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High points for the membrane model
in the critical dimension∗
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Abstract

In this notice we study the fractal structure of the set of high points for the membrane
model in the critical dimension d = 4. The membrane model is a centered Gaussian
field whose covariance is the inverse of the discrete bilaplacian operator on Z4. We
are able to compute the Hausdorff dimension of the set of points which are atypically
high, and also that of clusters, showing that high points tend not to be evenly spread
on the lattice. We will see that these results follow closely those obtained by O. Davi-
aud [3] for the 2-dimensional discrete Gaussian Free Field.
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1 The model

The field of random interfaces has been widely studied in statistical mechanics.
These interfaces are described by a family of real-valued random variables indexed
by the d-dimensional integer lattice, which are considered as a height configuration,
namely they indicate the height of the interface above a reference hyperplane. The
probability of a configuration depends on its energy (the Hamiltonian), which defines
a measure on the space of such configurations. The most well-known models are the
so-called gradient model, in particular the Discrete Gaussian Free Field (DGFF), or har-
monic crystal, whose Hamiltonian is a function of the discrete gradient of the heights,
and the membrane model. The study of such interface was firstly undertaken by Saka-
gawa in [8]; we are aware of the contributions of Kurt ([6], [7]) regarding also a phe-
nomenon called entropic repulsion in dimension 4.
The Membrane Model is a Gaussian multivariate random variable whose Hamiltonian
depends on the mean curvature of the interface, in particular favors configurations
whose curvature is approximately constant. It is indeed a lattice-based scalar field
{ϕx}x∈Zd where ϕx ∈ R is viewed as a height variable at the site x of the lattice. There
are three convenient and equivalent ways in which one can see such a field. Denote by
VN := [−N,N ]d ∩Zd the centered box of side-length 2N + 1. Then
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1. the membrane model is the random interface model whose distribution is given by

PN (dϕ) =
1

ZN
exp

−1

2

∑
x∈Zd

(∆ϕx)2

 ∏
x∈VN

dϕx
∏

x∈∂2VN

δ0(dϕx), (1.1)

where ∆ is the discrete Laplacian, ∂2VN := {y ∈ V cN : d(y, VN ) ≤ 2} and ZN is the
normalizing constant.

2. By re-summation, the law PN of the field is the law of the centered Gaussian field
on VN with covariance matrix

GN (x, y) := CovN (ϕx, ϕy) = (∆2
N )−1(x, y).

Here, ∆2
N (x, y) = ∆2(x, y)1{x,y∈VN} is the Bilaplacian with 0-boundary conditions

outside VN .

3. The model is a centered Gaussian field on VN whose covariance matrix GN satis-
fies, for x ∈ VN , {

∆2GN (x, y) = δxy, y ∈ VN
GN (x, y) = 0, y ∈ ∂2VN .

For d ≥ 5 the infinite volume Gibbs measure P exists [5, Prop. 1.2.3] and is the law of
the centered Gaussian field with covariance matrix

G(x, y) = ∆−2(x, y).

The membrane model presents several points in common, as well as challenging differ-
ences, from the more known DGFF. The former lacks some key features of the latter,
namely

1. the random walk representation for the Green’s function. In the harmonic crystal,
it is possible to establish the well-known relation involving the covariance matrix
ΓN :

ΓN (x, y) = Ex

τ∂VN−1∑
n=1

1{Sn=y}

 , (1.2)

where Ex is the law of a standard random walk (Sn)n≥0 started at x ∈ Z2 and τ∂VN
is the first exit time from VN .

2. Absence of monotonicity, for example the FKG inequality.

It is thus not possible to rely on harmonic analysis to control the field, and this renders
many problems solved for the harmonic crystal quite intractable. Despite the lack of
such tools it is sufficient to establish two crucial properties to study the high points:
one is the logarithmic bound on covariances which are explained in Lemma 2.1, and the
other one is the 2-Markov property, which can be stated as follows:

Definition 1.1 (2-Markov property). Let A, B ⊆ VN and dist(A,B) ≥ 3. Then {ϕx}x∈A
and {ϕx}x∈B are independent under the conditional law

PN (· |σ ({ϕx, x /∈ A ∪B})) .

This suggests that the behavior of certain Gaussian fields with respect to excee-
dences is universal, in the sense that as soon as the model displays a Gibbs-Markov
property and covariances decay at the same rate, then the behavior of high points is
the same (with some small adjustments to be done according to the dimension). This
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also opens up the question of whether there are other points in common between log-
correlated Gaussian fields, and we believe a more precise answer will be given soon.
The starting point is understanding how many “high” points viz. points that grow more
than the average there are typically. The first step is to find the average height of the
field, in other words to show that there exists a constant c > 0 such that

E

(
max
x∈VN

ϕx

)
/ logN

N→+∞−→ c.

Theorem 1.2 ([6, Theorem 1.2]). Let d = 4, ` ∈ (0, 1),

V `N := {x ∈ VN : d(x, V cN ) ≥ `N} (1.3)

and let g := 8/π2. Then

(a)

lim
N→+∞

P

(
sup
x∈VN

ϕx ≥ 2
√

2g logN

)
= 0.

(b) If 0 < ` < 1/2, 0 < η < 1 there exists C = C(`, η) > 0 such that

P

(
sup
x∈V `N

ϕx ≥
(

2
√

2g − η
)

logN

)
≤ exp

(
−C log2N

)
.

Roughly said, the first-order approximation of the maximum is of order logN , which
also implies that the field behaves approximately like independent variables. For us
then an α-high point will be a point whose height is greater than 2

√
2gα logN . The

behavior of α-high points for the 2-dimensional DGFF, as shown in [3], tells us that such
points exhibit a fractal structure. Very similar results were obtained by Dembo, Peres,
Rosen and Zeitouni in [4] for the set of late points of the 2-d standard random walk.
To begin with, we recall the definition of the discrete fractal dimension:

Definition 1.3 (Discrete fractal dimension, [1]). Let A ⊆ Zd. If the following limit
exists, the fractal dimension of A is

dim(A) := lim
N→∞

log |A ∩ VN |
logN

.

The fractal dimension of the high points is given then in

Theorem 1.4 (Number of high points). Let ` ∈ (0, 1), and

HN (η) :=
{
x ∈ V `N : ϕx ≥ 2

√
2gη logN

}
be the set of η-high points.

(a) For 0 < η < 1 we obtain the following limit in probability:

lim
N→+∞

log |HN (η)|
logN

= 4(1− η2).

(b) For all δ > 0 there exists a constant C > 0 such that for N large

PN

({
|HN (η)| ≤ N4(1−η2)−δ

})
≤ exp(−C log2N).
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We can push further the comparison between the DGFF and the Membrane Model
at their respective critical dimensions, and one can find an interesting similarity in the
behavior of the points. [3] for example also showed that high points appear in clusters;
this is what occurs in the membrane model, as the following two theorems show:

Theorem 1.5 (Cluster of high points 1). Let

D(x, ρ) := {y ∈ VN : |y − x| ≤ ρ} .

For 0 < α < β < 1 and δ > 0

lim
N→+∞

max
x∈V `N

PN

(∣∣∣∣HN (α) ∩D(x,Nβ)

logN
− 4β(1− (α/β)2)

∣∣∣∣ > δ

)
= 0. (1.4)

Theorem 1.6 (Cluster of high points 2). For 0 < α < 1, 0 < β < 1 and δ > 0 we have

lim
N→+∞

max
x∈V `N

P

(∣∣∣∣ log |HN (α) ∩D(x,Nβ)|
logN

− 4β(1− α2)

∣∣∣∣ > δ |x ∈ HN (α)

)
= 0.

It is also possible to evaluate the average number of pairs of high points as in the
following theorem:

Theorem 1.7 (Pairs of high points). Let 0 < α < 1, 0 < β < 1 and let

Fh,β(γ) := γ2(1− β) +
h(1− γ(1− β))2

β

Γα,β :=
{
γ ≥ 0 : 4− 4β − 4α2F0,β(γ) ≥ 0

}
=
{
γ ≥ 0 : (1− α2γ2) ≥ 0

}
,

ρ(α, β) := 4 + 4β − 4α2 inf
γ∈Γα,β

F2,β(γ) > 0.

Note that Γα,β = [0, 1/α] is independent of β. Then the following limit in probability
holds:

lim
N→+∞

log
∣∣{(x, y) ∈ HN (α) : |x− y| ≤ Nβ

}∣∣
logN

= ρ(α, β).

Finally we can also show what the maximum width of a spike of given length is:

Theorem 1.8 (The biggest high square). Let −1 < η < 1, DN (η) the side length of the
biggest sub-box for which all height variables are uniformly greater than 2

√
2gη logN ,

i. e.

DN (η) := sup

{
a ∈ N : ∃x ∈ V `N : min

y∈B(x,a)
ϕy ≥ 2

√
2gη logN

}
.

Then the following limit in probability holds:

lim
N→+∞

logDN (η)

logN
=

1− η
2

.

The paper is organized as follows: in Section 2 we will prove some preliminary
results that will be used for the proofs of the main theorems, to which Section 3 is
going to be devoted.
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2 Preliminary Lemmas and results

Notation

D(x, a) (resp. D(x, a]) denotes the open (resp. closed) Euclidean ball of center x and
radius a, while B(x, a) is a box centered at x of side length a. For the rest of this notice,
recall the definition (1.3) and we let once and for all ` ∈ (0, 1/2). Let x0 ∈ VN and

Mα :=
{
x0 + i(Nα + 4) : i ∈ N4 andx0 + i(Nα + 2) ⊂ VN

}
.

We denote by xB the center of a (sub)box B and as Πα the union of sub-boxes of side-
length Nα (without discretization issues) and midpoint in Mα. Fα will be the sigma-
algebra generated by {ϕx} for x ∈

⋃
B∈Πα

∂2B. Practically we denote with Πα a set of
disjoint boxes separated by layers of thickness 2, which thanks to the 2-Markov property
will enable us to perform a decomposition procedure on these sets.
Furthermore ϕB := E (ϕxB |F∂2B) and VarB(ϕx) := VarN (ϕx|F∂2B).

2.1 Lemmas

2.1.1 The function GN (·, ·)

In order to prove some of the next results we will introduce the convolution of the har-
monic Green’s function, which will prove to be a key tool to obtain the crucial estimates
on the covariances of our model. Let A be an arbitrary subset of Z4, and for x ∈ A let
ΓA(x, ·) be the solution of the discrete boundary value problem{

∆ΓA(x, y) = δxy, y ∈ A
ΓA(x, y) = 0, y ∈ ∂A.

Note that ΓN as in (1.2) is the unique solution to the above problem for A := VN . The
convolution of ΓN is

GN (x, y) :=
∑
z∈VN

ΓN (x, z)ΓN (z, y), x, y ∈ VN .

[6] contains several bounds and properties of such a function, and we would like here
to recall those that we are going to use in the sequel: for all x, y ∈ VN

• symmetry: GN (x, y) = GN (y, x),

• [6, Lemma 2.2] if ` ∈ (0, 1/2) there exist c1 = c1(`) > 0, c2 > 0 such that

g logN + c1 ≤ GN (x, y) ≤ g logN + c2 (2.1)

With this in mind it is now easier for us to show how to bound the variances and covari-
ances of our field.

Lemma 2.1 (Bounds on the variances). Let d = 4 and 0 < δ < 1. Then

• there exists C > 0 such that

sup
x∈VN

VarN (ϕx) ≤ g logN + C. (2.2)

• There exists C(`) > 0 such that

sup
x∈V `N

|VarN (ϕx)− g logN | ≤ C(`). (2.3)
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• There exist C > 0 and C(`) > 0 such that

sup
x,y∈V `N
x 6=y

CovN (ϕx, ϕy)− g(logN − log |x− y|) ≤ C. (2.4)

sup
x,y∈V `N
x 6=y

|CovN (ϕx, ϕy)− g(logN − log |x− y|)| ≤ C(`). (2.5)

Proof. For the variances see [6, Proposition 1.1]. For the covariances, remember that
in [6, Corollary 2.9] that for all d ≥ 4 and for all x ∈ V `N

sup
y∈V `N

|GN (x, y)−GN (x, y)| ≤ c = c(`) < +∞. (2.6)

It is therefore sufficient to show that (2.4) and (2.5) hold for G(·, ·). But we have from
[6, Lemma 2.10], that there exists a constant K such that in d = 4 for x 6= y and all
α ∈ (0, 2)

GN (x, x)−GN (x, y) = g log |y − x|+K + o
(
|y − x|−α

)
.

Hence

GN (x, y) ≤ GN (x, y) + c = GN (x, x)− g log |y − x|+K ′
(2.1)
≤

≤ g logN − g log |y − x|+K ′.

The other bound follows similarly by considering (2.5).

Next we give a decomposition of the field which is similar to the one existing for
the DGFF (see for example [9, Section 2.1]). With this in mind, we can prove that
conditioning on the values of the field assumed on the double boundary of a subset of
VN ⊆ Z4 (in fact of any Zd) the resulting field is again the membrane model restricted
to the interior of the smaller domain.

Lemma 2.2. Let B ⊆ VN . Let F := σ(ϕz, z ∈ VN \B). Then

{ϕx}x∈B
d
= {EN [ϕx|F ] + ψx}x∈B

where “
d
=” indicates equality in distribution, in particular under PN (·)

(a) ψx ⊥⊥ F ;
(b) {ψx}x∈B is distributed as the membrane model with 0-boundary conditions on B.

Proof. Set ψx := ϕx − E [ϕx|F ] for all x ∈ B. We have to show that the above results
hold.

(a) It is clear from the definition.
(b) Being PN a Gibbs measure, it satisfies the DLR equation: for all A ⊆ VN , FAc :=

σ (ϕz, z ∈ Ac),
PN (· |FAc)(η) = PA,η(·) PN (dη)− a. s. (2.7)

with

PA,η(dϕ) =
1

ZA
exp

−1

2

∑
x∈Zd

(∆ϕx)2

 ∏
x∈A

dϕx
∏

x∈VN\A

δηx(dϕx).

In other words, PA,η is a Gaussian distribution with covariance matrix
(
∆2
A

)−1
.

Since CovN (·, ·|FAc) we find out that it equals GA. In our case this means that
CovN (·|F ) is deterministic and equal to GB. So

CovN (ψx, ψy) = CovN (ψx, ψy|F ) = CovN (ϕx, ϕy|F ) = GB(x, y)
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Remark 2.3. This result gives us a decomposition of the membrane model in all dimen-
sions.

Lemma 2.4. Let 0 < α < 1 and 0 < β < 1, δ > 0 and we define

S = S(ε) :=
{

(x, y) ∈ V `N : Nβ(1−ε) ≤ |x− y| ≤ Nβ
}
.

Then there exist C, ε0 > 0 (which can be chosen uniformly on (α, β) on compact sets of
(0, 1)4) and γ? := 2(2− β)−1 such that for all ε ≤ ε0 and all N

max
(x,y)∈S

P (x, y ∈ HN (α)) ≤ CN−4α2F2,β(γ?)+δ.

Proof. Let Z := ϕx + ϕy and we see that

{x, y ∈ HN (α)} ⊆
{
Z ≥ 4

√
2gα logN

}
.

We obtain also from (2.4) that

CovN (ϕx, ϕy) ≤ g logN − gβ(1− ε) logN +O(1).

Thus by (2.6) and (2.2)

VarN (Z) ≤ (2g(2− β) +O(ε) +O(1/ logN)) logN.

Since F2,β(γ?) = γ?, using (2.8)

P(Z ≥ 4
√

2gα logN) ≤

≤ exp

(
− 16(

√
2g)2α2 log2N

2((2g(2− β) +O(ε) +O(1/ logN)) logN

)
≤

≤ exp
(
−4α2γ∗(1 +O(ε) +O(1/ logN)) logN

)
≤

≤ CN−4α2F2,β(γ?)+O(ε).

Lemma 2.5. Let B := B(x, 4Nβ), ε > 0, b±(α, β, ε,N) = 2
√

2g(α(1 − β) ± ε) logN ,
I(α, β, ε,N) := [b−(α, β, ε,N), b+(α, β, ε,N)]. Then

max
x∈V `N

P(ϕB /∈ I(α, β, ε,N))|ϕx ≥ 2
√

2gα logN)
N→+∞−→ 0.

Proof. We shorten I, b+ and b− for the above quantities. We recall here two useful facts
about normal random variables (whose short proof is postponed to the appendix). If
X ∼ N (0, 1) then

P (|X| ≥ a) ≤ exp(−a2/2), ∀ a ≥ 0, (2.8)

P (|X| ≥ a) ≥ exp(−a2/2)√
2πa

, ∀ a ≥ 1. (2.9)

For η > 0 we obtain with (2.8) and (2.9)

P(ϕx ≥ 2
√

2gα(1 + η) logN |ϕx ≥ 2
√

2gα logN)→ 0.

as N → +∞. This yields

P(ϕB /∈ I|ϕx ≥ 2
√

2gα logN) = o(1) +

+P(ϕB /∈ I, ϕx ≤ 2
√

2gα(1 + η) logN |ϕx ≥ 2
√

2gα logN) ≤
≤ o(1) + P(ϕB /∈ I|ϕx ∈ (1, 1 + η)2

√
2gα logN).
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Now we write ϕx = ϕx − ϕB + ϕB and observe that ϕB ⊥⊥ ϕx − ϕB. Therefore
CovN (ϕx, ϕB) = VarN (ϕB) and so there exists Z ∼ N (0, σ2

Z), σ2
Z > 0, for which

ϕB =
VarN (ϕB)

VarN (ϕx)
ϕx + Z, Z ⊥⊥ ϕx.

If x is the center of B ⊆ C we can decompose the variances as VarC(ϕx) = VarC(ϕB) +

VarB(ϕx), and with this

VarN (ϕB)

VarN (ϕx)
= (1− β) +O

(
1

logN

)
.

It must then be that VarN (Z) = O(logN). Consequently

P(ϕB ≥ b+|ϕx ∈ (1, 1 + η)2
√

2gα logN) ≤

≤ P

(
Z +

(
(1− β) +O

(
1

logN

))
(1 + η)2

√
2gα logN ≥ b+

)
→ 0

for η < ε/(α(1− β)). Similarly

P(ϕB ≤ b−|ϕx ∈ (1, 1 + η)2
√

2gα logN) ≤

≤ P

(
Z +

(
(1− β) +O

(
1

logN

))
2
√

2gα logN ≤ b−
)
→ 0.

Lemma 2.6. We keep the notation of Lemma 2.4. Let 0 < α < β < 1 and δ > 0.
For (x, y) ∈ S define T (x, y) as the set of sub-boxes of side length 2Nβ such that the
centered subbox of side length Nβ contains x, y. Then we can find C, ε0 > 0 such that
for ε ≤ ε0 and all N

max
x,y∈S

B∈T (x,y)

P
(
{x, y ∈ HN (α)} ∩

{
ϕB ≤ 2

√
2gαγ(1− β) logN

})
≤ CN−4α2F2,β(min{γ,γ?})+δ.

ε0 can be chosen uniformly on (α, β) on compact sets of (0, 1)4.

Proof. Define

E := {x, y ∈ HN (α)} ∩
{
ϕB ≤ 2

√
2gαγ(1− β) logN

}
.

We distinguish two cases:

γ ≥ γ?. We have P(E) ≤ P({x, y ∈ HN (α)}): the claim follows from Lemma 2.4 because
min {γ, γ?} = γ?.

γ < γ?. It follows from the definition of γ? that γ < γ? implies γ < 2(2 − β)−1. For this
reason set a := 1−γ(1−β) > 0 and b := γ(2−β)−2 < 0. Letting Z := a(ϕx+ϕy)+bϕB

E ⊆
{
Z ≥ (2a+ bγ(1− β))α2

√
2g logN

}
.

Furthermore we have the usual decomposition

VarN (Z) = a2VarN (ϕx) + a2VarN (ϕy) + b2VarN (ϕB) +

+2abCovN (ϕx, ϕB) + 2abCovN (ϕy, ϕB) +

+2a2CovN (ϕx, ϕy). (2.10)
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By Lemma 2.1

VarN (ϕB) = VarN (ϕxB )−Var(ϕxB |F∂2B) ≤ g(1− β) logN +O(1).

and

CovN (ϕx, ϕB) = E(E(ϕx|F∂2B)E(ϕxB |F∂2B)) =

= CovN (ϕx, ϕxB )−Cov(ϕx, ϕxB |F∂2B) ≥
≥ g(logN − log |x− xB |)− g(β logN − log |x− xB |) +O(1) =

= g(1− β) logN +O(1).

Analogously
CovN (ϕy, ϕB) ≥ g(1− β) logN +O(1).

Define the auxiliary function f(a, b, β) := 2a2(2 − β) + b2(1 − β) + 4ab(1 − β). We
use these bounds in (2.10) to obtain

VarN (Z) ≤ (f(a, b, β) +O(ε) +O(1/ logN))g logN.

By the equality 2a+ b = γβ

4a2 + b2 + 4ab = (2a+ b)2 = γ2β2.

Then

f(a, b, β) = (2a+ b)2 − β(2a2 + b2 + 4ab) =

= (4a2 + b2 + 4ab)(1− β) + 2βa2 =

= (γβ)2(1− β) + 2βa2 =

= β(βγ2(1− β) + 2a2) =

= β((2a+ b)(1− a) + 2a2) =

= β(2a+ b− ab).

Hence
VarN (Z) ≤ (β(2a+ b− ab) +O(ε) +O(1/ logN))g logN. (2.11)

Since 2a+ b− ab = 2a+ bγ(1− β) (2.10) and (2.11) yield

P(E) ≤ C exp

(
−
(

4α2(2a+ b− ab)
β

+O(ε)

)
logN

)
.

Finally notice that

βF2,β(γ) = βγ2(1− β) + 2(1− γ(1− β))2 = βγ2(1− β) + 2a2 =

= (2a+ b)(1− a) + 2a2 = 2a+ b− ab.

This allows us to conclude the proof.

Finally we would like to recall

Lemma 2.7 ([6, Lemma 2.11]). Let 0 < n < N , AN ⊆ Z4 be a box of side-length N ,
An ⊆ AN a box of side-length n. Let 0 < ε < 1/2. There exists C > 0 such that for all
x ∈ An with |x− xB | < εn

VarN (E (ϕx |F∂2An)−EN (ϕxB |F∂2An) |F∂2AN ) ≤ Cε.

Remark 2.8. In [6] the above Lemma is stated with the assumption that “the boxes An
and AN have the same centerÂt’Ât’. However one sees that the result can be obtained
removing this condition which is not necessary.
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3 Five theorems

Proof of Theorem 1.4. The core of the proof is the lower bound (b) which was
already proved by [6, Theorem 1.3] and is based on the hierarchical decomposition
of the membrane model, similar to that of the DGFF (for the main idea supporting the
proof we also refer to [2]). We show here for the reader’s convenience the upper bound,
in order to obtain the desired limit in probability.
Proof of Theorem 1.4 (a). For any δ > 0 one can apply Chebyshev’s inequality to get

P
({
|HN (η)| ≤ N−4(1−η2)−δ

})
≤ N4(1−η2)+δE|HN (η)| ≤

≤ N−4(1−η2)−δN4 max
x∈VN

P
(
ϕx ≥ 2

√
2gη logN

)
≤

≤ N−4(1−η2)−δN4 exp

(
− 8gη2 log2N

2g logN + C

)
≤ N−4(1−η2)−δN4−4η2 → 0

where we have used Lemma 2.1 too.

Proof of Theorem 1.5. We choose η, δ > 0 and define

D+ :=
{
ϕB ≤ 2

√
2gη logN

}
,

C+ :=
{
|HN (α) ∩D(x,Nβ)| ≥ N4β(1−(α/β)2)−δ)

}
and for an ε > 0 to be fixed later

A :=
⋃

y∈B(x,Nβ)

{
|E(ϕy|F∂2B)− ϕB | ≥ 2

√
2gε logN

}
.

By Lemma 2.7 VarN (ϕB − E(ϕy|F∂2B)) ≤ c (we may assume that B(x,Nβ) ( V `N ), and
so

P(A) = O
(
N4β exp

(
−c log2N

))
tends to 0. Furthemore also P(Dc

+) tends to 0 by virtue of the bounds on covariances
and (2.8). We then have

P(C+) = E(P(C+|F∂2B)) ≤ P(A) + P(Dc
+) + E(P(C+|F∂2B)1Ac∩D+

) ≤

≤ o(1) + P

(∣∣∣∣H4Nβ

(
α− ε′

β

)∣∣∣∣ ≥ N4β(1−(α/β)2)−δ)
)

where ε′ satisfies
α− ε′

β
log(4Nβ) = (α− η − ε) logN.

By tuning the parameters N large enough and η, ε small enough we can obtain

4β

(
1−

(
α− ε′

β

)2
)
< 4β

(
1−

(
α

β

)2
)

+ δ

(roughly speaking, we have ε′ ≈ α(1− β)). By Theorem 1.4

P

(∣∣∣∣H4Nβ

(
α− ε′

β

)∣∣∣∣ ≥ N4β(1−(α/β)2)−δ
)
→ 0

and from this the claim follows. We now go to the lower bound proof, which is similar
in spirit to the upper bound. By setting

D− :=
{
ϕB ≥ −2

√
2gη logN

}
,
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C− :=
{
|HN (α) ∩D(x,Nβ)| ≤ N4β(1−(α/β)2)−δ)

}
we also define

HsN (η) :=
{
x ∈ V sN : ϕx ≥ 2

√
2gη logN

}
, s ∈ (0, 1/2).

We observe that

P(C−) = E(P(C−|F∂2B)) ≤ P(A) + P(Dc
−) + E(P(C+|F∂2B)1Ac∩D−) ≤

≤ o(1) + P

(∣∣∣∣H3/8

4Nβ

(
α+ ε′

β

)∣∣∣∣ ≤ N4β(1−(α/β)2)−δ)
)

where ε′ satisfies
α+ ε′

β
log(4Nβ) = (α+ η + ε) logN

and we conclude as before.

Proof of Theorem 1.6. We will use the notation b±(α, β, η,N) as in the proof of Lemma
2.5. We will also introduce the following quantities: let B := B(x, 4Nβ), and for η, δ > 0,

E :=
{
|HN (α) ∩D(x,Nβ)| ≤ N4β(1−α2)−δ

}
,

F :=
{
ϕB ≥ b−(α, β, η,N)

}
,

G := {x ∈ HN (α)} .

Lower bound. Thanks to the proof of Lemma 2.5 we have P(E|G) = P(E|F∩G)P(F |G)+

o(1) = P(E|F ∩G)(1 + o(1)) + o(1). This means that

P(E|F,G) =
P(E ∩ F ∩G)

P(F ∩G)
≤ 1

P(F ∩G)

√
P(G)P(E ∩ F ) =

=
1

P(F |G)P(G)

√
P(G)P(F )P(E|F ) =

Lemma 2.5
= (1 + o(1))

√
P(F )

P(G)
P(E|F ).

We know by the bounds (2.2) and (2.9)

P(G) = P(ϕx ≥ 2
√

2gα logN) ≥ c1
exp

(
− 8gα2 log2N

2g logN+c2

)
c3 logN

≥

≥ exp (−d′ logN) ,

P(F ) = P(ϕB ≥ 2
√

2g(α(1− β)− η) logN) ≤

≤ c4 exp

(
−8g(α(1− β)− η)2 log2N

2g(1− β) logN + c5

)
≤ exp (−d′′ logN)

for some d′, d′′ > 0. Therefore we can find d > 0 such that P(F )/P(G) ≤ exp(d logN)

and to show the result it suffices to prove that P(E|F ) ≤ exp(−c log2N) for a posi-
tive c. For this purpose define

A :=
⋃
y∈B

{
|E(ϕy|F∂2B)− ϕB | ≥ 2

√
2gε logN

}
.

From Lemma 2.7 it follows that P(A) ≤ exp(−c log2N) for c > 0 and from (2.9) that
P(F ) ≥ exp (−d logN) for some d > 0, all in all P(A|F ) ≤ exp

(
−O

(
log2N

))
. So we
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can write

P(E|F ) ≤ P(F ∩A)

P(F )
+

+
P(E ∩ F ∩Ac)

P(F )
≤

exp
(
−O

(
log2N

))
+

E(P (E|F∂2B)1Ac1F )

P(F )
.

If we are on Ac ∩ F , then

P
(
|HN (α) ∩D(x,Nβ)| ≤ N4β(1−α2)−δ|F∂2B

)
≤

≤ P
(∣∣∣H3/8

4Nβ
(α+ ε′)

∣∣∣ ≤ N4β(1−α2)−δ
)

(3.1)

where ε′ is such that

(α− (α(1− β)− η) + ε) logN = (α+ ε′) log 4Nβ . (3.2)

From Theorem 1.4 we know that (3.1) is bounded from above by exp(−c log2N) for
a constant c > 0, provided that ε′ is small (which can be obtained if η, ε and N are
small, small and large respectively).

Upper bound. Let K ∈ N and
{
βj := j

Kβ
}

1≤j≤K . Then let

D1 := D
(
x,Nβ1

)
, Di := D

(
x,Nβi

)
\D

(
x,Nβi−1

)
.

Since D
(
x,Nβ

)
= ∪1≤i≤NDi{∣∣HN (α) ∩D

(
x,Nβ

)∣∣ ≥ N4β(1−α2)+ε
}
⊆

⊆
⋃

0≤i≤N

{
|HN (α) ∩Di| ≥ N4βi(1−α2)+ε/2

}
as soon as N is large. It is then sufficient to prove that for all i

P
(
|HN (α) ∩Di| ≥ N4βi(1−α2)+ε/2 |x ∈ HN (α)

)
N→+∞−→ 0.

We can consider βj ’s for which 4βj(1− α2) + ε/2 ≤ 4βj . Let Bj := B
(
x, 4Nβj

)
,

C :=
{
|HN (α) ∩Dj | ≥ N4βj(1−α2)+ε/2

}
and b+(α, βj , η,N) as above. By Lemma 2.5 we obtain

P
(
C|x ∈ HN (α)) = P(C ∩

{
ϕBj ≤ b+(α, βj , η,N)

}
|x ∈ HN (α)

)
+ o(1).

If we set F :=
{
ϕBj ≤ b+(α, βj , η,N)

}
, G := {x ∈ HN (α)} we obtain

P(C ∩ F |G)
Chebyshev inq.

≤ N−4βj(1−α2)−ε/2

P(G)
E(1F∩G|HN (α) ∩Dj |) =

=
N−4βj(1−α2)−ε/2

P(G)
E

∑
y∈Dj

1{x,y∈HN (α)}1F

 ≤
≤ N4βjα

2−ε/2

P(G)
sup
y∈Dj

P({x, y ∈ HN (α)} ∩ F ). (3.3)
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By the bounds on the covariance and the normal distribution we have

P(G)−1 ≤ N4α2+ε/8 (3.4)

for N large. By Lemma 2.6 by defining γ∗ = 2
2−βj > 1 when η is small and K large

we obtain

sup
y∈Dj

P({x, y ∈ HN (α)} ∩ F ) ≤ N−4α2F2,βj
(1)+ε/8 = N−4α2(1+βj)+ε/8. (3.5)

Inserting (3.4) and (3.5) in (3.3) we obtain

P(C ∩ F |G) ≤ N4βjα
2−ε/2+ε/8+4α2−4α2(1+βj)+ε/8 =

1

N ε/4

N→+∞−→ 0

Proof of Theorem 1.7. Preliminary we would like to make some considerations. It
holds that ρ(α, β) is positive and in particular

ρ(α, β) ≥ 4 + 4β − 4α2F2,β(1) = 4(1− α2)(1 + β). (3.6)

(3.6) derives from the fact that F2,β(γ) has a unique global minimum at 1 in the range γ ∈
Γα, β . Moreover notice that ρ(α, β) is increasing in β. If we set γm := infγ∈Γα,β F2,β(γ),
γ∗ := infγ≥0 and γ+ := sup Γα,β we have γ∗ ≤ γm ≤ γ+ and moreover since Fh,β(·) does
not depend on α as well as Γα,β does not depend on β we have γm = min {γ∗, γ+}. that

γ+ = 1/α ≥ 1.

We are now ready to prove the lower and upper bounds.

Lower bound. We set

C :=
{∣∣{(x, y) ∈ HN (α) : |x− y| ≤ Nβ

}∣∣ ≤ Nρ(α,β)−δ
}
.

Set mγ := 4− 4β − 4α2F0,β(γ) = 4(1− β)(1− α2γ2) and choose γ < γ+ (in order to
have mγ strictly positive). Further

F :=
{
B ∈ Πβ : ϕB ≥ 2

√
2gγ(1− β)α logN

}
,

D :=
{
|F | ≥ Nmγ−δ/2

}
.

Theorem 1.4(a) shows that P(Dc)→ 0. Hence we rewrite

P(C) = o(1) + P(D ∩ C).

On D we have at least
{
Bj : 1 ≤ j ≤ Nmγ−δ/2

}
boxes. Set

Dj :=
{
ϕBj ≥ 2

√
2gαγ(1− β) logN

}
.

We observe

C ∩D ⊆ E :=

Nmγ−δ/2⋃
j=1

(
Dj ∩

{
|HN (α) ∩Bj | ≤ N (ρ(α,β)−mγ)/4−δ/8

})
.

(a) The idea is to scale the square: now we take the box with mesh N/Nβ and the grid is made by {xB : B ∈
Πβ}. In this way Theorem 1.4 tells us that HN1−β (γα) ≈ N4(1−β)(1−γ2α2) = Nmγ .
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Let us now put for some arbitrary η > 0

A :=
⋃

B∈Πβ

⋃
y∈B(xB ,Nβ/2)

{
|E (ϕy|FB)− ϕB | ≥ 2

√
2gη logN

}
.

As before P(A) = o(1) as N → +∞. Plugging this in, exactly as in the proof of
Theorem 1.5

P(C ∩D) ≤ o(1) + P(E ∩Ac) ≤
≤ o(1) +

+Nmγ−δ/2P

(∣∣∣∣H1/4

Nβ

(
α(1− γ(1− β)) + η

β

)∣∣∣∣ ≤ N ρ(α,β)−mγ
4 − δ8

)
.

Finally we observe that

ρ(α, β)−mγ

4
≥ 2β

(
1− α2 (1− γ(1− β))

2

β2

)

which is exp(−O(log2N)) by Theorem 1.4 for η small enough, as we have already
seen. Hence P(C ∩D) = o(1), and we conclude the proof.

Upper bound. By Theorem 1.4 we see that for λ > 0 the number of α-high points within
distance Nλβ is at most N4(1−α2)+4λβ . We have with (3.6) that 4(1 − α2) + 4λβ ≤
ρ(α, β) if

4(1− α2) + 4λβ ≤ 4(1− α2)(1 + β) ⇐⇒ λ ≤ (1− α2).

Therefore when this condition is not satisfied it is enough to find that there exists
h = h(δ) < 1 such that for all β′ ∈ [β(1− α2), β]

P
(∣∣∣{(x, y) ∈ HN (α) : Nβ′ ≤ |x− y| ≤ Nβ′h

}∣∣∣ ≥ Nρ(α,β′)+δ
)
→ 0.

We separate the two cases γ∗ = γm:

γ∗ = γm. Define

E :=
{∣∣∣(x, y) ∈ HN (α) : Nβ′ ≤ |x− y| ≤ Nβ′h

∣∣∣ ≥ Nρ(α,β′)+δ
}
.

By Chebyshev inequality

P(E) ≤ N−ρ(α,β
′)−δE

 ∑
(x,y):Nβ′≤|x−y|≤Nβ′h

1{x,y∈HN (α)} ≤

≤ N−ρ(α,β
′)−δN4+4β′−4α2F2,β′ (γ∗)+δ/2,

where we have used the assumption that h is close to 1 and Lemma 2.4

γ∗ > γm. We construct for each B ∈ Πβ′ a bigger box of size 4Nβ′ by juxtaposing
to it the 12 adjacent subboxes of same side length. We call the set of such
bigger boxes B, and for each B′ ∈ B we center in xB′ a box of twice bigger
volume as B′. The latter boxes belong to a new set named C. We remark that
all pairs of points within distance Nβ′ must belong to at least one B′ ∈ B. For
ε > 0 set

D :=

{
max
C∈C

ϕC ≥ (1 + αε)(1− β′)2
√

2g logN

}
.
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By Lemma 2.1 and the fact that {ϕy : y ∈ B} with boundary conditions ∂2B is
a Gaussian field

P(Dc) ≤ |Πβ′ | exp

(
− (1 + αε)2(1− β′)2(2

√
2g)2 log2N

2g logNβ′ +O(1)

)
→ 0

since |Πβ′ | = O(N4(1−β′)). So noticing that α(γm + ε) = (1 + αε)

P(E) = o(1) + P(E ∩D) ≤ o(1) +N−ρ(α,β
′)−δN4+4β′−4α2F2,β′ (γm+ε)+δ/2

if h is close to 1. 4 + 4β′ − 4α2F2,β′(γm + ε)
ε→0−→ ρ(α, β′), thus P(E)→ 0.

Proof of Theorem 1.8.

Lower bound. We recall the notation used in the proof of Theorem 1.4 by N. Kurt. For
α ∈ (1/2, 1) we choose 1 ≤ k ≤ K + 1 such that

αk :=
α(K − k + 1)

K
>

1− η
2
− δ (3.7)

(δ must be thought small). Let us now define recursively Γα1
:= Πα1

. Then for i ≥
2, we set Γαi as follows: for any B ∈ Γαi−1

define ΓB,αi := {B′ ∈ Παi : B′ ⊆ B/2}.
Then

Γαi :=
⋃

B∈Γαi−1

ΓB,αi .

We re-use the notation B(k) for a sequence of boxes B1 ⊇ B2 ⊇ · · · ⊇ Bk, Bi ∈ Γαi
for all 1 ≤ i ≤ k. Finally

Dk :=
{
B(k) : ϕBi ≥ (α− αi)λ2

√
2g(1− 1/K) logN, ∀ 1 ≤ i ≤ K

}
,

Ck := {|Dk| ≥ nk} .

We denote the biggest box of B(k) with B1,k. Let B be a box of side length Nαk/2

centered in B1,k. Let nk := Nκ+4α(k−1)
(1−λ)2
K , where κ is the constant appearing in

[7, Lemma 3.2]. Define moreover for ε > 0

A :=
⋃
y∈B

{
|E(ϕy − ϕxB |Fαk)| ≥ 2

√
2gε(α− αk)(1− γK) logN

}
.

By Lemma 2.7 P(Ac)→ 1 and P(Ck)→ 1 as in Theorem 1.4 (Ck is the same event).
So

P
(
DN (η) ≤ N

1−η
2 −δ

)
≤

≤ o(1) +

+P

(
Ck ∩Ac ∩

{
min
y∈B

ϕy ≥ 2
√

2gη logN

})
≤

Def. of A,Dk
≤ o(1) +

+P

(
min
y∈B

(ϕy −E(ϕy|Fαk)) ≤

2
√

2g logN(η − (α− αk)(1− γK)(1− ε))
)
≤

≤ P

(
max

y∈V 1/4

Nαk

ϕy ≥ 2
√

2g logN(−η + (α− αk)(1− γK)(1− ε))

)

EJP 18 (2013), paper 86.
Page 15/17

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2750
http://ejp.ejpecp.org/


High points for the membrane model in the critical dimension

where in the latter inequality we used the fact that V 1/4
Nαk ⊇ B. For

2
√

2g logN(−η + (α− αk)(1− γK)(1− ε)) > 2
√

2g logNαk (3.8)

we would obtain thanks to Theorem 1.4 that for N large this probability tends to
0. But (3.7) and (3.8) give rise to a system of equations which has a solution for
large K and N , α close to 1 and ε small when 1/2 + η/2k/K < η/2 + δ + 1/2.

Upper bound. We set θ := 1−η
2 , β := θ + δ. We have first of all that

P

 ⋃
B∈Πβ

{ϕB ≥ 2
√

2g(1− θ) logN}

 N→+∞−→ 0 (3.9)

since we have the variance bounds and (2.8). Furthermore let us define

F :=

 ⋂
B∈Πβ

{ϕB ≤ 2
√

2g(1− θ) logN}

 ,

C :=

 ⋃
B∈Πβ

{∀x ∈ B(ϕx ≥ 2
√

2gη logN)}

 .

We then have

P (DN (η) ≥ Nθ+2δ
)
≤ P(C) ≤

≤ P(F c) + P(F ∩ C) ≤
(3.9)
≤ o(1) + E(P(C|Fβ)1F ).

If B ∈ Πβ we indicate with B(1/4) the sub-box B(xB , N
β/2). Choose ε > 0 and

define
A :=

⋃
B∈ΠB

⋃
y∈B(1/4)

{
|E(ϕy − ϕxB |F∂2B)| ≥ 2

√
2gε logN

}
.

With Lemma 2.7 we obtain that P(A) tends to 0 as in Theorem 1.5. We can further
bound

P(DN (η) ≥ Nθ+2δ) ≤ o(1) + E(P(C|Fβ)1F∩Ac).

To go on we notice that

P(C|Fβ) ≤
(
N

Nβ

)4

max
B∈Πβ

P
(
∀x ∈ B(ϕx ≥ 2

√
2gη logN)

)
(3.10)

and in particular on F ∩Ac

P
(
∀x ∈ B(ϕx ≥ 2

√
2gη logN)

)
≤

≤ P
(
∀x ∈ B(ϕx −E(ϕx|Fβ) ≥ 2

√
2g logN(η − (1− θ + ε)))|Fβ

)
=

= P

(
max
x∈V 1/4

Nβ

ϕx ≤ 2
√

2g logN(θ + ε)

)
.

By Theorem 1.2 this quantity is O
(
exp

(
−d log2N

))
for a positive d when for in-

stance β > (θ + ε) which implies ε < δ. To sum up

P(C|Fβ) ≤ exp
(
2(1− β) logN − d log2N

)
→ 0

and recalling (3.10) we finish the proof.
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A Gaussian bounds

Proof of (2.8) and (2.9).

(2.8) For t > a > 0, t+ a > t− a and hence t2 − a2 > (t− a)2,

exp(a2/2)P (|X| > a) = 2 exp
(
a2/2

)
P (X > a) =

= 2

∫ +∞

a

1√
2π

exp

(
− t

2 − a2

2

)
dt <

< 2

∫ +∞

a

1√
2π

exp

(
− (t− a)2

2

)
dt = 1.

Notice that the bound holds also at a=0.

(2.9) We have that the function

g(a) := 2P (X > a)−
exp

(
−a2/2

)
√

2πa

is such that g(1) > 0, and its derivative

g′(a) =
2√
2π

exp
(
−a2/2

)(1 + a2 − a3

a2

)
< 0, ∀ a ≥ 1.

Since lima→+∞ g(a) = 0, g(a) is always non negative.
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