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Abstract

We give a causal interpretation of stochastic differential equations (SDEs) by defin-
ing the postintervention SDE resulting from an intervention in an SDE. We show that
under Lipschitz conditions, the solution to the postintervention SDE is equal to a uni-
form limit in probability of postintervention structural equation models based on the
Euler scheme of the original SDE, thus relating our definition to mainstream causal
concepts. We prove that when the driving noise in the SDE is a Lévy process, the
postintervention distribution is identifiable from the generator of the SDE.
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1 Introduction

The notion of causality has long been of interest to both statisticians and scientists
working in fields applying statistics. In general, causal models are models containing
families of possible distributions of the variables observed as well as appropriate math-
ematical descriptions of causal structures in the data. Thus, claiming that a causal
model is true amounts to claiming more than statements about the distribution of the
variables observed. Causal modeling has several goals, prominent among them are:

1. Estimation of intervention effects from fully or partially observed systems with a
given causal structure.

2. Identification of the causal structure from observational data.

One of the most developed theories of causal modeling is the approach based on
directed acyclic graphs (DAGs) and finitely many variables with no explicit time compo-
nent, descibed in [35, 26]. In recent years, there have been efforts to develop similar
notions of causality for stochastic processes, both in discrete time and in continuous
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Causal interpretation of SDEs

time. For discrete-time results, see for example [9, 10, 11]. As discrete-time mod-
els often are defined through explicit functional relationships between variables, as
in for example autoregressive processes, such models fit directly into the DAG-based
framework. In the continuous-time framework, the uncountable number of variables
complicates the question of how to describe causal relationships.

Early discussions of causality in a continuous-time framework can be found in [17,
15, 6]. One of the most recent frameworks for causality in continuous time is based
on the concept of weak conditional local independence. For results related to this, see
[8, 5, 16, 32, 33]. An alternative notion of causality defined solely through filtrations is
developed in [29, 28], and a notion of causality in continuous time for ordinary differ-
ential equations is introduced in [25].

In Section 4.1 of [1] it is noted that both ordinary differential equations and stochas-
tic differential equations (SDEs) allow for a natural interpretation in terms of “influ-
ence”, and that interventions may be defined by substitutions in the differential equa-
tions. In this paper, we make these ideas precise. Our main contributions are:

1. For a given SDE, we give a precise definition of the postintervention SDE resulting
from an intervention.

2. We show that under certain regularity assumptions, the solution of the postin-
tervention SDE is the limit of a sequence of interventions in structural equation
models based on the Euler scheme of the observational SDE.

3. We prove using (2) that for SDEs with a Lévy process as the driving semimartin-
gale, the postintervention distribution is identifiable from the generator associ-
ated with the SDE.

The definition (1) yields a generic notion of intervention effects for SDEs applicable
to causal inference in the case where an understanding of the mechanisms of the system
under consideration is absent. The results of point (2) clarifies when we may expect this
generic notion to be applicable.

The result (3) is stated as Theorem 5.3 and is the main theorem of this paper. Its
importance is as follows. In classical DAG-based models of causality such as developed
in [26], neither the DAG nor the effect of interventions can be uniquely identified from
the observational distribution. This is one of the main difficulties of such causal models,
and leads to a rich and challenging theory for partially identifying intervention effects,
see for example [23] and the references therein. Theorem 5.3 essentially shows that for
Lévy driven SDE models, the effect of interventions can be uniquely identified from the
observational distribution, meaning that the intervention effect identification problem
present in classical DAG-based models vanishes for these SDE models.

We expect that this result will have considerable applicability for causal inference
for time-dependent observations. As argued in the series of examples comprised by
Example 2.2, Example 2.5 and Example 5.6, our results for example lead to a dynamic
modeling framework where gene knockout effects can be derived from observational
data – a difficult problem which has previously only been dealt with, [22, 23], using
non-dynamic methods.

Of further particular note is that the identifiability result (3) in the list above cor-
responds to a case where the error variables are not all independent, as is otherwise
often assumed to be the case when calculating intervention effects in the DAG-based
framework. For the DAG-based framwork, in the case of independent errors, parts of
the causal structure may be learned from the observational distribution, as seen in [36],
and intervention distributions may be calculated by a truncated factorization formula
as in (3.10) of [26]. For dependent errors, such results are harder to come by. In our
case, we essentially take advantage of the Markov nature of the solutions to SDEs with
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Lévy noise in order to obtain our identifiability result for SDE models, and we are also
able to obtain explicit descriptions of the resulting postintervention distributions.

In matters of causality, it is important to distinguish clearly between definitions,
theorems and interpretations. Our definition of postintervention SDEs will be a purely
mathematical construct. It will, however, have a natural interpretation in terms of
causality. Given an SDE model, in order to use the definition of postintervention SDEs
given here to predict the effects of real-world interventions, it is necessary that the SDE
can be sensibly interpreted as a data-generating mechanism with certain properties:
Specifically, as we will argue in Section 4, it is essentially sufficient that the driving
semimartingales are autonomous in the sense that they may be assumed not to be
directly affected by interventions. This is an assumption which is not testable from a
statistical viewpoint. It is, nonetheless, an assumption which may be justified by other
means in concrete cases.

The remainder of the paper is organized as follows. In Section 2, we motivate and
introduce our notion of intervention for SDEs. In Section 3, we review the terminology
of causal inference as developed in [26] and [35], based on structural equation models
and directed acyclic graphs. Section 4 shows that under certain conditions, our notion
of intervention is equivalent to taking a limit of interventions in the context of structural
equation models based on the Euler scheme of the SDE. In Section 5, we give condi-
tions for postintervention distributions to be identifiable from the generator of the SDE.
Finally, in Section 6, we discuss our results. Appendix A contains proofs.

2 Interventions for stochastic differential equations

In this section, given an SDE, we define the notion of a postintervention SDE, in-
terpreted as the result of an intervention in a system described by an SDE. This notion
yields a causal interpretation of stochastic differential equations.

We begin by considering three examples. Example 2.1 is a classical stochastic con-
trol problem. The control over a stochastic process is achieved via a control variable,
whose effect on the stochastic system is a part of the model assumptions. Such an as-
sumption is an (implicit) assumption about a causal relationship, or at least about how
interventions in the system affect the system. Though the assumption is plausible in the
specific example, we want to bring attention to its existence. Example 2.2 discusses a
case where our stochastic model, due to the current state of knowledge in the subject
matter field, cannot be derived completely from background mechanisms of the system
under consideration. It is, however, highly desirable to be able to model and discuss
causality and the effect of interventions in this situation. Finally, Example 2.3 provides
an example where an understanding of the background mechanisms of a system pro-
vides an SDE model and also provides a candidate for how to describe the effects of
interventions in the system.

Example 2.1. Consider the following simplified variant of Merton’s portfolio selection
problem, first formulated in [24]. In this problem, we consider the Black-Scholes model
for a financial market in continuous time, consisting of a risk-free asset with price pro-
cess B and a risky asset with price process S, following the SDEs

dBt = rBt dt, (2.1)

dSt = µSt dt+ σSt dWt. (2.2)

Here, r denotes the risk-free interest rate, µ is the expected return of the risky asset,
and σ is the volatility of the risky asset. Now consider an investor endowed with initial
wealth V , who invests a constant fraction α of his wealth at time t in the risky asset S
and holds the remaining fraction 1− α of his wealth in the risk-free asset B.
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Now, as the investor at time t invests (1 − α)Vt in the risk-free asset, yielding own-
ership of (1 − α)Vt/Bt units of this asset, and invests αVt in the risky asset, yielding
ownership of αVt/St units of this asset, the arguments in Chapter 6 of [4] yield that V
satisfies

dVt = (1− α)(Vt/Bt) dBt + α(Vt/St) dSt

= (1− α)Vtr dt+ αVtµdt+ αVtσ dWt

= ((r + α(µ− r))Vt) dt+ αVtσ dWt. (2.3)

In [24], Merton endows the investor with a utility function u, meaning that the utility for
the investor of having wealth v is u(v) and proceeds to solve the problem of identifying
the portfolio (how α should be dynamically chosen), which optimizes the lifetime value
of the portfolio over [0, T ], given by

Ee−rTu(VT ), (2.4)

subject to the constraint that Vt > 0. The optimal (Markov) control α(t, Vt), which
is a function of time and wealth, can generally be characterized as a solution to the
Hamiton-Jacobi-Bellman equation, and for some special choices of utility functions an
explicit analytic solution can be found.

Now notice the following subtle point. In the above, we have succesfully formulated
an optimal control problem, seeking an optional portfolio for the investor. At no point
did it become necessary to consider what the “causal effect” of a particular choice of
portfolio on the wealth process is, as the general financial arguments of [4] provides for
this: A change of portfolio causes a change in the wealth process, while the opposite is a
somewhat insensible statement without a specified control process. This is an example
of how, when we have background knowledge of the effects of real-world choices (such
as the choice of portfolio) on terms of interest (the wealth of the investor), the causal
effects of choices, or interventions, are determined by our background knowledge. In
all these arguments there is a hidden assumption, namely that the choice of portfolio
doesn’t affect the Brownian motion that drives the price process. For small investors
this may be a reasonable assumptions, but it is well known that large investors can af-
fect the price process by their investments. Thus in this classical control problem there
are assumptions about how the control variable affects the system, and this includes
the assumption that the process driving the SDE is unaffected by the control variable –
a notion we later refer to as autonomy of the driving process. ◦
Example 2.2. In this example we discuss the modeling of gene expression in the yeast
microorganism Saccharomyces Cerevisiae. The genome of this organism was the first
eukaryotic genome to be completely sequenced, see [12]. In general, genes of an or-
ganism are not active at all times, nor are they simply active or not active. Instead,
a gene has a level of expression, indicating the production rate of the protein corre-
sponding to the gene. An important question in connection with genomic research is
the understanding of how the expression level of one gene influences the expression
level of other genes. An understanding of such causal networks would allow analysis of
what interventions to make on gene expression, for example what genes to knock out
(that is, turn permanently off) in order to achieve some particular aim, such as optimal
growth of an organism or optimal production rate of a particular compound of interest.

For this particular microorganism, gene expression data are available, both for non-
mutated specimens and for mutations corresponding to deletion of particular genes,
see [13]. Inference of the effect of interventions based on gene expression levels of
non-mutated specimens has been carried out in [22] using IDA (an acronym for “Inter-
vention calculus when the DAG is absent”), see [23], and compared to intervention data
resulting from deletion mutants with favorable results.
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The method investigated in [22] is not based on a dynamic model of gene expression,
but rather on a multivariate Gaussian model of cross sectional data. It suffers, for
instance, from the inability to include feedback loops. As a simple alternative suppose
that the p = 5361 genes of a non-mutant specimen of S. Cerevisiae evolves according to
an Ornstein-Uhlenbeck process solving the SDE

dXt = B(Xt −A) dt+ σ dWt, (2.5)

where B is a p × p matrix, A is a p-dimensional vector, σ is a p × d matrix and W is
a d-dimensional Brownian motion. One benefit of such a model is its mean reversion
properties, corresponding to gene expression levels fluctuating over time, but gener-
ally remaining stable over periods of the life of the specimen. Depending on the data
available, standard statistical methods may then be applied to obtain estimates of some
or all of the parameters of the model, yielding a description of the distribution of our
data.

As discussed above, the effect of knocking out gene m (corresponding to setting Xm

to zero for some m) in the model (2.5) is of central importance. However, as we in
this case do not have a sufficiently detailed biochemical understanding of how genes
influence each other over time, it is less obvious than in Example 2.1 how the knockout
intervention of gene m affects the system.

In other words, our lack of a generic concept for causality for SDEs, applicable in
the absence of knowledge of particular mechanisms of causality, in this case prevents
us from considering intervention effects in our model. ◦
Example 2.3. Chemical kinetics is concerned with the evolution of the concentrations
of chemicals over time, given in terms of a number of coupled chemical reactions, see
[37]. In this example, we consider two chemicals and derive a simple system of SDEs
from the fundamental mechanisms of the chemical reactions. If the concentration of
one chemical is fixed (as an alternative to letting it evolve according to the chemical re-
actions) the fundamental mechanisms allow us to obtain an SDE for the concentrations
of the remaining chemicals. This SDE then describes the system after the interven-
tion, and can be obtained from the original system by a purely mechanical deletion and
substitution process.

The chemicals are denoted x and y and the corresponding concentrations are de-
noted X and Y , respectively. We assume that four reactions are possible, namely:

∅ a−−−→ y

y
b12−−−−→ x

x
b11−−−−→ ∅

y
b22−−−−→ ∅

Here, the first reaction denotes the creation or influx of chemical y with constant rate
a, the second reaction denotes the change of y into x at rate b12Y , and the third and
fourth reactions denote degradation or outflux of x and y with rates b11X and b22Y ,
respectively. We collect the rates into the vector

λ(X,Y ) =


a

b12Y

b11X

b22Y

 . (2.6)

The so-called stoichiometric matrix

S =

(
0 1 −1 0

1 −1 0 −1

)
(2.7)
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collects the information about the number of molecules, for each of the two chemicals
(rows), which are created or destroyed by each of the four reactions (columns). The
rates λ(X,Y ) and the stoichiometric matrix S form the fundamental parameters of the
system. We are interested in using λ(X,Y ) and S to construct a model for the evolution
of X and Y over time.

Several different stochastic and deterministic models are available. One stochastic
model is obtained by considering a Markov jump process on N2

0, where each coordinate
denotes the total number of molecules of each chemical x and y, and the transition rates
are given in terms of S and λ(X,Y ). A system of SDEs approximating the Markov jump
process, see [2], is given by(

Xt

Yt

)
=

(
X0

Y0 + at

)
+

∫ t

0

B

(
Xs

Ys

)
ds+

∫ t

0

Σ(Xs, Ys) dWs (2.8)

where Ws denotes a four-dimensional Wiener process, and the matrices Σ(x, y) and B

are given by

Σ(x, y) = Sdiag
√
λ(x, y)

=

(
0

√
b12y −

√
b11x 0√

a −
√
b12y 0 −

√
b22y

)
(2.9)

and

B =

(
−b11 b12

−b12 −b22

)
. (2.10)

If we are able to fix the concentration Yt at a level ζ, we effectively remove the first and
last of the reactions and the second will have the constant rate b12ζ. By arguments as
above we then derive the SDE

Xt = X0 + tb12ζ −
∫
b11Xs ds+

∫ t

0

σ(Xs) dW̃s, (2.11)

with W̃s a two-dimensional Wiener process and σ(x) = (
√
b12ζ,−

√
b11x). We observe

that this SDE, describing the intervened system, can be obtained from (2.8) by deleting
the equation for Yt and substituting ζ for Yt in the remaining equation. ◦

We now proceed to our main definition. Recall that in Example 2.2, we were stopped
short in our discussion of the effect of interventions in our model due to the lack of a
generic notion of interventions for SDEs. We will now use the conclusions from Example
2.3 to introduce such a generic notion of interventions.

In the DAG-based framework, the DAG is a direct representation of the causal struc-
ture of the system. We do not directly provide such a representation of causality for
SDEs. In general, the precise meaning of “causation” is a point of contemporary de-
bate, see for example [7]. For our purposes, it suffices to take a practical standpoint:
The causal structure of a system is sufficiently elucidated for the purposes of our dis-
cussion if we know the effects of making interventions in the system. For this reason,
we restrict ourselves in Definition 2.4 to defining the effect of making interventions.

In Example 2.3, we obtained results on the effects of intervention in a system from
a model for the entire system. In this particular example, the resulting model for the
intervention was justified by reference to the fundamental mechanisms (the chemical
reactions) driving the system, and interventions resulted in SDEs modified by substi-
tution and deletion. While noting that this correspondence between interventions and
substitution and deletion in the original equations may not always be justified, we will
use this principle as a general, purely mathematical definition of interventions in SDEs.
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Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual condi-
tions, see [30] for the definition of this and other notions related to continuous-time
stochastic processes. In order to formalize our definition in a general framework, let
Z be a d-dimensional semimartingale and assume that a : Rp → M(p, d) is a continu-
ous mapping, where M(p, d) denotes the space of real p × d matrices. We consider the
stochastic differential equation

Xi
t = Xi

0 +

d∑
j=1

∫ t

0

aij(Xs−) dZjs , i ≤ p. (2.12)

This SDE is written in integral form. Using differential and matrix notation, (2.12)
corresponds to the SDE dXt = a(Xt−) dZt with initial condition X0. In the following,
x−m denotes the (p − 1)-dimensional vector where the m’th coordinate of x ∈ Rp has
been removed.

Definition 2.4. Consider some m ≤ p and ζ : Rp−1 → R. The stochastic differen-
tial equation arising from (2.12) under the intervention Xm

t := ζ(X−mt ) is the (p − 1)-
dimensional equation

(Y −m)it = Xi
0 +

d∑
j=1

∫ t

0

bij(Y
−m
s− ) dZjs , i 6= m, (2.13)

where b : Rp−1 →M(p− 1, d) is defined by bij(y) = aij(y1, . . . , ζ(y), . . . , yp) for i 6= m and
j ≤ d and the ζ(y) is on the m’th coordinate.

By Definition 2.4, intervening takes a p-dimensional SDE as its argument and yields
a (p− 1)-dimensional SDE as its result. Note that existence and uniqueness of solutions
are not required for Definition 2.4 to make sense, although we will mainly take interest
in cases where both (2.12) and (2.13) have unique solutions. By Theorem V.7 of [30],
this is for example the case whenever the mappings a and ζ are Lipschitz.

We stress that while Definition 2.4 is motivated by actual results from Example 2.3,
we do not claim that it universally describes the effects of actual interventions in a sys-
tem. The discussion in Section 4 gives indications for whether Definition 2.4 properly
describes causality for a particular SDE system. Our other results, such as those of Sec-
tion 5, are devoted to analyze the consequences if Definition 2.4 is a valid description
of the effect of interventions (and thus also a valid description of the causal structure of
the system, since knowing the effects of interventions yields causal information about
the system).

As discussed in Example 2.2, an intervention with a constant function ζ is of some
interest, and in the context of gene expression a knockout intervention, corresponding
to ζ(y) = 0, is one of the only control mechanisms currently possible. If ζ is a constant
we identify the function with this constant, and we write Xm

t := ζ for the intervention
that puts the m’th coordinate constantly equal to ζ.

Also note that the process Y −m above for which the SDE is formulated is a (p − 1)-
dimensional process indexed by {1, . . . , p} \ {m}. When Y −m is a solution to (2.13), we
also define Y mt = ζ(Y −mt ), and the p-dimensional process Y is then the full result of
making the intervention Xm := ζ(X−mt ). The process Y −m is simply Y with its m’th
coordinate removed. In general, the p-dimensional process Y will not satisfy any p-
dimensional SDE except in special cases. One such special case is when ζ is constant.
In this case Y will satisfy the p-dimensional SDE

Y it = Y i0 +

d∑
j=1

∫ t

0

cij(Ys−) dZjs , i ≤ p, (2.14)
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where Y i0 = Xi
0 for i 6= m and Y m0 = ζ, and c : Rp → M(p, d) is given by letting

cij(x) = aij(x) for i 6= m and cmj(x) = 0 for all x ∈ Rp and j ≤ d.
Assuming that (2.12) and (2.13) have unique solutions for all interventions, we refer

to (2.12) as the observational SDE, to the solution of (2.12) as the observational pro-
cess, and to the distribution of the solution of (2.12) as the observational distribution.
We refer to (2.13) as the postintervention SDE, to the solution of (2.13) as the postinter-
vention process and to the distribution of the solution to (2.13) as the postintervention
distribution. Note how our definition of the postintervention SDE has the same struc-
ture as the SDE obtained in Example 2.3 by reference to fundamental mechanisms.

As a first application of Definition 2.4, we show in Example 2.5 that by Definition 2.4,
intervention with constant functions in an Ornstein-Uhlenbeck process yields another
Ornstein-Uhlenbeck process. Recalling Example 2.2, we thus find that if Definition
2.4 is applicable in the SDE model of Example 2.2, and if we can identify the correct
parameters of the SDE, then we can reason about the effects of interventions.

Example 2.5. Let x0 ∈ Rp, A ∈ Rp, B ∈ M(p, p) and σ ∈ M(p, d). The Ornstein-
Uhlenbeck SDE with initial value X0, mean reversion level A, mean reversion speed B,
diffusion matrix σ and d-dimensional driving noise is

Xt = X0 +

∫ t

0

B(Xs −A) ds+ σWt, (2.15)

where W is a d-dimensional (Ft) Brownian motion, see Section II.72 of [31]. Fix m ≤ p

and ζ ∈ R. Under the intervention Xm := ζ, we obtain that the postintervention process
satisfies

Y it = Xi
0 +

∫ t

0

p∑
j 6=m

Bij(Y
j
s −Aj) +Bim(ζ −Am) ds+

d∑
j=1

σijW
j
t . (2.16)

for i 6= m. Now let B̃ be the submatrix of B obtained by removing the m’th row and
column of B, and assume that B̃ is invertible. We then obtain

Y −mt = X−m0 +

∫ t

0

B̃(Y −ms − Ã) ds+ σ̃Wt, (2.17)

where σ̃ is obtained by removing the m’th row of σ and Ã = α − B̃−1β, where α and
β are obtained by removing the m’th coordinate from A and from the vector whose
i’th component is Bim(ζ − Am), respectively. Thus, Y −m solves an (p − 1)-dimensional
Ornstein-Uhlenbeck SDE with initial value X−m0 , mean reversion level Ã, mean rever-
sion speed B̃ and diffusion matrix σ̃. ◦

Now note that for the SDE

dXt = B(Xt −A) dt+ σ dWt, (2.18)

considered in Example 2.2, the solution distribution depends only on σ through σσt.
Therefore, the parameters of the SDE are not uniquely identifiable from the observa-
tional distribution. As we thus cannot identify the parameters of the SDE, it appears
that we cannot identify the postintervention SDE in Definition 2.4. In Example 5.6, we
show how to use our main theorem, Theorem 5.3, on identifiability of postintervention
distributions to circumvent this problem. Though we cannot identify the postinterven-
tion SDE, we can in fact identify the postintervention distribution.

Note also that in Example 2.3, the matrix

Σ(X,Y )Σ(X,Y )t =

(
b12Y + b11X −b12Y

−b12Y a+ b12Y + b22Y

)
(2.19)
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is not diagonal, implying that the martingale parts of the semimartingale (X,Y ) are
not orthogonal. This shows that there are naturally occuring situations where it is
necessary to consider models with non-orthogonal martingale parts. This is a situation
excluded in the WCLI framework of [16] and is a motivating factor for the level of
generality in our definition.

3 Terminology of SEMs, DAGs and interventions

In this section, we review the basic notions related to intervention calculus for struc-
tural equation models (SEMs). For a detailed overview, see [26, 35]. We will use these
notions in Section 4 to interpret our definition of intervention for SDEs in terms of
intervention calculus for structural equation models.

As remarked above, Definition 2.4 takes an SDE as an argument and yields another
SDE, in contrast to, for example, taking the distribution of an SDE, and yielding another
distribution. This corresponds to how an intervention in the framework of SEMs, see
[26], takes a SEM and returns another SEM, instead of taking a distribution and yielding
another distribution. This is a key point, and allows us in Section 4 to use SEMs and
DAGs to interpret Definition 2.4, and view SDEs as a natural extension of SEMs to
continuous time models.

Let V be a finite set, and let E be a subset of V × V . A directed graph G on V is a
pair (V,E). We refer to V as the vertex set, and refer to E as the edge set. Note that
by this definition, there can be at most one edge between any pair of vertices. A path
is an unbroken series of vertices and edges such that no vertices are repeated except
possibly the initial and terminal vertices. A directed cycle is a path with the same initial
and terminal vertices and all arrows pointing in the same direction. We say that G
is an acyclic directed graph (DAG) if G contains no directed cycles. Note that this in
particular excludes that the graph contains an edge with the same initial and terminal
vertex. For any graph G and i ∈ V , we write pa(i) = {j ∈ V | (j, i) ∈ E}, and refer to
pa(i) as the parents of the vertex i. If we wish to emphazise the graph G, we also write
paG(i).

A structural equation model (SEM) consists of three components:

1. Two families (Xi)i∈V and (Ui)i∈V of random variables.

2. A directed acyclic graph G on V .

3. A set of functional relationships Xi = fi(XpaG(i), Ui).

We refer to (Xi)i∈V as the primary variables and (Ui)i∈V as the noise variables.
Note that we do not a priori assume that the noise variables are independent. The idea
behind a SEM is that the DAG provides the sequence in which the functional relation-
ships are evaluated, thus yielding an algorithm for obtaining the values of (Xi)i∈V from
(Ui)i∈V . A SEM does not only yield the distribution of the variables (Xi)i∈V , but also
a description of a data generating mechanism. This is made precise by the notion of
an intervention, see Definition 3.2.1 of [26]. Chapter 3 of [26] discusses interventions
where a subset of variables are set to a constant value. We will need to consider a more
general type of interventions where variables are set to values depending on other vari-
ables. Therefore, our definition below extends Definition 3.2.1 of [26]. See Chapter 4
of [26] for more on this type of interventions.

Definition 3.1. Consider given a SEM with primary variables (Xi)i∈V , noise variables
(Ui)i∈V , DAG G and functional relationships Xi = fi(XpaG(i), Ui). Let A be a subset of
V , and for i ∈ A let I(i) ⊆ V \A and ζi(XI(i)) be a function of the primary variables with
indices in I(i). We form a new graph G′ by replacing paG(i) with I(i) for i ∈ A. We
assume that G′ is a DAG. The postintervention SEM obtained by doing Xi := ζi(XI(i))
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for i ∈ A is a SEM with primary variables (Xi)i∈V , noise variables (Ui)i∈V , DAG G′ and
functional relationships obtained by substituting all occurrences of Xi by ζi(XI(i)) for
i ∈ A.

In short, Definition 3.1 describes the effect of intervening and setting Xi for i ∈ A
to be a function of certain variables in V \A. In the case where the ζi are constant, this
reduces to Definition 3.2.1 of [26].

4 Interpretation of postintervention SDEs

In this section, we show that under Lipschitz conditions on the coefficients in (2.12)
and the intervention mapping, the solution to the postintervention SDE described in
Definition 2.4 essentially is the limit of a sequence of postintervention SEMs as de-
scribed in Definition 3.1 based on the Euler scheme of (2.12). We use this to clarify the
role of the driving semimartingales Z1, . . . , Zd. Also, we will use this result to prove the
main theorem on identifiability in Section 5.

Definition 4.1. The signature of the SDE (2.12) is the graph S with vertex set {1, . . . , n}
and an edge from i to j if it holds that there is k such that the mapping ajk is not
independent of the i’th coordinate.

Letting aj· = (aj1, . . . , ajd), another way of describing the signature S in Definition
4.1 is that there is an edge from i to j if xi 7→ aj·(x) is not constant, or equivalently,
there is no edge from i to j if it holds for all k that ajk does not depend on the i’th
coordinate.

Definition 4.2. We say that Xj is locally unaffected by Xi in the SDE (2.12) if there is
no edge from i to j in the signature of (2.12).

Being locally unaffected is a property of two coordinates of an SDE. If there is no
risk of ambiguity, we leave out the SDE and simply state that Xj is locally unaffected
by Xi.

The signature is used in the following definition to define a SEM corresponding to
the Euler scheme for (2.12). With a slight abuse of notation, we choose in Definition
4.3 for convenience to consider the initial variables X1

0 , . . . , X
p
0 as primary variables,

even though these variables have no associated noise variables in the SEM. This is not
a problem as it is nonetheless clear how interventions for the SEM given in Definition
4.3 should be understood.

Definition 4.3. Fix T > 0 and consider ∆ > 0 such that T/∆ is a natural number. Let
N = T/∆ and tk = k∆. The Euler SEM over [0, T ] with step size ∆ for (2.12) consists of
the following:

1. The primary variables are the p(N + 1) variables in the set (X∆
tk

)0≤k≤N , indexed
by {0, . . . , N} × {1, . . . , p}.

2. For 1 ≤ k ≤ N , the noise variable for the i’th coordinate ofX∆
tk

is the d-dimensional
variable Ztk − Ztk−1

.
3. The DAG is the graph G = (V,E) with vertex set {0, . . . , N} × {1, . . . , p} defined by

having ((i1, j1), (i2, j2)) be an edge of D if and only if i2 = i1 + 1 and either j2 = j1
or (j1, j2) is an edge in the signature of (2.12).

4. The functional relationships are given by:

(X∆
tk

)i = (X∆
tk−1

)i +

d∑
j=1

aij(X
∆
tk−1

)(Zjtk − Z
j
tk−1

). (4.1)

A visualization of the DAG for the SEM of Definition 4.3 is shown in Figure 1. The
figure shows how the signature S determines the DAG describing the algorithm for
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calculating the variables in the Euler SEMs. Making the constant intervention X1
tk

:= ζ

for all k corresponds to removing the top row in Figure 1.

•177

��
•2

•3

FF

X1
0

//

""

X1
∆

//

%%

X1
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//

&&

X1
3∆
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""X2
0

// X2
∆

// X2
2∆

// X2
3∆

//

X3
0

//

<<

X3
∆

//

99

X3
2∆

//

88

X3
3∆

//

<<

Z∆ − Z0

FF

BB

AA

Z2∆ − Z∆

FF

BB

AA

Z3∆ − Z2∆

FF

BB

AA

Figure 1: The signature for a three-dimensional SDE (left) and the DAG for the corre-
sponding Euler SEM (right).

Combining the following two lemmas yields the main result of this section.

Lemma 4.4. Assume that a : Rp → M(p, d) is Lipschitz. Fix T > 0 and let (∆n)n≥1 be
a sequence of positive numbers converging to zero such that T/∆n is natural for all
n ≥ 1. For each n, there exists a pathwisely unique solution to the equation

(Xn
t )i = Xi

0 +

d∑
j=1

∫ t

0

aij(X
n
ηn(s−)) dZjs , i ≤ p, (4.2)

where ηn(t) = k∆n for k∆n ≤ t < (k + 1)∆n, satisfying that ((Xn)tk)0≤k≤T/∆n
are the

primary variables in the Euler SEM for (2.12), and sup0≤t≤T |Xt − Xn
t | converges in

probability to zero, where X is the solution to (2.12).

Proof. By inspection, (4.2) has a unique solution, and ((Xn)tk)k≤T/∆n
is the primary

variables in the Euler SEM for (2.12). That sup0≤t≤T |Xt −Xn
t | converges in probability

to zero is the corollary to Theorem V.16 of [30].

Lemma 4.5. Fix T > 0 and consider ∆ > 0 such that T/∆ is a natural number. Fix
m ≤ p and ζ : Rp−1 → R. The Euler SEM for the stochastic differential equation (2.13)
is equal to the result of removing the m’th coordinate of the postintervention SEM
obtained by the intervention (X∆

tk
)m := ζ((X∆

tk−1
)−m) for 0 ≤ k ≤ T/∆ in the Euler SEM

for (2.12).

Proof. The functional relationships in the Euler SEM for (2.12) are

(X∆
tk

)i = (X∆
tk−1

)i +

d∑
j=1

aij(X
∆
tk−1

)(Zjtk − Z
j
tk−1

), (4.3)

while for (2.13) and i 6= m, they are

(Y ∆
tk

)i = (Y ∆
tk−1

)i +

d∑
j=1

bij((Y
∆
tk−1

)−m)(Zjtk − Z
j
tk−1

)

= (Y ∆
tk−1

)i +

d∑
j=1

aij(Y
∆
tk−1

)(Zjtk − Z
j
tk−1

), (4.4)
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where (Y ∆
tk

)m = ζ((Y ∆
tk−1

)−m). By inspection, (4.4) is the result of the stated intervention
in the Euler SEM according to Definition 3.1.

Together, Lemma 4.4 and Lemma 4.5 states that the diagram in Figure 2 commutes:
Defining interventions directly in terms of changing the terms in the stochastic differ-
ential equation has the same effect as intervening in the Euler SEM and taking the
limit.

Euler SEM for observational SDE //

��

Observational SDE

��
Postintervention Euler SEM // Postintervention SDE

Figure 2: The interpretation of intervention in a stochastic differential equation under-
stood as the limit of interventions in the Euler SEMs.

These results clarify what Definition 2.4 means, and in particular, when this generic
definition of intervention is applicable when background mechanisms are unknown,
such as Example 2.2. The intuition behind Definition 2.4 is that interventions are as-
sumed not to influence the semimartingale Z directly. This is made concrete by assum-
ing that the family (Ztk −Ztk−1

)k≤N are the noise variables in the Euler SEM, such that
there are no arrows in the DAG for the SEM with terminal vertices in (Ztk − Ztk−1

)k≤N .
The lemmas show that when this condition holds true, the notion of intervention given
in Definition 2.4 is consistent with the result of intervention in the Euler SEM. Note
that this does not constitute a proof of causality. Rather, it gives guidelines as to when
it is reasonable to expect that our notion of intervention will reflect real-world inter-
ventions: namely, when none of the coordinates Xi have a direct effect on the driving
semimartingale Z. Whether this is the case or not is in general not a testable assump-
tion.

Furthermore, note that the arrows across columns in the Euler SEM is determined
by the signature of the SDE. Therefore, if we accept the hypothesis that the DAG of
the Euler SEM describes the causal links between the coordinates of the SDE, then
the signature S describes which coordinates of the SDE (2.12) are causally dependent
on each other in an infinitesimal sense. Also note that as we are not using the Euler
SEMs to draw any conclusions about the distribution of the variables, we do not require
independence of the noise variables (Ztk −Ztk−1

)k≤N . In particular, the variables in the
Euler SEM do not need to be Markov with respect to the DAG in the sense of [26].

Concluding this section, we give an example to illustrate that the notion of interven-
tion given in Definition 2.4, and the corresponding causal interpretation outlined above,
may not always be applicable.

Example 4.6. Let X1 = W be a one-dimensional Wiener process, consider a twice
continuously differentiable function f : R → R and assume that for all t ≥ 0, it holds
that

X2
t = f(X1

t ). (4.5)

We now make the following assumption: Assume that (4.5) represents the actual causal
relationship between X1 and X2, in the sense that the result on X2 of the intervention
X1 := ζ is the process

X2
t = f(ζ). (4.6)
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Now, by Itô’s lemma, it holds that

X2
t = f(X1

0 ) +
1

2

∫ t

0

f ′′(X1
s ) d[X1]s +

∫ t

0

f ′(X1
s ) dX1

s (4.7)

= f(0) +
1

2

∫ t

0

f ′′(X1
s ) ds+

∫ t

0

f ′(X1
s ) dWs,

such that (X1, X2) satisfies

X1
t =

∫ t

0

dWs (4.8)

X2
t = f(0) +

1

2

∫ t

0

f ′′(X1
s ) ds+

∫ t

0

f ′(X1
s ) dWs, (4.9)

which together yields a two-dimensional SDE of the form given in (2.12). Therefore, we
may apply Definition 2.4 to this SDE. The resulting postintervention SDE for X2 under
the intervention X1 := ζ is

X2
t = f(0) +

1

2

∫ t

0

f ′′(ζ) ds+

∫ t

0

f ′(ζ) dWs, (4.10)

which yields the result X2
t = f(0)+ 1

2f
′′(ζ)t+f ′(ζ)Wt, in contradiction with our assumed

result in (4.6), X2
t = f(ζ). This shows that we may conceptualize ideas about the effects

of interventions which are rather natural, but which are not captured by Definition 2.4.
This illustrates the importance of the conclusions made above: We can only argue under
certain circumstances that Definition 2.4 is a reasonable description of the effects of
intervention. ◦

We note that in Example 4.6, it is not the use of Itô’s lemma which yields the dis-
crepancy between the results of Definition 2.4 and the assumed result, (4.6). Rather, it
is the subsequent substitution of X1 by W . In fact, if we intervene directly in (4.7) by
replacing X1 by the constant ζ, the result would be that X2

t = f(ζ), in accordance with
(4.6). However, Definition 2.4 does not allow for such interventions on the integrators.
To do so generally would complicate matters, and we will not pursue this any further.

5 Identifiability of postintervention distributions

In this section we formulate a result, Theorem 5.3, giving conditions for the postin-
tervention distributions to be determined by uniquely identifiable aspects of the SDE.
We show that if the SDE is driven by a Lévy process, the postintervention distribution
is determined by the generator.

To introduce the generator associated with the SDE (2.12), when it is driven by a
Lévy process, we need to introduce Lévy triplets. A Lévy measure on Rd is a measure
ν assigning zero measure to {0} such that x 7→ min{1, ‖x‖2} is integrable with respect
to ν. A d-dimensional Lévy triplet is a triplet (α,C, ν), where α is an element of Rd, C is
a positive semidefinite d × d matrix and ν is a Lévy measure on Rd. Recall that for any
bounded neighborhood D of zero in Rd and any d-dimensional Lévy process X, there is
a Lévy triplet (α,C, ν) such that

Eeiu
tX1 = exp

(
iutα− 1

2
utCu−

∫
Rd

eiu
tx − 1− iutx1D(x) dν(x)

)
, (5.1)

and this triplet uniquely determines the distribution ofX, see Theorem 1.2.14 of [3]. We
refer to (α,C, ν) as the characteristics of X with respect to D, or as the D-characteristic
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triplet of X. Conversely, for any bounded neighborhood D of zero in Rd and any
Lévy triplet (α,C, ν), there exists a Lévy process having (α,C, ν) as its D-characteristic
triplet.

The generator of (2.12) is defined as a linear operator on the set C2
0 (Rp) of twice

continuously differentiable functions such that the function itself together with all its
first and second partial derivatives vanish at infinity.

Definition 5.1. Let D be a bounded neighborhood of zero in Rd. Consider the SDE
(2.12), where Z is a d-dimensional Lévy process with D-characteristic triplet (α,C, ν)

and a : Rp →M(p, d). We define the generator A of (2.12) on C2
0 (Rp) by

Af(x) =

p∑
i=1

d∑
j=1

aij(x)αj
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
Rp

f(x+ a(x)y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj dν(y) (5.2)

for f ∈ C2
0 (Rp) and x ∈ Rp.

It holds that for any choice of a that the generator A is well defined on C2
0 (Rp) with

values in the set of functions on Rp. If we are willing to put restrictions on a, the range
of the generator can be restricted as well.

The interest in the generator stems from the fact that when Z is a Lévy process, the
generator of (2.12) can usually be determined by the semigroup of transition probabil-
ities for the Markov process that solves (2.12). We state one such result here. Lemma
5.2 is a folklore result, and follows from the results in Chapter 6 of [3].

Lemma 5.2. If Z is a Lévy process and a : Rp →M(p, d) is Lipschitz and bounded then
there exists a unique Feller semigroup (Pt) with the property that all solutions of (2.12)
are Feller processes with semigroup (Pt). Moreover, the generator A of (2.12) satisfies
that

Af = lim
t→0

t−1(Ptf − P0f) (5.3)

for f ∈ C2
0 (Rp), where convergence is in the uniform norm on C2

0 (Rp).

For a treatment of the theory of Markov processes and Lévy processes, and in partic-
ular for notions such as Feller processes, Feller semigroups, generators, Lévy processes
and so forth, see [14, 3, 34]. We are now ready to state our main result on identifiability.

Theorem 5.3. Consider the SDEs

Xi
t = Xi

0 +

d∑
j=1

∫ t

0

aij(Xs) dZjs , i ≤ p, (5.4)

and

X̃i
t = X̃i

0 +

d∑
j=1

∫ t

0

ãij(X̃s) dZ̃js , i ≤ p, (5.5)

where Z is a d-dimensional Lévy process and Z̃ is a d̃-dimensional Lévy process. Assume
that (5.4) and (5.5) have the same generator, that a : Rp → M(p, d) and ζ : Rp−1 → R

are Lipschitz and that the initial values have the same distribution. Then the postinter-
vention distributions of doing Xm := ζ(X−m) in (5.4) and doing X̃m := ζ(X̃−m) in (5.5)
are equal for any choice of ζ and m.
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Theorem 5.3 is proven in Appendix A. Theorem 5.3 states that for SDEs with a Lévy
process as the driving semimartingale, postintervention distributions are identifiable
from the generator. In the remainder of this section, we discuss the content of Theorem
5.3.

First, recall that a main theme of the DAG-based framework for causal inference
as in [35, 26] is to identify conditions for when postintervention distributions are iden-
tifiable from the observational distribution. Theorem 5.3 gives a criterion for when
postintervention distributions are identifiable from the generator of the SDE, which is
not exactly the same. Nonetheless, in a large family of naturally occurring cases, the
semigroup is identifiable from the observational distribution. This is for example the
case if the solutions to (5.4) and (5.5) are irreducible, as the family of transition proba-
bilities in this case will be identifiable from the observational distribution, allowing us
to obtain the generator through Lemma 5.2.

Next, we comment on the relationship between the result of Theorem 5.3 and iden-
tifiability results of DAG-based causal inference. Consider the Euler SEM of Definition
4.3, illustrated in Figure 1. In the DAG of this SEM, the orientation of all arrows is
assumed known: All orientations for arrows from primary variables point forward in
time. If the error variables for each primary variable were independent, it would hold
that the distribution of the variables would be Markov with respect to the DAG in the
sense of [26]. In this case, by the results of [36], we would be able to identify the
skeleton of the graph (that is, its undirected edges) from the observational distribution.
As all orientations are given, this leads to identifiability of the entire graph. Using the
truncated factorization (3.10) of [26], this leads to identifiability of intervention distri-
butions from the observational distribution. Thus, in this case, identifiability would not
be a surprising result.

However, when the driving semimartingale Z is a Lévy process, the error variables
are independent across time, but are not independent across coordinates: For each k,
the variables X1

∆k, . . . , X
p
∆k have the same d-dimensional error variable, namely Z∆k −

Z∆(k−1), and so the Euler SEM illustrated in Figure 1 is not Markov with respect to its
DAG. Therefore, our scenario differs from the conventional causal modeling scenario of
[26] in two ways: Both by considering a continuous-time model with uncountably many
variables and by considering a particular type of dependent errors.

We end the section with three examples. Example 5.4 considers a particularly simple
scenario where identifiability of postintervention distributions can be seen explicitly
from the transition probabilities. In Example 5.5, we show that it is possible for two
SDEs with the same distribution to have different signatures. Remarkably, this shows
that while postintervention distributions are identifiable by Theorem 5.3, the signature
of the true SDE is not generally identifiable. However, we expect that the behaviour
observed in Example 5.5 is atypical, similarly to the absence of faithfulness in Gaussian
SEMs, see Theorem 3.2 of [35]. Finally, in Example 5.6, we show how Theorem 5.3
allows us to infer intervention effects of knocking out genes in our previous example on
S. Cerevisiae, Example 2.2.

Example 5.4. Let W and W̃ be d-dimensional and d̃-dimensional Brownian motions, let
B and B̃ be p × p matrices, and let σ and σ̃ be p × d and p × d̃ matrices. Consider two
processes X and Y being the unique solutions to the Ornstein-Uhlenbeck SDEs

Xt = X0 +

∫ t

0

BXt dt+ σWt (5.6)

and

Yt = Y0 +

∫ t

0

B̃Xt dt+ σ̃Wt. (5.7)
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We will show by a direct analysis that if the generators of the SDEs are equal and the
initial distributions are the same, then the postintervention distributions are equal as
well. For notational simplicity, we consider intervening on the first coordinate, making
the interventions X1 := ζ and Y 1 := ζ. It will suffice to show equality of distributions
for the non-intervened coordinates in the postintervention distributions. Consider block
decompositions of the form

B =

(
B11 B12

B21 B22

)
and σ =

(
σ1

σ2

)
, (5.8)

where B11 is a 1× 1 matrix and B22 is a (p− 1)× (p− 1) matrix and σ1 is a 1× d matrix
and σ2 is a (p− 1)× d matrix. Also consider corresponding decompositions of B̃ and σ̃.

Assume that the generators of the SDEs are equal, and assume that X0 and Y0 have
the same distribution. The transition probabilities for X and Y are then the same. With
Pt(x, ·) denoting the transition probability of moving from state x in time t for X, the
results of [20] show that

Pt(x, ·) = N
(

exp(tB)x,

∫ t

0

exp(sB)σσt exp(sBt) ds

)
, (5.9)

where the right-hand side denotes a Gaussian distribution, and similarly for the tran-
sition probabilities of Y . As these are equal for all x ∈ Rp and t ≥ 0, we obtain
exp(tB) = exp(tB̃) for all t ≥ 0, so by differentiating, B = B̃ as well. Likewise, as∫ t

0
exp(sB)σσt exp(sBt) ds =

∫ t
0

exp(sB̃)σ̃σ̃t exp(sB̃t) ds for all t ≥ 0, we obtain σσt = σ̃σ̃t.
Note that

σσt =

(
σ1σ

t
1 σ1σ

t
2

σ2σ
t
1 σ2σ

t
2

)
, (5.10)

and similarly for σ̃σ̃t. Therefore, we obtain in particular that σ2σ
t
2 = σ̃2σ̃

t
2.

Now, applying Definition 2.4 and recalling Example 2.5, the intervened processes
minus the first coordinate, X̃−1 and Ỹ −1 (note that the superscripts do not denote
reciprocals), are Ornstein-Uhlenbeck processes with initial values X−1

0 and Y −1
0 , mean

reversion speeds B22 and B̃22, mean reversion levels −B−1
22 B21ζ and −B̃−1

22 B̃21ζ and
diffusion matrices σ2 and σ̃2. As we above concluded that X0 and Y0 have the same
distribution, B = B̃ and σ2σ

t
2 = σ̃2σ̃

t
2, we obtain that the distributions of X̃−1 and Ỹ −1

must be equal. Thus, by direct calculation of transition probabilities, we see that for
the Ornstein-Uhlenbeck with zero mean reversion level, intervention distributions are
identifiable from the observational distribution. ◦
Example 5.5. Consider the mapping a : R2 →M(2, 2) defined by

a(x) =

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

]
(5.11)

whenever x is not zero, and a(0) = 0. This mapping satisfies

a(x)a(x)t =

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

] [
x1 x2

2/
√
x2

1 + x2
2

0 −x1x2/
√
x2

1 + x2
2

]
=

[
x2

1 x1x
2
2/
√
x2

1 + x2
2

x1x
2
2/
√
x2

1 + x2
2 x2

2

]
(5.12)

whenever x 6= 0. We will construct another mapping ã which has a different signature
from a, but which has the same cross product as a, in the sense of having ã(x)ã(x)t =
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a(x)a(x)t. To do so, define p : R2 →M(2, 2) by

p(x) =
1√

x2
1 + x2

2

[
x1 x2

x2 −x1

]
, (5.13)

for x 6= 0 and let p(0) be the identity matrix. Put ã(x) = a(x)p(x). We then obtain
ã(0) = a(0) = 0 and

ã(x) =
1√

x2
1 + x2

2

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

] [
x1 x2

x2 −x1

]
=

1√
x2

1 + x2
2

[
x2

1 x1x2

0 (x3
2 + x2

1x2)/
√
x2

1 + x2
2

]
=

[
x2

1/
√
x2

1 + x2
2 x1x2/

√
x2

1 + x2
2

0 x2

]
. (5.14)

Note that the first row of a depends only on the first coordinate, while the second row
depends on both coordinates. On the other hand, the first row of ã depends on both
coordinates, while the second row of ã depends only on the second coordinate. This
translates into a and ã corresponding to different signatures, shown in Figure 3.

•1
%% $$

•2
yy

•1
%%

•2
yy

gg

Figure 3: Left: The signature corresponding to a. Right: The signature corresponding
to ã.

As p(x) is orthonormal for all x, it holds that ã(x)ã(x)t = a(x)a(x)t and so the solu-
tions to the two SDEs

dXt = a(Xt) dWt (5.15)

dXt = ã(Xt) dWt (5.16)

have the same distribution. Thus, we have explicitly constructed two SDEs with the
same solution distributions but with different signatures. Note now that the interven-
tion X2 := ζ in (5.15) yields an SDE where the first coordinate satisfies

dX1
t = X1

t dW 1
t (5.17)

while the intervention X2 := ζ in (5.16) yields an SDE where the first coordinate satis-
fies

dX1
t =

(X1
t )2√

(X1
t )2 + ζ2

dW 1
t +

X1
t ζ√

(X1
t )2 + ζ2

dW 2
t (5.18)

The distribution of the solution to (5.18) is a Markov process whose generator on C2
0 (R)

is given by

Af(x) =
x4 + (xζ)2

x2 + ζ2

d2f

dx2
(x) = x2 d2f

dx2
(x), (5.19)
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which is the generator of a geometric Brownian motion with zero drift. This is the
same as the generator of the solution to (5.17). Thus, as required in Theorem 5.3, the
postintervention distributions are the same, even in this case where the signatures are
different. ◦

Example 5.5 illustrates a rather curious fact: For SDE models, the postintervention
distributions are identifiable from the observational distribution, even when the sig-
nature and thus the resulting DAGs of the Euler SEMs are not identifiable from the
observational distribution. One interpretation of this is that for SDEs, the postinterven-
tion distributions will be the same for all signatures and thus all resulting DAGs which
are compatible with the observational distribution. From this perspective, and in con-
cordance with Theorem 5.3, the agreement of the two postintervention distributions in
Example 5.5 is not so much related to the dependence structure of a(x), but rather on
the dependence structure of a(x)a(x)t, or equivalently, ã(x)ã(x)t.

This also indicates that in order to obtain a successful theory of causality for SDEs,
the relevant concept to consider is postintervention distributions, and not the signa-
tures, since the latter is identifiable from the observational distribution while the former
is not. This contrasts with the classical DAG-based case, where a natural methodology
consists of first identifying the DAGs compatible with the observational distribution and
then, in order to partially infer intervention effects, consider the intervention effect for
each possible DAG, as in [23].

Example 5.6. Consider again the yeast microorganism S. Cerevisiae. In Example 2.2,
we assumed that we were given observations Xt0 , . . . , Xtp over time of all p = 5361

genes of a non-mutant specimen of S. Cerevisiae, and we modeled these observations
using an Ornstein-Uhlenbeck process, given by

dXt = B(Xt −A) dt+ σ dWt. (5.20)

In Example 2.5, we used Definition 2.4 to calculate postintervention distributions from
Ornstein-Uhlenbeck processes. We concluded that if Definition 2.4 is applicable (a non-
testable hypothesis, according to the discussion of Section 4) and we could identify
the parameters in (5.20), then it would be possible to draw inferences about the SDEs
resulting from interventions such as knocking out a single gene by setting Xm := 0. We
also concluded that the parameter σ is not identifiable in our model. Thus, we cannot
identify the true SDE, and thus cannot identify the true postintervention SDE.

Assume now, however, that we are satisfied by only knowing the distributional ef-
fects of interventions, corresponding to the postintervention distribution. In this case,
Theorem 5.3 states that we are in fact capable of inferring the postintervention distri-
bution from the observational distribution. One way of understanding this is that for all
SDEs with the same distribution as the observational distribution, the postintervention
distribution will be the same. This can be seen explicitly in Example 5.4.

This conclusion allows us, for example, to infer the effects of knocking out genes
only from observational distributions. ◦

6 Discussion

In this section, we will reflect on the results of the preceeding sections and discuss
opportunities for further work.

The definition of the postintervention SDE, Definition 2.4, is a natural way to define
how interventions should affect stochastic dynamic systems. It constitutes a generic
notion of intervention effects applicable in cases such as Example 2.2 where the back-
ground mechanisms of the system are not known and the statistical model is primarily
based on observational data. However, the definition reflects assumptions about the
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underlying causal nature of the system being modeled, and it is important to make pre-
cise when the definition can be assumed to reflect an actual real-world intervention
and when the definition is simply a mathematical construct. This is clarified in Section
4, where we used the DAG-based intervention calculus to show that the postinterven-
tion SDE of Definition 2.4 can be assumed to reflect real-world interventions when the
following hold:

1. The SDE reflects a data-generating mechanism in which the variables at a given
timepoint are obtained as a function of the previous timepoints and the driving
semimartingales.

2. The driving semimartingales are not directly affected by interventions, in the
sense that they can be taken to be noise variables in the Euler SEMs.

In full generality, causal mechanisms of a model are not identifiable from the ob-
servational distribution, see [36]. However, when considering only restricted classes
of structural equation models, the underlying causal mechanisms may often be identi-
fiable, see for example [38, 19, 27]. In such cases, linearity of the functional relation-
ships or Gaussianity of the noise variables often determine identifiability. In our case,
as shown by Theorem 5.3, identifiability holds whenever the driving semimartingale is
a Lévy process. This is a key result for the applicability of our notion of intervention,
and yields the line of inference depicted in Figure 4: Under sufficient regularity condi-
tions such as appropriate notions of irreducibility, the generator of a Markov process is
identifiable from the observational distribution, and Theorem 5.3 allows for deducing
postintervention distributions from the generator.

Observational distribution

��
Generator of the observational SDE

��
Postintervention distribution

Figure 4: Line of inference for causality in SDEs.

As argued in the series of examples comprised by Example 2.2, Example 2.5 and
Example 5.6, in the case of for example time-dependent observations of gene expression
data, this allows for identification of knockout effects of genes using only observational
data.

The proofs given in Section 5 use the Markov structure of the solution to the SDE.
In the case where the driving semimartingale has independent, but not stationary, in-
crements, the solution to the SDE will be an inhomogeneous Markov process, thus also
amenable to operator methods, though requiring more powerful technical results. We
expect that Theorem 5.3 extends to this case. It should also be noted that identifiability
holds independently of the dimension of the driving Lévy process. This is useful, for
instance, in relation to Example 2.3. We do not need to use the specific SDE driven
by a four-dimensional Wiener process. We can replace the diffusion term in the SDE
by a term involving the positive definite square root of the diffusion matrix and a two-
dimensional Wiener process without affecting the postintervention distribution.

It is, however, important to be careful about the interpretation of the identifiability
result. The result states that when using Definition 2.4 to model interventions, the

EJP 19 (2014), paper 100.
Page 19/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2891
http://ejp.ejpecp.org/


Causal interpretation of SDEs

postintervention distributions are identifiable. As discussed above, Definition 2.4 is not
always useful as a notion of intervention: This requires that we are willing to interpret
the SDE in a particular way. As Example 4.6 shows, not all SDEs are amenable to such
an interpretation. This requires separate arguments, such as in Example 2.3.

We also remark on the connection between our notion of intervention and the frame-
work of weak conditional local independence (WCLI) discussed in [5, 16]. Definition 2
of [16] defines WCLI for semimartingales in the class D′. In Remark 1 of [16], it is
explained how WCLI can lose its interpretation if extended to larger classes of semi-
martingales. However, the definition does make sense for all special semimartingales.
Extending it to this class, let X be the solution to an SDE of the type (2.12), driven
by a Lévy process and assume that X is a special semimartingale. One relationship
between our notion of intervention and WCLI is then this: It holds that if Xi is locally
unaffected by Xm in (2.12), then Xi is WCLI of Xm. This follows by considering the
semimartingale characteristics of solutions to SDEs, see for example Proposition IX.5.3
of [21].

Our results offer opportunities for further research. One main opportunity concerns
latent variables: In the DAG-based framework of [26], the back-door and front-door cri-
teria shows how to calculate intervention effects from the observational distribution in
the presence of latent variables. For an SDE, the causal structure is summarized in the
signature, see Definition 4.1, which does not need to be acyclic, reflecting the possibil-
ity of feedback loops. It is an open question how to obtain similar results in terms of the
signature in the case of, for example, a diffusion model with some coordinates being
unobserved. Another question concerns criteria for when the signature contains useful
high-level information about the effects of interventions. As Example 5.5 shows, this is
not always the case. We expect that the behaviour seen in Example 5.5 is atypical, but
have not shown any precise results about this.

A Proof of Theorem 5.3

In this appendix, we prove Theorem 5.3. We first state some well known and some
simple results. The first result, Lemma A.1, is an elementary yet crucial result about
interventions in discrete time Markov chains, allowing us to use the Euler scheme to
prove Theorem 5.3. Two additional lemmas are simple facts about generators. We do
not give full proofs, but we do briefly state how to use results from the literature to
obtain full proofs.

For any G : Rp × Rd → Rp and ζ : Rp−1 → R we introduce HG : Rp−1 × Rd → Rp−1

by

HG(y, u)i = G((y1, . . . , ζ(y), . . . , yp), u)i (A.1)

for i 6= m with ζ(y) at the m’th position. Now if U and V are random variables with
values in Rd and Rd

′
, respectively, and if G : Rp×Rd → Rp and G̃ : Rp×Rd′ → Rp fulfill

that for all x ∈ Rp

G(x, U)
D
= G̃(x, V ), (A.2)

meaning that the variables are equal in distribution, then obviously

HG(y, U)
D
= HG̃(y, V ). (A.3)

for all y ∈ Rp−1. The important consequence that we can derive from this observation is
that postintervention distributions in discrete-time Markov processes can be identified
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from their transition distributions. Specifically, consider the Markov processes

Xn = G(Xn−1, Un), (A.4)

X̃n = G̃(X̃n−1, Vn), (A.5)

defined recursively in terms of update functions G and G̃ and sequences (Un) and (Vn)

of independent random variables with values in Rd and Rd
′
, respectively. We also intro-

duce the corresponding intervened processes

Yn = HG(Yn−1, Un), (A.6)

Ỹn = HG̃(Ỹn−1, Vn). (A.7)

The following lemma is a simple consequence of the considerations above.

Lemma A.1. If X0
D
= X0 and if

G(x, Un)
D
= G̃(x, Vn) (A.8)

for all n ≥ 1 and x ∈ Rp, then (Yn) and (Ỹn) have the same distribution.

Proving Theorem 5.3 via the Euler scheme will be done by showing that the update
formulas for the Euler schemes for two processes with the same generator satisfy (A.8).
The following lemma shows how to write (5.2) of Definition 5.1 in a form which is more
suitable for the subsequent proof.

Lemma A.2. Let E be a neighborhood of zero in Rp. On C2
0 (Rp), the generator (5.2) of

the SDE (2.12) may be rewritten as

Af(x) =

p∑
i=1

βi(x)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
Rp

f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dT a(x)(ν)(y), (A.9)

where T a0 : Rd → Rp is defined by T a0(y) = a0y for a0 ∈M(p, d), and

βi(x) =

d∑
j=1

aij(x)αj +

∫
Rd

(1E(T a(x)(y))− 1D(y))

d∑
j=1

aij(x)yj dν(y), (A.10)

whenever the integrals are well defined and finite. This finiteness condition is in partic-
ular satisfied if E is bounded.

The proof of Lemma A.2 is elementary, as (5.2) and (A.9) are equal for all E such
that the integrals in (A.9) and (A.10) are well defined and finite. In the case where E is
bounded, this is seen to be the case by the integrability properties of Lévy measures.

As a final preparation, we state a lemma on identity of two functionals on C2
0 (Rp).

The nontrivial implication of the lemma is proving that all coefficients are equal if only
the functionals are the same.

Lemma A.3. Fix x ∈ Rp and let D be a bounded neighborhood of zero in Rp. Let a, ã ∈
Rp and b, b̃ ∈M(p, p), and let ν and ν̃ be two measures on Rp such that x 7→ min{1, ‖x‖2}
is integrable with respect to ν and ν̃. Consider two linear functionals A and Ã from
C2

0 (Rp) to R, where A is given by

Af =

p∑
i=1

ai
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

bij
∂2f

∂xi∂xj
(x)

+

∫
Rp

f(x+ y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)yi dν(y), (A.11)
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and Ã is given by the same expression, with ã, b̃ and ν̃ substituted for a, b and ν. It then
holds that A = Ã if and only if a = ã, b = b̃ and ν = ν̃ on Rp \ {0}.

The proof of Lemma A.3 can be obtained as follows. In the notation of the lemma,
assume that A = Ã. Using approximate units such as defined in [18], prove that ν and
ν̃ agree on all sets of the form Bc where B is a bounded neighborhood of zero. This
implies ν = ν̃ on Rp \ {0}. From this, a = ã and b = b̃ follows.

Using the above, we may now make short work of the proof of Theorem 5.3.
Proof of Theorem 5.3. Fix a bounded neighborhood D of zero in Rd, a bounded

neighborhood D̃ of zero in Rd̃ and a bounded neighborhood E of zero in Rp. Assume
that Z has D-characteristics (α,C, ν) and that Z̃ has D̃-characteristics (α̃, C̃, ν̃). For
a0 ∈M(p, d) define T a0 : Rd → Rp by T a0(y) = a0y. Also define

βi(x) =

d∑
j=1

aij(x)αj +

∫
(1E(a(x)y)− 1D(y))

d∑
j=1

aij(x)yj dν(y) (A.12)

β̃i(x) =

d̃∑
j=1

ãij(x)α̃j +

∫
(1E(ã(x)y)− 1D̃(y))

d̃∑
j=1

ãij(x)yj dν̃(y). (A.13)

Let A : C2
0 (Rp) → C0(Rp) be given by (A.9), and let Ã : C2

0 (Rp) → C0(Rp) be given
similarly, except with β, a, C, ν, D and α exchanged by β̃, ã, C̃, ν̃, D̃ and α̃. By our
assumptions, A = Ã. As a consequence, by Lemma A.2 and the uniqueness result of
Lemma A.3, we find that for all x ∈ Rp and i ≤ p, we have

βi(x) = β̃i(x), (A.14)

a(x)Ca(x)t = ã(x)C̃ã(x)t, (A.15)

T a(x)(ν) = T ã(x)(ν̃). (A.16)

Now let ∆ > 0 and tk = k∆. The Euler scheme for the process X is a Markov process
given by the update function having i’th coordinate

G(x, Uk)i = xi +

d∑
j=1

aij(x)U jk , (A.17)

with Uk = Ztk − Ztk−1
. The Euler scheme for the process X̃ is likewise given by the

update function having i’th coordinate

G̃(x, Vk)i = xi +

d′∑
j=1

ãij(x)V jk , (A.18)

with Vk = Z̃tk − Z̃tk−1
. The characteristic function of G(x, Uk) is

E exp(iut(x+ a(x)Uk)) = exp(iutx)E exp(iuta(x)(Ztk − Ztk−1
))

= exp(iutx)E exp(i(a(x)tu)t(Z∆ − Z0)), (A.19)

for u ∈ Rp. By (5.1) and some algebraic manipulations, we therefore have

logE exp(iut(x+ a(x)Uk)) = iut(x+ a(x)∆α)− 1

2
∆uta(x)Ca(x)tu (A.20)

−∆

∫
Rd

eiu
ta(x)y − 1− iuta(x)y1D(y) dν(y)

= iut(x+ ∆β(x))− 1

2
∆uta(x)Ca(x)tu

−∆

∫
Rd

eiu
ty − 1− iuty1E(y) dT a(x)(ν)(y).
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Making the same calculations for the characteristic function of G̃(x, Vk) and applying
(A.14), (A.15) and (A.16), we conclude that (A.8) holds for the two Euler scheme update
functions. Lemma A.1 therefore allows us to conclude that the postintervention Euler
SEMs have the same distributions. Using Lemma 4.4, we conclude that the postinter-
vention distributions obtained from the two SDEs are equal. 2
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