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Abstract

In this paper, we give a sufficient condition for the transience for a class of one-
dimensional symmetric Lévy processes. More precisely, we prove that a one-dimensional
symmetric Lévy process with the Lévy measure ν(dy) = f(y)dy or ν({n}) = pn, where
the density function f(y) is such that f(y) > 0 a.e. and the sequence {pn}n≥1 is such
that pn > 0 for all n ≥ 1, is transient if∫ ∞

1

dy

y3f(y)
<∞ or

∞∑
n=1

1

n3pn
<∞.

Similarly, we derive an analogous transience condition for one-dimensional symmet-
ric random walks with continuous and discrete jumps.
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1 Introduction

Let (Ω,F ,P) be a probability space and let {Lt}t≥0 be a stochastic process on
(Ω,F ,P) taking values in Rd, d ≥ 1. The process {Lt}t≥0 is called a Lévy process
if L0 = 0 P-a.s., if it has stationary and independent increments and if it has càdlàg
paths P-a.s. (that is, if its trajectories are right-continuous with left limits P-a.s.). Hav-
ing these properties, every Lévy process can be completely and uniquely characterized
through the characteristic function of a single random variable Lt, t > 0, that is, by the
famous Lévy-Khintchine formula we have

E[exp{i〈ξ, Lt〉}] = exp{−tψ(ξ)}, t ≥ 0,

where

ψ(ξ) = i〈ξ, b〉+
1

2
〈ξ, cξ〉+

∫
Rd

(
1− exp{i〈ξ, y〉}+ i〈ξ, y〉1{|y|≤1}(y)

)
ν(dy).

Here b is a vector in Rd, c is a symmetric nonnegative-definite d× d matrix and ν(dy) is
a σ-finite Borel measure on Rd satisfying

ν({0}) = 0 and

∫
Rd

min{1, y2}ν(dy) <∞.
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A transience condition for a class of one-dimensional symmetric Lévy processes

The measure ν(dy), the triplet (b, c, ν) and the function ψ(ξ) are called the Lévy mea-
sure, the Lévy triplet and the characteristic exponent of the Lévy process {Lt}t≥0,
respectively. Further, recall that the vector b, the matrix c and the Lévy measure ν(dy)

correspond to the deterministic part (shift), the continuous (Brownian) part and the
jumping part of the Lévy process {Lt}t≥0, respectively.

In this paper, we consider the transience and recurrence property of Lévy processes.
A Lévy process {Lt}t≥0 is said to be transient if

P
(

lim
t−→∞

|Lt| =∞
)

= 1,

and recurrent if
P
(

lim inf
t−→∞

|Lt| = 0
)

= 1.

It is well known that every Lévy process is either transient or recurrent (see [7, Theorem
35.3]). An equivalent definition (characterization) of the transience and recurrence
property of Lévy processes can be given through the sojourn times. A Lévy process
{Lt}t≥0 is transient if and only if

E

[∫ ∞
0

1{|Lt|<a}(Lt)dt

]
<∞ for all a > 0.

Similarly, a Lévy process {Lt}t≥0 is recurrent if and only if

E

[∫ ∞
0

1{|Lt|<a}(Lt)dt

]
=∞ for all a > 0

(see [7, Theorem 35.4]). The above characterizations of the transience and recurrence
property are not applicable in most cases. A more operable characterization, by using
the nice analytical characterization of Lévy processes through the Lévy-Khintchine for-
mula, has been given by the well-known Chung-Fuchs criterion. A Lévy process {Lt}t≥0

is transient if and only if∫
{|ξ|<a}

Re

(
1

ψ(ξ)

)
dξ <∞ for some a > 0

(see [7, Corollary 37.6 and Remark 37.7]). Again, in many situations this criterion is
also not applicable. More precisely, for a given Lévy triplet (b, c, ν) it is not always
easy to compute the integral part of the characteristic exponent as well as the integral
appearing in the Chung-Fuchs criterion. According to this, the aim of this paper is to
derive a sufficient condition for the transience for Lévy processes in terms of the Lévy
triplet. Let us remark that analogous definitions and characterizations of the transience
and recurrence property hold also for random walks (see [2, Chapter 4]). Recall that
a random walk is a stochastic process {Sn}n≥0 defined on a probability space (Ω,F ,P)

taking values in Rd, d ≥ 1, defined by S0 := 0 and Sn :=
∑n
i=1 Ji, where {Jn}n≥1 is a

sequence of i.i.d. random variables called the jumps of {Sn}n≥0.
As already mentioned, in this paper we consider the one-dimensional symmetric case

only. Note that, according to [7, Theorem 37.8] and [2, Theorem 4.2.13], the limitation
to the one-dimensional case is not too big restriction since it is well known that every
d-dimensional, d ≥ 3, Lévy process and random walk are transient. Further, recall that

a stochastic process {Xt}t∈T is symmetric if {Xt}t∈T
d
= {−Xt}t∈T, where T = [0,∞)

or {0, 1, 2, . . .} and
d
= means that the processes {Xt}t∈T and {−Xt}t∈T have the same

finite-dimensional distributions. In the Lévy process case, {Lt}t≥0 is symmetric if and
only if b = 0 and ν(dy) is a symmetric measure, that is, ν(B) = ν(−B) holds for all Borel
sets B ⊆ Rd (see [7, Exercise 18.1]), while a random walk is symmetric if and only if its
jumps have a symmetric distribution. Now, let us state the main results of this paper.
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Theorem 1.1. Let {Lt}t≥0 be a one-dimensional symmetric Lévy process with the Lévy
measure ν(dy) = f(y)dy or ν({n}) = pn, where the density function f(y) is such that
f(y) > 0 a.e. and the sequence {pn}n≥1 is such that pn > 0 for all n ≥ 1. Then, {Lt}t≥0

is transient if ∫ ∞
1

dy

y3f(y)
<∞ or

∞∑
n=1

1

n3pn
<∞. (1.1)

By using [7, Theorem 38.2], the above transience condition can be generalized to
the general symmetric case.

Theorem 1.2. Let {L1
t}t≥0 and {L2

t}t≥0 be one-dimensional symmetric Lévy processes
with the Lévy measures ν1(dy) and ν2(dy). Further, let ν1(dy) be as in Theorem 1.1 and
let it satisfy the condition (1.1). If∫ ∞

0

y2|ν1 − ν2|(dy) <∞,

then the transience property of {L1
t}t≥0 implies the transience property of {L2

t}t≥0.
Here | · | denotes the total variation norm on the space of signed measures.

Let us remark that the same transience condition holds also in the case of one-
dimensional symmetric random walks. More precisely, let {Sn}n≥0 be a one-dimensional
symmetric random walk with jumps P(J1 ∈ dy) = f(y)dy or P(J1 = n) = pn, where
f(y) > 0 a.e. and pn > 0 for all n ≥ 1, then the condition (1.1) implies the transience
property of {Sn}n≥0. Also, let us remark that, according to [7, Theorem 38.2] or [8,
Lemma 1.2], the assumptions f(y) > 0 a.e. and pn > 0 for all n ≥ 1 can be relaxed.
More precisely, it suffices to demand positivity of f(y) and pn on the complement of a
compact set.

A simple application of the condition (1.1) is in the class of stable processes. Recall
that a one-dimensional symmetric stable Lévy process or a random walk is given by
the characteristic exponent ψ(ξ) = γ|ξ|α or by the Lévy triplet (0, c, ν), where γ > 0,
α ∈ (0, 2],

c =

{
0, α < 2

2γ, α = 2
and ν(dy) =

 γ
α2α−1Γ(α+1

2 )

π
1
2 Γ(1−α2 )

|y|−α−1dy, α < 2

0, α = 2.

It is well known, as a consequence of the Chung-Fuchs criterion, that this process is
transient if and only if α < 1. Further, recall that a probability density function of a
one-dimensional symmetric stable distribution behaves like cα|y|−α−1 when |y| −→ ∞,
for α ∈ (0, 2) and

cα =

{ γ
2 , α = 1

γ
πΓ(α+ 1) sin

(
πα
2

)
, α 6= 1

(see [7, Remark 14.18]). Now, as a simple consequence of Theorem 1.1, we get a new
proof for the transience property of one-dimensional symmetric stable Lévy processes
and random walks.

Corollary 1.3. A one-dimensional symmetric stable Lévy process or a random walk is
transient if α < 1.

Note that the above corollary implies that the function y 7−→ y3, appearing in the
condition (1.1), is optimal in the class of power functions.

The transience and recurrence property of one-dimensional symmetric Lévy pro-
cesses in terms of the Lévy triplet has already been studied in the literature. Namely, in
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[7, Theorem 38.3] (see also [8, Theorem 5]) it has been proved that a one-dimensional
symmetric Lévy process {Lt}t≥0 with the Lévy measure ν(dy) is recurrent if∫ ∞

1

(∫ y

0

zν (max{1, z},∞) dz

)−1

dy =∞. (1.2)

Intuitively, the condition (1.2) measures the speed of divergence of the second moment
of ν(dy), and, regarding this speed, it concludes the recurrence property. Clearly, if
ν(dy) has finite second moment, then {Lt}t≥0 is recurrent. Thus, if the second moment
of ν(dy) diverges slow enough, then {Lt}t≥0 is recurrent. Similarly, the condition (1.1)
measures the speed of divergence of the third moment of ν(dy). If the third moment of
ν(dy) diverges fast enough, then {Lt}t≥0 is transient.

Recall that a symmetric Borel measure ρ(dy) on R is unimodal if it is finite out-
side of any neighborhood of the origin and if x 7−→ ρ(x,∞) is a convex function on
(0,∞). Equivalently, a symmetric Borel measure ρ(dy) on R is unimodal if it is of the
form ρ(dy) = aδ0(dy) + f(y)dy, where 0 ≤ a ≤ ∞ and the density function f(y) is sym-
metric, decreasing on (0,∞) and it satisfies

∫
|y|>ε f(y)dy < ∞ for all ε > 0 (see [7,

Chapter 5]). Note that measures with a discrete support are never unimodal. Now, if
the Lévy measure ν(dy) is additionally unimodal, the condition (1.2) is also necessary
for the recurrence property (see [7, Theorem 38.3] or [8, Theorem 5]). Also, note that
unimodality of the ν(dy) and finiteness of (1.2) imply that f(y) > 0 a.e., and the condi-
tion (1.2) is stronger than the condition (1.1) (see Section 4 for the proof). Thus, the
condition (1.1) is a generalization of the condition (1.2) in the case when the jumping
measure is not unimodal. For the necessity of unimodality for the characterization of
the transience property by the condition (1.2) see [7, Theorems 38.2, 38.3 and 38.4 and
Lemma 38.8] or [8, Theorems 4 and 5] and [9, Theorem 1].

Finally, we give an example where the condition (1.1) is more suitable than the
Chung-Fuchs criterion and the condition (1.2). We consider an example of a Lévy
process with “multiple indices of stability". Let {Lt}t≥0 be a one-dimensional sym-
metric Lévy process with the Lévy measure ν({n}) = pn, where p2n = (2n)−α−1 and
p2n−1 = (2n − 1)−β−1 for n ≥ 1 and α, β ∈ (0,∞). For a continuous version of such
process it suffices to interpolate the points {(i, pi) : i ∈ Z}. Now, clearly, if α < 1 and
β < 1, then the condition (1.1) implies the transience of {Lt}t≥0. On the other hand,
since ν(dy) is not unimodal, the condition (1.2) is not applicable, and the application of
the Chung-Fuchs criterion leads to a non-trivial computation. Also, let us remark that
the same example shows that the condition (1.1) is only sufficient for the transience.
Indeed, assume that α < 1 and β ≥ 1. Then, since β ≥ 1, the condition (1.1) fails to
hold. On the other hand, since α < 1, {Lt}t≥0 is transient (see Section 4 for the proof).

Now, we explain our strategy of proving Theorem 1.1. The proof is divided in three
steps. In the first step, by using electrical networks techniques, we prove Theorem 1.1
in the case of a random walk with discrete jumps. In the second step, we prove Theorem
1.1 in the case of a random walk {Sn}n≥0 with continuous jumps P(J1 ∈ dy) = f(y)dy.
More precisely, for δ > 0 we define a discretization of {Sn}n≥0 as a random walk {Sδn}n≥0

on δZ with the jump distribution P(Jδ1 = δn) :=
∫ δn+ δ

2

δn− δ2
f(y)dy, n ∈ Z. Next, by an

“approximation approach" we prove that all the random walks {Sδn}n≥0, δ > 0, are either
transient or recurrent at the same time and their transience and recurrence property is
equivalent with the transience and recurrence property of {Sn}n≥0. Finally, by using the
first step, we prove that the condition (1.1) for {Sn}n≥0 implies the transience property
of {S1

n}n≥0. And this accomplishes the proof of the second step. At the end, in the last
step, we consider the case of Lévy processes. By using [7, Theorem 38.2], it suffices to
consider the situation of a compound Poisson process. Now, the proof follows from the
first and second step. This accomplishes the proof of Theorem 1.1.
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The paper is organized as follows. In Section 2, we give a proof of Theorem 1.1 for
the case of discrete jumps. In Section 3, by using the results from Section 2, we proof
Theorem 1.1 for the case of continuous jumps. Finally, in Section 4, we discuss some
properties of the condition (1.1).

2 Discrete case

In this section, we prove the main step of the proof of Theorem 1.1. More precisely,
we derive a sufficient condition for the transience for one-dimensional symmetric ran-
dom walks on Z.

Theorem 2.1. Let {Sn}n≥0 be a one-dimensional symmetric random walk on Z with
jumps P(J1 = n) = pn, where the sequence {pn}n≥1 is such that pn > 0 for all n ≥ 1.
Then the random walk {Sn}n≥0 is transient if∑

n≥1

1

n3pn
<∞. (2.1)

Note that the same transience condition also holds in the case of a one-dimensional
symmetric Lévy process {Lt}t≥0 with a discrete supported Lévy measure ν({n}) = pn,
where pn > 0 for all n ≥ 1. Indeed, first note that

{Lt}t≥0
d
= {SPt}t≥0,

where {Sn}n≥0 is a random walk with jumps P(J1 = n) := 1
ν(Z)pn and {Pt}t≥0 is the

Poisson process with parameter ν(Z) independent of {Sn}n≥0. Now, the desired result
follows from the definition of the transience in terms of sojourn times.

The proof of Theorem 2.1 is based on techniques and results from electrical net-
works. Let us introduce some notation we need. A graph is a pair G = (V (G), E(G))

where V (G) is a set of vertices and E(G) is a symmetric subset of V (G)× V (G), called
the edge set. By symmetry we mean that (u, v) ∈ E(G) if and only if (v, u) ∈ E(G). For
two vertices u, v ∈ V (G) such that (u, v) ∈ E(G), we say that u and v are adjacent and
write u ∼ v and by euv we denote the edge which connects them. A path in a graph is a
sequence of vertices where each successive pair of vertices is an edge in the graph. A
graph is connected if there is a path from any of its vertices to any other. A network is
a pair N = (G, c), where G is a connected graph and c is a function c : E(G) −→ [0,∞)

called conductance. In the sequel we assume that a network N satisfies

c(u) :=
∑
v∼u

c(euv) <∞

for all u ∈ V (G). A random walk on a network N is a time-homogeneous Markov chain
{Xn}n≥0 with the state space V (G) and transition kernel

quv := P(X1 = v|X0 = u) =

{
c(euv)
c(u) , u ∼ v
0, otherwise.

Note that the Markov chain {Xn}n≥0 is irreducible (that is,
∑∞
n=1P(Xn = v|X0 = u) > 0

for all u, v ∈ V (G)) and it is reversible (that is, there exists a nontrivial measure π(dy)

on V (G), such that π(u)quv = π(v)qvu for all u, v ∈ V (G)). Indeed, irreducibility easily
follows from connectedness of the graphG and for the reversibility measure we can take
π := c. Also, let us remark that to every irreducible and reversible time-homogeneous
Markov chain on a discrete state space S given by the transition kernel quv, u, v ∈ S, and
a reversibility measure π(dy) we can join a network N = (G, c). Indeed, put V (G) = S,
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the vertices u and v are adjacent if quv > 0, the graph G is connected because of
irreducibility of the corresponding Markov chain and the conductance is defined by
c(euv) = π(u)quv.

Further, let u0 ∈ V (G) be an arbitrary vertex of the network N . A flow from u0 to∞
is a function θ : V (G)× V (G) −→ R such that θ(u, v) = 0 unless u ∼ v, θ(u, v) = −θ(v, u)

for all u, v ∈ V (G) and
∑

v∈V (G)

θ(u, v) = 0 if u 6= u0. We call the flow a unit flow if∑
u∈V (G)

θ(u0, u) = 1. The energy of the flow is defined by

E(θ) =
1

2

∑
u∼v

θ2(u, v)

c(euv)
.

Next, recall that a state u of a time-homogeneous Markov chain {Xn}n≥0 on a discrete
state space S is called transient if

∑∞
n=1P(Xn = u|X0 = u) < ∞ and it is called recur-

rent if
∑∞
n=1P(Xn = u|X0 = u) = ∞. If every state is transient (resp. recurrent) the

chain itself is called transient (resp. recurrent). It is well known that every irreducible
Markov chain is either transient or recurrent (see [6, Theorem 8.1.2]). Finally, the main
tool for proving Theorem 2.1 is given in the following theorem.

Theorem 2.2. [5, Theorem 1] Random walk on a network N is transient if and only if
there is a unit flow on N of finite energy from some vertex to∞.

Proof of Theorem 2.1. First, note that, according to [8, Lemma 1.2], without loss of
generality we can assume that p0 > 0. Thus, {Sn}n≥0 is a random walk on the network
N = (G, c), where G = (V (G), E(G)) = (Z,Z × Z) and c(euv) = p|v−u|. Now, following
the ideas from [3, Theorem 1], we construct a unit flow from 0 to ∞ for the random
walk {Sn}n≥0 such that the corresponding energy is bounded from above by (2.1). Then
the desired result follows from Theorem 2.2. First, let us partition the set of vertices
V (G) = Z on the sets B0 = {0}, Bi = {2i−1, 2i−1 + 1, . . . , 2i − 1} and B−i = {−2i +

1, . . . ,−2i−1 − 1,−2i−1}, i ≥ 1, and let us define a unit flow θ : V (G)× V (G) −→ R from
0 to∞ in the following way. For u ∈ Bi and v ∈ Bj define

θ(u, v) :=


1
2 , i = 0 and j = −1 or j = 1

0, i = j or |i− j| ≥ 2

2−2|i|, 0 < i < j = i+ 1 or j < j + 1 = i < 0.

Recall that flow has to be antisymmetric, hence we define θ(v, u) := −θ(u, v). Next, note
that ∑

v∈Z
θ(1, v) = θ(1, 0) + θ(1, 2) + θ(1, 3) = −1

2
+

1

4
+

1

4
= 0,

and analogously
∑
v∈Z

θ(−1, v) = 0. Further, for u ∈ Bi, i ≥ 2, we have

∑
v∈Z

θ(u, v) =
∑

v∈Bi−1

θ(u, v) +
∑

v∈Bi+1

θ(u, v) = −2i−22−2(i−1) + 2i2−2i = 0,

and analogously for u ∈ Bi, i ≤ −2, we have∑
v∈Z

θ(u, v) = 0.

According to this, θ is a flow from 0 to∞. Finally, since
∑
v∈Z

θ(0, v) = θ(0, 1)+θ(0,−1) = 1,

θ is a unit flow from 0 to ∞. Now, let us prove that the energy of the flow θ is bounded
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from above by (2.1). We have

E(θ) =
1

2

∑
u∼v

θ2(u, v)

c(euv)
=

1

2

∑
(u,v)∈E(G)

θ2(u, v)

p|v−u|

=
1

2

∑
u≥0, v≥0, u 6=v

θ2(u, v)

p|v−u|
+

1

2

∑
u≥0, v<0

θ2(u, v)

p|v−u|

+
1

2

∑
u<0, v≥0

θ2(u, v)

p|v−u|
+

1

2

∑
u<0, v<0, u 6=v

θ2(u, v)

p|v−u|
.

Note that, from the symmetry of the distribution {pn}n∈Z and the definition of the flow
θ, the second and the third therm equal 1

8p1
. Next, again from the symmetry of the

distribution {pn}n∈Z and the symmetry of the function θ2, we have

E(θ) ≤ 1

4p1
+

∑
u≥0, v≥0

θ2(u, v)

p|v−u|

=
1

4p1
+

∑
u≥0, w≥0

θ2(u, u+ w)

pw
+

∑
u≤0, w≤0

θ2(u, u+ w)

p|w|

=
1

4p1
+ 2

∑
u≥0, w≥0

θ2(u, u+ w)

pw
.

Note that θ(u, u+ w) = 0 when u+ w ≥ 4u, except for u = 0 and w = 1. Thus

E(θ) ≤ 3

4p1
+ 2

∑
w≥2, u≥dw3 e

θ2(u, u+ w)

pw

=
3

4p1
+

1

8p2
+ 2

∑
w≥2, u≥dw3 e, u 6=1

θ2(u, u+ w)

pw
,

where dxe denotes the smallest integer not less than x. Now, since for u ∈ Bi, i ≥ 2,
(that is, for u ≥ 2), we have θ2(u, v) ≤ (2−2(i−1))2 = 16(2i)−4 ≤ 16u−4, then

∞∑
u≥dw3 e, u 6=1

θ2(u, u+ w) ≤


∫ ∞
dw3 e−1

16

x4
dx =

16

3(dw3 e − 1)3
≤ 144

(w − 3)3
, w ≥ 4∫ ∞

1

16

x4
dx =

16

3
, w = 2, 3.

This yields

E(θ) ≤ 3

4p1
+

1

8p2
+ 2

∑
w≥2

1

pw

∑
u≥dw3 e, u 6=1

θ2(u, u+ w)

≤ 3

4p1
+

1

8p2
+

32

3p2
+

32

3p3
+ 288

∑
w≥4

1

(w − 3)3pw
.

This accomplishes the proof of Theorem 2.1.

3 Continuous case

In this section, we prove Theorem 1.1 in the case of continuous jumps. As in the
case of discrete jumps, the main step is to consider the random walk case.
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Theorem 3.1. Let {Sn}n≥0 be one-dimensional symmetric random walk with jumps
P(J1 ∈ dy) = f(y)dy, where the probability density function f(y) is such that f(y) > 0

a.e. Then the random walk {Sn}n≥0 is transient if∫ ∞
1

dy

y3f(y)
<∞. (3.1)

Again, similarly as in the case of discrete jumps, the transience condition for the
Lévy process case can be easily derived from the random walk case. Indeed, let {Lt}t≥0

be a one-dimensional symmetric Lévy process with the Lévy measure ν(dy) = f(y)dy,
where the density f(y) is such that f(y) > 0 a.e. Then, first note that, according to [7,
Theorem 38.2], without loss of generality we can assume that ν(R) <∞. Thus,

{Lt}t≥0
d
= {SPt}t≥0,

where {Sn}n≥0 is a random walk with continuous jumps P(J1 ∈ dy) := 1
ν(R)f(y)dy and

{Pt}t≥0 is the Poisson process with parameter ν(R) independent of {Sn}n≥0. Now, the
desired result follows from the definition of the transience in terms of sojourn times.

Before the proof of Theorem 3.1, we need some auxiliary results. Let B ⊆ Rd be an
arbitrary Borel set and let us denote by D(Rd) the space of Rd-valued càdlàg functions
equipped with the Skorohod topology. Define the set of recurrent paths by

R(B) := {ω ∈ D(Rd) : ∀n ∈ N, ∃t ≥ n such that ω(t) ∈ B},

and the set of transient paths by

T (B) := {ω ∈ D(Rd) : ∃s ≥ 0 such that ω(t) 6∈ B, ∀t ≥ s}.

In the following proposition, we characterize the transience and recurrence property of
Lévy process in terms of càdlàg paths.

Proposition 3.2. Let L = {Lt}t≥0 be an Rd-valued Lévy process. Then, L is transient
if and only if PL(T (Ba)) = 1 for all a > 0, and it is recurrent if and only if PL(R(Ba)) = 1

for all a > 0, where Ba denotes the open ball of radius a around the origin.

Proof. The proof follows directly from the definition of the transience and recurrence
properties.

Now, let us recall the notion of characteristics of a semimartingale (see [4]). Let
(Ω,F , {Ft}t≥0, P, {St}t≥0), {St}t≥0 in the sequel, be a one-dimensional semimartingale
and let h : R −→ R be a truncation function (that is, a continuous bounded function
such that h(x) = x in a neighborhood of the origin). We define two processes

Š(h)t :=
∑
s≤t

(∆Ss − h(∆Ss)) and S(h)t := St − Š(h)t,

where the process {∆St}t≥0 is defined by ∆St := St − St− and ∆S0 := S0. The process
{S(h)t}t≥0 is a special semimartingale. Hence, it admits the unique decomposition

S(h)t = S0 +M(h)t +B(h)t, (3.2)

where {S(h)t}t≥0 is a local martingale and {S(h)t}t≥0 is a predictable process of bounded
variation.
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Definition 3.3. Let {St}t≥0 be a semimartingale and let h : R −→ R be the truncation
function. Furthermore, let {B(h)t}t≥0 be the predictable process of bounded variation
appearing in (3.2), let N(ω, ds, dy) be the compensator of the jump measure

µ(ω, ds, dy) =
∑

s:∆Ss(ω) 6=0

δ(s,∆Ss(ω))(ds, dy)

of the process {St}t≥0 and let {Ct}t≥0 be the quadratic co-variation process for {Sct }t≥0

(continuous martingale part of {St}t≥0), that is,

Ct = 〈Sct , Sct 〉.

Then (B,C,N) is called the characteristics of the semimartingale {St}t≥0 (relative to
h(x)). If we put C̃(h)t := 〈M(h)t,M(h)t〉, where {M(h)t}t≥0 is the local martingale
appearing in (3.2), then (B, C̃,N) is called the modified characteristics of the semi-
martingale {St}t≥0 (relative to h(x)).

Proposition 3.4. Let S = {Sn}n≥0 be a one-dimensional random walk with continuous
jumps P(J1 ∈ dy) = f(y)dy. For δ > 0, let Sδ = {Sδn}n≥0 be a random walk on δZ with
discrete jumps

P(Jδ1 = δn) =

∫ δn+ δ
2

δn− δ2
f(y)dy, n ∈ Z.

Further, let {Pt}t≥0 be the Poisson process with parameter 1 independent of S and Sδ,

δ > 0, and let S̄ := {SPt}t≥0 and S̄
δ

:= {SδPt}t≥0. Then S̄
δ d−→ S̄ when δ −→ 0, where

d−→ denotes the convergence in D(Rd) with respect to the Skorohod topology, and all
the random walks Sδ, δ > 0, are either transient or recurrent at the same time and this
transience and recurrence dichotomy is equivalent with the transience and recurrence
dichotomy of the random walk S.

Proof. Clearly, S̄ and S̄
δ
, δ > 0, are processes of bounded variation. Thus, they are

semimartingales. Further, let h(x) be the truncation function and let (B, C̃,N) and

(Bδ, C̃δ, Nδ), δ > 0, be the modified characteristics of S̄ and S̄
δ
, δ > 0, respectively.

Now, since S̄ and S̄
δ

are Lévy processes, by [4, Proposition 2.17 and Corollary II.4.19],
their (modified) characteristics are exactly the corresponding Lévy triplets, that is,

Bt = tE[h(J1)], N(ds, dy) = dsP(J1 ∈ dy), C̃t = tE[h2(J1)]

and
Bδt = tE[h(Jδ1 )], Nδ(ds, dy) = dsP(Jδ1 ∈ dy), C̃δt = tE[h2(Jδ1 )].

According to this, in order to prove the desired convergence, by [4, Theorem VIII.2.17],
it suffices to show that

sup
s≤t
|Bδs −Bs| −→ 0, C̃δt −→ C̃t and

∫
[0,t]×R

g(y)Nδ(ds, dy) −→
∫

[0,t]×R
g(y)N(ds, dy)

when δ −→ 0 for all t ≥ 0 and for every bounded and continuous function g(x) vanishing
in a neighborhood of the origin. Clearly, in order to prove the above convergences, it
suffices to show that

E[g(Jδ1 )] −→ E[g(J1)]

when δ −→ 0 for every bounded and continuous function g(x). But this fact easily
follows from [1, Theorem 2.1], definition of the jumps {Jδn}n≥0, δ > 0, and continuity of
the jumps {Jn}n≥0.
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Now, we prove the second part of the proposition. Let δ0 > 0 be arbitrary. By

completely the same arguments as above, we have S̄
δ d−→ S̄

δ0 when δ −→ δ0. Next,
let a > 0 be arbitrary, then T (Ba) = R(Ba)c, R(Ba) is open in D(R) and ∂R(Ba) ⊆
R(Ba+ε) \R(Ba−ε), where ∂R(Ba) denotes the boundary of the set R(Ba) and 0 < ε < a.
Thus, by Proposition 3.2, we have

PS̄δ0 (∂R(Ba)) ≤ PS̄δ0 (R(Ba+ε))− PS̄δ0 (R(Ba−ε)) = 0

for all a > 0. Hence, the sets T (Ba) and R(Ba), a > 0, are continuity sets for PS̄δ0 . Now,
by [1, Theorem 2.1], this yields

lim
δ−→δ0

PS̄δ(T (Ba)) = PS̄δ0 (T (Ba))

for all a > 0. Hence, for all a > 0, the function

δ 7−→ PS̄δ(T (Ba))

is continuous on (0,∞). According to this, by Proposition 3.2, PS̄δ(T (Ba)) = 1 for all
δ > 0 and all a > 0, or PS̄δ(T (Ba)) = 0 for all δ > 0 and all a > 0. This means, again by
Proposition 3.2, that all the random walks Sδ, δ > 0, are either transient or recurrent at
the same time.

Finally, by completely the same arguments as above, PS̄(∂T (Ba)) = 0 for all a > 0.
Then, again by [1, Theorem 2.1], we have

lim
δ−→0

PS̄δ(T (Ba)) = PS̄(T (Ba))

for all a > 0. Thus, by Proposition 3.2, the transience and recurrence property of the
random walks Sδ, δ > 0, is equivalent with the transience and recurrence property of
the random walk S.

At the end, we prove Theorem 3.1.

Proof of Theorem 3.1. Let {S1
n}n≥0 be a random walk on Z with discrete jumps

P(J1
1 = n) :=

∫ n+ 1
2

n− 1
2

f(y)dy, n ∈ Z.

Next, by the Jensen’s inequality, we have∫ ∞
1
2

dy

y3f(y)
=

∞∑
n=1

∫ n+ 1
2

n− 1
2

dy

y3f(y)
≥
∞∑
n=1

1(
n+ 1

2

)3 ∫ n+ 1
2

n− 1
2

f(y)dy
=

∞∑
n=1

1(
n+ 1

2

)3
P(J1

1 = n)
.

Thus, by Theorem 2.1, the random walk {S1
n}n≥0 is transient. Now, the desired result

follows from Proposition 3.4.

4 Some remarks on the main results

In this section, we discus some properties of the condition (1.1) we mentioned in
Section 1. First, we prove that, under the assumption of unimodality, the condition
(1.2) is stronger than the condition (1.1). Recall that a one-dimensional symmetric Lévy
measure ν(dy) is unimodal if it is of the form ν(dy) = f(y)dy, where the density function
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f(y) is symmetric, decreasing on (0,∞) and it satisfies
∫
|y|>ε f(y)dy < ∞ for all ε > 0.

Let us fix y0 > 1, then, by the Fubini’s theorem, for all y ≥ y0 we have∫ y

0

zν (max{1, z},∞) dz =

∫ y

0

z

∫ ∞
max{1,z}

f(u)dudz

=

∫ 1

0

z

∫ ∞
1

f(u)dudz +

∫ y

1

z

∫ ∞
z

f(u)dudz

=
1

2

∫ ∞
1

f(u)du+

∫ y

1

z

∫ ∞
z

f(u)dudz

=
1

2

∫ y

1

u2f(u)du+
y2

2

∫ ∞
y

f(u)du

≥ y3 − 1

6
f(y) +

y2

2

∫ ∞
y

f(u)du

≥ Cy3f(y),

where in the fifth line we used the fact that f(y) is decreasing on (0,∞) and 0 < C <
y30−1

6y30
is arbitrary. Now, we have∫ ∞

1

(∫ y

0

zν (max{1, z},∞) dz

)−1

dy

=

∫ y0

1

(∫ y

0

zν (max{1, z},∞) dz

)−1

dy +

∫ ∞
y0

(∫ y

0

zν (max{1, z},∞) dz

)−1

dy

≤ 2(y0 − 1)

y0

∫∞
y0
f(y)dy

+
1

C

∫ ∞
y0

dy

y3f(y)

≤ D
∫ ∞

1

dy

y3f(y)
,

for some suitably chosen constant D > 0. Therefore, we have proved the desired result.
Finally, we prove the transience property of a Lévy process with “multiple indices of

stability" {Lt}t≥0. Recall that {Lt}t≥0 is a one-dimensional symmetric Lévy process with
the Lévy measure ν({n}) = pn, where p2n = (2n)−α−1 and p2n−1 = (2n−1)−β−1 for n ≥ 1

and α, β ∈ (0,∞). We claim that if α < 1 and β ≥ 1, then {Lt}t≥0 is transient. Clearly,
it suffices to consider the random walk case. Let {Sn}n≥0 be a random walk on Z with
jumps P(J1 = n) = c−1pn, where c :=

∑
n∈Z pn is the norming constant and pn, n ≥ 1,

are as above. First, let us define a sequence of stopping times {Tn}n≥0 inductively by
T0 := 0 and

Tn := inf{k > Tn−1 : Sk ∈ 2Z},

for n ≥ 1, and let us prove that P(Tn <∞) = 1 for all n ≥ 1. We have

P(T1 =∞) = P(Sk ∈ 2Z+ 1 for all k ≥ 1)

= lim
k−→∞

P(Sl ∈ 2Z+ 1 for all 1 ≤ l ≤ k)

= P(J1 ∈ 2Z+ 1) lim
k−→∞

(P(J1 ∈ 2Z))k−1 = 0.

Now, let us assume that P(Tn−1 <∞) = 1 and prove that P(Tn <∞) = 1, n ≥ 2. Denote
by N := Tn−1. Then, by the strong Markov property, we have

P(Tn <∞) = E[1{Tn<∞}] = E[1{T1<∞} ◦ θN ] = E[E[1{T1<∞} ◦ θN |FN ]]

= E[ESN [1{T1<∞}]] =
∑
i∈Z

E[1{SN=2i}] = 1,
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where θn, n ≥ 0, are the shift operators on the canonical state space Z{0,1,2,...} defined
by (θnω)(m) := ω(n+m), m ≥ 0, and FN := {A ∈ F : A∩{N = n} ∈ σ{S1, . . . , Sn} for all
n ≥ 1}. Thus, the Markov chain Xn := STn is well defined. Clearly, {Xn}n≥0 is irre-
ducible on 2Z. Further, note that {Xn}n≥0 and {Sn}n≥0 are transient or recurrent at
the same time. Indeed, let us define the following stoping times τ := inf{n ≥ 1 : Sn = 0}
and τ̃ = inf{n ≥ 1 : Xn = 0}. We have

P(τ̃ =∞) = P(Xn 6= 0 for all n ≥ 1) = P(Sn 6= 0 for all n ≥ 1) = P(τ =∞).

Now, the desired result follows from [6, Propositions 8.1.3 and 8.1.4]. According to this,
it suffices to prove the transience property of {Xn}n≥0. Further, note that {Xn}n≥0 is
actually a symmetric random walk on 2Z. Indeed, for n ≥ 0 and i, j ∈ Z we have

P(Xn+1 = 2j|Xn = 2i)

= P(S1 = 2j|S0 = 2i) +
∑
i1∈Z

P(S1 = 2i1 + 1|S0 = 2i)P(S2 = 2j|S1 = 2i1 + 1) + . . .

= P(S1 = 2j − 2i|S0 = 0)

+
∑
i1∈Z

P(S1 = 2i1 − 2i+ 1|S0 = 0)P(S2 = 2j − 2i|S1 = 2i1 − 2i+ 1) + . . .

= P(Xn+1 = 2j − 2i|Xn = 0)

= P(X1 = 2j − 2i).

Thus, {Xn}n≥0 is spatially homogeneous. Next, for n, k ≥ 0 and i, j ∈ Z we have

P(Xn+k −Xn = 2i) =
∑
j∈Z

P(Xn+k = 2i+ 2j, Xn = 2j)

=
∑
j∈Z

P(Xn+k = 2i+ 2j|Xn = 2j)P(Xn = 2j)

= P(Xk = 2i),

and for k ≥ 1, n1, . . . , nk ≥ 0, 0 ≤ n1 ≤ . . . ≤ nk, and i1, . . . , ik−1 ∈ Z we have

P(Xnk −Xnk−1
= 2ik−1, . . . , Xn2

−Xn1
= 2i1)

=
∑
j∈Z

P(Xnk = 2ik−1 + . . .+ 2i2 + 2j, . . . , Xn2 = 2i1 + 2j , Xn1 = 2j)

=
∑
j∈Z

P(Xnk = 2ik−1 + . . .+ 2i2 + 2j|Xnk−1
= 2ik−2 + . . .+ 2i2 + 2j) · · ·

P(Xn2
= 2i1 + 2j|Xn1

= 2j)P(Xn1
= 2j)

= P(Xnk−nk−1
= 2ik−1) · · ·P(Xn2−n1 = 2i1)

= P(Xnk −Xnk−1
= 2ik−1) · · ·P(Xn2 −Xn1 = 2i1).

Symmetry is trivially satisfied. Thus, the claim follows. Finally, let us show that the
random walk {Xn}n≥0 is transient. For i ∈ Z \ {0} we have

P(X1 = 2i) = P(S1 = 2i) +
∑
j∈Z

P(S1 = 2j + 1)P(S2 = 2i|S1 = 2j + 1) + . . .

≥ P(S1 = 2i) = c−1p2i = c−1|2i|−α−1.

Now, since α < 1, from the condition (1.1) we have
∞∑
n=1

1

(2n)3P(X1 = 2n)
<∞.

Therefore, we have proved the desired result.
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