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Abstract

We introduce a class of random compact metric spaces Lα indexed by α ∈ (1, 2)
and which we call stable looptrees. They are made of a collection of random loops
glued together along a tree structure, and can informally be viewed as dual graphs
of α-stable Lévy trees. We study their properties and prove in particular that the
Hausdorff dimension of Lα is almost surely equal to α. We also show that stable
looptrees are universal scaling limits, for the Gromov–Hausdorff topology, of various
combinatorial models. In a companion paper, we prove that the stable looptree of
parameter 3

2
is the scaling limit of cluster boundaries in critical site-percolation on

large random triangulations.
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Figure 1: An α = 1.1 stable tree, and its associated looptree L1.1, embedded non
isometrically in the plane (this embedding of L1.1 contains intersecting loops, even
though they are disjoint in the metric space).
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Random stable looptrees

1 Introduction

In this paper, we introduce and study a new family (Lα)1<α<2 of random compact
metric spaces which we call stable looptrees (in short, looptrees). Informally, they
are constructed from the stable tree of index α introduced in [17, 26] by replacing
each branch-point of the tree by a cycle of length proportional to the “width” of the
branch-point and then gluing the cycles along the tree structure (see Theorem 2.3
below). We study their fractal properties and calculate in particular their Hausdorff
dimension. We also prove that looptrees naturally appear as scaling limits for the
Gromov–Hausdorff topology of various discrete random structures, such as Boltzmann-
type random dissections which were introduced in [23].

Perhaps more unexpectedly, looptrees appear in the study of random maps decorated
with statistical physics models. More precisely, in a companion paper [15], we prove
that the stable looptree of parameter 3

2 is the scaling limit of cluster boundaries in
critical site-percolation on large random triangulations and on the uniform infinite planar
triangulation of Angel & Schramm [2]. We also conjecture a more general statement for
O(n) models on random planar maps.

In this paper α ∈ (1, 2).

Stable looptrees as limits of discrete looptrees. In order to explain the intuition
leading to the definition of stable looptrees, we first introduce them as limits of random
discrete graphs (even though they will be defined later without any reference to discrete
objects). To this end, with every rooted oriented tree (or plane tree) τ , we associate a
graph denoted by Loop(τ) and constructed by replacing each vertex u ∈ τ by a discrete
cycle of length given by the degree of u in τ (i.e. number of neighbors of u) and gluing all
these cycles according to the tree structure provided by τ , see Figure 2 (by discrete cycle
of length k, we mean a graph on k vertices v1, . . . , vk with edges v1v2, . . . , vk−1vk, vkv1).
We endow Loop(τ) with the graph distance (every edge has unit length).

Figure 2: A discrete tree τ and its associated discrete looptree Loop(τ).

Fix α ∈ (1, 2) and let τn be a Galton–Watson tree conditioned on having n vertices,
whose offspring distribution µ is critical and satisfies µ([k,∞)) ∼ |Γ(1 − α)|−1 · k−α as
k → ∞. The stable looptree Lα then appears (Theorem 4.1) as the scaling limit in
distribution for the Gromov–Hausdorff topology of discrete looptrees Loop(τn):

n−1/α · Loop(τn)
(d)−−−−→
n→∞

Lα, (1.1)

where c ·M stands for the metric space obtained from M by multiplying all distances
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by c > 0. Recall that the Gromov–Hausdorff topology gives a sense to convergence of
(isometry classes) of compact metric spaces, see Section 3.2 below for the definition.

It is known that the random trees τn converge, after suitable scaling, towards the
so-called stable tree Tα of index α (see [16, 17, 26]). It thus seems natural to try to
define Lα directly from Tα by mimicking the discrete setting (see Figure 1). However
this construction is not straightforward since the countable collection of loops of Lα

does not form a compact metric space: one has to take its closure. In particular, two
different cycles of Lα never share a common point. To overcome these difficulties, we
define Lα by using the excursion Xexc,(α) of an α-stable spectrally positive Lévy process
(which also codes Tα).

Properties of stable looptrees. Stable looptrees possess a fractal structure whose
dimension is identified by the following theorem:

Theorem 1.1 (Dimension). For every α ∈ (1, 2), almost surely, Lα is a random compact
metric space of Hausdorff dimension α.

The proof of this theorem uses fine properties of the excursion Xexc,(α). We also
prove that the family of stable looptrees interpolates between the circle of unit length
C1 := (2π)−1 · S1 and the 2-stable tree T2 which is the Brownian Continuum Random Tree
introduced by Aldous [1] (up to a constant multiplicative factor).

Theorem 1.2 (Interpolation loop-tree). The following two convergences hold in distribu-
tion for the Gromov–Hausdorff topology

(i) Lα
(d)−−→
α↓1

C1, (ii) Lα
(d)−−→
α↑2

1

2
· T2.

See Figure 3 for an illustration. The proof of (i) relies on a new “one big-jump
principle” for the normalized excursion of the α-stable spectrally positive Lévy process
which is of independent interest: informally, as α ↓ 1, the random process Xexc,(α)

converges towards the deterministic affine function on [0, 1] which is equal to 1 at time
0 and 0 at time 1. We refer to Theorem 3.6 for a precise statement. Notice also the
appearance of the factor 1

2 in (ii).1 INTRODUCTION 4

Figure 3: On the left L1.01, on the right L1.9.fig:1et2

where deg(f) is the degree of the face f, that is the number of edges in the boundary of f, and Zn is a
normalizing constant. Under mild assumptions on µ, this definition makes sense for every n large
enough. Let D

µ
n be a random dissection sampled according to Pµ

n. In [18], when µ has a heavy tail,
the second author studied the asymptotic behavior of D

µ
n viewed as a random closed subset of the

unit disk when n ! 1. In this case, the limiting object (the so called stable lamination of index
↵) is a random compact subset of the disk which is the union of infinitely many non-intersecting
chords and has faces of infinite degree. Its Hausdorff dimension is a.s. 2 - ↵-1.

In this paper, instead of considering D
µ
n as a random compact subset of the unit disk, we view

D
µ
n as a metric space by endowing D

µ
n with the graph distance dgr (every edge of D

µ
n has length

one). From this perspective, it turns out the scaling limit of the random Boltzmann dissections D
µ
n

is a stable looptree:

cor:discretencstable Corollary 1. Fix ↵ 2 (1, 2) and let µ be a probability measure supported on {0, 2, 3, . . .} of mean 1 such
that µ([k,1)) ⇠ c · k-↵ as k ! 1. Then the following convergence holds in distribution for the Gromov–
Hausdorff topology

n-1/↵ · Dµ
n

(d)����!
n!1

(|�(1 - ↵)| · c · µ0)
-1/↵ · L↵.

Figure 4: A large dissection and a representation of its metric space.fig:dissec+looptree

Looptrees in random planar maps. Another area where looptrees appear is the theory of
random planar maps. The goal of this very active field is to understand large-scale properties of
random planar graphs or maps, see [2, 9, 24, 20, 26]. In a companion paper [11], we prove that

Figure 3: On the left L1.01, on the right L1.9.

Scaling limits of Boltzmann dissections. Our previously mentioned invariance prin-
ciple (Theorem 4.1) also enables us to prove that stable looptrees are scaling limits of
Boltzmann dissections of [23]. Before giving a precise statement, we need to introduce
some notation. For n ≥ 3, let Pn be the convex polygon inscribed in the unit disk of the
complex plane whose vertices are the n-th roots of unity. By definition, a dissection is the
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union of the sides of Pn and of a collection of diagonals that may intersect only at their
endpoints, see Figure 11. The faces are the connected components of the complement of
the dissection in the polygon. Following [23], if µ = (µj)j≥0 is a probability distribution
on {0, 2, 3, 4, . . .} of mean 1, we define a Boltzmann–type probability measure Pµn on the
set of all dissections of Pn+1 by setting, for every dissection ω of Pn+1:

Pµn(ω) =
1

Zn

∏
f face of ω

µdeg(f)−1,

where deg(f) is the degree of the face f , that is the number of edges in the boundary of
f , and Zn is a normalizing constant. Under mild assumptions on µ, this definition makes
sense for every n large enough. Let Dµn be a random dissection sampled according to Pµn.
In [23], the second author studied the asymptotic behavior of Dµn viewed as a random
closed subset of the unit disk when n→∞ in the case where µ has a heavy tail. Then the
limiting object (the so-called stable lamination of index α) is a random compact subset of
the disk which is the union of infinitely many non-intersecting chords and has faces of
infinite degree. Its Hausdorff dimension is a.s. 2− α−1.

In this paper, instead of considering Dµn as a random compact subset of the unit disk,
we view Dµn as a metric space by endowing the vertices of Dµn with the graph distance
(every edge of Dµn has length one). From this perspective, the scaling limit of the random
Boltzmann dissections Dµn is a stable looptree (see Figure 4):

Corollary 1.3. Fix α ∈ (1, 2) and let µ be a probability measure supported on {0, 2, 3, . . .}
of mean 1 such that µ([k,∞)) ∼ c · k−α as k →∞, for a certain c > 0. Then the following
convergence holds in distribution for the Gromov–Hausdorff topology

n−1/α · Dµn
(d)−−−−→
n→∞

(cµ0|Γ(1− α)|)−1/α ·Lα.

Figure 4: A large dissection and a representation of its metric space.

Looptrees in random planar maps. Another area where looptrees appear is the
theory of random planar maps. The goal of this very active field is to understand
large-scale properties of planar maps or graphs, chosen uniformly in a certain class
(triangulations, quadrangulations, etc.), see [2, 11, 27, 25, 30]. In a companion paper
[15], we prove that the scaling limit of cluster boundaries of critical site-percolation on
large random triangulations and the UIPT introduced by Angel & Schramm [2] is L3/2

(by boundary of a cluster, we mean the graph formed by the edges and vertices of a
connected component which are adjacent to its exterior; see [15] for a precise definition
and statement). We also give a precise conjecture relating the whole family of looptrees
(Lα)α∈(1,2) to cluster boundaries of critical O(n) models on random planar maps. We
refer to [15] for details.
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Looptrees in preferential attachment. As another motivation for introducing loop-
trees, we mention the subsequential work [13], which studies looptrees associated with
random trees built by linear preferential attachment, also known in the literature as
Barabási–Albert trees or plane-oriented recursive trees. As the number of nodes grows,
it is shown in [13] that these looptrees, appropriately rescaled, converge in the Gromov–
Hausdorff sense towards a random compact metric space called the Brownian looptree,
which is a quotient space of Aldous’ Brownian Continuum Random Tree.

Finally, let us mention that stable looptrees implicitly appear in [27], where Le Gall
and Miermont have considered scaling limits of random planar maps with large faces.
The limiting continuous objects (the so-called α-stable maps) are constructed via a
distance process which is closely related to looptrees. Informally, the distance process of
Le Gall and Miermont is formed by a looptree Lα where the cycles support independent
Brownian bridges of the corresponding lengths. However, the definition and the study
of the underlying looptree structure is interesting in itself and has various applications.
Even though we do not rely explicitly on the article of Le Gall and Miermont, this work
would not have been possible without it.

Outline. The paper is organized as follows. In Section 2, we give a precise definition
of Lα using the normalized excursion of the α-stable spectrally positive Lévy process.
Section 3 is then devoted to the study of stable looptrees, and in particular to the proofs
of Theorems 1.1 and 1.2. In the last section, we establish a general invariance principle
concerning discrete looptrees from which Theorem 1.3 will follow.

2 Defining stable looptrees

This section is devoted to the construction of stable looptrees using the normalized
excursion of a stable Lévy process, and to the study of their properties. In this section,
α ∈ (1, 2) is a fixed parameter.

2.1 The normalized excursion of a stable Lévy process

We follow the presentation of [16] and refer to [5] for the proof of the results
mentioned here. By α-stable Lévy process we will always mean a stable spectrally
positive Lévy process X of index α, normalized so that for every λ > 0

E[exp(−λXt)] = exp(tλα).

The process X takes values in the Skorokhod space D(R+,R) of right-continuous with
left limits (càdlàg) real-valued functions, endowed with the Skorokhod topology (see [8,
Chap. 3]). The dependence of X in α will be implicit in this section. Recall that X enjoys
the following scaling property: For every c > 0, the process (c−1/αXct, t ≥ 0) has the
same law as X. Also recall that the Lévy measure Π of X is

Π(dr) =
α(α− 1)

Γ(2− α)
r−α−11(0,∞)dr. (2.1)

Following Chaumont [12] we define the normalized excursion of X above its infimum
as the re-normalized excursion of X above its infimum straddling time 1. More precisely,
set

g
1

= sup{s ≤ 1; Xs = inf
[0,s]

X} and d1 = inf{s > 1; Xs = inf
[0,s]

X}.

Note that Xd1
= Xg

1
since a.s.X has no jump at time g

1
and X has no negative jumps .

Then the normalized excursion Xexc of X above its infimum is defined by

Xexc
s = (d1 − g1

)−1/α(Xg
1
+s(d1−g1) −Xg

1
) for every s ∈ [0, 1]. (2.2)
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We shall see later in Section 3.1.2 another useful description of Xexc using the Itô
excursion measure of X above its infimum. Notice that Xexc is a.s. a random càdlàg
function on [0, 1] such that Xexc

0 = Xexc
1 = 0 and Xexc

s > 0 for every s ∈ (0, 1). If Y is a
càdlàg function, we set ∆Yt = Yt − Yt−, and to simplify notation, for 0 < t ≤ 1, we write

∆t = Xexc
t −Xexc

t−

and set ∆0 = 0 by convention.

2.2 The stable Lévy tree

We now discuss the construction of the α-stable tree Tα, which is closely related to
the α-stable looptree. Even though it possible to define Lα without mentioning Tα, this
sheds some light on the intuition hiding behind the formal definition of looptrees.

2.2.1 The stable height process

By the work of Le Gall & Le Jan [26] and Duquesne & Le Gall [17, 18], it is known that
the random excursion Xexc encodes a random compact R-tree Tα called the α-stable
tree. To define Tα, we need to introduce the height process associated with Xexc. We
refer to [17] and [18] for details and proofs of the assertions contained in this section.
First, for 0 ≤ s ≤ t ≤ 1, set

Its = inf
[s,t]

Xexc.

The height process Hexc associated with Xexc is defined by the approximation formula

Hexc
t = lim

ε→0

1

ε

∫ t

0

ds1{Xexc
s <Its+ε}, t ∈ [0, 1],

where the limit exists in probability. The process (Hexc
t )0≤t≤1 has a continuous modifica-

tion, which we consider from now on. Then Hexc satisfies Hexc
0 = Hexc

1 = 0 and Hexc
t > 0

for t ∈ (0, 1). It is standard to define the R-tree coded by Hexc as follows. For every
h : [0, 1]→ R+ and 0 ≤ s, t ≤ 1, we set

dh(s, t) = h(s) + h(t)− 2 inf
[min(s,t),max(s,t)]

h. (2.3)

Recall that a pseudo-distance d on a set X is a map d : X ×X → R+ such that d(x, x) = 0

and d(x, y) ≤ d(x, z)+d(z, y) for every x, y, z ∈ X (it is a distance if, in addition, d(x, y) > 0

if x 6= y). It is simple to check that dh is a pseudo-distance on [0,1]. In the case h = Hexc,
for x, y ∈ [0, 1], set x ' y if dHexc(x, y) = 0. The random stable tree Tα is then defined as
the quotient metric space

(
[0, 1]/ ',dHexc

)
, which indeed is a random compact R-tree

[18, Theorem 2.1]. Let π : [0, 1] → Tα be the canonical projection. The tree Tα has a
distinguished point ρ = π(0), called the root or the ancestor of the tree. If u, v ∈ Tα,
we denote by [[u, v]] the unique geodesic between u and v. This allows us to define a
genealogical order on Tα: For every u, v ∈ Tα, set u 4 v if u ∈ [[ρ, v]]. If u, v ∈ Tα, there
exists a unique z ∈ Tα such that [[ρ, u]] ∩ [[ρ, v]] = [[ρ, z]], called the most recent common
ancestor to u and v, and is denoted by z = u ∧ v.

2.2.2 Genealogy of Tα and Xexc

The genealogical order of Tα can be easily recovered from Xexc as follows. We define
a partial order on [0, 1], still denoted by 4, which is compatible with the projection
π : [0, 1]→ Tα by setting, for every s, t ∈ [0, 1],

s 4 t if s ≤ t and Xexc
s− ≤ Its,
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where by convention Xexc
0− = 0. It is a simple matter to check that 4 is indeed a partial

order which is compatible with the genealogical order on Tα, meaning that a point a ∈ Tα
is an ancestor of b if and only if there exist s 4 t ∈ [0, 1] with a = π(s) and b = π(t). For
every s, t ∈ [0, 1], let s ∧ t be the most recent common ancestor (for the relation 4 on
[0, 1]) of s and t. Then π(s ∧ t) also is the most recent common ancestor of π(s) an π(t) in
the tree Tα.

We now recall several well-known properties of Tα. By definition, the multiplicity
(or degree) of a vertex u ∈ Tα is the number of connected components of Tα\{u}.
Vertices of Tα\{ρ} which have multiplicity 1 are called leaves, and those with multiplicity
at least 3 are called branch-points. By [18, Theorem 4.6], the multiplicity of every
vertex of Tα belongs to {1, 2,∞}. In addition, the branch-points of Tα are in one-to-one
correspondence with the jumps of Xexc [29, Proposition 2]. More precisely, a vertex
u ∈ Tα is a branch-point if and only if there exists a unique s ∈ [0, 1] such that u = π(s)

and ∆Xexc
s = ∆s > 0. In this case ∆s intuitively corresponds to the “number of children”

(although this does not formally make sense) or width of π(s).
We finally introduce a last notation, which will be crucial in the definition of stable

looptrees in the next section. If s, t ∈ [0, 1] and s 4 t, set

xts = Its −Xexc
s− ∈ [0,∆s].

Roughly speaking, xts is the “position” of the ancestor of π(t) among the ∆s “children” of
π(s).

2.3 Definition of stable looptrees

Informally, the stable looptree Lα is obtained from the tree Tα by replacing every
branch-point of width x by a metric cycle of length x, and then gluing all these cycles
along the tree structure of Tα (in a very similar way to the construction of discrete
looptrees from discrete trees explained in the Introduction, see Figures 1 and 2). But
making this construction rigorous is not so easy because there are countably many loops
(non of them being adjacent).

Recall that the dependence in α is implicit through the process Xexc. For every
t ∈ [0, 1] we equip the segment [0,∆t] with the pseudo-distance δt defined by

δt(a, b) = min
{
|a− b|,∆t − |a− b|

}
, a, b ∈ [0,∆t].

Note that if ∆t > 0, ([0,∆t), δt) is isometric to a metric cycle of length ∆t (this cycle will
be associated with the branch-point π(t) in the looptree Lα, as promised in the previous
paragraph).

For s ≤ t ∈ [0, 1], we write s ≺ t if s 4 t and s 6= t. It is important to keep in mind that
≺ does not correspond to the strict genealogical order in Tα since there exist s ≺ t with
π(s) = π(t). The stable looptree Lα will be defined as the quotient of [0, 1] by a certain
pseudo-distance d involving Xexc, which we now define. First, if s 4 t, set

d0(s, t) =
∑
s≺r4t

δr(0, x
t
r). (2.4)

In the last sum, only jump times give a positive contribution, since δr(0, xtr) = 0 when
∆r = 0. Note that even if t is a jump time, its contribution in (2.4) is null since δt(0, xtt) = 0

and we could have summed over s ≺ r ≺ t. Deliberately, we do not allow r = s in (2.4).
Also, it could happen that there is no r ∈ (s, t] such that both s ≺ r and r 4 t (e.g. when
s = t) in which case the sum (2.4) is equal to zero. Heuristically, if s ≺ r 4 t, the term
δr(0, x

t
r) represents the length of the portion of the path going from (the images in the
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looptree of) s to t belonging to the loop coded by the branch-point r (see Figure 5). Then,
for every s, t ∈ [0, 1], set

d(s, t) = δs∧t
(
xss∧t, x

t
s∧t
)

+ d0(s ∧ t, s) + d0(s ∧ t, t). (2.5)

Loop of length ∆r

s
t

δs∧t(x
s
s∧t, x

t
s∧t)

Loop corresponding to the branch point s ∧ t

δr(0, x
t
r )

corresponding to the branch point π(r)

π( )

Figure 5: Illustration of the definition of d. The geodesic between the images of s and t
in the looptree is in bold. Here, s ∧ t ≺ r ≺ t. This is a simplified picture since in stable
looptrees no loops are adjacent.

Let us give an intuitive meaning to this definition. The distance d(s, t) contains
contributions given by loops which correspond to branch-points belonging to the geodesic
[[π(s), π(t)]] in the tree: the third (respectively second) term of the right-hand side of (2.5)
measures the contributions from branch-points belonging to the interior of [[π(s∧ t), π(t)]]

(respectively [[π(s ∧ t), π(s)]]), while the term δs∧t(xss∧t, x
t
s∧t) represents the length of the

portion of the path going from (the images in the looptree of) s to t belonging to the
(possibly degenerate) loop coded by π(s ∧ t) (this term is equal to 0 if π(s ∧ t) is not a
branch-point), see Figure 5.

In particular, if s 4 t, note that

d(s, t) = δs(0, x
t
s) + d0(s, t) =

∑
s4r4t

δr(0, x
t
r). (2.6)

Lemma 2.1 (Bounds on d). Let r, s, t ∈ [0, 1]. Then:

(i) (Lower bound) If s ≺ r ≺ t, we have d(s, t) ≥ min(xtr,∆r − xtr).

(ii) (Upper bound) If s < t, we have d(s, t) ≤ Xexc
s +Xexc

t− − 2Its.

Proof. The first assertion is obvious from the definition of d :

d(s, t) ≥ δr(0, xtr) ≥ min(xtr,∆r − xtr)

For (ii), let us first prove that if s ≺ t then

d0(s, t) ≤ Xexc
t− − Its. (2.7)

(Note that Xexc
t− − Its ≥ 0 because s 6= t.) To this end, remark that if s 4 r 4 t and

s 4 r′ 4 t, then r 4 r′ or r′ 4 r. It follows that if s ≺ r0 ≺ r1 ≺ · · · ≺ rn = t, using the
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fact that Irnri = I
ri+1
ri for 0 ≤ i ≤ n− 1, we have

n∑
i=0

δri(0, x
rn
ri ) ≤

n−1∑
i=0

xrnri + δrn(0, xrnrn)

=

n−1∑
i=0

(
Iri+1
ri −Xexc

ri−
)

+ 0

≤
n−1∑
i=0

(
Xexc
ri+1− −Xexc

ri−
)

= Xexc
rn− −Xexc

r0− ≤ Xexc
t− − Its,

where for the last inequality we have used the fact that Its ≤ Xexc
r0− since s < r0 < t. Since

d0(s, t) =
∑
s≺r4t δr(0, x

t
r), this gives (2.7).

Let us return to the proof of (ii). Let s < t. If s ≺ t, then by (2.6) and treating the
jump at s separately we can use (2.7) to get

d(s, t) = δs(0, x
t
s) + d0(s, t)

≤ (∆s − xts) + (Xexc
t− − Its)

= (Xexc
s− + ∆s − Its) + (Xexc

t− − Its) = Xexc
s +Xexc

t− − 2Its.

Otherwise s ∧ t < s. It is then easy to check that Its = Its∧t. In addition, δs∧t(xts∧t, x
s
s∧t) ≤

xss∧t − xts∧t = Iss∧t − Its∧t = Iss∧t − Its. Then by (2.5) and (2.7) we have

d(s, t) ≤ Iss∧t − Its + (Xexc
t− − Its∧t) + (Xexc

s− − Iss∧t) = Xexc
s− +Xexc

t− − 2Its.

This completes the proof.

Proposition 2.2. Almost surely, the function d(·, ·) : [0, 1]× [0, 1]→ R+ is a continuous
pseudo-distance.

Proof. By definition of d and Theorem 2.1, for every s, t ∈ [0, 1], we have d(s, t) ≤
2 supXexc < ∞. The fact that d satisfies the triangular inequality is a straightforward
but cumbersome consequence of its definition (2.5). We leave the details to the reader.

Let us now show that the function d(·, ·) : [0, 1]× [0, 1]→ R+ is continuous. To this end,
fix (s, t) ∈ [0, 1]2 and let sn, tn(n ≥ 1) be real numbers in [0, 1] such that (sn, tn) → (s, t)

as n→∞. The triangular inequality entails

|d(s, t)− d(sn, tn)| ≤ d(s, sn) + d(t, tn).

By symmetry, it is sufficient to show that d(s, sn)→ 0 as n→∞. Suppose for a moment
that sn ↑ s and sn < s, then by Theorem 2.1 (ii) we have

d(sn, s) ≤ Xexc
sn +Xexc

s− − 2Issn −→
n→∞

Xexc
s− +Xexc

s− − 2Xexc
s− = 0.

The other case when sn ↓ s and sn < s is treated similarly. This proves the proposition.

We are finally ready to define the looptree coded by Xexc.

Definition 2.3. For x, y ∈ [0, 1], set x ∼ y if d(x, y) = 0. The random stable looptree of
index α is defined as the quotient metric space

Lα =
(
[0, 1]/ ∼, d

)
.
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We will denote by p the canonical projection p : [0, 1]→ Lα. Since d : [0, 1]× [0, 1]→
R+ is a.s. continuous by Theorem 2.2, it immediately follows that p : [0, 1] → Lα is
a.s. continuous. The metric space Lα is thus a.s. compact, as the image of a compact
metric space by an a.s. continuous map.

With this definition, it is maybe not clear why Lα contains loops. For sake of clarity,
let us give an explicit description of these. Fix s ∈ [0, 1] with ∆s > 0, and for u ∈ [0,∆s]

let su = inf{t ≥ s : Xexc
t = Xexc

s − u}. It is easy to check that the image of {su}u∈[0,∆s] by
p in Lα is isometric to a circle of length ∆s, which corresponds to the loop attached to
the branch-point π(s) in the tree Tα.

To conclude this section, let us mention that it is possible to construct Lα directly
from the stable tree Tα in a measurable fashion. For instance, if u = π(s), one can
recover the jump ∆s as follows (see [29, Eq. (1)]):

∆s
a.s.
= lim

ε→0

1

ε
Mass {v ∈ Tα; dTα(u, v) < ε} , (2.8)

where Mass is the push-forward of the Lebesgue measure on [0, 1] by the projection
π : [0, 1] → Tα. However, we believe that our definition of Lα using Lévy processes is
simpler and more amenable to computations (recall also that the stable tree is itself
defined by the height process Hexc associated with Xexc).

3 Properties of stable looptrees

The goal of this section is to prove Theorems 1.1 and 1.2. Before doing so, we
introduce some more background on spectrally positive stable Lévy processes. This will
be our toolbox for studying fine properties of looptrees. The interested reader should
consult [4, 5, 12] for additional details.

Let us stress that, to our knowledge, the limiting behavior of the normalized excursion
of α-stable spectrally positive Lévy processes as α ↓ 1 (Theorem 3.6) seems to be new.

3.1 More on stable processes

3.1.1 Excursions above the infimum

In Section 2.1, the normalized excursion process Xexc has been introduced as the
normalized excursion of X above its infimum straddling time 1. Let us present another
definition Xexc using Itô’s excursion theory (we refer to [5, Chapter IV] for details).

IfX is an α-stable spectrally positive Lévy process, denote byXt = inf{Xs : 0 ≤ s ≤ t}
its running infimum process. Note that X is continuous since X has no negative jumps.
The process X − X is strong Markov and 0 is regular for itself, allowing the use of
excursion theory. We may and will choose −X as the local time of X −X at level 0. Let
(gj , dj), j ∈ I be the excursion intervals of X −X away from 0. For every j ∈ I and s ≥ 0,
set ωjs = X(gj+s)∧dj −Xgj . We view ωj as an element of the excursion space E , defined
by:

E = {ω ∈ D(R+,R+); ω(0) = 0 and ζ(ω) := sup{s > 0;ω(s) > 0 } ∈ (0,∞)}.

If ω ∈ E , we call ζ(ω) the lifetime of the excursion ω. From Itô’s excursion theory, the
point measure

N (dtdω) =
∑
j∈I

δ(−Xgj ,ω
j)

is a Poisson measure with intensity dtn(dω), where n(dω) is a σ-finite measure on the set
E called the Itô excursion measure. This measure admits the following scaling property.
For every λ > 0, define S(λ) : E → E by S(λ)(ω) =

(
λ1/αω(s/λ), s ≥ 0

)
. Then (see [12] or
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[5, Chapter VIII.4] for details) there exists a unique collection of probability measures
(n(a), a > 0) on the set of excursions such that the following properties hold:

(i) For every a > 0, n(a)(ζ = a) = 1.

(ii) For every λ > 0 and a > 0, we have S(λ)(n(a)) = n(λa).

(iii) For every measurable subset A of the set of all excursions:

n(A) =

∫ ∞
0

n(a)(A)
da

αΓ(1− 1/α)a1/α+1
.

In addition, the probability distribution n(1), which is supported on the càdlàg paths
with unit lifetime, coincides with the law of Xexc as defined in Section 2.1, and is also
denoted by n(·|ζ = 1). Thus, informally, n(·|ζ = 1) is the law of an excursion under the
Itô measure conditioned to have unit lifetime.

3.1.2 Absolute continuity relation for Xexc

We will use a path transformation due to Chaumont [12] relating the bridge of a stable
Lévy process to its normalized excursion, which generalizes the Vervaat transformation
in the Brownian case. If U is a uniform variable over [0, 1] independent of Xexc, then the
process Xbr defined by

Xbr
t =

{
Xexc
U+t if U + t ≤ 1,

Xexc
t+U−1 if U + t > 1.

for t ∈ [0, 1]

is distributed according to the bridge of the stable process X, which can informally be
seen as the process (Xt; 0 ≤ t ≤ 1) conditioned to be at level zero at time one. See [5,
Chapter VIII] for definitions. In the other direction, to get Xexc from Xbr we just re-root
Xbr by performing a cyclic shift at the (a.s. unique) time u?(X

br) where it attains its
minimum.

We finally state an absolute continuity property between Xbr and Xexc. Fix a ∈ (0, 1).
Let F : D([0, a],R) → R be a bounded continuous function. We have (see [5, Chapter
VIII.3, Formula (8)]):

E
[
F
(
Xbr
t ; 0 ≤ t ≤ a

)]
= E

[
F (Xt; 0 ≤ t ≤ a)

p1−a(−Xa)

p1(0)

]
,

where pt is the density of Xt. Note that by time reversal, the law of (X1 −X(1−t)−)0≤t≤1

satisfies the same property.
The previous two results will be used in order to reduce the proof of a statement

concerning Xexc to a similar statement involving X (which is usually easier to obtain).
More precisely, a property concerning X will be first transferred to Xbr by absolute
continuity, and then to Xexc by using the Vervaat transformation.

3.1.3 Descents

Let Y : R→ R be càdlàg function. For every s, t ∈ R, we write s 4Y t if and only if s ≤ t
and Ys− ≤ inf [s,t] Y , and in this case we set

xts(Y ) = inf
[s,t]

Y − Ys− ≥ 0, and uts(Y ) =
xts(Y )

∆Ys
∈ [0, 1].

We write s ≺Y if s 4Y t and s 6= t. When there is no ambiguity, we write xts instead of
xts(Y ), etc. For t∈ R, the collection {(xts(Y ), uts(Y )) : s 4 t} is called the descent of t in Y .

EJP 19 (2014), paper 108.
Page 11/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/


Random stable looptrees

As the reader may have noticed, this concept is crucial in the definition of the distance
involved in the definition of stable looptrees.

We will describe the law of the descents (from a typical point) in an α-stable Lévy
process by using excursion theory. To this end, denote Xt = sup{Xs : 0 ≤ s ≤ t} the
running supremum process of X. The process X −X is strong Markov and 0 is regular
for itself. Let (Lt, t ≥ 0) denote a local time of X −X at level 0, normalized in such a way
that E

[
exp(−λXL−1(t))

]
= exp(−tλα−1). Note that by [5, Chapter VIII, Lemma 1], L−1 is

a stable subordinator of index 1− 1/α. Finally, to simplify notation, set xs = Xs −Xs−
and us = Xs−Xs−

Xs−Xs−
for every s ≥ 0 such that Xs > Xs−. In order to describe the law of

descents from a fixed point in an α-stable process we need to introduce the two-sided
stable process. If X1 and X2 are two independent stable processes on R+, set Xt = X1

t

for t ≥ 0 and Xt = −X2
(−t)− for t < 0.

Proposition 3.1. The following assertions hold.

(i) Let (Xt : t ∈ R) be a two-sided spectrally positive α-stable process. Then the
collection

{(−s, x0
s(X), u0

s(X)) : s 4 0}
has the same distribution as{

(s, xs,us); s ≥ 0 s.t. Xs > Xs−
}
.

(ii) The point measure ∑
Xs>Xs−

δ(Ls, xsus ,us)
(3.1)

is a Poisson point measure with intensity dl · xΠ(dx) · 1[0,1](r)dr.

Proof. The first assertion follows from the fact that the dual process X̂, defined by
X̂s = −X(−s)− for s ≥ 0, has the same distribution as X and that

(x0
−s(X), u0

−s(X)) =

(
X̂s − X̂s−,

X̂s − X̂s−

X̂s − X̂s−

)

for every s ≥ 0 such that −s 4 0, or equivalently X̂s > X̂s−.
For (ii), denote by (gj , dj)j∈J the excursion intervals of X −X above 0. It is known

(see [4, Corollary 1]) that the point measure∑
j∈J

(Lgj ,∆Xdj ,∆Xdj )

is a Poisson point measure with intensity dl ·Π(dx) ·1[0,x](r)dr. The conclusion follows.

We now state a technical but useful consequence of the previous proposition, which
will be required in the proof of the lower bound of the Hausdorff dimension of stable
looptrees.

Corollary 3.2. Fix η > 0. Let (Xt : t ∈ R) be a two-sided α-stable process. For ε > 0, set

Aε =

∃s ∈ [−ε, 0] with s 4 0 :

x0
s(X) ≥ ε1/α+η

and
∆Xs − x0

s(X) ≥ ε1/α+η

 .

Then P(Acε) ≤ Cεγ for certain constants C, γ > 0 (depending on α and η).
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Proof. Set Bε = {∃s ∈ [0, ε] : Xs ≥ ε1/α+η and ∆Xs − xs ≥ ε1/α+η}. By Theorem 3.1 (i),
it is sufficient to establish the existence of two constants C, γ > 0 such that P(Bcε) ≤ Cεγ .
To simplify notation, set α = 1− 1/α and cε = εη(α−1)/2. Then write:

P(Bcε) ≤ P(Bcε, Lε > cεε
α) + P (Lε < cεε

α)

≤ P(∀s s.t. Ls ≤ cεεα : xs < ε1/α+η or ∆Xs − xs < ε1/α+η) + P(Lε < cεε
α).(3.2)

Using the fact that (3.1) is a Poisson point measure with intensity dl · xΠ(dx) · 1[0,1](r)dr,
it follows that the first term of (3.2) is equal to

exp

(
−cεεα

∫ 1

0

dr

∫ ∞
−∞

xΠ(dx)1{rx≥ε1/α+η and x(1−r)≥ε1/α+η}

)
= exp

(
−cεεα · cε−η(α−1)

)
for a certain constant c > 0. In addition,

P(Lε < cεε
α) ≤ P

(
L−1

1 >
ε

(cεεα)1/α

)
≤ P(L−1

1 > ε−ηα/2).

The conclusion follows since P(L−1
1 > u) = O(u−ᾱ) as u→∞.

We conclude this section by a lemma which will be useful in the proof of Theorem 4.1.
See also [27, Proof of Proposition 7] for a similar statement.

Lemma 3.3. Almost surely, for every t ≥ 0 we have

Xt − inf
[0,t]

X =
∑
s4t
s≥0

xts(X). (3.3)

Proof. The left-hand side of the equality appearing in the statement of the lemma is
clearly a càdlàg function. It also simple, but tedious, to check that the right-hand side
is a càdlàg function as well. It thus suffices to prove that (3.3) holds almost surely for
every fixed t ≥ 0.

Set X̂s = X(t−s)− −Xt− for 0 ≤ s ≤ t, and to simplify notation set Su = sup[0,u] X̂. In

particular, (Xs, 0 ≤ s ≤ t) and (X̂s, 0 ≤ s ≤ t) have the same distribution. Hence(
St,

∑
0≤s≤t

∆Ss
) (d)

=
(
Xt − inf

[0,t]
X,
∑
s4t
s≥0

xts(X)
)
. (3.4)

Then notice that ladder height process (SL−1
t
, t ≥ 0) is a subordinator without drift [5,

Chapter VIII, Lemma 1], hence a pure jump-process. This implies that St is the sum of
its jumps, i.e. a.s St =

∑
0≤s≤t ∆Ss. This completes the proof of the lemma.

The following result is the analog statement for the normalized excursion.

Corollary 3.4. Almost surely, for every t ∈ [0, 1] we have

Xexc
t =

∑
04s4t

xts(X
exc).

Proof. This follows from the previous lemma and the construction of Xexc as the normal-
ized excursion above the infimum of X straddling time 1 in Section 2.1. We leave details
to the reader.

In particular Theorem 3.4 implies that almost surely, for every 0 ≤ t ≤ 1,

Xexc
t =

∑
04s4t

∆Xexc
s · uts(Xexc). (3.5)

By (2.6), a similar equality, which will be useful later, holds almost surely for every
0 ≤ t ≤ 1:

d(0, t) =
∑

04s4t

∆Xexc
s ·min

(
uts(X

exc), 1− uts(Xexc)
)
. (3.6)
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3.1.4 Limiting behavior of the normalized excursion as α ↓ 1 and α ↑ 2

In this section we study the behavior of Xexc as α→ 1 or α→ 2. In order to stress the
dependence in α, we add an additional superscript (α), e.g. X(α), Xbr,(α), Xexc,(α) will
respectively denote the α-stable spectrally positive process, its bridge and normalized
excursion, and Π(α), n(α) will respectively denote the Lévy measure and the excursion
measure above the infimum of X(α).

Limiting case α ↑ 2. We prove that Xexc,(α) converges, as α ↑ 2, towards a multiple of
the normalized Brownian excursion, denoted by e (see Figure 6 for an illustration). This
is standard and should not be surprising, since the α = 2 stable Lévy process is just

√
2

times Brownian motion.

Proposition 3.5. The following convergence holds in distribution for the topology of
uniform convergence on every compact subset of R+

Xexc,(α) (d)−−→
α↑2

√
2 · e. (3.7)

Proof. We first establish an unconditioned version of this convergence. Specifically, if B
is a standard Brownian motion, we show that

X(α) (d)−→
α↑2

√
2 ·B, (3.8)

where the convergence holds in distribution for the uniform topology on D([0, 1],R).
Since B is almost surely continuous, by [33, Theorems V.19, V.23] it is sufficient to check
that the following three conditions hold as α ↑ 2:

(a) The convergence X(α)
0 −→

√
2 ·B0 holds in distribution,

(b) For every 0 < s < t, the convergence X
(α)
t − X(α)

s −→
√

2 · (Bt − Bs) holds in
distribution,

(c) For every δ > 0, there exist η, ε > 0 such that for 0 ≤ s ≤ t ≤ 1:

|t− s| < η =⇒ P
(
|X(α)

t −X(α)
s | ≤ δ/2

)
≥ ε.

It is clear that Condition (a) holds. The scaling property of X(α) entails that X(α)
t −X(α)

s

has the same law as (t− s)1/α ·X(α)
1 . On the other hand, for every u ∈ R, we have

E
[
exp(iuX

(α)
1 )

]
−−→
α↑2

exp(−u2) = E
[
exp(iu

√
2B1)

]
.

Condition (b) thus holds. The same argument gives Condition (c). This establishes (3.8).
The convergence (3.7) is then a consequence of the construction of Xexc,(α) from

the excursion of X(α) above its infimum straddling time 1 (see Section 2.1). Indeed, by
Skorokhod’s representation theorem, we may assume that the convergence (3.8) holds
almost surely. Then set

g(α)
1

= sup{s ≤ 1 : X(α)
s = inf

[0,s]
X(α)} and d

(α)
1 = inf{s > 1 : X(α)

s = inf
[0,s]

X(α)}.

Similarly, define g(2)
1
, d

(2)
1 when X(α) is replaced by

√
2·B. Since local minima of Brownian

motion are almost surely distinct, we get that g(α)
1
→ g(2)

1
a.s. as α ↑ 2. On the other

side, since for every α ∈ (1, 2], a.s.d(2)
1 is not a local minimum of B (this follows from the

Markov property applied at the stopping time d(2)
1 ) we get that d(α)

1 → d
(2)
1 in distribution

as α ↑ 2. The desired convergence (3.7) then follows from (2.2).
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Limiting case α ↓ 1. The limiting behavior of the normalized excursion Xexc,(α) as
α ↓ 1 is very different from the case α ↑ 2. Informally, we will see that in this case,
Xexc,(α) converges towards the deterministic affine function on [0, 1] which is equal to 1

at time 0 and 0 at time 1. Some care is needed in the formulation of this statement, since
the function x 7→ 10<x≤1(1− x) is not càdlàg. To cope up with this technical issue, we
reverse time:

Proposition 3.6. The following convergence holds in distribution in D([0, 1],R):(
X

exc,(α)
(1−t)−, 0 ≤ t ≤ 1

)
(d)−→
α↓1

(
t1{t 6=1}, 0 ≤ t ≤ 1

)
.

Remark 3.7. Let us mention here that the case α ↓ 1 is not (directly) related to Neveu’s
branching process [32] which is often considered as the limit of a stable branching
process when α → 1. Indeed, contrary to the latter, the limit of Xexc,α when α ↓ 1

is deterministic. The reason is that Neveu’s branching process has Lévy measure
r−2

1(0,∞)dr, but recalling our normalization (2.1), in the limit α ↓ 1, the Lévy measure
Π(α) does not converge to r−2

1(0,∞)dr.

Theorem 3.6 is thus a new “one-big jump principle” (see Figure 6 for an illustration),
which is a well-known phenomenon in the context of subexponential distributions (see
[20] and references therein). See also [3, 19] for similar one-big jump principles.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6: Simulations of Xexc,(α) for respectively α = 1.00001 and α = 1.99.

The strategy to prove Theorem 3.6 is first to establish the convergence of Xexc,(α) on
every fixed interval of the form [ε, 1] with ε ∈ (0, 1) and then to study the behavior near 0.

Lemma 3.8. For every ε ∈ (0, 1),

(
X

exc,(α)
t ; ε ≤ t ≤ 1

) (P)−−→
α↓1

(1− t; ε ≤ t ≤ 1),

where the convergence holds in probability for the uniform norm.

Proof of Theorem 3.8. Following the spirit of the proof of Theorem 3.5, we first establish
an analog statement for the unconditioned process X(α) by proving that

X(α) (d)−→
α↓1

(−t; t ≥ 0), (3.9)

where the convergence holds in distribution for the uniform convergence on every
compact subset of R+. To establish (3.9), we also rely on [33, Theorems V.19, V.23]
and easily check that Conditions (a), (b) and (c) hold, giving (3.9). Fix ε ∈ (0, 1/10). We
shall use the notation [a± b] := [a− b, a+ b] for a ∈ R and b > 0. We also introduce the
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functions `(s) = 1− s and `ε(s) = 1− ε− s for s ∈ [0, 1]. To prove the lemma, we show
that for every ε > 0 we have

n(α)
(
{ωt ∈ [1− t± ε], ∀t ∈ [ε, 1]} | ζ = 1

)
−−→
α↓1

1.

By the scaling property of the measure n(α) (see property (iii) in Section 3.1.1), it is
sufficient to show that

n(α)
(

sup
t∈[ε,ζ]

|ωt − `(t)| ≤ 10ε | ζ ∈ [1± ε]
)
−−→
α↓1

1. (3.10)

For t ≥ 0, denote by q
(α)
t (dx) the entrance measure at time t under n(α), defined by

relation

n(α)
(
f(ωt)1{ζ>t}

)
=

∫ ∞
0

f(x)q
(α)
t (dx)

for every measurable function f : R+ → R+ Then, using the fact that, for every
t > 0, under the conditional probability measure n(α)( · |ζ > t), the process (ωt+s)s≥0

is Markovian with entrance law q
(α)
t (dx) and transition kernels of X(α) stopped upon

hitting 0, we get

n(α)
(

sup
t∈[ε,ζ]

|ωt − `(t)| ≤ 10ε | ζ ∈ [1± ε]
)

=
1

n(α)(ζ ∈ [1± ε])

∫ ∞
0

q(α)
ε (dx)P (α)

x

(
sup
t∈[0,τ ]

|X(α)
t − `ε(t)| ≤ 10ε and τ ∈ [1− ε± ε]

)
,

(3.11)

where P (α)
x denotes the distribution of a standard α-stable process X(α) started from x

and stopped at the first time τ when it touches 0. From (3.9) it follows that for every
δ ∈ (0, ε) the convergence

P (α)
x

(
sup
[0,τ ]

|X(α) − `ε| ≤ 10ε and τ ∈ [1− ε± ε]
)
−−→
α↓1

1

holds uniformly in x ∈ [1− ε± (ε− δ)]. Consequently

lim inf
α↓1

∫ ∞
0

q(α)
ε (dx)P (α)

x

(
sup
[0,τ ]

||X(α) − `ε|| ≤ 10ε and τ ∈ [1− ε± ε]
)

∫ ∞
0

q(α)
ε (dx)1x∈[1−ε±(ε−δ)]

≥ 1. (3.12)

On the other hand, we can write provided that 2δ < ε (notice that 1− ε+ 2δ > ε)

n(α)(ζ ∈ [1± (ε− 2δ)]) =

∫ ∞
0

q(α)
ε (dx)P (α)

x

(
τ ∈ [1− ε± (ε− 2δ)]

)
.

Convergence (3.9) then entails that g(x, α) := P
(α)
x (τ ∈ [1 − ε ± (ε − 2δ)]) also tends

towards 0 as α ↓ 1, uniformly for x ∈ R+\[1 − ε ± (ε − δ)]. Since the total mass∫∞
0
q

(α)
ε (dx) = n(α)(ζ > ε) is finite, the dominated convergence theorem implies that∫

R+\[1−ε±(ε−δ)]
q(α)
ε (dx)g(x, α) −−→

α↓1
0.

Finally, as g(x, α) is bounded by 1 we get by dominated convergence and the last display
that

lim inf
α↓1

∫ ∞
0

q(α)
ε (dx)1x∈[1−ε±(ε−δ)]

n(α)(ζ ∈ [1± (ε− 2δ)])
= lim inf

α↓1

∫ ∞
0

q(α)
ε (dx)1x∈[1−ε±(ε−δ)]∫ ∞

0

q(α)
ε (dx)g(x, α)

≥ 1.(3.13)
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Combining (3.12) and (3.13) with (3.11) we deduce that

lim inf
α↓1

n(α)
(

sup
t∈[ε,ζ]

|ωt − `(t)| ≤ 10ε | ζ ∈ [1± ε]
)
≥ n(α)(ζ ∈ [1± (ε− 2δ)])

n(α)(ζ ∈ [1± ε]) . (3.14)

Since n(α)(ζ > t) = t−1/α/Γ(1− 1/α) by property (iii) in Section 3.1.1, it follows that the
right-hand side of (3.14) tends to 1 as δ → 0. This completes the proof.

We have seen in Theorem 3.8 that Xexc,(α) converges to the deterministic function
x 7→ 1− x over every interval [ε, 1] for every ε > 0. Still, this does not imply Theorem 3.6
because, as α ↓ 1, the difference of magnitude roughly 1 between times 0 and ε could
be caused by the accumulation of many small jumps of total sum of order 1 and not by
a single big jump of order 1. We shall show that this is not the case by using the Lévy
bridge Xbr,(α) and and a shuffling argument.

Proof of Theorem 3.6. For ε > 0 and Y : [0, 1]→ R, let J(Y, ε) be the set defined by

J(Y, ε) =

{
∃u ∈ [0, 1] :

|Y (t)+t| ≤ ε ∀t ∈ [0, u],

|Y (t)− (1−t)| ≤ ε ∀t ∈ [u+ ε, 1]∩[0, 1]

}
.

Applying the Vervaat transformation to Xbr,(α), we deduce from Theorem 3.8 that for
every ε > 0 we have

P
(
J(Xbr,(α), ε)

)
−−→
α↓1

1. (3.15)

We then rely on the following result:

Lemma 3.9. For every α ∈ (1, 2), let (B
(α)
t ; 0 ≤ t ≤ 1) be a càdlàg process with 0 =

B
(α)
0 = B

(α)
1 and such that the following two conditions hold:

(i) For every ε > 0, we have P
(
J(B(α), ε)

)
→ 1 as α ↓ 1;

(ii) For every α ∈ (1, 2) and every n ≥ 1, the increments{(
B

(α)
t+i/n −B

(α)
i/n

)
0≤t≤1/n

: 0 ≤ i ≤ n− 1
}

are exchangeable.

Then

B(α) (d)−−→
α↓1

(
1{U≤t} − t; 0 ≤ t ≤ 1

)
, (3.16)

where the convergence holds in distribution for the Skorokhod topology on D([0, 1],R)

and where U is an independent uniform variable over [0, 1].

If we assume for the moment this lemma, the proof of Theorem 3.6 is completed
as follows. The Lévy bridges Xbr,(α) satisfy the assumptions of Lemma 3.9. Indeed,
(i) is satisfies thanks to (3.15) and (ii) follows from absolute continuity. Lemma 3.9
entails that Xbr,(α) →

(
1{U≤t} − t; 0 ≤ t ≤ 1

)
the convergence holds in distribution for

the Skorokhod topology as α ↓ 1. It then suffices to apply the Vervaat transform to the
latter convergence to get the desired result.

It remains to establish Lemma 3.9.
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Proof of Lemma 3.9. Fix α ∈ (1, 2) and n ≥ 1. We introduce the following shuffling
operation on B(α): cut the bridge B(α) into n pieces between times [i/n, (i + 1)/n]

for 0 ≤ i ≤ n − 1. Then “shuffle” these n pieces uniformly at random, meaning that
these n pieces are concatenated after changing their order by using an independent
uniform permutation of {1, 2, . . . , n}. Denote by B̃(α),n the process obtained in this way.
Assumption (ii) garantees that B̃(α),n has the same distribution as B(α). In particular, for
every ε > 0, P(J(B̃(α),n, ε))→ 1 as α ↓ 1, uniformly in n.

First step: at most one large jump. We first show that for every δ > 0, the probability
that there are two jumps in B(α) larger than δ tends to 0 as α ↓ 1. To this end, argue by
contradiction and assume that there exists η > 0 such that along a subsequence αk ↓ 1

with probability at least η the bridge B(αk) has two jump times T (k)
1 6= T

(k)
2 at which

∆(αk) is greater than δ. Now, choose nk →∞ so that

P
(∣∣∣T (k)

1 − T (k)
2

∣∣∣ > 1/nk

)
−−−−→
k→∞

1.

But, conditionally on the event {|T (k)
1 − T (k)

2 | > 1/nk} , with probability tending to one as
k →∞, these two jumps will fall in different time intervals of the form [i/nk, (i+ 1)/nk]

in the shuffled process B(αk),nk . Hence, we deduce that with probability asymptotically
larger than η/100 (this value is not optimal), there exist two jump times T̃ (k)

1 and T̃ (k)
2 of

B̃(αk),nk such that

|T̃ (k)
1 − T̃ (k)

2 | ≥
1

3
and ∆B̃

(αk),nk

T̃
(k)
1

≥ δ, ∆B̃
(αk),nk

T̃
(k)
2

≥ δ.

If one chooses ε ∈ (0, δ ∧ 1/4), this contradicts the fact that P(J(B̃(αk),nk , ε)) → 1 as
k →∞.

Second step: one jump of size roughly 1. We only sketch the argument and leave the
details to the reader. Denote by Tα the time when B(α) achieves its largest jump. Let αk
be a sequence such that αk ↓ 1 as k →∞. Let 0 ≤ Ik ≤ nk − 1 be the integer such that
Tαk ∈ [Ik/nk, (Ik + 1)/nk], and set

δk := B
(αk)
(Ik+1)/nk

−B(αk)
Ik/nk

.

Then let nk →∞ be a sequence of integers such that the following three converges hold
in probability as k →∞:

(i) |δk −∆B
(αk)
Tαk
| (P)−→

k→∞
0;

(ii)
δ2
k ∨ 1

nk

(P)−→
k→∞

0;

(iii) sup
i 6=Ik

sup
0≤t≤1/nk

∣∣∣B(αk)
t+i/nk

−B(αk)
i/nk

∣∣∣ (P)−→
k→∞

0.

Indeed, this is possible since, by the first step, we know that all the jumps of B(αk),
its largest jump excluded, converge in probability to 0 as k →∞.

Denote by B̂(αk),nk the function on [0, 1] obtained by doing a random shuffle of B(αk)

of length 1/nk after discarding the time interval that contains Tαk , and then scaling time
by a factor nk/(nk − 1) so that B̂(αk),nk is defined on [0, 1]. The proof is completed if we
manage to check that B̂(αk),nk converges in probability towards the function t 7→ −t and
δk → 1 in probability.

To do so, let us introduce the empirical variance of the small increments

Σk :=
∑

0≤i 6=Ik≤nk−1

∣∣∣B(αk)
(i+1)/nk

−B(αk)
i/nk

∣∣∣2 .
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We shall first establish that Σk → 0 in probability as k → ∞. To this end, suppose by
contradiction that Σk does not converge to 0 in probability as k → ∞. Then, up to
extraction, there exists a fixed c > 0 such that P(Σk ≥ c) ≥ c for every k large enough.
Then consider the family of nk − 1 increments

{Xi,k}0≤i 6=Ik≤nk−1 :=

{
B

(αk)
(i+1)/nk

−B(αk)
i/nk

+
δk

nk − 1

}
0≤i 6=Ik≤nk−1

.

Observe that we have∑
0≤i 6=Ik≤nk−1

Xi,k = 0, sup
i 6=Ik
|Xi,k|

(P)−→
k→∞

0,
∑

0≤i 6=Ik≤nk−1

X2
i,k − Σk

(P)−→
k→∞

0.

(3.17)
For the second and third convergences, we use (ii) and (iii).

Then let π : {1, 2, . . . , nk − 1} → {0, 1, . . . , nk − 1}\{Ik} be a uniform bijection, and

define the random continuous function B
(αk),nk

on [0, 1] by linearly interpolating between

the points of coordinates (0, 0),
(

i
nk−1 , Xπ(i),k

)
for 1 ≤ i ≤ nk − 1. From [7, Theorem

24.2] and (3.17), it follows that, on the event {Σk ≥ c}, the random function(
B

(αk),nk
t√

Σk
; 0 ≤ t ≤ 1

)
converges in distribution towards a standard Brownian bridge of variance 1. By (iii), the

previous distributional convergence also holds when B
(αk),nk

is replaced by (B̂
(αk),nk
t +

δkt)0≤t≤1. A moment’s though shows then the condition P(J(B̃(αk),nk , ε))→ 1 cannot be
satisfied and hence that Σk → 0 in probability.

Then the proofs of [7, Theorems 24.1 and 24.2] give that the random function(
B

(αk),nk
t ; 0 ≤ t ≤ 1

)
converges in probability towards the constant function equal to 0 on [0, 1], denoted by

0. As before, using (iii), we deduce that (B̂
(αk),nk
t + δkt)0≤t≤1 in turn converges to 0

in probability. Using the fact that J(B̃(αk),nk , ε) → 1 as k → ∞, we get that δk → 1 in

probability. Using (i), this implies that ∆B
(αk)
Tαk
→ 1 in probability. It follows that B̂(αk),nk

indeed converges to t 7→ −t in probability. The details are left to the reader.

3.1.5 Others lemmas

Denote by ∆∗(Y ) the size of the largest jump of a càdlàg function Y . This quantity is of
interest since by construction the length of the longest cycle in the stable looptree Lα is
equal to ∆∗(Xexc,(α)).

Proposition 3.10. We have:

E
[
∆∗(Xexc,(α))

]
= Γ

(
1− 1

α

)
β,

where β > 0 is the unique solution to the equation

∞∑
n=0

(−1)nβn

(n− α)n!
= 0.

Setting f(β) =
∑∞
n=0 (−1)nβn/((n− α)n!), note that existence and uniqueness of this

solution follow for instance from the fact that f is continuous, increasing, f(0+) < 0 and
f(1) > 0.
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Proof. Recall the scaling properties of the Itô measure n(α) from Section 3.1.2. Our main
ingredient is a result of Bertoin [6, Corollary 2], which identifies the distribution of the
maximal jump ∆∗ under the excursion measure n(α)

n(α)(∆∗ > x) = β/x, x > 0.

Then to calculate E
[
∆∗(Xexc,(α))

]
it suffices to write

βΓ(1− 1/α) = n(α)(∆∗ > 1)Γ(1− 1/α)

=

∫ ∞
0

n
(α)
(a) (∆∗ > 1)

da

αa1/α+1
by property (iii) in Section 3.1.1

=

∫ ∞
0

n
(α)
(1)

(
∆∗ >

1

a1/α

)
da

αa1/α+1
by property (ii) in Section 3.1.1

=

∫ ∞
0

n
(α)
(1) (∆∗ > u)

u1+α

α
· αdu
u1+α

by change of variables

=

∫ ∞
0

n
(α)
(1) (∆∗ > u) du = E

[
∆∗(Xexc,(α))

]
by definition.

Note that E
[
∆∗(Xexc,(α))

]
converges towards 1 as α ↓ 1 and towards 0 as α ↑ 2. This

is consistent with Theorems 3.5 and 3.6.

Remark 3.11. Janson [21, Formula (19.97)] gives the cumulative distribution function
of ∆∗(Xexc,(α)):

P
(

∆∗(Xexc,(α)) ≤ u
)

=
|Γ(−1/α)|

2π

∫ +∞

−∞
exp

(
1

Γ(−α)

(∫ u

0

x−α−1
(
eitx − 1− itx

)
dx− u−α

α
− it u

1−α

α− 1

))
dt

where u ≥ 0. However, it seems difficult to calculate E
[
∆∗(Xexc,(α))

]
using this formula.

Note also that if one manages to use this explicit expression to prove that ∆∗(Xexc,(α))→
1 in probability as α ↓ 1, this would simplify the proof of Theorem 1.2 (i).

Lemma 3.12. Let p(α)
t be the density of the law of X(α)

t . There exist a constant C > 0,
which does depend on α, such that:

∀α ∈ (3/2, 2], ∀x ∈ R, p
(α)
1 (x) ≤ C.

Proof. The characteristic function φ(α) of X(α)
1 is given by [34, Theorem C.3.]

φ(α)(t) = E
[
exp

(
itX

(α)
1

)]
= exp

(
−
∣∣∣cos

(πα
2

)∣∣∣ tα − i sin
(πα

2

)
tα
)
, t ≥ 0.

For x ∈ R, by the inversion formula p(α)
1 (x) = (2π)−1

∫
R
e−itxφ(α)(t)dt, we get∣∣∣p(α)

1 (x)
∣∣∣ ≤ 1

2π

∫
R

|φ(α)(t)|dt =
Γ(1/α)

πα
∣∣cos

(
πα
2

)∣∣1/α .
The conclusion immediately follows.

3.2 Limiting cases α ↓ 1 and α ↑ 2

In this section, we keep the notation X(α), Xbr,(α), Xexc,(α) for respectively the α-
stable spectrally positive process, its bridge and its normalized excursion.

We prove Theorem 1.2 concerning the limiting behavior of Lα as α ↓ 1 and α ↑
2. Since Lα is coded by Xexc,(α), it should not be surprising that these results are
consequences of Theorems 3.5 and 3.6 which describe the limiting behavior of Xexc,(α)

as α ↓ 1 and α ↑ 2. We will see this is indeed the case when α→ 1, but that some care is
needed when α→ 2 because of the presence of an additional factor 1

2 .
Before proving Theorem 1.2 we briefly recall the definition of the Gromov–Hausdorff

topology. We refer to [10] for additional details.
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The Gromov–Hausdorff topology. If (E, d) and (E′, d′) are two compact metric spaces,
the Gromov–Hausdorff distance between E and E′ is

dGH(E,E′) = inf
{

dFH(φ(E), φ′(E′))
}
,

where the infimum is taken over all choices of the metric space (F, δ) and of the isometric
embeddings φ : E → F and φ′ : E′ → F of E and E′ into F and dFH is the Hausdorff
distance between compacts sets in F . An alternative definition of this distance uses
correspondences. A correspondence between two metric spaces (E, d) and (E′, d′) is a
subset R of E × E′ such that, for every x1 ∈ E, there exists at least one point x2 ∈ E′
such that (x1, x2) ∈ R and conversely, for every y2 ∈ E′, there exists at least one point
y1 ∈ E such that (y1, y2) ∈ R. The distortion of the correspondence R is defined by

dis(R) = sup
{
|d(x1, y1)− d′(x2, y2)| : (x1, x2), (y1, y2) ∈ R

}
.

The Gromov–Hausdorff distance can be expressed in terms of correspondences by the
formula

dGH(E,E′) =
1

2
inf
{

dis(R)
}
, (3.18)

where the infimum is over all correspondences R between E and E′. The Gromov–
Hausdorff distance is indeed a metric on the space of all isometry classes of compact
metric spaces, making it separable and complete.

Proof of Theorem 1.2. Recall the notation of Section 2.3. Assertion (i) in an immediate
consequence of Theorem 3.6. Indeed, Theorem 3.6 implies that as α ↓ 1, the sequence of
functions (s, t) 7→ δs∧t

(
xss∧t, x

t
s∧t
)

converges in probability towards the function (s, t) 7→
|s − t|, uniformly on [0, 1]2, while the sequences of functions (s, t) 7→ d0(s ∧ t, s) and
d0(s ∧ t, t) converge in probability towards the constant function equal to 0, uniformly
on [0, 1]2. By (2.5), this implies that (s, t) 7→ d(α)(s, t) converges in probability towards
(s, t) 7→ |s− t|, uniformly on [0, 1]2, implying (i). We leave details to the reader.

We now establish (ii). Recall from (2.3) the definition of the pseudo-distance dh for
a function h : [0, 1] → R+. We will prove that we have the following convergence in
distribution

d(α)(·, ·) (d)−−−→
α→2

√
2

2
· de(·, ·)

for the uniform norm over [0, 1]2, which in turn will imply (ii). We first check that the
sequence of random pseudo-distances (d(α)) is tight as α→ 2 for the uniform topology
on [0, 1]2. Fix ε > 0. By [8, Theorem 7.3] (this reference covers the case of [0, 1] but the
extension to [0, 1]2 is straightforward), it is sufficient to check that there exists η > 0

such that for α sufficiently close to 2 we have

P

(
sup
|x−y|<η

d(α)(x, y) > ε

)
< ε. (3.19)

Note that by Theorem 3.5, the pseudo-distance dXexc,(α)(·, ·) converges in distribution
for the uniform norm on [0, 1]2 towards

√
2 · de(·, ·) as α ↑ 2. It follows that there exists

η > 0 such that for α sufficiently close to 2

P

(
sup
|x−y|<η

dXexc,(α)(x, y) > ε

)
< ε. (3.20)
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But, by Theorem 2.1 (ii) for every x, y ∈ [0, 1] we have d(α)(x, y) ≤ dXexc,(α)(x, y). Our
claim (3.19) then follows from (3.20).

Since (d(α)) is tight as α→ 2 and since dXexc,(α)(·, ·) converges in distribution towards√
2 · de(·, ·), a density and continuity argument shows that in order to identify the limit of

any convergent subsequence of (d(α)), by [8, Theorem 7.3] (this reference covers the
case of [0, 1] but the extension to [0, 1]2 is straightforward), it is sufficient to check that

d(α)(U, V )

dXexc,(α)(U, V )

(P)−−→
α↑2

1

2
. (3.21)

where U, V are independent random uniform variables on [0, 1]. We claim that it suffices
to prove that

d(α)(0, U)

Xexc,(α)(U)

(P)−−→
α↑2

1

2
. (3.22)

Indeed, the reader may either strengthen the following proof by splitting at the most
common ancestor U ∧ V , or invoke a re-rooting property of Xexc,(α) at a uniform location
which gives (

d(α)(U, V ),dXexc,(α)(U, V )
)

(d)
=

(
d(α)(0, U),dXexc,(α)(0, U)

)
,

see Theorem 4.6. We now establish (3.22). For a càdlàg function Y ∈ D([0, 1]),R) recall
the notation xts(Y ), uts(Y ) from Section 3.1.3 and for 0 ≤ η ≤ t ≤ 1 set

Qtη(Y ) =

∑
η≤s, s4t

∆Ys min
(
uts(Y ), 1− uts(Y )

)
∑

η≤s, s4t
∆Ysu

t
s(Y )

.

By (3.5) and (3.6), we have:

d(α)(0, U)

Xexc,(α)(U)
= QU0 (Xexc,(α)).

By using the Vervaat transformation (recall Section 3.1.2), we get that

d(α)(0, U)

Xexc,(α)(U)

(d)
= Q1

0(Xbr,(α)). (3.23)

It is thus sufficient to show that the last quantity converges in probability to 1/2 as α ↑ 2.
As usual, we replace the bridge Xbr,(α) by the α-stable process X(α) and first prove that

Q1
0(X(α))

(P)−−→
α↑2

1

2
. (3.24)

To this end, note that by Theorem 3.1, the collection {u1
s(X

(α)) : s ∈ [0, 1], s 4 1} is

an i.i.d. collection of uniform variables also independent of {∆X(α)
s , : 0 ≤ s, s 4 1}. By

Theorem 3.3 we have∑
0≤s, s41

∆X(α)
s ≥

∑
0≤s,s41

x1
s(X

(α)) = X
(α)
1 − inf

[0,1]
X(α) (d)−−→

α↑2

√
2 · (B1 − inf

[0,1]
B).

On the other hand, we have for ε > 0

P

(
sup
s∈[0,1]

∆X(α)
s ≥ ε

)
= 1− exp

(
−Π(α)([ε,∞))

)
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which converges to 0 as α ↑ 2 by (2.1). Setting S = {∆s(X
(α)); 0 ≤ s, s 4 1}, it follows

that supS converges in probability towards 0 as α ↑ 2, and the sum of all the elements
of S converges in probability towards a positive random variable as α ↑ 2. We are thus
in position to apply a classic weak law of large numbers (for example by using an L2

estimate) and get the following two convergences:∑
0≤s, s41

∆X(α)
s · u1

s(X
(α))∑

0≤s, s41

∆X(α)
s

(P)−−→
α↑2

E [U ] = 1/2,

∑
0≤s, s41

∆X(α)
s min

(
uts(X

(α)), 1− uts(X(α))
)

∑
0≤s, s41

∆X(α)
s

(P)−−→
α↑2

E [min(U, 1− U)] = 1/4.

This proves (3.24).
We now complete the proof of (3.22) by showing that

Q1
0(Xbr,(α))

(P)−−→
α↑2

1

2
(3.25)

by using an absolute continuity argument. For a càdlàg function Y ∈ D([0, 1],R), set
u?(Y ) = inf{t ∈ [0, 1]; min(Y (t−), Y (t)) = inf [0,1] Y }. Fix ε > 0. We claim that there exists
η ∈ (0, 1) such that for every α ∈ (1, 2) sufficiently close to 2 we have

P
(
Q1

0(Xbr,(α)) 6= Q1
η(Xbr,(α))

)
≤ ε

Indeed, notice first that Q1
0(Y ) = Q1

u?(Y )(Y ) and second that u?(Xbr,(α)) is uniformly dis-
tributed on [0, 1] ( see [5, VIII, Exercise 6]). Next, by absolute continuity (see Section 2.1)
applied to the dual process t 7→ X1 −X(1−t)−,

P
(∣∣∣Q1

η(Xbr,(α))− 1/2
∣∣∣ > δ

)
= E

[
1|Q1

η(X(α))−1/2|>δ
p

(αn)
η (X

(α)
η )

p
(α)
1 (0)

]
.

Since the densities p(α)
t enjoy the scaling relation p

(α)
t (x) = t−1/αp

(α)
1 (xt−1/α) by Theo-

rem 3.12, it follows that there exists a constant C > 0 (depending on η) such that, for
every α ∈ ( 3

2 , 2),

P
(∣∣∣Q1

η(Xbr,(α))− 1/2
∣∣∣ > δ

)
≤ CP

(∣∣∣Q1
η(X(α))− 1/2

∣∣∣ > δ
)
.

Thus, putting the pieces together, for every α sufficiently close to 2 we have

P
(∣∣∣Q1

0(Xbr,(α))− 1/2
∣∣∣ > δ

)
≤ P

(
Q1

0(Xbr,(α)) 6= Q1
η(Xbr,(α))

)
+CP

(∣∣∣Q1
η(X(α))− 1/2

∣∣∣ > δ
)
.

A minor adaptation of (3.24) shows that Q1
η(Xbr,(α)) converges in probability to 1

2 as α ↑ 2.
This completes the proof of Theorem 1.2 (ii).

3.3 Hausdorff dimension of looptrees

In this section, we study fractal properties of looptrees, and prove in particular
Theorem 1.1 which identifies the Hausdorff dimension of Lα (see [28, Sec. 4] for the
definition and background on Hausdorff dimension). Recall the definition of Lα using
Xexc in Section 2.3. In this section, the dependence of Xexc in α is implicit.
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3.3.1 Upper bound

Proof. We construct a covering of Lα as follows. Fix ε > 0 and let (t
(ε)
i )1≤i≤Nε be an

increasing enumeration of the elements of the finite set {t ∈ [0, 1]; ∆t > ε1/α} and set

t
(ε)
0 = 0 and t(ε)Nε+1 = 1. Recall that p : [0, 1]→ Lα is the canonical projection. It is clear

that
Nε⋃
i=0

p([t
(ε)
i , t

(ε)
i+1))

is a covering of Lα. By Theorem 2.1 (ii), we have

Diam
(
p
(
[t

(ε)
i , t

(ε)
i+1)

))
≤ 2·Amp

[t
(ε)
i ,t

(ε)
i+1)

Xexc, (3.26)

where by definition

Diam(A) := sup{d(u, v) : u, v ∈ A} and Amp[s,t]f := sup{|f(x)− f(y)| : x, y ∈ [s, t]}.

We shall now prove that, for every η ∈ (0, 1/α),

lim
ε→0

P
(
Nε ≤ ε−1−η and Amp

[t
(ε)
i ,t

(ε)
i+1)

Xexc ≤ ε1/α−η, ∀i ≤ Nε
)

= 1. (3.27)

This will entail that a.s. dimH(Lα) < α(1 + η)/(1 − ηα), implying the a.s. upper bound
dimH (Lα) ≤ α since η ∈ (0, 1/α) was arbitrary.

Instead of proving (3.27) directly, we will first prove a similar statement involving
the unconditioned process X. Let (t

(ε),∗
i )i≥1 be an increasing enumeration of the times

where X makes a jump larger than ε1/α (with the convention t
(ε),∗
0 = 0), and set N∗ε =

#{i ≥ 1 : t
(ε),∗
i ≤ 1}. By standard arguments involving continuity relations between X

and the Lévy bridge Xbr as well as the Vervaat transformation between Xbr and Xexc

(see Section 3.1.2), (3.27) holds if we manage to prove that

lim
ε→0

P
(
N∗ε ≤ ε−1−η and Amp

[t
(ε),∗
i ,t

(ε),∗
i+1 )

X ≤ ε1/α−η, ∀i ≤ N∗ε
)

= 1. (3.28)

The advantage of dealing with the unconditioned process is that now N∗ε is distributed
according to a Poisson random variable of parameter Π(ε1/α,∞), that is, using (2.1),

N∗ε
(d)
= Poisson

(
1

ε
· α− 1

Γ(α− 2)

)
. (3.29)

Furthermore, by the Markov property of the process X, the random variables

Amp
[t

(ε),∗
i ,t

(ε),∗
i+1 )

X, i ≥ 0

are independent and identically distributed. By the scaling property of X, their common
distribution can be written as ε1/α · A, where

A := Amp[0,E)X̃,

where X̃ is the Lévy process X conditioned not to make jumps larger than 1, that is with
Lévy measure given by Π(dx)1(0,1)(x), and E is an independent exponential variable of
parameter (α− 1)/Γ(α− 2).

We claim that E [exp(λA)] <∞ for a certain λ > 0. To this end, it is sufficient to check
that for a certain λ > 0 we have both

E

[
exp

(
−λ · inf

[0,E]
X̃

)]
<∞ and E

[
exp

(
λ · sup

[0,E]

X̃

)]
<∞.
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The first inequality is a consequence of the discussion of [5, p. 188] applied to the
spectrally negative process −X. For the second one, we slightly adapt these arguments:
Since ∆X̃s < 1 for every s ≥ 0, by the Markov property applied at T[1,∞] = inf{t > 0 :

X̃t ≥ 1} and by lack of memory of the exponential law, we have

P

(
sup
[0,E]

X̃ > a+ 2

)
≤ P

(
sup
[0,E]

X̃ > 1

)
P

(
sup
[0,E]

X̃ > a

)
,

which yields P(sup[0,E] X̃ > 2n) ≤ P(sup[0,E] X̃ > 1)n for every n ≥ 1. It follows that

E [exp(λA)] <∞ for every 0 < λ < 1
2 logP(sup[0,E] X̃ > 1). To establish (3.28), write

P
(
N∗ε ≥ ε−1−η or ∃i ≤ N∗ε s.t. Amp

[t
(ε),∗
i ,t

(ε),∗
i+1 )

X ≥ ε1/α−η
)

≤ P
(
N∗ε ≥ ε−1−η)+ ε−1−ηP

(
A ≥ ε−η

)
.

Since A has exponential moments and by (3.29), the right-hand side of the last display
vanishes as ε→ 0. This implies (3.28) and completes the proof of the upper bound.

3.3.2 Lower bound

Proof. Denote by ν the probability measure on Lα obtained as the push-forward of the
Lebesgue measure on [0, 1] by the projection p. We will show that for every δ ∈ (0, α),
almost surely, for ν-almost every u we have

lim sup
r→0

ν(Br(u))

rα−δ
= 0, (3.30)

where Br(u) is the ball of center u and radius r > 0 in the metric space Lα. By
standard density theorems for Hausdorff measures [28, Theorem 8.8] (this reference
covers the case of measures on Rn, but the proof remains valid here), this implies that
dimH(Lα) ≥ α− δ, almost surely. The lower bound will thus follow.

Fix δ ∈ (0, α). Let U be a uniform variable over [0, 1] independent of Lα. We shall
prove that almost surely, for every r > 0 sufficiently small we have ν(Br(p(U))) ≤ 2rα−δ.
By Fubini’s theorem, this indeed implies (3.30). We will use the following lemma:

Lemma 3.13. Fix η > 0. Almost surely, as ε → 0, there exists a jump time Tε of Xexc

such that the following three conditions hold:

(i) Tε ∈ (U − ε, U),

(ii) min(xUTε ,∆Tε − xUTε) > ε1/α+η,

(iii) inf [U,U+ε1−η ]X
exc < Xexc

Tε−.

Assuming (i), (ii) and (iii), let us show that

ν
(
Bε1/α+η

(
p(U)

))
≤ 2ε1−η

which, together with the statement of the lemma, will imply our goal. Indeed, it is
sufficient to check that whenever sn[U − ε, U + ε1−η] then we have d(s, U) ≥ ε1/α+η. To
this end, note that if sn[U − ε, U + ε1−η] then (iii) and (i) show that s∧U < Tε and hence
s ∧ U ≺ Tε ≺ U . By the definition of d and Theorem 2.1 (i) we get

d(s, U) ≥ min(xTUε ,∆Tε − xTUε ) ≥ ε1/α+η,

as desired.
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UTε

−ε +ε1−η

Figure 7: Setup of Theorem 3.13. The red line shows the ancestral path of U towards 0

and the loops encountered during this descent.

It thus remains to show Theorem 3.13. Since the statement we intend to prove is a
local statement around the point U in Xexc, by standard arguments involving continuity
relations between X and the Lévy bridge Xbr as well as the Vervaat transformation
between Xbr and Xexc (see Section 3.1.2) it suffices to prove Theorem 3.13 when Xexc

is replaced by a two-sided Lévy process (Xt)t∈R and the point U by the point 0. Recall
from the statement of Theorem 3.2 the definition of the event

Aε =
{
∃s ∈ [−ε, 0] with s 4 0 : x0

s(X) ≥ ε1/α+η and ∆Xs − x0
s(X) ≥ ε1/α+η

}
.

By Theorem 3.2, there exist C, γ > 0 such that P (Acε) < Cεγ . Borel–Cantelli’s Lemma
implies that a.s. A2−k holds for every k sufficiently large. This proves (i) and (ii) (with a
slightly larger η). Next, by [5, Chapter VIII, Theorem 6 (i)], a.s. there exists c > 0 such
that for every ε sufficiently small sup[0,ε1−η ](−X) ≥ cε(1−η/2)/α, and by the last line of
the proof of Theorem 5 in [5, Chapter VIII], a.s. there exists C > 0 such that for every ε
sufficiently small, sup[0,ε](−X) ≤ Cε(1−η/3)/α. It follows that a.s. for every ε sufficiently
small we have

inf
[0,ε1−η ]

X < inf
[−ε,0]

X.

Combined with (i), this implies (iii) and completes the proof.

4 Invariance principles for discrete looptrees

4.1 Plane trees and Lukasiewicz path

We briefly recall the formalism of plane trees, which can for instance be found in
[31, 24]. Let N = {0, 1, . . .} be the set of nonnegative integers, N∗ = {1, . . .} and let U be
the set of labels

U =

∞⋃
n=0

(N∗)n,

where by convention (N∗)0 = {∅}. An element of U is a sequence u = u1 · · ·um of
positive integers, and we set |u| = m, which represents the “generation” or heightof
u. If u = u1 · · ·um and v = v1 · · · vn belong to U , we write uv = u1 · · ·umv1 · · · vn for the
concatenation of u and v. Finally, a plane tree τ is a finite subset of U such that:

1. ∅ ∈ τ ,
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2. if v ∈ τ and v = uj for some j ∈ N∗, then u ∈ τ ,
3. for every u ∈ τ , there exists an integer ku(τ) ≥ 0 (the number of children of u) such

that, for every j ∈ N∗, uj ∈ τ if and only if 1 ≤ j ≤ ku(τ).

In the following, by tree we will always mean plane tree. We denote the set of all trees by
T . We will often view each vertex of a tree τ as an individual of a population whose τ is
the genealogical tree. If u, v ∈ τ we denote by [[u, v]] the discrete geodesic path between
u and b in τ . The total progeny of τ , which is the total number of vertices of τ , will be
denoted by |τ |. The number of leaves (vertices u of τ such that ku(τ) = 0) of the tree τ is
denoted by λ(τ) and the height of the tree (which is the maximal generation) is denoted
by H(τn).

We now recall the classical coding of plane trees by the so-called Lukasiewicz path.
This coding is crucial in the understanding of scaling limits of discrete looptrees associ-
ated with large trees. Let τ be a plane tree whose vertices are listed in lexicographical
order ∅ = u(0) < u(1) < · · · < u(|τ | − 1).

Figure 8: A tree and its Lukasiewicz path.

The Lukasiewicz path W(τ) = (Wn(τ), 0 ≤ n ≤ |τ |) is defined by W0(τ) = 0 and
Wn+1(τ) = Wn(τ) + ku(n)(τ)− 1 for 0 ≤ n ≤ |τ | − 1 (see Figure 8 for an example, where
W is interpolated into a càdlàg function between successive integers). It is easy to see
that Wn(τ) ≥ 0 for 0 ≤ n < |τ | but W|τ |(τ) = −1 (see e.g. [24, Proposition 1.1]).

4.2 Invariance principles for discrete looptrees

Recall from the Introduction that a discrete looptree Loop(τ) is associated with every
plane tree τ 6= ∅ (see Figure 2). In this section, we give a sufficient condition on
a sequence of trees (τn)n≥1 that ensures that the associated looptrees (Loop(τn))n≥1,
appropriatly rescaled, converge towards the stable looptree Lα.

Theorem 4.1 (Invariance principle). Let (τn)n≥1 be a sequence of random trees such
that there exists a sequence (Bn)n≥0 of positive real numbers satisfying

(i)

(
1

Bn
Wb|τn|tc(τn); 0 ≤ t ≤ 1

)
(d)−→
n→∞

Xexc,(α), (ii)
1

Bn
H(τn)

(P)−→
n→∞

0,

where the first convergence holds in distribution for the Skorokhod topology onD([0, 1],R)

and the second convergence holds in probability. Then the convergence

1

Bn
· Loop(τn)

(d)−−−−→
n→∞

Lα

holds in distribution for the Gromov–Hausdorff topology.
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Of course, the main applications of this result concern Galton–Watson trees. If ρ is
a probability measure on N such that ρ(1) < 1, we denote by GWρ the law of a Galton–
Watson tree with offspring distribution ρ. We say that ρ is critical if it has mean equal to
1.

If ρ is a critical offspring distribution in the domain of attraction of a stable law1 of
index α ∈ (1, 2), Duquesne [16] showed that GWρ trees conditioned to have n vertices
(provided this conditioning makes sense) satisfy the assumptions of Theorem 4.1 ((i)
follows from Proposition 4.3 and the proof of Theorem 3.1 in [16], and (ii) follows from
the fact that H(τn) · Bn/n converges in distribution to a positive real valued random
variable as n→∞ by [16, Theorem 3.1]). Recently, the second author [22] proved the
same result for GWρ trees conditioned to have n leaves.

Remark 4.2. Let us mention that a different phenomenon happens when the offspring
distribution ρ is critical and has finite variance: in this case, if τn denotes a GWρ

tree conditioned to have n vertices, it is shown in [14] that Loop(τn)/
√
n converges in

distribution towards a constant times the Brownian CRT, and the constant depends this
time on the offspring distribution in a rather complicated fashion (in [14] this is actually
established under the condition that ρ has a finite exponential moment). The main
difference is that in the finite variance case, Bn is a constant times

√
n, and H(τn)/Bn

does not converge in probability to 0 any more, but converges in distribution to a positive
real-valued random variable.

Remark 4.3. Condition (ii) of the above theorem ensures that the height of τn is neglige-
able compared to the typical size of loops in Loop(τn), so that asymptotically distances
in τn do not contribute to the distances in Loop(τn). Also observe that, in the boundary
case α = 2, when ρ has infinite variance (so that ρ is in the domain of attraction of the
Gaussian law), we still have H(τn)/Bn → 0 (by the same argument that follows (4.9)). In
analogy with Theorem 1.2 (ii) we believe that, in this case, B−1

n · Loop(τn) converges in
distribution as n→∞ towards 1

2 · T2.

An immediate corollary of Theorem 4.1 is that Lα is a length space (see [10, Chapter
2] for the definition of a length space):

Corollary 4.4. Almost surely, Lα is a length space.

Proof. This is a consequence of [10, Theorem 7.5.1], since by Theorem 4.1, the space
Lα is a Gromov–Hausdorff limit of finite metric spaces.

Proof of Theorem 4.1. Let (τn)n≥1 be a sequence of random trees and (Bn)n≥1 a se-
quence satisfying the assumptions (i) and (ii). Note that necessarily Bn →∞ as n→∞.
The Skorokhod representation theorem allows us to assume that the convergences
(i) and (ii) hold almost surely and we aim at proving an almost sure convergence of
B−1
n · Loop(τn) towards Lα. We first define a sequence of finite metric spaces denoted

by Loop′(τn) which are slightly different from Loop(τn), but more convenient to work
with. Let un0 , u

n
1 , . . . , u

n
|τn|−1 be the vertices of τn listed in lexicographical order, then

Loop′(τn) is by definition the graph on the set of vertices of τn such that two vertices
u and v are joined by an edge if and only if one of the following three conditions are
satisfied in τ : u and v are consecutive siblings of a same parent, or u is the first sibling
(in the lexicographical order) of v, or u is the last sibling of v. In particular, if u has a
unique child v in τ , then u and v are joined by two edges in Loop′(τn). See Figure 9 for
an example. We equip Loop′(τn) with the graph metric.

1Recall that this means that µ([j,∞)) = j−αL(j), where L : R+ → R+ is a function such that L(x) > 0 for
x large enough and limx→∞ L(tx)/L(x) = 1 for all t > 0 (such a function is called slowly varying). We refer
to [9] for details.

EJP 19 (2014), paper 108.
Page 28/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/


Random stable looptrees

1

2 3

4 5

6

7 8

9 10

11

13

0

1
2

3

4
5

67

8
9

10

11

12

13

0

12

14

Figure 9: A discrete tree τ and Loop′(τ).

It is easy to check that Loop′(τn) is at Gromov–Hausdorff distance at most 2 from
Loop(τn) (compare Figures 2 and 9). Since Bn → ∞ as n → ∞, it is thus sufficient to
show that

1

Bn
Loop′(τn)

a.s.−−−−→
n→∞

Lα. (4.1)

Recall that p : [0, 1]→ Lα denotes the canonical projection. For every n ≥ 1, we let Rn
be the correspondence between Lα and B−1

n · Loop′(τn) made of all the pairs (p(s), uni )

such that i = b|τn|sc ± 1 where s ∈ [0, 1] and i ∈ {0, 1, 2, . . . , |τn| − 1}. It is easy to check
that Rn is indeed a correspondence and we will show that, under our assumptions, its
distortion vanishes as n→∞.

To do so, we shall first see that the graph distance d′n of Loop′(τn) can be expressed
in a very similar way to (2.5). To simplify notation, we denote by (Wn

k )0≤k≤|τn| the
Lukasiewicz path associated with τn. By definition of Wn, the vertex uni has

∆Wn
i := Wn

i+1 −Wn
i + 1

children. In addition, the discrete genealogical order (also denoted by 4) on un0 , . . . , u
n
|τn|−1

can be recovered from Wn in a similar way to the continuous setting (see the proof of
Proposition 1.2 in [24] for details):

uni 4 unj if and only if i ≤ j and inf
i≤m≤j

Wn
m = Wn

i .

Furthermore, when uni ≺ unj , that is when uni 4 unj and i 6= j, the quantity

xjn,i := inf
i+1≤k≤j

Wn
k −Wn

i + 1

informally gives the “position” of the ancestral line of unj with respect to uni ; more

precisely the (∆Wn
i − xjn,i + 1)-th child of uni (in the lexicographical order) is an ancestor

of unj . Similarly to the continuous setting, one checks that the distance between uni 4 unj
in Loop′(τn) is given by

d′n(uni , u
n
j ) =

∑
uni 4u

n
k≺unj

δn,k(0, xjn,k), (4.2)

where by definition δn,i(a, b) = |b − a| ∧ (∆Wn
i + 1 − |b − a|) for a, b ∈ {0, 1, 2, . . . ,∆Wn

i }.
If uni is not an ancestor of unj , then the distance between uni and unj in Loop′(τn) can
be computed by breaking in three parts the geodesic between uni and unj at their most
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recent common ancestor as in the continuous case (see (2.5)): if unm is the most recent
common ancestor of uni and unj , then

d′n(uni , u
n
j ) = δn,m(xin,m, x

j
n,m) +

∑
unm≺unk≺uni

δn,k(0, xin,k) +
∑

unm≺unk≺unj

δn,k(0, xjn,k). (4.3)

Now, we argue by contradiction and suppose that there exists ε > 0, in, jn ∈
{0, 1, . . . , |τn| − 1}, sn, tn ∈ [0, 1] such that (unin , π(sn)) ∈ Rn and (unjn , π(tn)) ∈ Rn, and
such that for every n sufficiently large∣∣∣∣ 1

Bn
d′n(unin , u

n
jn)− d(sn, tn)

∣∣∣∣ ≥ ε. (4.4)

By compactness, we may assume without loss of generality that in/|τn| → s and jn/|τn| →
t. Because in = bsn|τn|c ± 1, we also have sn → s and similarly tn → t. We make the
additional assumption that unin 4 unjn and sn 4 tn for every n sufficiently large. Note that
this entails s 4 t. The general case is more tedious and can be solved by breaking at the
most recent common ancestor and using (4.3) instead of (4.2). We leave details to the
reader.

The idea is now clear: On the one hand, jumps of Wn converge after scaling towards
the jumps of Xexc and on the other hand d and d′n have similar expressions involving their
jumps (compare (2.6) and (4.2)). Thus, intuitively, the inequality (4.4) cannot hold for n
sufficiently large. Let us prove this carefully. Since {r ∈ [0, 1]; s 4 r ≺ t and ∆r > 0} is
countable, by (2.6) there exists η > 0 such that∑

s4r≺t
δr(0,xtr)>η

δr(0, x
t
r) ≥ d(s, t)− ε

4
. (4.5)

Note that the sum appearing in the last expression contains a finite number of terms.
To simplify notation, write {r ∈ [0, 1]; s 4 r ≺ t and δr(0, xtr) > η} = {r0, r1, . . . , rm} with
r0 ≺ r1 ≺ r2 ≺ . . . ≺ rm < t and possibly r0 = s. We shall now show that∑

s4r≺t
δr(0,xtr)>η

δr(0, x
t
r)−

1

Bn

∑
unin4u

n
k≺unjn

δn,k(0, xjnn,k)1δn,k(0,xjnn,k)>η·Bn −→
n→∞

0. (4.6)

Properties of the Skorokhod topology entail that the jumps of Wn/Bn converge to-
wards the jumps of Xexc, together with their locations. It follows that for every
r ∈ {r0, r1, r2, . . . , rm} one can find kn(r) ∈ {0, 1, . . . , |τn| − 1} such that the following
two conditions hold for n sufficiently large (see Figure 10 for an illustration):

(i)
kn(r)

|τn|
→ r, unin 4 unkn(r) 4 unjn ,

1

Bn
δn,kn(r)(0, x

jn
n,kn(r))→ δr(0, x

t
r) as n→∞,

(ii) {kn(r0), . . . , kn(rm)} =
{
kn; in 4 kn 4 jn such that δn,k(0, xjnn,k) > η ·Bn

}
.

This implies (4.6). In (i), when r = r0, we use the fact that sn 4 tn for every n ≥ 1.
By combining (4.5) and (4.6), we get that

lim sup
n→∞

|d(s, t)− d′n(in, jn)| = lim sup
n→∞

∣∣∣∣∣∣
∑
s4r≺t

δr(0, x
t
r)−

1

Bn

∑
unin4u

n
k≺unjn

δn,k(0, xjnn,k)

∣∣∣∣∣∣
≤ ε

4
+ lim sup

n→∞

1

Bn

∑
unin4u

n
k≺unjn

δn,k(0, xjnn,k)1xjnn,k≤η·Bn
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ts r1 kn(0) kn(1) kn(2)r2

Figure 10: Illustration of the conditions (i) and (ii) above. In the figure in the right,
the black process is Wn/Bn and the grey one is Xexc. To simplify, here we have set
k̃n(i) = kn(ri)/|τn| and k̃n(t) = kn(t)/|τn|.

In order to get the desired contradiction, we show that the second term in the last display
can be made less than ε/4 provided that η > 0 is small enough. Indeed, we have∑

unin4u
n
k≺unjn

δn,k(0, xjnn,k)1xjnn,k≤η·Bn
≤

∑
unk≺unjn

xjnn,k1xjnn,k≤η·Bn

=
∑

unk≺unjn

xjnn,k −
∑

unk≺unjn

xjnn,k1xjnn,k>η·Bn
. (4.7)

The following equality will be useful∑
unk≺unjn

xjnn,k = Height(unjn) + Wn
jn . (4.8)

Since jn/n→ t, it sufficient to treat the case where either Wn
jn
/Bn → Xexc

t or Wn
jn
/Bn →

Xexc
t− . We first suppose that Wn

jn
/Bn → Xexc

t . At this point, we crucially use Corollary 3.4
and assume that η > 0 has been chosen sufficiently small such that∑

r4t

xtr1xtr>η′ ≥ X
exc
t − ε/4.

The same argument that led us to (4.6) entails∑
unk≺unjn

xjnn,k1xjnn,k>η′·Bn
−→
n→∞

∑
r4t

xtr1xtr>η′ .

Note that we have used the fact that Wn
jn
/Bn → Xexc

t in order to capture the term of
the right-hand side corresponding to r = t. Consequently, combining the last display
with (4.8) and Assumption (ii) of the theorem, we deduce that (4.7) becomes for every n
sufficiently large ∑

unin4u
n
k≺unjn

δn,k(0, xjnn,k)1xjnn,k≤η·Bn
≤ ε/4.

In the case Wn
jn
/Bn → Xexc

t− , the same argument applies after replacing every occurrence
of Xexc

t by Xexc
t− and every occurrence of r 4 t by r ≺ t. This completes the proof of the

claim and of Theorem 4.1.
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4.3 Application to scaling limit of discrete non-crossing configurations

We now give an application of the invariance principle established in the previous
section by showing that stable looptrees appear as Gromov–Hausdorff limits of random
Boltzmann dissections of [23].

For every integer n ≥ 3, recall from the Introduction that a dissection of the regular
polygon Pn is the union of the sides of Pn and of a collection of diagonals that may
intersect only at their endpoints, see Figure 11. The faces are the connected components
of the complement of the dissection in the polygon.

Recall from the Introduction the Boltzmann probability measure Pµn on Dn, the set
of all dissections of Pn+1. Our goal is to study scaling limits of random dissections Dµn
sampled according to Pµn and prove Theorem 1.3. Recall that Dµn is viewed as a metric
space by endowing the vertices of Dµn with the graph distance.

Duality with trees. The main tool is to use a bijection with trees. Indeed, the dual
tree of Dµn is a Galton–Watson tree as we now explain.

Given a dissection D ∈ Dn, we construct a (rooted ordered) tree φ(D) as follows:
Consider the “dual" graph of D, obtained by placing a vertex inside each face of D and
outside each side of the polygon Pn+1 and by joining two vertices if the corresponding
faces share a common edge, thus giving a connected graph without cycles. Then remove
the dual edge intersecting the side of Pn+1 which connects 1 to e

2iπ
n+1 . Finally, root the

tree at the corner adjacent to the latter side (see Figure 11).

1

2

3

4

5

6

7

8

Figure 11: The dual tree of a dissection of P8, note that the tree has 7 leaves.

We denote by T (`)
n the set of all plane trees with n leaves such that there is no vertex

with exactly one child. It is plain that the dual tree of a dissection is such a tree and the
duality application φ is a bijection between Dn and T (`)

n . Finally, recall that λ(τ) is the
number of leaves of a tree τ . The following proposition is [23, Proposition 1.4].

Proposition 4.5. Let µ be a probability distribution over {0, 2, 3, 4 . . .} of mean 1. For
every n such that GWµ(λ(τ) = n) > 0, the dual tree φ(Dµn) of a random dissection
distributed according to Pµn is distributed according to GWµ(. | λ(τ) = n).

With all the tools that we have in our hands, the proof of Theorem 1.3 is now effortless.

Proof of Theorem 1.3. Let µ be a probability measure on {0, 2, 3, . . .} satisfying the as-
sumptions of Theorem 1.3. By Theorem 4.5, we know that φ(Dµn) is a GWµ tree condi-
tioned on having n leaves. Set

Bn =
n1/α

(|Γ(1− α)| · µ0 · c)1/α
.
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By [22, Theorem 6.1 and Remark 5.10], we have(
1

Bn
·Wbnt/µ0c(τn); 0 ≤ t ≤ 1

)
(d)−−−−→
n→∞

(
X

exc,(α)
t ; 0 ≤ t ≤ 1

)
, (4.9)

and, in addition, by [22, Theorem 5.9 (ii) and Remark 5.10], Bn/n ·H(τn) converges in
distribution towards a positive real valued random variable as n → ∞, which implies
that H(τn)/Bn converges in probability to 0 as n → ∞ since B2

n/n → 0. We are thus
in position to apply Theorem 4.1 and get that B−1

n · Loop(τn) converges in distribution
towards Lα for the Gromov–Hausdorff topology.

We now claim that the Gromov–Hausdorff distance between Dµn and Loop(τn) is
roughly bounded by the height of τn, more precisely

dGH(Dµn, Loop(τn)) ≤ H(τn) + 2 (4.10)

for every n ≥ 1. Clearly, since H(τn)/Bn converges in probability to 0 as n→∞ as we
have already seen, this implies the statement of the theorem. To establish (4.10), we
construct a correspondence between Dµn and Loop(τn) as suggested by Figure 12: a
point x ∈ Dµn is in correspondence with a point a ∈ Loop(τn) if there exists an edge of Dµn
containing both a and x.

a

a’

x

x’

Figure 12: Close relationship between Dµn and Loop(τn). In the right-hand side figure,
the geodesics γa,a′ and Γx,x′ are in bold.

This clearly defines a correspondence between Dµn and Loop(τn). Let us bound its
distortion. Let a, a′ ∈ Loop(τn) and x, x′ ∈ Dµn be such that (a, x) ∈ R and (a′, x′) ∈ R.
Consider a geodesic γa,a′ in Loop(τn) from a to a′. One can then construct a geodesic
Γx,x′ going from x to x′ which stays “close” to γa,a′ (see Figure 12), meaning that the
length of the portion of γa,a′ belonging to any loop differs at most by one from the length
of the portion of Γx,x′ belonging to the corresponding face. Since the number of loops
crossed by γa,a′ is bounded by the height of τn, it follows that

|Length(γa,a′)− Length(Γx,x′)| ≤ H(τn) + 2,

the term +2 taking into account the boundary effect due to the root edge. This yields
(4.10) and finishes the proof of the corollary.

Theorem 1.3 remains true under the more general assumption that µ([k,∞)) =

L(k) ·k−α, where L is a slowly varying function at infinity. In this case, the scaling factors
are slightly modified.

Remark 4.6. By using the fact that the law of Dµn is invariant under rotations of angle
2πZ/(n+1) and passing to the limit using (4.9), it is possible to obtain a re-rooting invari-
ance property for looptrees, and in particular get that if U and V are two independent
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random variables uniformly distributed over [0, 1], independent of Xexc, then

d(U, V )

dXexc(U, V )

(d)
=

d(0, U)

Xexc(U)
.
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