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Abstract

We study consistent collections of random fragmentation trees with random integer-
valued edge lengths. We prove several equivalent necessary and sufficient conditions
under which Geometrically distributed edge lengths can be consistently assigned to
a Markov branching tree. Among these conditions is a characterization by a unique
probability measure, which plays a role similar to the dislocation measure for homo-
geneous fragmentation processes. We discuss this and other connections to previous
work on Markov branching trees and homogeneous fragmentation processes.
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1 Introduction

Random tree models arise in population genetics when inferring unknown phyloge-
netic relationships among extant species. Phylogenetic trees are often used to repre-
sent these relationships, with leaves labeled by species and branch points correspond-
ing to speciation events. The root of the tree corresponds to the most recent common
ancestor of the species under consideration. In [1], Aldous provides some modeling
axioms for phylogenetic trees; among these axioms are exchangeability and consis-
tency (under subsampling). Typically, the species labeling the leaves are represented
by distinct elements of [n] := {1, . . . , n}, and the exchangeability axiom reflects the as-
sumption that the model should be invariant under arbitrary reassignment of elements
to species. In a statistical setting, consistency reflects the assumption that the observed
phylogenetic tree is a finite subtree sampled from the (possibly infinite) phylogenetic
tree for all species. An admissible statistical model, therefore, corresponds to a family
of probability measures on the space of infinite phylogenetic trees, that is, trees with
leaves labeled in the natural numbers N.

Along with these axioms, Aldous introduced the beta-splitting family of Markov
branching trees. In general, a Markov branching tree is a random tree for which non-
overlapping subtrees are conditionally independent. Within the phylogenetic frame-
work, it is natural to consider random trees with edge lengths or weights (weighted
Markov branching trees), where edge lengths are interpretted as time between speci-
ation events. Previous authors [4, 6] have considered the task of assigning continuous
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Discrete-time homogeneous fragmentation processes

(Exponentially distributed) edge lengths to Markov branching trees in a consistent way
as the size of the initial mass varies. In this paper, we undertake the related question of
assigning discrete (Geometrically distributed) edge lengths to Markov branching trees.
In a phylogenetic context, discrete edge lengths correspond to evolution occurring in
discrete-time and, therefore, reflects the assumption that generations are nonoverlap-
ping, an assumption shared by some classical population genetics models; see [7] for
an extensive treatment of probability models in population genetics.

Aside from applications to phylogenetics, random tree models are of their own math-
ematical interest. Particularly, part of the treatment in [4] relates weighted Markov
branching trees to homogeneous fragmentation processes [2], a class of continuous-
time Feller processes on partitions of N. In our main theorem, we give precise condi-
tions under which discrete edges can be consistently attached to a Markov branching
tree; and we characterize these trees by a unique probability measure on the space of
ranked-mass partitions.

We point out at least one novelty that distinguishes this paper from previous work.
In contrast to [4], we do not appeal to Bertoin’s theory of homogeneous fragmentations;
rather, our proofs rely on a construction of discrete-weighted Markov branching trees
as the projective limit of a sequence of finite weighted trees. At least some of the con-
clusions in [4] could be derived using our methods; however, as we explicitly consider
trees with integer-valued edge lengths, we cannot appeal to the theory of homogeneous
fragmentations, which evolve in continuous-time. Nevertheless, our characterization of
discrete-weighted Markov branching models also ties into previous work on homoge-
neous fragmentations, which we discuss in Sections 3.1 and 3.4.

Probabilistically, discrete-weighted Markov branching models are complementary to
continuous-weighted Markov branching models. Taken together, these weighted tree
models illustrate a fundamental aspect of the memoryless property: the Exponential
and Geometric distributions are, respectively, the unique memoryless distributions on
the positive real numbers and positive integers. An interesting twist, however, is that,
unlike the continuous weight case, it is not always possible to attach Geometric random
edge weights consistently for all n ∈ N. Our main theorem states precisely when this
embedding is possible.

An overview of the paper is as follows: in Section 2, we state our main theorem
as well as give some preliminary definitions and notation; in Section 3, we discuss
the components of the main theorem in detail, putting our observations in the context
of previous literature on the topic; in Section 4, we formally define some concepts
introduced in previous sections; in Section 5, we prove the main theorem.

2 Preliminaries and statement of main theorem

Throughout the paper, fragmentation formalizes the notion of a phylogenetic tree.

Definition 2.1. A fragmentation of a finite set A ⊂ N is a collection tA of subsets of A
such that

(i) A ∈ tA and

(ii) if #A ≥ 2, then there exists a (root) partition πA := {A1, . . . , Ak} of A such that

tA := {A} ∪ t1 ∪ · · · ∪ tk,

where ti is a fragmentation of Ai for each i = 1, . . . , k.

We call the elements of πb, for b ∈ tA, the children of b and write ΠtA = πA to denote
the root partition of tA. We identify the set A ∈ tA as the root of A and we write TA to
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Discrete-time homogeneous fragmentation processes

denote the collection of all fragmentations with root A. Alternatively, we may refer to a
fragmentation as a fragmentation tree or, simply, a tree.

The illustration in (2.2) makes clear the connection between Definition 2.1 and the
visual interpretation of a phylogenetic tree.

Remark 2.2. Definition 2.1 is initialized by taking t{i} := {{i}, ∅} for each singleton
{i} ⊂ N. Inclusion of the empty set in the definition of tA is done for notational conve-
nience, which arises when taking restrictions of weighted trees in the sequel.

To any subset A′ ⊂ A, there is a natural restriction of any t ∈ TA to TA′ by

RA′,At = t|A′ := {b ∩A′ : b ∈ t}, t ∈ TA, (2.1)

called the reduced subtree. For m ≤ n, we write Rm,n := R[m],[n]. The projective limit
of {T[n]}n∈N under the restriction maps {Rm,n}m≤n is denoted TN and corresponds to
the space of fragmentation trees with root N. For n ∈ N, we write Rn : TN → T[n] to
denote the restriction to T[n] of an infinite tree, as defined in (2.1) with A′ = [n] and
A = N. We equip TN with the σ-field σ 〈Rn〉n∈N so that these maps are measurable.

We illustrate the action of the restriction map R4,5 in (2.2) below. Note that, in the
left panel, t is a tree with root {1, 2, 3, 4, 5} and root partition {{1, 2}, {3, 4}, {5}}. Also,
relating to Definition 2.1, t corresponds to the collection of subsets

{∅, {1, 2, 3, 4, 5}, {1, 2}, {3, 4}, {1}, {2}, {3}, {4}, {5}}

that label its vertices.

Root = ∅

{1, 2, 3, 4, 5}

{1, 2} {3, 4} {5}

{1} {2} {3} {4}

Root = ∅

{1, 2, 3, 4}

{1, 2} {3, 4}

{1} {2} {3} {4}

t 7→ R4,5(t) = t|[4]

.

(2.2)
We are specifically interested in probability models for fragmentation trees with

integer-valued edge lengths. From any t ∈ TA, we obtain a discrete-weighted tree t•

by assigning a positive integer weight wb > 0 to every b ∈ t. The pair t• := (t,w),
with w := {wb}b∈t, then determines a tree with edge lengths. We write T •A to denote
the space of discrete-weighted trees with root A, for which there is also a natural re-
striction map R•A′,A, for every A′ ⊆ A, defined by removing elements and elongating
edges as needed. These restrictions make the collection {T •[n]}n∈N of finite discrete-
weighted trees projective with limit denoted T •N . Weighted fragmentations are formally
introduced in Section 4.2; a pictorial representation of a discrete-weighted tree is given
in (4.1).

The probability models we consider are extensions of Markov branching models on
TN. By the projective structure of TN, any probability measure Q on TN is determined
by its finite-dimensional restrictions Q[n] := QR−1

n to T[n], for every n ∈ N. Specifically,
we consider the task of assigning random Geometrically distributed edge lengths to
exchangeable Markov branching trees.

In general, the collectionQ := (Q[n])n∈N determines an exchangeable Markov branch-
ing model if, for every n ∈ N, T ∼ Q[n] is
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Discrete-time homogeneous fragmentation processes

• exchangeable: the law of T is invariant under the obvious action of relabeling its
leaves by an arbitrary permutation σ : [n]→ [n];

• consistent: Rm,n T ∼ Q[m] for every m ≤ n; and,

• Markovian: given any collection {A1, . . . , Ak} of non-overlapping subsets in T,
the collection {T|A1

, . . . ,T|Ak
} of reduced subtrees is conditionally independent

and distributed according to Q[n1], . . . , Q[nk], respectively, where nj := #Aj , j =

1, . . . , k.

Any exchangeable Markov branching modelQ is determined by a family of exchange-
able splitting rules p := (pn)n≥2, where each pn is a probability measure on the space
P[n] \{1[n]} of partitions of the set [n] with the trivial partition 1[n] := {[n]} removed. For
m ≤ n, there is an obvious deletion operation Dm,n : P[n] → P[m] defined by removing
elements in [n] \ [m],

Dm,n(π) := {b ∩ [m] : b ∈ π} \ {∅}, π ∈ P[n] . (2.3)

It has been shown, e.g. in [1, 4, 6], that p := (pn)n≥2 determines an exchangeable
Markov branching model if and only if pn is exchangeable and

pn(π) = pn+1(D−1
n,n+1(π))+pn+1(e

(n+1)
n+1 )pn(π), π ∈ P[n] \{1[n]}, for every n ≥ 2, (2.4)

where e
(n+1)
n+1 := {[n], {n + 1}}. We write Qp := (Q

[n]
p )n∈N to denote the Markov branch-

ing model determined by the consistent splitting rule p. Note that (2.4) is merely the
requirement that the marginal distribution of the root partition of T ∼ Q

[n+1]
p , after

removal of element n+1, is the same as the distribution of the root partition under Q[n]
p ,

for every n ≥ 2.
Given a Markov branching tree Tn ∼ Q

[n]
p , we randomly assign edge lengths to Tn

as follows. First, we specify τ := (τn)n≥0, with τ0 = τ1 = 0 and τn ∈ (0, 1] for all
n ≥ 2. Given Tn = t, we take independent random variables Wn := {Wn(b)}b∈t, where
Wn(b) ∼ Geo(τ#b) has the Geometric distribution with parameter τ#b. (We define Geo(0)

to be the point mass at∞.) We write Q[n]
p,τ to denote the distribution of T•n := (Tn,Wn)

obtained in this way. Our main theorem considers the question of when the collection
(Q

[n]
p,τ )n∈N of finite-dimensional distributions determines a unique probability measure

Q•p,τ on the limit space T •N .
We now state our main theorem.

Theorem 2.3. Let p := (pn)n≥2 be a family of exchangeable splitting rules satisfying
(2.4). The following are equivalent.

(i) There exists a collection τ := (τn)n≥0 of Geometric success probabilities such that

(Q
[n]
p,τ )n∈N are the finite-dimensional restrictions of a unique probability measure

Q•p,τ on T •N .

(ii) The family τ := (τn)n≥0 satisfies τ0 = τ1 = 0 and

τn = τn+1(1− pn+1(e
(n+1)
n+1 )) for all n ≥ 2. (2.5)

(iii) There is a unique probability measure ν∗ on

∆↓ :=

{
(s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∑
i

si ≤ 1

}
satisfying

ν∗({(1, 0, . . .)}) < 1 (2.6)

so that (p, τ) is given by p := (pν
∗

n )n≥2 and τ := (τν
∗

n )n≥0 in (3.1) and (3.2), respec-
tively.
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(iv) There exists a unique τ∞ ∈ (0, 1] and a unique probability measure ν on ∆↓ satis-
fying ν({(1, 0, . . .)}) = 0 such that the pair (ν, τ∞) determines ν∗ through (3.5).

(v) Qp-almost every t ∈ TN possesses a root partition.

(vi) λ∞ := limn→∞ λn <∞, where λ := (λn)n≥2 is defined recursively by λ2 = 1 and

λn+1 = λn/(1− pn+1(e
(n+1)
n+1 )), n ≥ 2. (2.7)

2.1 The paintbox measure

The paintbox measure plays a key role in our discussion in the next section as well
as in our proof of uniqueness of ν∗ in Theorem 2.3(iii). For s ∈ ∆↓, we write s0 :=

1 −
∑∞
i=1 si to denote the amount of dust in s and we define the paintbox measure %s

directed by s as the distribution of a random partition Π generated as follows. First, we
take independent random variables X1, X2, . . . with distribution

Ps(Xi = j) :=

{
sj , j ≥ 1

s0, j = −i.

Given (X1, X2, . . .), we define Π by

i and j are in the same block of Π ⇐⇒ Xi = Xj .

We write Π ∼ %s to denote that Π is distributed as a paintbox directed by s. Given a
measure ν on ∆↓, the paintbox measure directed by ν is the mixture of paintboxes:

%ν(dπ) :=

∫
∆↓
%s(dπ)ν(ds), π ∈ PN .

According to Kingman’s correspondence [5], to any exchangeable random partition Π

of N there corresponds a unique probability measure ν∗ on ∆↓ such that Π ∼ %ν∗ .

3 Discussion of Theorem 2.3

We now discuss the components of Theorem 2.3 in some detail, paying attention
to the interplay among (i)-(vi) as well as connections to previous literature. Roughly
speaking, the six parts of the theorem can be decomposed into three motifs: (i)-(ii)
is a condition in the vein of Markov branching trees with Exponentially distributed
edge lengths; (iii)-(iv) gives a structure result reminiscent of the characterization of
homogeneous fragmentations; (v)-(vi) describes the existence of Q•p,τ without explicit
reference to τ ; in particular, both (v) and (vi) depend only on p. The connection between
(v)-(vi) and existence ofQ•p,τ is tied to the existence of a well-defined root partition of the
limiting fragmentation tree. This also relates to the existence of a Markov branching
tree with Exponentially distributed edge lengths; see Sections 3.4-3.6.

3.1 The characteristic measure ν∗

Theorem 2.3(iii) establishes a bijection between probability laws Q•p,τ of infinite
Markov branching trees with integer edge lengths and probability measures ν∗ sat-
isfying (2.6). Given such a ν∗, we define (p, τ) by p := (pν

∗

n )n≥2 and τ := (τν
∗

n )n≥0,
where

pν
∗

n (π) :=
%

(n)
ν∗ (π)

1− %(n)
ν∗ (1[n])

, π ∈ P[n] \{1[n]}, n ≥ 2, (3.1)

τν
∗

0 = τν
∗

1 = 0, and

τν
∗

n := 1− %(n)
ν∗ (1[n]), n ≥ 2. (3.2)
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Note that we have written %(n)
ν∗ to denote the image of %ν∗ by the obvious restriction map

PN → P[n]. Condition (2.6) ensures that (3.1) is a well-defined probability distribution
on P[n] \{1[n]} and the success probabilities τn are strictly positive for every n ≥ 2.

A further consequence of the characterization by ν∗ ties into part (iv) of the theorem.
In particular, from (3.2), the sequence τ is monotonically nondecreasing and bounded
above by 1; hence, the limit τ∞ := limn→∞ τν

∗

n exists and equals

τ∞ = 1− %ν∗(1[∞]) = 1− ν∗({(1, 0, . . .)}) > 0. (3.3)

From ν∗, we can define a finite measure νK , for any K ∈ (0,∞), by

νK(ds) := Kν∗(ds)(1− δ(1,0,...)(s)), s ∈ ∆↓, (3.4)

where δ•(·) is the point mass at •. Note that νK is finite and satisfies νK({(1, 0, . . .)}) = 0.
Since trivial partitions are assigned zero probability by any splitting rule, the measures
ν∗ and νK determine the same splitting rule through the generalization to (3.1):

pνKn (π) :=
%

(n)
νK (π)

νK(∆↓)− %(n)
νK (1[n])

, π ∈ P[n] \{1[n]}, n ≥ 2.

Indeed, from (3.4), we have, for π ∈ P[n] \{1[n]},

pνKn (π) =
%

(n)
νK (π)

νK(∆↓)− %(n)
νK (1[n])

=
K%

(n)
ν∗ (π)

K(1− ν∗({(1, 0, . . .)}))− %(n)
νK (1[n])

=
%

(n)
ν∗ (π)

1− %(n)
ν∗ (1[n])

,

which coincides with (3.1).
Conversely, given τ∞ ∈ (0, 1] and a finite measure ν satisfying ν({(1, 0, . . .)}) = 0, we

obtain a measure ν∗ satisfying (2.6) by

ν∗(ds) :=
ν(ds)

ν(∆↓)
τ∞ + (1− τ∞)δ(1,0,...)(s), s ∈ ∆↓ . (3.5)

For any K ∈ (0,∞), any probability measure ν∗ satisfying (2.6) coincides with (3.5) for
ν := νK and τ∞ := 1− ν∗({(1, 0, . . .)}).

3.2 The role of τ∞

The quantity τ∞ := limn→∞ τn plays an important role in the description of the limit-
ing tree T• ∼ Q•p,τ in that it parameterizes its edge lengths. That is, the limiting object
T• is an infinite Markov branching tree with independent Geometrically distributed
edge lengths, all with success probability τ∞. Moreover, the special case τ∞ = 1 corre-
sponds to Geometric edge lengths all with success probability 1. Hence, almost surely,
the edge lengths of the limiting tree T• are all identically 1. In this case, the random-
ness of the edge lengths disappears in the limiting object. Viewed another way, from
(3.5), we notice that 1− τ∞ = ν∗({(1, 0, . . .)}) corresponds to the probability that a ran-
dom partition of N is trivial. Since only non-trivial partitions correspond to dislocations
in a fragmentation tree, τ∞ = 1 − ν∗({(1, 0, . . .)}) naturally corresponds to a success
probability in our Geometric weighting scheme.
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3.3 The success probabilities τ

Given a splitting rule p = (pn)n≥2 and a collection λ := (λn)n≥0 with λ0 = λ1 = 0

and λn > 0 for all n ≥ 2, we can assign independent random lengths Wn(b) ∼ Exp(λ#b)

to each b ∈ Tn, where Exp(λ) denotes the Exponential distribution with rate parameter

λ. (The Exp(0) distribution corresponds to the point mass at ∞.) We write Q[n]
p,λ to de-

note the law of a Q[n]
p -distributed Markov branching tree with Exponentially distributed

edge lengths parameterized by λ. By Proposition 3 of [4], the collection (Q
[n]
p,λ)n∈N is

consistent if and only if p satisfies (2.4) and λ satisfies

λn = λn+1(1− pn+1(e
(n+1)
n+1 )) for every n ≥ 2. (3.6)

Note that (3.6) is identical to condition (2.5) of Theorem 2.3(ii); however, in the
discrete case we encounter the additional constraint 0 ≤ τn ≤ 1 for all n ≥ 0. Moreover,
while continuous embedding is always possible for an infinitely exchangeable family of
splitting rules, discrete embedding is not. Conditions (2.5) and (3.6) seem intimately
tied to the memoryless property of the Exponential and Geometric distributions. Both
(2.5) and (3.6) can be proven using the same strategy as in Theorem 5.1, with the
modification that to prove (3.6) we use characteristic functions rather than probability
generating functions.

3.4 Relation to homogeneous fragmentations

The definition of νK in (3.4) connects the characteristic measure ν∗ to a collection
of dislocation measures of homogeneous fragmentation processes. From Theorem 1 of
[4], any exchangeable splitting rule p = (pn)n≥2 satisfying (2.4) is associated to a pair
(c, ν) (see equations (2) and (3) of [4]), where c ≥ 0 is the erosion coefficient and ν is the
dislocation measure of a homogeneous fragmentation process T◦. To ensure that each
finite restriction of T◦ determines a fragmentation of a finite set with strictly positive
edge lengths, the dislocation measure ν is subject to the constraint

ν({(1, 0, . . .)}) = 0 and

∫
∆↓

(1− s1)ν(ds) <∞; (3.7)

see also, Bertoin [3] (Theorem 3.1). The measure νK constructed in (3.4) trivially sat-
isfies (3.7) and, therefore, is the dislocation measure of some homogeneous fragmenta-
tion. As shown in Section 3.1, for K,K ′ ∈ (0,∞), any two pairs (νK , τ∞) and (νK′ , τ∞)

defined from the same characteristic measure ν∗ determine the same splitting rule and,
hence, the same discrete-weighted Markov branching model. Similarly, by Theorem 1
of [4], (c, ν) determines the same splitting rule as (Kc,Kν) for all K ∈ (0,∞).

3.5 Root partitions

The erosion coefficient c ≥ 0 also relates to (v) and (vi) of our theorem. In particular,
the erosion coefficient is the rate at which “erosion” of a single element occurs, that is,
the event that the initial split of the entire mass N is into {N \ {n}, {n}}. Assuming the
dislocation measure ν is finite, the total rate at which a (c, ν)-fragmentation process with

initial mass [n] experiences dislocation is λn = cn + %
(n)
ν

(
P[n] \{1[n]}

)
. As a result, we

see that λn → ∞ whenever c > 0 and λn → ν(∆↓) < ∞ when c = 0. Therefore, (iv) and
(vi) together imply that discrete-weighted fragmentations correspond to homogeneous
fragmentations with zero erosion coefficient and finite dislocation measure.

Furthermore, Theorem 2.3(v) asserts that the existence of a collection τ for which
Q•p,τ exists depends on whether T ∼ Qp possesses a well-defined root partition. Intu-
itively, there will be such a root partition only if λ∞ is finite because if λ∞ = ∞ then
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the root edges of the finite trees must be getting shorter as n increases. Thus, Theorem
2.3(v) separates Markov branching trees into two classes, those with root partition and
those without. By (v), Markov branching trees with a root partition can be assigned
Geometrically distributed edge lengths, while those without a root partition cannot. To
be explicit, given λ∞ <∞, we can choose any λ∗ ∈ [λ∞,∞) and put τn = λn/λ

∗ for each
n ≥ 2. By (2.7), (τn)n≥2 chosen this way satisfies (2.5). Moreover, relating to Section
3.2, we have τ∞ = λ∞/λ

∗ ∈ (0, 1].

3.6 Beta-splitting model

We conclude this section with an illustration of Theorem 2.3 in the special case of
the beta-splitting model. For −2 < β <∞, we define the splitting rule

pβn(π) := 2κ−1
n

β↑#π1β↑#π2

(2β)↑n
, (3.8)

where π = {π1, π2} is a partition of [n] with exactly two blocks, κn := 1 − 2β↑n/(2β)↑n

and β↑n := β(β + 1) · · · (β + n − 1). (The limiting cases β → −2 and β → ∞ are also
defined: β = −2 corresponds to the exchangeable distribution on “combs” and β = ∞
corresponds to the “symmetric binary trie.” For simplicity, we ignore these cases.)

These splitting rules are based on the family of dislocation measures

νβ(dx) := 2xβ(1− x)β1[1/2,1](x)dx, −2 < β <∞,

which is supported on the subspace of binary mass partitions. Note that ν satisfies (3.7)
and is, therefore, a dislocation measure for a sub-family of homogeneous fragmentation
processes. In particular, for β > −1, νβ is a finite measure and, for−2 < β ≤ −1, νβ is in-
finite. Therefore, even when c = 0, λ∞ → νβ(∆↓) <∞ only for β > −1, and so these are
the only β for which (pβn)n≥2 in (3.8) determines a distribution Q•p,τ on discrete-weighted
trees. In fact, in the case β > −1, the splitting rule (pβn)n≥2 is determined by the Beta
distribution with parameter (β, β). In particular, νβ(dx) := 2xβ(1−x)β1[1/2,1](x)dx is the
kernel of the probability measure ν∗β governing max(X, 1−X) for X ∼ Beta(β, β). Note
that ν∗β({(1, 0, . . .)}) = 0 in this case and so we are in the situation τ∞ = 1. Alternatively,
given ν∗β , β > −1, we can define ν∗ with arbitrary τ∞ ∈ (0, 1] through (3.5). Through
(3.1) and (3.2), the resulting probability measure ν∗ determines a unique pair (p, τ) that
parameterizes Q•p,τ .

4 Some formalities

In preparation for the proof of Theorem 2.3, we now formally introduce some con-
cepts from previous sections.

4.1 Root partitions

With A⊂f N denoting that A ⊂ N is finite, a partition of A is a collection {A1, . . . , Ak}
of non-empty, disjoint subsets for which

⋃k
i=1Ai = A. We write PA to denote the col-

lection of all partitions of A. The collection {P[n]}n∈N of spaces of finite set partitions
is projective under the deletion maps (2.3). We write PN to denote the projective limit
of partitions of N, which we furnish with the discrete σ-algebra σ

〈⋃
n∈N P[n]

〉
. For

each n ∈ N, we write Dn := Dn,∞ to denote the deletion operation PN → P[n], where
[∞] := N in (2.3). Partitions appear in the study of Markov branching trees through
the splitting rule, which is a distribution on P[n] \{1[n]} that determines the law of the
branching below a child of size n in a random fragmentation.

Also, in Theorem 2.3(v), partitions ofN arise in the notion of a limiting root partition.
For any A⊂f N, #A ≥ 2, every t ∈ TA has a well-defined root partition denoted by Πt
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and defined by the partition πA in Definition 2.1(ii). In general, for any A ⊆ N, we
say that t ∈ TA possesses a root partition if there exists N ∈ N such that the sequence
(Πt|[m]

)m≥N has a projective limit in PN, that is, if for all n ≥ m ≥ N , Πt|[m]
= Dm,n Πt|[n]

.
We denote this root partition by Πt := limn→∞Πt|[n]

.

Example 4.1. An infinite tree need not possess a well-defined root partition. For exam-
ple, the infinite comb c is defined by the collection c := (cn)n≥2, where Πcn = e

(n)
n for

every n ≥ 2. In this case, the sequence of finite root partitions is (e
(n)
n )n≥2, for which

Dm,n e
(n)
n = 1[m] 6= e

(m)
m for every m < n; hence, limn→∞Πcn does not exist.

4.2 Weighted fragmentation trees

We define a weighted fragmentation of A⊂f N as a pair t◦ := (t,w) such that t ∈ TA
and w := {wb}b⊆A, with wb ∈ [0,∞] for all b ⊆ A and

(i)w wb =∞ if and only if b is a singleton or the empty set;

(ii)w wb = 0 if and only if b /∈ t.

Remark 4.2. Item (i)w is not necessary for the above definition to make sense; how-
ever, we are interested in constructing consistent collections of weighted fragmenta-
tions of N and (i)w is the convention that works best in this context.

Pictorially, we interpret wb as the length of the edge above b ∈ t, although we sup-
press the edge of infinite length associated to ∅. For example, for the tree t in (2.2), if
we specify w{1,2,3,4,5} = 1, w{1,2} = 3 and w{3,4} = 2, then we obtain

Root = ∅

{1, 2, 3, 4, 5}

{1, 2} {3, 4} {5}

{1} {2} {3} {4}

1

3 ∞
2

∞ ∞ ∞ ∞

, (4.1)

where edge lengths are not drawn to scale. We write T ◦A to denote the collection of
weighted fragmentations of A⊂f N.

For non-empty subsets A′ ⊆ A⊂f N, we define R◦A′,A : T ◦A → T ◦A′ by t◦ 7→ t◦|A′ :=

(RA′,A(t),w′), with RA′,A defined in (2.1) and w′ := {w′b}b⊆A′ , where

w′b :=
∑

{b′⊆A:b′∩A′=b}

wb′ , b ⊆ A′, (4.2)

the sum of all weights associated to b by restriction of A to A′. In particular, for m ≤
n < ∞, we write R◦m,n := R◦[m],[n] and denote the projective limit of {T ◦[n]}n∈N under
these restrictions by T ◦N , the space of weighted fragmentations of N. Any t◦ ∈ T ◦N is
determined by a sequence (t◦n)n∈N satisfying R◦m,n t◦n = t◦m for all m ≤ n, for every
n ∈ N. For each n ∈ N, we define R◦n : T ◦N → T ◦[n] by the projection of T ◦N into T[n],
t◦ 7→ t◦n.

4.2.1 Integer-valued edge weights

For each n ∈ N, we write T •[n] ⊂ T
◦

[n] to denote the subspace of all t◦ := (t,w) ∈ T ◦[n]

such that wb ∈ {0, 1, . . . ,∞} for all b ⊆ [n]. For m ≤ n, we let R•m,n be the restriction of
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R◦m,n to T •[n] and we define T •N as the projective limit of {T •[n]}n∈N under these restriction
maps. The space T •N comes equipped with R•n : T •N → T •[n], the restriction of R◦n to

T •N for each n ∈ N. Writing Dn :=
⊗

b⊆[n] 2{0,1,...,∞} to denote the product of discrete
σ-fields on subsets of {0, 1, . . . ,∞}, we equip T •[n] with the σ-field T[n]⊗Dn and T •N with
the σ-field σ〈R•n〉n∈N so that the restriction maps are measurable.

4.3 Random weighted fragmentations of N

Let p := (pn)n≥2 be a collection of splitting rules satisfying (2.4) and let τ := (τn)n≥0

satisfy τ0 = τ1 = 0 and τn ∈ (0, 1] for all n ≥ 2. Formally, we define Q
[n]
p,τ as the law

of T•n := (Tn,Wn), where Tn ∼ Q
[n]
p is a Markov branching tree with splitting rule

p and Wn := {Wn(b)}b⊆[n] is a collection of discrete edge weights defined as follows.
First, we generate independent Geometric random variables Υn := {Υn(b)}b⊆[n] with
Υn(b) ∼ Geo(τ#b) for each b ⊆ [n]; then, given Tn = t and Υn, we define a discrete
weighted tree T•n := (Tn,Wn) in T •[n], where Wn := {Wn(b)}b⊆[n] is defined from Υn by

Wn(b) :=

{
Υn(b), b ∈ Tn

0, otherwise.
(4.3)

We can express Q[n]
p,τ explicitly by

Q[n]
p,τ (t•) =

∏
b∈t:#b≥2

pb(Πt|b)τ#b(1− τ#b)wb−1, t• := (t,w) ∈ T •[n], (4.4)

where pb(·) denotes the splitting rule induced on Pb \{1b} by p#b through exchangeabil-
ity.

5 Proof of Theorem 2.3

Theorem 2.3 summarizes the conclusions of a series of theorems and propositions
that we prove in this section. Throughout this section, assume p := (pn)n≥2 is a collec-
tion of splitting rules satisfying (2.4) and τ := (τn)n≥0 is a collection of success proba-

bilities. The pair (p, τ) determines a family (Q
[n]
p,τ )n∈N of finite-dimensional probability

distributions through (4.4). By Kolmogorov’s extension theorem, (Q
[n]
p,τ )n∈N determines

a unique probability measure Q•p,τ on T •N if and only if

Q[m]
p,τ = Q[n]

p,τR
•−1

m,n for all m ≤ n, for every n ∈ N. (5.1)

Theorem 5.1. The family (Q
[n]
p,τ )n∈N satisfies (5.1) if and only if τ0 = τ1 = 0 and

τn = τn+1(1− pn+1(e
(n+1)
n+1 )) for every n ≥ 2. (5.2)

Proof. Clearly, τ0 = τ1 = 0 is both necessary and sufficient for Q[n]
p,τ -almost every t ∈ T •[n]

to satisfy (i)w in the definition of a weighted fragmentation tree, for every n ∈ N.
Henceforth, we fix n ≥ 2 and examine condition (5.2) for τn.

For Q[n]
p,τ defined as in (4.4), let T•n+1 = (Tn+1,Wn+1) ∼ Q

[n+1]
p,τ and define T•n =

(Tn,Wn) := R•n,n+1T
•
n+1. By (5.1), we must show that T•n ∼ Q

[n]
p,τ .

In general, for any pair (t, t′), with t′ ∈ T[n+1] and t := Rn,n+1t
′, there is a unique

element b ∈ t such that b ∪ {n + 1}, b and {n + 1} are all elements of t′. We denote
this unique element by b∗ ∈ t and we say that {n + 1} is attached below b∗ in t′. Now,
by construction, R•n,n+1T

•
n+1 = T•n and, therefore, Rn,n+1Tn+1 = Tn. Hence, we can

define b∗ ∈ Tn as the unique b∗ below which n+ 1 is attached in Tn+1. By definition of
R•n,n+1 in (4.2),

Wn(b) = max(Wn+1(b),Wn+1(b ∪ {n+ 1})) for all b ∈ Tn \ {b∗}
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and

Wn(b∗) = Wn+1(b∗) +Wn+1(b∗ ∪ {n+ 1}) > max(Wn+1(b∗),Wn+1(b∗ ∪ {n+ 1})) a.s.

By assumption (2.4), the finite-dimensional distributions (Q
[n]
p )n∈N on {T[n]}n∈N are con-

sistent and, therefore, Tn is distributed according to Q[n]
p for each n ∈ N. The Markov

property of Tn, together with conditional independence of the edge lengths, implies
that T•n ∼ Q

[n]
p,τ if and only if, for every n ≥ 0,

X +X ′IE =LX
′, (5.3)

where X ∼ Geo(τn+1), X ′ ∼ Geo(τn), E is an event with probability pn+1(e
(n+1)
n+1 ) and

X,X ′, E are mutually independent. (Here, we write X =L Y to denote that random
variables X and Y are equal in law.) Note that, by assumption τ0 = τ1 = 0, (5.3) plainly
holds for n ∈ {0, 1}, and so we need only consider the case n ≥ 2. The probability
generating function GY (s) := EsY of a Geometric variable Y with success probability
p ∈ (0, 1) is

GY (s) :=
sp

1− s(1− p)
;

and so, (5.3) implies that

EsX+X′IE =
sτn

1− s(1− τn)
, for all n ∈ N.

Fixing s > 0 and writing σn := 1− τn, we have

EsX+X′IE =

=
sτn+1

1− sσn+1

[
pn+1(e

(n+1)
n+1 )

sτn
1− sσn

+ 1− pn+1(e
(n+1)
n+1 )

]
=

sτn
1− sσn

{
sτn+1

1− sσn+1

[
pn+1(e

(n+1)
n+1 )sτn + (1− pn+1(e

(n+1)
n+1 ))− sσn(1− pn+1(e

(n+1)
n+1 ))

sτn

]}

=
sτn

1− sσn

{
sτn+1

1− sσn+1

[
(1− s)(1− pn+1(e

(n+1)
n+1 )) + sτn

sτn

]}
.

It follows that X +X ′IE =LX
′ if and only if

τn+1

1− sσn+1
=

τn

(1− s)(1− pn+1(e
(n+1)
n+1 )) + sτn

.

By assumption, both τn and τn+1 are strictly positive. Hence, there exists a unique α > 0

such that ατn = τn+1. We must have

τn+1

1− sσn+1
=
α

α

τn

(1− s)(1− pn+1(e
(n+1)
n+1 )) + sτn

=
τn+1

(1− s)(1− pn+1(e
(n+1)
n+1 ))α+ sτn+1

.

Because s > 0, it follows that α(1− pn+1(e
(n+1)
n+1 )) = 1. This completes the proof.

Our next step is to show the correspondence between probability measures ν∗ sat-
isfying (2.6) and pairs (p, τ) satisfying (2.4) and (2.5). In this direction, let ν∗ be a prob-
ability measure on ∆↓ satisfying (2.6). By Kingman’s correspondence, ν∗ determines a
unique exchangeable paintbox measure %ν∗ on PN. As before, we write %(n)

ν∗ := %ν∗D
−1
n

to denote the distribution %ν∗ induces on P[n] through deletion. Furthermore, for any

b⊂f N, we write %bν∗ to denote the measure %ν∗ induces on Pb. By construction, (%
(n)
ν∗ )n∈N

is exchangeable and satisfies the consistency condition

%
(m)
ν∗ (π) = %

(n)
ν∗ (D−1

m,n(π)), π ∈ P[m], for every m ≤ n <∞. (5.4)
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Given ν∗, define p := (pν
∗

n )n≥2 as in (3.1). By assumption (2.6), it is clear that pν
∗

n is a
probability distribution on P[n] \{1[n]} for every n ≥ 2. Exchangeability and consistency
(2.4) of p follows easily from properties of %ν∗ .

Theorem 5.2. The identities (3.1) and (3.2) establish a bijection between pairs (p, τ)

satisfying (2.4) and (2.5) and probability measures ν∗ on ∆↓ satisfying (2.6). Therefore,
to any such (p, τ), there is a unique measure ν∗ such that Q•p,τ has finite-dimensional

marginal distributions Q[n]
p,τ := Q

[n]
ν∗ , where

Q
[n]
ν∗ (t•) :=

∏
b∈t:#b≥2

%bν∗(1b)
wb−1%bν∗(Πt|b), t• := (t,w) ∈ T •[n], for every n ∈ N. (5.5)

Proof. First, suppose (p, τ) satisfies (2.4) and (2.5). For each n ∈ N, we define a proba-
bility measure Pn(·) on P[n] by

Pn(π) :=

{
τnpn(π), π 6= 1[n]

1− τn, π = 1[n].

Putting P1(1[1]) = 1, we have a collection (Pn)n∈N of exchangeable marginal distribu-
tions on {P[n]}n∈N that corresponds to p through (3.1). From the assumptions (2.4)
and (2.5), it is easy to check that (Pn)n∈N is consistent. Therefore, by Kolmogorov’s
extension theorem, (Pn)n∈N determines a unique exchangeable probability measure on
PN which, by Kingman’s correspondence, is a paintbox measure %ν∗ for some unique
probability measure ν∗ on ∆↓. Moreover, by assumption, τn+1 ≥ τn > 0 for all n ≥ 2 and
so τn → τ∞ > 0. By monotone convergence, we have

%ν∗(1[∞]) = lim
n→∞

↓ %ν∗D−1
n (1[n]) = lim

n→∞
↓ %(n)

ν∗ (1[n]) = 1− lim
n→∞

τn = 1− τ∞ < 1.

Hence, ν∗ must satisfy (2.6).
Conversely, let ν∗ be a probability measure on ∆↓ satisfying (2.6) and define p∗ :=

(pν
∗

n )n∈N by (3.1) and τ∗ := (τν
∗

n )n≥0 by (3.2). Plainly, p∗ satisfies (2.4). We also see that,
for every n ≥ 2,

τν
∗

n+1(1− pν
∗

n+1(e
(n+1)
n+1 )) = (1− %(n+1)

ν∗ (1[n+1]))

(
1−

%
(n+1)
ν∗ (e

(n+1)
n+1 )

1− %(n+1)
ν∗ (1[n+1])

)
= 1− %(n+1)

ν∗ (1[n+1])− %
(n+1)
ν∗ (e

(n+1)
n+1 )

= 1− %(n)
ν∗ (1[n])

= τν
∗

n ,

where the above expression simplifies because %(n+1)
ν∗ (1[n+1])+%

(n+1)
ν∗ (e

(n+1)
n+1 ) = %

(n)
ν∗ (1[n])

by consistency (5.4) of (%
(n)
ν∗ )n∈N. Hence, (2.5) is satisfied.

Equation (5.5) follows immediately from (4.4). This completes the proof.

Theorem 5.3. Let p := (pn)n≥2 be a family of splitting rules satisfying (2.4) and let
λ := (λn)n≥2 be as defined in (2.7) with respect to p. Then Qp-almost every t ∈ TN
possesses a root partition if and only λ∞ := limn→∞ λn <∞.

Proof. First, suppose that Qp-almost every t ∈ TN possesses a root partition. Then, by
our definition of root partition in Section 4.1,

P({ΠT exists}) = P

( ∞⋃
n=1

{ΠT ∈ D−1
n (P[n] \{1[n]})}

)
= 1.
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On the other hand, by (2.7), we have

λn/λn+1 = 1− pn+1(e
(n+1)
n+1 ) for all n ≥ 2.

Now, pn(e
(n)
n ) ∈ [0, 1] for every n ∈ N, and so the sequence λ := (λn)n≥2 is monotonically

nondecreasing and λ∞ := limn→∞ λn exists. For fixed n ∈ N and π ∈ P[n] \{1[n]},

P({ΠT ∈ D−1
n (π)}) = pn(π)

∞∏
j=1

(1− pn+j(e
(n+j)
n+j )) = pn(π)λn lim

j→∞
λ−1
n+j ;

hence,
P({ΠT ∈ D−1

n (P[n] \{1[n]})}) = λn lim
j→∞

λ−1
n+j = λn/λ∞. (5.6)

Now, either λ∞ = ∞ or 0 < λ∞ < ∞. On the one hand, if λ∞ = ∞, then P({ΠT ∈
D−1
n (P[n] \{1[n]})}) = λn/λ∞ = 0 for all n ∈ N; whence,

1 = P({ΠT exists}) = P

( ∞⋃
n=1

{ΠT ∈ D−1
n (P[n] \{1[n]})}

)

≤
∞∑
n=1

P
(
{ΠT ∈ D−1

n (P[n] \{1[n]})}
)

= 0,

a contradiction. On the other hand, if λ∞ < ∞, then λn/λ∞ → 1 as n → ∞ and,
therefore, P

(
{ΠT ∈ D−1

n (P[n] \{1[n]})}
)
→ 1 as n→∞. Consequently,

1 = P({ΠT exists}) = P

( ∞⋃
n=1

{ΠT ∈ D−1
n (P[n] \{1[n]})}

)

≤
∞∑
n=1

P
(
{ΠT ∈ D−1

n (P[n] \{1[n]})}
)

=∞,

establishing the first claim.
Conversely, suppose λ∞ := limn→∞ λn < ∞. For each n ≥ 2, we define the event

An := {ΠT|[n]
= e

(n)
n }. By the Markov branching property and consistency (2.4), the

events {An}n≥2 are independent; hence, the random variables {1An
}n≥2 are indepen-

dent Bernoulli random variables with parameter pn(e
(n)
n ) for each n ≥ 2. Moreover,

{ΠT exists} = {
∑

1An <∞}. Clearly, the event {
∑

1An <∞} is in the tail σ-field gen-
erated by {An}n≥2. Hence, the event {ΠT exists} has probability 0 or 1 by Kolmogorov’s
0-1 law. However, by (5.6),

P{ΠT ∈ D−1
n (P[n] \{1[n]})} = λn lim

j→∞
λ−1
n+j = λn/λ∞ > 0 for every n ≥ 2.

Therefore, P({ΠT exists}) ≥ λn/λ∞ > 0 and we conclude {ΠT exists} has probability
one.

Proposition 5.4. Let p := (pn)n≥2 be a family of splitting rules satisfying (2.4) and
define λ := (λn)n≥2 as in (vi) of Theorem 2.3. Then there exists a collection τ := (τn)n≥0

of success probabilities satisfying (2.5) with respect to p if and only if limn→∞ λn <∞.

Proof. We have already noted that (λn)n≥2 defined in (2.7) is monotonically nondecreas-
ing, and so limn→∞ λn exists. Suppose there exists τ satisfying (2.5) with respect to p.
Then λ := (λn)n≥2, as defined in (2.7), satisfies (3.6), which is identical to (2.5); hence,
there exists α ∈ (0,∞) such that λn = ατn for every n ∈ N. Since τn ≤ 1 for all n ∈ N,
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we conclude limn→∞ λn = α limn→∞ τn ≤ α < ∞. Conversely, if λn → λ∞ < ∞, we can
define τn := λn/λ∞ for n ≥ 2, which satisfies (2.5).

In fact, we could take any λ∞ ≤ λ∗ < ∞ and put τn := λn/λ
∗. The choice λ∗ = λ∞

coincides with the case τ∞ = 1; in general, to specify τ∞ ∈ (0, 1], we choose λ∗ =

λ∞/τ∞ ≥ λ∞ and we have

lim
n→∞

τn = lim
n→∞

λn/λ
∗ =

τ∞
λ∞

lim
n→∞

λn = τ∞.

Proposition 5.5. To any probability measure ν∗ satisfying ν∗({(1, 0, . . .)}) < 1 and K ∈
(0,∞), there corresponds a unique pair (νK , τ∞), where νK is a measure on ∆↓ with
total mass Kτ∞, νK({(1, 0, . . .)}) = 0 and τ∞ ∈ (0, 1], such that (νK , τ∞) determines ν∗

through (3.5).

Proof. This follows by the discussion in Section 3.1: Given ν∗ satisfying (2.6) and K ∈
(0,∞), we define νK as in (3.4) and put τ∞ := 1 − ν∗({(1, 0, . . .)}). From (νK , τ∞), we
define ν∗ by (3.5). Uniqueness is a consequence of the constraints placed on νK and τ∞
and follows immediately from (3.5). This completes the proof.

The equivalence of Parts (i)-(vi) of Theorem 2.3 have now been proven according to
the following scheme.

(i)⇔(ii): Theorem 5.1

(ii)⇔(iii): Theorem 5.2

(v)⇔(vi): Theorem 5.3

(ii)⇔(vi): Proposition 5.4

(iii)⇔(iv): Proposition 5.5

This completes the proof.
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