]
for each t > 0, Kκt(C∞) is exchangeable, that is, its distribution is invariant under renumbering finitely many

of the labels. So the same holds for the collection, (∆θ(K
{ι}
κt (C∞)); ι ∈ I), of {0, 1}-random variables (recall

(3.34)). Recall from (3.68) to (3.70) that no matter in which way we number the patches of C∞ := {π1, π2, ...},
the de Finetti measure on {0, 1} determined by,

(7.87) zt := lim
n→∞

1

n

n∑

k=1

∆θ(φIρ(K
πk
κt (C∞))), a.s.,

exists, and its law equals the law of a Fisher-Wright diffusion with resampling rate κ, and started in θ. Notice
in particular that this law does not depend on ρ.

Given the de Finetti measure, zt, the collection,

(7.88) (∆θ(K
π
κt(C∞)); π ∈ φIρ(C∞)),

consists of independent {0, 1}-elements with probability for a one equal to zt, where as before for each π ∈
φIρ(C∞), Kπ

κt(C∞) denotes the patch in φIρ(Kκt(C∞) containing π. We know that

(7.89) LΨ[∆̃ρ,θ(Kκt(C∞), L0)
∣∣zt] = LΨ[∆̃ρ,zt(C∞, L0)] = H̃ρ,zt .

We therefore obtain from (7.86) that for every t > 0,

(7.90) LΨ(ρ,θ)[ηNβN (t)] =⇒
N→∞

∫

[0,1]

Qt[θ,dθ
′]H̃ρ,θ′ .

(b) We show first the convergence of the finite-dimensional marginals of the density (of type one) process and
then the tightness based on martingale arguments.

In order to show the f.d.d. convergence we begin with the one-dimensional marginals. By (3.20), the equilib-

rium measures (H̃θ,ρ)θ∈[0,1] have again the initial density of mass ρ and relative frequency of type 1 given by θ,
and by the representation via the strong duality which is stated in Proposition 3.5 they are spatially ergodic and
in fact mixing. In Cox, Greven, Shiga [10] it was proved that in this context the densities (of ones) converge to
the density of the weak limit. Hence by (7.89), for each t ≥ 0,

(7.91) LΨ̃(θ,ρ)
[
Dρ,N (ηNβN (t))

]
=⇒
N→∞

Lθ[zt].

This establishes the convergence claimed in (3.74) for one-dimensional marginals of the process. More generally,
calculating the space-time moments and showing their convergence to the ones of the standard Fisher-Wright
diffusion, we get convergence of the finite dimensional marginals (abbreviated as f.d.d.-convergence), i.e.,

(7.92) LΨ̃(θ,ρ)
[ (
Dρ,N (ηNβN (t))

)
t≥0

] f.d.d.
=⇒
N→∞

Lθ[(zt)t≥0].

(Such a moment calculation has been carried out e.g. in [11], and will therefore be omitted here.)
In order to show tightness we rely on Proposition 1.2 in Aldous (1989) [1] which is really tailored for our

situation since the densities are bounded martingales. In this case weak convergence in the path space follows
from f.d.d.-convergence and the fact that the limit is continuous in t. The latter is clear since (zt)t≥0 is the
Fisher-Wright diffusion. ¤
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8. Transfer to IFWD (Proofs of Theorems 5 and 7)

In this section we prove the results concerning the application of our techniques to the historical IFWD. The
proofs will be based on what we have already shown about the IMM, knowing that IFWD not only occurs as
the diffusion limit of IMM but both can be constructed via a common particle representation.

The key point in transferring our results from IMM to IFWD is to show that we can interchange the limit
ρ → ∞ (giving rise to the diffusion limit) with the limit t → ∞ for the infinite system and with the N → ∞
limits for the finite systems. Here the key structure is given by our representation theorems and structural
properties of the coalescent.

The basic reason why the interchangeability of limits should hold is as follows. By the strong duality we can
pass to the dual process which is a spatially marked coalescent on Zd (respectively on the tori of Zd). But again,
as pointed out before in Subsection 7.1, in Zd we can define the coalescents on the torus as a functional of the
coalescent on Zd. Furthermore we define this coalescent starting with countable many individuals at each site,
and then we can embed all the Iρ-coalescents in this object. In other words, we have a coupling of all the dual
processes we need for all t,N and ρ on the same probability space. However, to verify the needed uniformity
we will need to go further and use another approximation by an object we call the pruned coalescent that has
finitely many partition elements for positive times.

We now proceed in four steps, we construct the pruned coalescent, represent frequency functionals in terms
of the coalescent, and finally derive the uniformity for the two situations.

Step 1 (Construction of a pruned coalescent) Here we show that we can construct representations of the
quantities in question in terms of coalescent processes for which we then can utilize certain coupling constructions
to get the needed uniformity in the convergence relations to justify the exchange in the order of limits.

Let us first observe that the limit in (2.27) for the basic particle representation exists a.s. due to the exchange-
ability of the individuals starting at one site in the coalescents and the independence of the variables assigning
the types to the patches.

The basic convergence result we need to transfer is (3.26). Recall that for the historical Moran model the
convergence of the laws in the topology we consider means that we consider the subpopulation of individuals
which are at time t in some finite spatial window of observation. This means we need to apply the strong duality
relation to coalescence processes starting from a state with all marks in a fixed finite subset of G. We therefore
investigate coalescents of this type.

Fix therefore a set A ⊆ G with |A| < ∞ and start a coalescent with countably many individuals in each
point in A and denote it by (CA

t , L
A
t )t≥0. We embed in this object the coalescents corresponding to labels which

do not exceed ρ. In the case where we study finite systems proceed as follows: For all GN ⊇ A we can then

consider the corresponding coalescent denoted by (CA,N
t , LA,Nt )t≥0 on GN as well as the one on G. Furthermore

we couple the coalescents on the size N tori and on Zd on one probability space as explained in Subsection 7.1.

The next point is to reduce this coalescent introduced above on G, which has countably many partition
elements, to a coalescent with finitely many partition elements. The problem is that even though a non-spatially
structured coalescent collapses in positive time to finitely many partition elements, and our spatially structured
coalescent is known to collapse in positive time to locally finitely many partition elements, the number of different
locations of the partition elements belonging to the spatially structured coalescent started with the individuals
living initially in a fixed finite window may stay infinite for all times. However, the idea is that still most, in the
sense of asymptotic frequency, individuals coalesce to finitely many partition elements such that the functionals
giving the diffusion limit are not changed much if we restrict to those. In order to make this idea precise we
proceed as follows.

Fix a δ > 0, and then choose a suitable t0 > 0 and define coalescents starting with countably many individuals
initially on each site of A, while removing from it all individuals which migrate before time t0. The resulting

object is called pruned coalescent denoted (ĈA,δ
t , L̂A,δt )t≥0 (and (ĈA,N,δ

t , L̂A,N,δt )t≥0 on the torus, respectively).
Since a non spatially structured coalescent collapses to a finite partition in any positive time, and since A is
finite, the pruned coalescent is finite for t > t0.
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By the above construction we can achieve that the probability of every single particle to be removed is less
than δ at each site by choosing t0 small enough. This means that the density of the ones removed among all is
bounded by δ.

This means in particular that we get a uniform approximation of averages concerning the type of individuals
as in (2.27) by making the parameter δ small. Therefore we can now continue working with these pruned
coalescents and consider them only for times t ≥ t0.

We write (ĈA,ρ,δ
t , L̂A,ρ,δt ) for the pruned I-coalescent which is reduced to labels less or equal to ρ and which

is a Iρ-coalescent, and we write (ĈA,ρ,N,δ
t , L̂A,ρ,N,δt ) for the corresponding objects on the torus.

We define now the finite stopping times

(8.1) T ρ,δ := inf{t > t0; |Ĉ
A,ρ,δ
t | = |ĈA,δ

t |},

and similarly,

(8.2) T ρ,N,δ := inf{t > t0; |Ĉ
A,ρ,N,δ
t | = |ĈA,N,δ

t |}.

From this time on all transitions occur jointly in the pruned I-coalescent and in the pruned Iρ-coalescent.
In other words we have some sort of coupling, even though of course the partition elements themselves do not
agree.

Now define the events that we see no new partition elements if we increase ρ. That is, for t ≥ t0 = t0(δ), and
ρ ∈ [0,∞),

(8.3) E(t, ρ) := {ω : T ρ̃,δ(ω) ≤ t, for all ρ̃ ≥ ρ}.

Similarly, let for t ≥ t0 = t0(δ), ρ ∈ [0,∞), and N ∈ N,

(8.4) E(N, t, ρ) := {ω : T ρ̃,Ñ,δ(ω) ≤ t, for all ρ̃ ≥ ρ, Ñ ≥ N}.

Recall that until time t0 all individuals we consider behave like |A|-independent Kingman coalescents which each
consists at time t0 of only finitely many partition elements. We know therefore that for every δ we have fixed
that by construction as ρ ↑ ∞,

(8.5) E(t, ρ) ↑ E(t,∞), and P[E(t,∞)] = 1, ∀ t ≥ t0,

and

(8.6) E(N, t, ρ) ↑ E(N, t,∞), and P[E(N, t,∞)] = 1 ∀ t ≥ t0.

Note that by definition, on the events E(t, ρ) and E(N, t, ρ) the pruned I ρ̃-coalescents and the pruned I ρ̃,GN -
coalescents have for ρ̃ ≥ ρ completely coupled location vectors and the same holds for the processes giving the
respective numbers of partition elements.

Step 2 (Representation by the coalescent) After this preparation, we return to the historical look-down process.

We can consider the functionals ζ̃∗t , and ζ̃
∗,N
t respectively, of the historical look-down process for t ∈ R ∪ {∞},

(8.7) ζ̃∗t := lim
ρ→∞

ρ−1
∑

ι∈Iρ

δπ∗
G×KX

∗, ι
t
,

and for N ∈ N,

(8.8) ζ̃∗,Nt := lim
ρ→∞

ρ−1
∑

ι∈Iρ

δπ∗
G×KX

∗,N, ι
t

.

These objects exist due to the exchangeability of the individuals including their type in the historical look-
down at each fixed site.

On the other hand by the strong duality in (3.12) we can express these functionals equivalently in terms of
the coalescent. Having done this, we can make use of the events we defined earlier. This means, in particular,
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that we can now replace the functionals given in (8.7) and (8.8) by the analogous objects based on the paths of
the coalescent. That is, for all N ∈ N, and t ≥ 0,

(8.9) ζ̂∗t := lim
ρ→∞

ρ−1
∑

ι∈Iρ

δ(L∗,ιt ,∆θ(C
∗,ι
t )), a.s.,

and

(8.10) ζ̂∗,Nt := lim
ρ→∞

ρ−1
∑

ι∈Iρ

δ(L∗,N,ιt ,∆θ(C
∗,N,ι
t )), a.s.

The new objects have for each fixed t the same distribution as the original ones in (8.7) and (8.8).

Finally note that we have in (8.9) and (8.10) measures on paths in G ×K. We shall below approximate them
uniformly in other parameters via a coalescent which consists for positive times only of finitely many partition
elements and on the events E(t, ρ) and E(N, t, ρ) we see no new partition elements if we increase ρ. The K-part
of the path depends in its description explicitly only on the partitions and only indirectly on the locations of
the partition elements.

Focus first on the assertion concerning ζ̂∗t . We observe that we can approximate ζ̂∗t by a quantity

(8.11) ζ̂∗,δt := lim
ρ→∞

ρ−1
∑

ι∈Iρ; ∃π∈ĈA,δt :ι∈π

δ(L̂∗,δ,ιt∨t0
,∆θ(Ĉ

∗,δ,ι
t∨t0

)), a.s.,

by passing from the coalescent to the pruned coalescent and letting then δ → 0. This approximation is uniform
in t, the way it is constructed by pruning the initial state. This means that independent of everything else
and independently for each individual, such an individual is removed with probability less than or equal to δ.
Therefore if we consider empirical measures over the corresponding configuration it is changed in variational
norm by at most δ and hence this difference tends to 0 as δ → 0 uniformly in all other parameters.

Analogously we proceed with ζ̂∗,N .

Step 3 (Uniform convergence for models on Zd) On the events E(t, ρ) respectively E(N, t, ρ) the above almost
sure convergence in ρ is, as we shall see below, by construction uniform in t or N , respectively. We then
obtain from the above mentioned uniform a.s. convergence a statement about a certain uniformity in the weak
convergence as ρ→∞ in t and N , respectively.

What type of convergence do we need? Return to the IMM on the infinite group and the convergence
statement for it first. The weak convergence means that we consider the ancestral path of individuals which
are at time t in some finite spatial window A of observation and we observe their paths on a finite grid of time
points viewed backwards. Let A from the construction in the previous step be such a set of sites and fix time
points t1, t2, · · · , tn such that 0 ≤ t1 < t2 < · · · < tn ≤ t. Then consider the random measure induced by the
historical look-down process as on the right hand side of (4.20) restricted to the sub-σ-algebra corresponding to
A and the finite set of observation points in time {t, t − t1, · · · , t − tn}. This new random measure has to be
analyzed now.

If we translate this into the dual process, we have to start with the individuals in A and observe them at
times t1, t2, · · · , tn and t. The last time index is needed to obtain the type components. This means that for the
dual process we look at the measure generated by the skeleton for the location path given by t1, · · · , tn and the
partition at time t.

We know that the coalescent converges as t → ∞ and this holds even for the historical coalescent and due

to the pruning we have for t ≥ t0 a finite coalescent. Hence we know ĈA,δ
t = ĈA,δ

∞ for large enough t with high
probability (that is, the probability is at least 1− ε, for some prescribed ε > 0).

Next fix a set of time points for the coalescent corresponding in the original process to the selected set of
time-points viewed backwards from time t, i.e. time points of the form {t, t− t1, t− t2, ..., t− tn} with t1, . . . , tn
prescribed. Observe the coalescent path only on that skeleton of time points and on the final point t. This
defines a sub-σ-algebra onM(D(R, G×K)). Then restrict the functional in (8.11) to this sub-σ-algebra, which
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results in some new random measure on D(R, G×K) equipped with this sub-σ-algebra. We denote this random
measure by Yρ,t.

We claim that based on our construction we can write our restricted random measures for this fixed ε > 0
and for fixed δ > 0 (the dependence in δ is not apparent from the notation) in the form:

(8.12) Yρ,t := Y 1,ε
ρ,∞ + Y 2,ε

ρ,t ,

by considering Yρ,t on the event ĈA,δ
t = ĈA,δ

∞ and its component. Then (0 is here the 0-measure) by the definition

of Y 2,ε
ρ,t

(8.13) P[Y 2,ε
ρ,t 6= 0] ≤ ε, ∀ t ≥ t0(ε), ρ ∈ [0,∞),

and by (8.5)

(8.14) Y 1,ε
ρ,∞−→

ρ→∞
Y 1,ε
∞,∞, Y 1,ε

∞,∞−→
ε→0

Y∞,∞.

Namely there are no further coalescence events on E(ρ, t) for t̃ ≥ t, ρ ≥ ρ̃, but only the finitely many end points
of the locations still fluctuate, they are however independent of ρ.

We see that we then can conclude that for every fixed value of δ > 0,

(8.15) lim
ρ→∞

lim
t→∞

L[Y 1,ε
ρ,t ] = lim

t→∞
lim
ρ→∞

L[Y 1,ε
ρ,t ].

This applies to the pruned coalescent and the functional ζ̂∗t for every restriction to spatial sets A and finite
sets of time-points of the described type and for every ε > 0, and δ > 0 prescribed. This implies in turn the

equality in law of ζ̂∗,ρt and ζ∗,ρt and letting ε and δ tend to zero (recall that the approximation δ → 0, ε → 0 is
uniformly in t), that:

(8.16) L[ζ∗,ρ∞ ] = lim
ρ→∞

{ lim
t→∞

L[ρ−1η∗,ρ,t0 ]},

where η∗,ρ,t is the historical IMM started at time −t.
This gives immediately the assertion of Theorem 3 by what we have shown already for (η∗t )t≥0. Namely we

know that the limit in (3.45) can be obtained by first carrying out the limit t → ∞ in the IMM, which we can
represent using Theorem 4 and then form the diffusion limit ρ → ∞ in (3.44) which exists due to de Finetti’s
theorem.

Step 4 (Uniform convergence on torus)

Next we turn to the assertion concerning ζ∗,Nt . We need here

(8.17) lim
N→∞

L[ζ∗,N
t(2N+1)d

] = lim
ρ→∞

lim
N→∞

L
[
ρ−1η∗,ρ,N

t(2N+1)d

]
.

Knowing this, we have to show that if we take the r.h.s. in (3.63) and perform for a realization the transformation
given in (1.20) and then let ρ→∞, so that we obtain the r.h.s. in (3.67).

For this purpose it suffices to verify that carrying out the transformation (1.20) for a realization of H∗π,ρ,1
that for ρ→∞ we obtain as weak limit Ĥ∗π,1. This however was the way these objects had been defined. Hence
the result (8.17) would imply Theorem 5.

In the proof of (8.17) we have, compared to the argument in (8.16), to use E(N, t, ρ) instead of E(t, ρ) and to

replace the fact that ĈA,δ
t = ĈA,δ

∞ for t large with high probability used previously, now by the complementary

fact that the number of partition elements in ĈA,N
t(2N+1)d

converges in law to the quantity Kκt(Ĉ
A,δ
∞ ) as N →∞.

Furthermore the random mechanism Kκt has a distribution which is independent of the locations of our paths
as we observe them in any time interval between [t̃− T, t̃] for every finite T and t̃ = t̃(N) = (2N + 1)dt.

Therefore we can conclude that with probability at least 1 − ε the coalescence events represent a random
variable which can be obtained by restricting Kκt(C

A
∞) to a suitable large event and hence the law of our

coalescent has, for N large enough, variational distance at most ε from L[Kκt(C
A
∞)]. Then we can proceed as in

the previous case and conclude the argument.
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(Ct, Lt), spatially structured coalescent, 1304

(CN
t , L

N
t ), spatially structured coalescent restricted on torus,

1333

(Γts, `
t
s), genealogy of the look-down process, 1303

(ΠI , dl), metrized space of partitions of the index set, 1308

(χt), system of independent RWs, 1291

(Γ̃t,ρs , ˜̀t,ρs ), genealogy of the enriched IMM, 1304

(zt), Fisher-Wright diffusion, 1316

(Kt), Kingman’s coalescent, 1312

A, RW generator, 1298

AI , generator of I-indexed system of RWs, 1298

C∞, final family partition, 1308

Dρ,N , empirical density, 1316

G, geographic space, 1290

GN , torus of side length (2N + 1), 1311

K, type space, 1290

Qt, transition kernel of a Fisher-Wright diffusion, 1316

H∗
θ , entrance law of the historical look-down, 1308

Ψ(θ), initial state of the historical look-down, 1302

α, weight on G, 1291

Q̄∗
t , joint law of the final partition of a spatially structured

coalescent and a Kingman’s coalescent started in that
final partition, 1313

ā(x, y), reversed discrete time RW kernel, 1291

βN (t), the critical time scale, 1312

∗, convolution, 1315

◦, composition, 1294

η, IMM, 1290

η∗, historical IMM, 1293

γ, resampling rate, 1290

ι, index of an individual, 1295

κ, probability for non-coalescence of two partition elements
in the spatially structured coalescent, 1312

πG, projection on G, 1294

ρ, spatial density, 1292

τ∗t , shift operator on paths, 1313

â(x, y), symmetrized discrete time RW kernel, 1306

r̂A, restriction operator on probability laws on paths, 1309

Ĥθ, equilibrium measure for IFWD, 1307

H̃∗
ρ,θ, entrance law of the historical IMM, 1308

Ψ̃(θ, ρ), Poisson configuration with spatial intensity ρ and

type 1 probability θ, 1306

H̃ρ,0, H̃ρ,1, Poisson fields on G × {0, 1} supported on mono-

type paths, 1306

H̃ρ,θ, equilibrium measure for IMM, 1307

H̃∗
ρ,θ(s, t), law of historical IMM at time t started at time s in

collection of constant paths generated by Ψ(ρ, θ), 1307

ξ, enriched IMM which distinguishes between individuals,

1290

ξ∗, enriched historical IMM which distinguishes between in-
dividuals, 1296

ζ, IFWD, 1291

ζ∗, historical IFWD, 1294

{∆θ(π)}, reservoir of types for the possible family patches,
1309

a(x, y), discrete time RW kernel, 1290

aN (x, y), discrete time RW kernel on the torus, 1311

at(x, y), continuous time RW kernel, 1290

g, expected number of returns, 1312

rA, restriction operator on paths, 1309

sβ , scaling operator on paths, 1347

D([0,∞),E), cadlag maps from [0,∞) to E, 1292

EG, (Liggett-Spitzer) state space, 1291
E∗G, (Liggett-Spitzer) state space for the historical processes,

1293

H∗
θ(s, t), law of historical look-down at time t started at time

s in collection of constant paths generated by Ψ(θ), 1307

I, set of indices representing individuals, 1294

Iρ, set of indices restricted to individuals with label smaller

than ρ, 1294

M(·), R+-valued locally finite measures, 1291
N (·), N-valued locally finite measures, 1290
P, partition, 1304
U , set of labels, 1294
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