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Abstract

We show that the genealogy of any self-similar fragmentation process can be encoded
in a compact measured R-tree. Under some Malthusian hypotheses, we compute the
fractal Hausdorff dimension of this tree through the use of a natural measure on the
set of its leaves. This generalizes previous work of Haas and Miermont which was
restricted to conservative fragmentation processes.
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1 Introduction

In this work, we study a family of trees derived from self-similar fragmentation pro-
cesses. Such processes describe the evolution of an object which constantly breaks
down into smaller fragments, each one then evolving independently from one another,
just as the initial object would, but with a rescaling of time by the size of the fragment
to a certain power called the index of self-similarity. This breaking down happens in two
ways: erosion, a process by which part of the object is continuously being shaved off
and thrown away, and actual splittings of fragments which are governed by a Poisson
point process. Erosion is parametered by a nonnegative number c called the erosion
rate, while the splitting Poisson point process depends on a dislocation measure ν on
the space

S↓ = {s = (si)i∈N : s1 ≥ s2 ≥ . . . ≥ 0,
∑

si ≤ 1}.

Precise definitions can be found in the main body of the article.
Our main inspiration is the 2004 article of Bénédicte Haas and Grégory Miermont

[20]. Their work focused on conservative fragmentations, where there is no erosion
and splittings of fragments do not change the total mass. They have shown that, when
the index of self-similarity is negative, the genealogy of a conservative fragmentation
process can be encoded in a continuum random tree, the genealogy tree of the frag-
mentation, which is compact and naturally equipped with a probability measure on the
set of its leaves. Our main goal here will be to generalize the results they have obtained
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General fragmentation trees

to the largest reasonable class of fragmentation processes: the conservation hypothesis
will be discarded, though the index of self-similarity will be kept negative. We will show
(Theorem 3.3) that we can still define some kind of fragmentation tree, but its natu-
ral measure will not be supported by the leaves, and we thus step out of the classical
continuum random tree context set in [2].

That the measure of a general fragmentation tree gives mass to its skeleton will be
a major issue in this paper, and its study will therefore involve creating a new measure
on the leaves of the tree. To do this we will restrict ourselves to Malthusian fragmen-
tations. Informally, for a fragmentation process to be Malthusian means that there is a
number p∗ ∈ (0, 1] such that, infinitesimally, calling (Xi(t))i∈N the sizes of the fragments
of the process at time t, the expectation of

∑
i∈NXi(t)

p∗ is constant. Such conservation
properties will let us define and study a family of martingales related to the tree and
use them to define a Malthusian measure µ∗ on the leaves of the tree. The use of this
measure then lets us obtain the fractal Hausdorff dimension of the set of leaves of the
fragmentation tree, under a light regularity condition, called "assumption (H)", which
is a reinforcement of the Malthusian hypothesis:

The function ψ defined on R by ψ(p) = cp+
∫
S↓(1−

∑
i s
p
i )ν(ds) ∈ [−∞,+∞)

takes at least one finite strictly negative value on the interval [0, 1].

Theorem 1.1. Assume (H) and that α < 0. Then, almost surely, if the set of leaves
of the fragmentation tree derived from an α-self-similar fragmentation process with
erosion rate c and dislocation measure ν is not countable, its Hausdorff dimension is
equal to p∗

|α| .

In [20], a dimension of 1
|α| was found for conservative fragmentation trees, also under a

regularity condition. We can see that non-conservation of mass makes the tree smaller
in the sense of dimension. Note as well that the event where the leaves of the tree are
countable only has positive probability if ν(0, 0, . . . , 0) > 0, that is, if a fragment can
suddenly disappear without giving any offspring.

The paper is organized as follows: in Section 2 is presented the necessary back-
ground on fragmentation processes and real trees, culminating with Proposition 2.7,
which gives a fairly general procedure for defining a measure on a compact tree. In
Section 3 we construct the tree associated to a fragmentation process with elementary
methods, and give a few of its basic topological properties. The next three sections form
the proof of Theorem 1.1: we build in Section 4 the random measure µ∗ by combining
martingale methods and Proposition 2.7, we then give in Section 5 an interpretation of
this measure as a biased version of the distribution of the fragmentation tree, and in
Section 6 we properly compute the Hausdorff dimension of the tree, using the results
of Sections 4 and 5. Finally, Section 7 is dedicated various comments and applications,
namely the effects of varying the parameters and the fact one can interpret continuous
time Galton-Watson trees as fragmentation trees, giving us the Hausdorff dimension of
their boundary.

Note: in this paper, we use the convention that, when we take 0 to a nonpositive power,
the result is 0. We therefore abuse notation slightly by omitting an indicator function
such as 1x 6=0 most of the time. In particular, sums such as

∑
i∈N x

p
i are implicitly taken

on the set of i such that xi 6= 0 even when p ≤ 0.
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2 Background, preliminaries and some notation

2.1 Self-similar fragmentation processes

2.1.1 Partitions

We are going to look at two different kinds of partitions. The first ones are mass par-
titions. These are nonincreasing sequences s = (s1, s2, . . .) with si ≥ 0 for every i and
such that

∑
i si ≤ 1. These are to be considered as if a particle of mass 1 had split up

into smaller particles, some of its mass having turned into dust which is represented
by s0 = 1 −

∑
i si. We call S↓ the set of mass partitions, it can be metrized with the

restriction of the uniform norm and is then compact.
The more important partitions we will consider here are the set-theoretic partitions

of finite and countable sets. For such a set S, we let PS be the set of partitions of S. The
main examples are of course the cases of partitions of N = {1, 2, 3, . . .} (for countable
sets) and, for n ∈ N, [n] = {1, 2, . . . , n}. Let us focus here on PN. A partition π ∈ PN will
be written as a countable sequence of subsets of N, called the blocks of the partition:
π = (π1, π2, . . .) where every intersection between two different blocks is empty and the
union of all the blocks is N. The blocks are ordered by increasing smallest element: π1

is the block containing 1, π2 is the block containing the smallest integer not in π1, and
so on. If π has finitely many blocks, we complete the sequence with an infinite repeat
of the empty set. (When not referring to a specific partition, the word "block" simply
means "subset of N".)

A partition can also be interpreted as an equivalence relation on N: for a partition π
and two integers i and j, we will write i ∼π j if i and j are in the same block of π. We
will also call π(i) the block of π containing i.

We now have two ways to identify the blocks of a partition π: either with their rank
in the partition’s order or with their smallest element. Most of the time one will be
more useful than the other, but sometimes we will want to mix both, which is why we
will call rep(π) the set of smallest elements of blocks of π.

Let B be a block. For all π ∈ PN, we let π ∩ B be the restriction of π to B, i.e. the
partition of B whose blocks are, up to reordering, the (πi ∩B)i∈N.

We say that a partition π is finer than another partition π′ if every block of π is a
subset of a block of π′. This defines a partial order on the set of partitions.

Intersection and union operators can be defined on partitions: let X be a set and,
for x ∈ X, πx be a partition. Then we define ∩

x∈X
πx to be the unique partition π̃ such

that, ∀i, j ∈ N, i ∼π̃ j ⇔ ∀x ∈ X, i ∼πx j. The blocks of ∩
x∈X

πx are the intersections of

blocks of the (πx)x∈X . Similarly, assuming that all the (πx)x∈X are comparable, then we
define ∪

x∈X
πx to be the unique partition π̃ such that, ∀i, j ∈ N, i ∼π̃ j ⇔ ∃x ∈ X, i ∼πx j.

We endow PN with a metric: for two partitions π and π′, let n(π, π′) be the highest
integer n such that π∩ [n] and π′∩ [n] are equal (n(π, π′) =∞ if π = π′) and let d(π, π′) =

2−n(π,π′). This defines a distance function on PN, which in fact satisfies the ultra-metric
triangle inequality. This metric provides a topology on PN, for which convergence is
simply characterized: a sequence (πn)n∈N of partitions converges to a partition π if,
and only if, for every k, there exists nk such that πn ∩ [k] = π ∩ [k] for n larger than
nk. The metric also provides PN with a Borel σ-field, which is easily checked to be the
σ-field generated by the restriction maps, i.e. the functions which which map π to π∩ [n]

for all integers n.
Let S and S′ be two sets with a bijection f : S → S′. Then we can easily transform

partitions of S′ into partitions of S: let π be a partition of S′, we let fπ be the partition
defined by: ∀i, j ∈ S, i ∼fπ j ⇔ f(i) ∼π f(j). This can be used to generalize the metric d
to PS for infinite S (note that the notion of convergence does not depend on the chosen
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bijection), and then π 7→ fπ is easily seen to be continuous.
Special attention is given to the case where f is a permutation: we call permutation

of N any bijection σ of N onto itself. A PN-valued random variable (or random partition)
Π is said to be exchangeable if, for all permutations σ, σΠ has the same law as Π.

Let B be a block. If the limit limn→∞
1
n#(B ∩ [n]) exists then we write it |B| and call

it the asymptotic frequency or more simply mass of B. If all the blocks of a partition
π have asymptotic frequencies, then we call |π|↓ their sequence in decreasing order,
which is an element of S↓. This defines a measurable, but not continuous, map.

A well-known theorem of Kingman [25] links exchangeable random partitions of N
and random mass partitions through the "paintbox construction". More precisely: let
s ∈ S↓, and (Ui)i∈N be independent uniform variables on [0, 1], we define a random
partition Πs by ∀i 6= j, i ∼Πs j ⇔ ∃k, Ui, Uj ∈ [

∑k
p=1 sp,

∑k+1
p=1 sp[. This random partition

is exchangeable, all its blocks have asymptotic frequencies, and |Πs|↓ = s. By calling κs
the law of Πs, Kingman’s theorem states that, for any exchangeable random partition
Π, there exists a random mass partition S such that, conditionally on S, Π has law κS .
A useful consequence of this theorem is found in [5], Corollary 2.4: for any integer k,
conditionally on the variable S, the asymptotic frequency |Π(k)| of the block containing
k exists almost surely and is a size-biased pick amongst the terms of S, which means
that its distribution is

∑
i SiδSi + S0δS0

(with S0 = 1−
∑
i∈N

Si).

Let Π and Ψ be two independent exchangeable random partitions. Then, for any i
and j, the block Πi ∩Ψj of Π ∩Ψ almost surely has asymptotic frequency |Πi||Ψj |. This
stays true if we take countably many partitions, as is stated in [5], Corollary 2.5.

2.1.2 Definition of fragmentation processes

Partition-valued fragmentation processes were first introduced in [3] (homogeneous
processes only) and [4] (the general self-similar kind).

Definition 2.1. Let (Π(t))t≥0 be a PN-valued process with càdlàg paths, which satisfies
Π(0) = (N, ∅, ∅, . . .), which is exchangeable as a process (i.e. for all permutations σ, the
process (σΠ(t))t≥0 has the same law as (Π(t))t≥0) and such that, almost surely, for all
t ≥ 0, all the blocks of Π(t) have asymptotic frequencies. Let α be any real number.
We say that Π is a self-similar fragmentation process with index α if it also satisfies
the following self-similar fragmentation property: for all t ≥ 0, given Π(t) = π, the
processes

(
Π(t+ s) ∩ πi

)
s≥0

(for all integers i) are mutually independent, and each one

has the same distribution as
(
Π(|πi|α(s)) ∩ πi

)
s≥0

.

When α = 0, we will say that Π is a homogeneous fragmentation process instead of
0-self-similar fragmentation process.

Remark 2.2. One can give a Markov process structure to an α-self-similar fragmen-
tation process Π by defining, for any partition π, the law of Π starting from π. Let
(Πi)i∈N be independent copies of Π (each one starting at (N, ∅, . . .) ), then we let, for all
t ≥ 0, Π(t) be the partition whose blocks are exactly those of ((Πi(|πi|αt) ∩ πi)i∈N. In
this case the process isn’t exchangeable with respect to all permutations of N, but only
with respect to permutations which stabilize the blocks of the initial value π.

Fragmentation processes are seen as random variables in the Skorokhod space D =

D([0,+∞),PN), which is the set of càdlàg functions from [0,+∞) to PN. An element of
D will typically be written as (πt)t≥0. This space can be metrized with the Skorokhod
metric and is then Polish. More importantly, the Borel σ-algebra on D is then the σ-
algebra spanned by the evaluation functions (πt)t≥0 7→ πs (for s ≥ 0), implying that the
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law of a process is characterized by its finite-dimensional marginal distributions. The
definition of the Skorokhod metric and generalities on the subject can be read in [24],
Section VI.1.

Let us give a lemma which makes self-similarity easier to handle at times:

Lemma 2.3. Let (Π(t))t≥0 be any exchangeable PN-valued process, and A any infinite
block. Take any bijection f from A to N, then the two PA-valued processes (Π(t)∩A)t≥0

and (fΠ(t))t≥0 have the same law.

Proof. For all n ∈ N, let An = {f−1(1), f−1(2), . . . , f−1(n)}. Recall then that, with the
σ-algebra which we have on PA, we only need to check that, for all n ∈ N, (Π|An) has the
same law as f(Π ∩ [n]). If G is a nonnegative measurable function on D([0,+∞),PAn),
we have, by using the fact that the restriction of f from [n] to An can be extended to a
bijection of N onto itself

E[G(Π ∩An)] = E
[
G((fΠ) ∩An)

]
= E

[
G(f(Π ∩ [n]))

]
,

which is all we need.

This lemma will make it easier to show the fragmentation property for some D-
valued processes we will build throughout the article.

2.1.3 Characterization and Poissonian construction

A famous result of Bertoin (detailed in [5], Chapter 3) states that the law of a self-similar
fragmentation process is characterized by three parameters: the index of self-similarity
α, an erosion coefficient c ≥ 0 and a dislocation measure ν, which is a σ-finite measure
on S↓ such that

ν(1, 0, 0, . . .) = 0 and

∫
S↓

(1− s1)ν(ds) <∞.

Bertoin’s result can be formulated this way: for any fragmentation process, there
exists a unique triple (α, c, ν) such that our process has the same distribution as the
process which we are about to explicitly construct.

First let us describe how to build a fragmentation process with parameters (0, 0, ν)

which we will call Π0,0. Let κν(dπ) =
∫
S↓ κs(dπ)ν(ds) where κs(dπ) denotes the paintbox

measure on PN corresponding to s ∈ S↓. For every integer k, let (∆k
t )t≥0 be a Poisson

point process with intensity κν , such that these processes are all independent. Now let
Π0,0(t) be the process defined by Π0,0(0) = (N, ∅, ∅, . . .) and which jumps when there is
an atom (∆k

t ): we replace the k-th block of Π0,0(t−) by its intersection with ∆k
t . This

might not seem well-defined since the Poisson point process can have infinitely many
atoms. However, one can check (as we will do in Section 5.2 in a slightly different case)
that this is well defined by restricting to the first N integers and taking the limit when
N goes to infinity.

To get a (0, c, ν)-fragmentation which we will call Π0,c, take a sequence (Ti)i∈N of
exponential variables with parameter c which are independent from each other and
independent from Π0,0. Then, for all t, let Π0,c(t) be the same partition as Π0,0(t) except
that we force all integers i such that Ti ≤ t to be in a singleton if they were not already.

Finally, an (α, c, ν)-fragmentation can then be obtained by applying a Lamperti-type
time-change to all the blocks of Π0,c: let, for all i and t,

τi(t) = inf
{
u,

∫ u

0

|Π0,c
(i) (r)|−αdr > t

}
.

Then, for all t, let Πα,c(t) be the partition such that two integers i and j are in the same
block of Πα,c(t) if and only if j ∈ Π0,c

(i) (τi(t)). Note that if t ≥
∫∞

0
|Π0,c

(i) (r)|−αdr, then
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the value of τi(t) is infinite, and i is in a singleton of Πα,c(t). Note also that the time
transformation is easily invertible: for s ∈ [0,∞), we have

τ−1
i (s) = inf

{
u,

∫ u

0

|Πα,c
(i) (r)|+αdr > s

}
.

This time-change can in fact be done for any element π of D: since, for all i ∈ N and
t ≥ 0, τi(t) is a measurable function of Π0,c, there exists a measurable function Gα from
D to D which maps Π0,c to Πα,c.

Let us once and for all fix our notations for the processes: in this article, c and ν will
be fixed (with c 6= 0 or ν 6= 0 to remove the trivial case), however we will often jump
between a homogeneous (0, c, ν)-fragmentation and the associated self-similar (α, c, ν)-
fragmentation, with α < 0 fixed. This is why we will rename things and let Π = Π0,c as
well as Πα = Πα,c. We then let (Ft)t≥0 be the canonical filtration associated to Π and
(Gt)t≥0 the one associated to Πα.

2.1.4 A few key results

One simple but important consequence of the Poissonian construction is that the nota-
tion |Πα

(i)(t
−)| is well-defined for all i and t: it is equal to both the limit, as s increases

to t, of |Πα
(i)(s)|, and the asymptotic frequency of the block of Πα(t−) containing i.

For every integer i, let Gi be the canonical filtration of the process (Πα
(i)(t))t≥0, and

consider a family of random times (Li)i∈N such that Li is a Gi-stopping time for all i. We
say that (Li)i∈N is a stopping line if, for all integers i and j, j ∈ Πα

(i)(Li) implies Li = Lj .
Under this condition, Πα then satisfies an extended fragmentation property (proved in
[5], Lemma 3.14): we can define for every t a partition Πα(L + t) whose blocks are
the (Πα

(i)(Li + t))i∈N. Then conditionally on the sigma-field GL generated by the Gi(Li)
(i ∈ N), the process (Πα(L+ t))t≥0 has the same law as Π started from Πα(L).

One of the main tools of the study of fragmentation processes is the tagged frag-
ment : we specifically look at the block of Πα containing the integer 1 (or any other
fixed integer). Of particular interest, its mass can be written in terms of Lévy pro-
cesses: one can write, for all t, |Πα

(1)(t)| = e−ξτ(t) where ξ is a killed subordinator with
Laplace exponent φ defined for nonnegative q by

φ(q) = c(q + 1) +

∫
S↓

(1−
∞∑
n=1

sq+1
n )ν(ds),

and τ(t) is defined for all t by τ(t) = inf
{
u,
∫ u

0
eαξrdr > t

}
. Note that standard results on

Poisson measures then imply that, if q ∈ R is such that
∫
S↓(1−

∑∞
n=1 s

q+1
n )ν(ds) > −∞,

then we still have E[e−qξt1{ξt<∞}] = e−tφ(q).

In particular, the first time t such that the singleton {1} is a block of Πα(t) is equal
to
∫∞

0
eαξsds, the exponential functional of the Lévy process αξ, which has been studied

for example in [11]. In particular it is finite a.s. whenever α is strictly negative and Π

is not constant.

2.2 Random trees

2.2.1 R-trees

Definition 2.4. Let (T , d) be a metric space. We say that it is an R-tree if it satisfies
the following two conditions:
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• for all x, y ∈ T , there exists a unique distance-preserving map φx,y from [0, d(x, y)]

into T such φx,y(0) = x and φx,y(d(x, y)) = y;

• for all continuous and one-to-one functions c: [0, 1]→ T , we have
c
(
[0, 1]

)
= φx,y([0, d(x, y)]), where x = c(0) and y = c(1).

For any x, y in a tree, we will denote by Jx, yK the image of φx,y, i.e. the path between
x and y. Here is a simple characterization of R-trees which we will use in the future. It
can be found in [14], Theorem 3.40.

Proposition 2.5. A metric space (T , d) is an R-tree if and only if it is connected and
satisfies the following property, called the four-point condition:

∀x, y, u, v ∈ T , d(x, y) + d(u, v) ≤ max
(
d(x, u) + d(y, v), d(x, v) + d(y, u)

)
.

By permuting x, y, z, t, one gets a more explicit form of the four-point condition: out
of the three numbers d(x, y) + d(u, v), d(x, u) + d(y, v) and d(x, v) + d(y, u), at least two
are equal, and the third one is smaller than or equal to the other two.

For commodity we will, for an R-tree (T , d) and a > 0, call aT the R-tree (T , ad)

which is the same tree as T , except that all distances have been rescaled by a.

2.2.2 Roots, partial orders and height functions

All the trees which we will consider will be rooted : we will fix a distinguished vertex ρ
called the root. This provides T with a height function ht defined by ht(x) = d(ρ, x) for
x ∈ T .

We use the height function to define, for t ≥ 0, the subset T≤t = {x ∈ T : ht(x) ≤ t},
as well as the similarly defined T<t, T≥t and T>t. Note that T≤t and T<t are both R-
trees, as well as the connected components of T≥t and T>t, which we will call the tree
components of T≥t and T>t.

Having a root on T also lets us define a partial order, by declaring that x ≤ y if
x ∈ Jρ, yK. We will often say that x is an ancestor of y in this case, or simply that x is
lower than y. We can then define for any x in T the subtree of T rooted at x, which we
will call Tx: it is the set {y ∈ T : y ≥ x}. We will also say that two points x and y are
on the same branch if they are comparable, i.e. if we have x ≤ y or y ≤ x. For every
subset S of T we can define the greatest common ancestor of S, which is the highest
point which is lower than all the elements of S. The greatest common ancestor of two
points x and y of T will be written x ∧ y.

One convenient property is that we can recover the metric from the order and the
height function. Indeed, for any two points x and y, we have d(x, y) = ht(x) + ht(y) −
2ht(x ∧ y).

We also call leaf of T any point L such that the TL = {L}. The set of leaves of T will
be written L(T ), and its complement is called the skeleton of T .

2.2.3 Gromov-Hausdorff distances, spaces of trees

Recall that, if A and B are two compact nonempty subsets of a metric space (E, d), then
we can define the Hausdorff distance between A and B by

dE,H(A,B) = inf{ε > 0;A ⊂ Bε and B ⊂ Aε},

where Aε and Bε are the closed ε-enlargements of A and B (that is, Aε = {x ∈ E,∃a ∈
A, d(x, a) ≤ ε} and the corresponding definition for B).
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Now, if one considers two compact rooted R-trees (T , ρ, d) and (T ′, ρ′, d′), define
their Gromov-Hausdorff distance:

dGH(T , T ′) = inf
[

max
(
dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ′(ρ′))

)]
,

where the infimum is taken over all pairs of isometric embeddings φ and φ′ of T and T ′
in the same metric space (Z, dZ).

We will also want to consider pairs (T , µ), where T (d and ρ being implicit) is a
compact rooted R-tree and µ a Borel probability measure on T . Between two such com-
pact rooted measured trees (T , µ) and (T ′, µ′), one can define the Gromov-Hausdorff-
Prokhorov distance by

dGHP (T , T ′) = inf
[

max
(
dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ′(ρ′)), dZ,P (φ∗µ, φ

′
∗µ
′)],

where the infimum is taken on the same space, and dZ,P denotes the Prokhorov distance
between two Borel probability measures on Z. The only thing we need about this metric
is that convergence for dZ,P is equivalence to convergence to weak convergence of
Borel probability measures on Z, see [10].

These two metrics allow for study of spaces of trees, and it can be shown (see [15]
and [1] ) that these spaces are well-behaved.

Proposition 2.6. Let T and TW be respectively the set of equivalence classes of com-
pact rooted trees and the set of classes of compact rooted measured trees, where two
trees are said to be equivalent if there is a root-preserving (and measure-preserving in
the measured case) isometric bijection between them. Then (T, dGH) and (TW , dGHP )

are Polish spaces.

The topology induced on TW by dGHP was first introduced in [18], and was also
studied with a different metric in [16].

2.2.4 Decreasing functions and measures on trees

Let us give a tool which will allow us to define measures on a compact rooted tree
T only through their values on all the subtrees Tx for x ∈ T . Let m be a decreasing
function on T taking values in [0,∞). One can easily define the left-limit m(x−) of m
at any point x ∈ T , since Jρ, xK is isometric to a line segment, for example by setting
m(x−) = lim

t→ht(x)−
m(φρ,x(t)). Let us also define the additive right-limit m(x+): since T is

compact, the set Tx \ {x} has countably many connected components, say (Ti)i∈S for a
finite or countable set S. Let, for all i ∈ S, xi ∈ Ti. We then set

m(x+) =
∑
i∈S

lim
t→ht(x)+

m(φρ,xi(t)).

This is well-defined, because it does not depend on our choice of xi ∈ Ti for all i. We
say that m is left-continuous at a point x if m(x−) = m(x).

Proposition 2.7. Let m be a decreasing, positive and left continuous function on T
such that, for all x ∈ T , m(x) ≥ m(x+). Then there exists a unique Borel measure µ on
T such that

∀x ∈ T , µ(Tx) = m(x).

While the idea behind the proof of Proposition 2.7 is fairly simple, the proof itself is
relatively involved and technical, which is why we postpone it for Appendix A.
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3 The fragmentation tree

3.1 Main result

We are going to show a bijective correspondence between the laws of fragmentation
processes with negative index and a certain class of random trees. We fix from now
on an index α < 0. If (T , µ) is a measured tree and S is a measurable subset of T with
µ(S) > 0, we let µS be the measure µ conditioned on S, which is a probability measure
on S.

Definition 3.1. Let (T , µ) be a random variable in TW . For all t ≥ 0, let T1(t), T2(t), . . .

be the connected components of T>t, and let, for all i, xi(t) be the point of T with
height t which makes Ti(t) ∪ {xi(t)} connected. We say that T is self-similar with in-
dex α if µ(Ti(t)) > 0 for all choices of t ≥ 0 and i and if, for any t ≥ 0, conditionally
on
(
µ(Ti(s))

)
i∈N,s≤t, the trees

(
Ti(t) ∪ {xi(t)}, µTi(t)

)
i∈N are independent and, for any i,

(Ti(t) ∪ {xi(t)}, µTi(t)) has the same law as (µ(Ti(t))−αT ′, µ′) where (T ′, µ′) is an inde-
pendent copy of (T , µ).

The similarity with the definition of an α-self-similar fragmentation process must be
pointed out: in both definitions, the main point is that each "component" of the process
after a certain time is independent of all the others and has the same law as the initial
process, up to rescaling. In fact, the following is an straightforward consequence of our
definitions:

Proposition 3.2. Assume that (T , µ) is a self-similar tree with index of similarity α. Let
(Pi)i∈N be an exchangeable sequence of variables directed by µ (i.e. conditionally on
µ, they are independent and all have distribution µ). Define for every t ≥ 0 a partition
ΠT (t) by saying that i and j are in the same block of ΠT (t) if and only if Pi and Pj are
in the same connected component of T>t (in particular an integer i is in a singleton if
ht(Pi) ≤ t). Then ΠT is an α-self-similar fragmentation process.

Proof. First of all, we need to check that, for all t ≥ 0, ΠT (t) is a random variable. We
therefore fix t > 0 and notice that the definition of ΠT (t) entails that, for all i ∈ N and
j ∈ N,

i ∼ΠT (t) j ⇔ ht(Pi ∧ Pj) > t,

which is a measurable event. Thus, for all integers n and all partitions π of [n], the event
{ΠT (t) ∩ [n] = π} is also measurable. It then follows that ΠT (t) ∩ [n] is measurable for
all n ∈ N, and therefore ΠT (t) itself is measurable.

Next we need to check that ΠT is càdlàg. It is immediate from the definition that ΠT
is decreasing (in the sense that ΠT (s) is finer than ΠT (t) for s > t), and then that, for
any t, ΠT (t) = ∪

s>t
ΠT (s), and thus the process is right-continuous. Similarly, the process

has a left-limit at t for all t, which is indentified as ΠT (t−) = ∩
s<t

ΠT (s).

Exchangeability as a process of ΠT is an immediate consequence of the exchange-
ability of the sequence (Pi)i∈N.

The fact that, almost surely, all the blocks of ΠT (t) for t ≥ 0 have asymptotic fre-
quencies is a consequence of the Glivenko-Cantelli theorem (see [13], Theorem 11.4.2).
For i ≥ 2, let Yi = ht(P1 ∧ Pi), then, for t < Yi, 1 and i are in the same block of ΠT (t),
and for t ≥ Yi, they are not. Then we have, for all t ≥ 0,

#(ΠT (t) ∩ [n])(1) = 1 +

n∑
i=2

1Yi>t.

It then follows from the Glivenko-Cantelli theorem (applied conditionally on T , µ and
P1) that, with probability one, for all t ≥ 0, 1

n#(ΠT (t) ∩ [n])(1) converges as n goes to
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infinity, the limit being the µ-mass of the tree component of T>t containing P1 (or 0 if
ht(P1) < t). By replacing 1 with any integer i, we get the almost sure existence of the
asymptotic frequencies of ΠT at all times.

Let us now check that ΠT (0) = (N, ∅, . . .) almost surely, which amounts to saying that
T \ {ρ} is connected. Apply the self-similar fragmentation property at time 0: the tree
T1(0) ∪ {ρ} (as in Definition 3.1) has the same law as T up to a random multiplicative
constant, and T1 is almost surely connected by definition. Thus T \ {ρ} is almost surely
connected. A similar argument also shows that µ({ρ}) is almost surely equal to zero.

Finally, we need to check the α-self-similar fragmentation property for ΠT . Let t ≥ 0

and π = ΠT (t). For every integer k, we let i(k) be the unique integer such that k ∈ πi(k)

and, for every i, we let Ti(t) be the tree component of T>t containing the points Pk with
k ∈ N such that i(k) = i (if πi is a singleton, then Ti(t) is the empty set). We also add
the natural rooting point xi of Ti. Since, for all k, i(k) is measurable knowing ΠT (t), we
get that, conditionally on (T , µ) and ΠT (t), Pk is distributed according to µTi(k)

. From
the independence property in Definition 3.1 then follows that the (ΠT (t + .) ∩ πi)i∈N
are independent. We now just need to identify their law. If i ∈ N is such that πi is a
singleton then there is nothing to do. Otherwise πi is infinite: let f be any bijection
N → πi, and rename the points Pk with k such that i(k) = i by letting P ′k = Pf(k). By
the self-similarity of the tree, the partition-valued process built from Ti ∪ {xi} and the
P ′j (with j ∈ N) has the same law as ΠT (|πi|−αs)s≥0, and therefore ΠT (t+ .)∩ πi has the
same law as

(
fΠi(|πi|αs)

)
s≥0

, which is what we wanted.

Our main result is a kind of converse of this proposition, in law.

Theorem 3.3. Let Πα be a non-constant fragmentation process with index of similarity
α < 0. Then there exists a random α-self-similar tree (TΠα , µΠα) such that ΠTΠα

has the
same law as Πα.

Remark 3.4. This is analogous to a recent result obtained by Chris Haulk and Jim
Pitman in [22], which concerns exchangeable hierarchies. An exchangeable hierarchy
can be seen as a fragmentation of N where one has forgotten time. Haulk and Pitman
show that, just as with self-similar fragmentations, in law, every exchangeable hierarchy
can be sampled from a random measured tree.

The rest of this section is dedicated to the proof of Theorem 3.3. We fix from now
on a fragmentation process Πα (defined on a certain probability space Ω) and will build
the tree T and the measure µ (now omitting the index Πα).

3.2 The genealogy tree of a fragmentation

We are here going to give an explicit description of T which has the caveat of not
showing that T is a random variable, i.e. a dGH -measurable function of Πα (something
we will do in the following section). Since this construction is completely deterministic,
we will slightly change our assumptions and at first consider a single element π of D
which is decreasing (the partitions get finer with time). For every integer i, let Di be
the smallest time at which i is in a singleton of π and for every block B with at least
two elements, let DB be the smallest time at which all the elements of B are not in the
same block of π anymore. We will assume that π is such that all these are finite.

Proposition 3.5. There is, up to bijective isometries which preserve roots, a unique
complete rooted R-tree T equipped with points (Qi)i∈N such that:

(i) For all i, ht(Qi) = Di.
(ii) For all pairs of integers i and j, we have ht(Qi ∧Qj) = D{i,j}.
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(iii) The set ∪
i∈N

Jρ,QiK is dense in T .

T will then be called the genealogy tree of π and for all i, Qi will be called the death
point of i.

Proof. Let first prove the uniqueness of T . We give ourselves another tree T ′ with
root ρ′ and points (Q′i)i∈N which also satisfy (i), (ii) and (iii). First note that, if i and
j are two integers such that Qi = Qj , then D{i,j} = Di = Dj and thus Q′i = Q′j .
This allows us to define a bijection f between the two sets {ρ} ∪ {Qi, i ∈ N} and
{ρ′} ∪ {Q′i, i ∈ N} by letting f(ρ) = ρ′ and, for all i, f(Qi) = Q′i. Now recall that we
can recover the metric from the height function and the partial order: we have, for all i
and j, d(Qi, Qj) = Di +Dj − 2D{i,j}, and the same is true in T ′. Thus f is isometric and
we can (uniquely) extend it to a bijective isometry between ∪

i∈N
Jρ,QiK and ∪

i∈N
Jρ′, Q′iK, by

letting, for i ∈ N and t ∈ [0, Di], f(φρ,Qi(t)) = φρ′,Q′i(t). To check that this is well defined,
we just need to note that, if i, j and t are such that φρ,Qi(t) = φρ,Qj (t), then t ≤ D{i,j}
and thus we also have φρ′,Q′i(t) = φρ′,Q′j (t). This extension is still an isometry because
it preserves the height and the partial order and is surjective by definition, thus it is a
bijection. By standard properties of metric completions, f then extends into a bijective
isometry between T and T ′.

To prove the existence of T , we are going to give an abstract construction of it. Let

A0 = {(i, t), i ∈ N, 0 ≤ t ≤ Di}.

A point (i, t) of A0 should be thought of as representing the block π(i)(t). We equip A0

with the pseudo-distance function d defined such: for all x = (i, t) and y = (j, s) in A0,

d(x, y) = t+ s− 2 min(D{i,j}, s, t).

(equivalently, d(x, y) = t + s − 2D{i,j} if D{i,j} ≤ s, t and d(x, y) = |t − s| otherwise.)
Let us check that d verifies the four-point inequality (which in particular, implies the
triangle inequality). Let x = (i, t), y = (j, s), u = (k, a), v = (l, b) be in A0, we want to
check that, out of min(D{i,j}, t, s)+min(D{k,l}, a, b), min(D{i,k}, t, a)+min(D{j,l}, s, b) and
min(D{i,l}, t, b) + min(D{j,k}, s, a), two are equal and the third one is bigger. Now, there
are, up to reordering, two possible cases: either i and j split from k and l at the same
time or i splits from {j, k, l} at time t1 ≥ 0, then splits j from {k, l} at time t2 ≥ t1 and
then splits k from l at time t3 ≥ t2. After distinguishing these two cases, the problem
can be brute-forced through.

Now we want to get an actual metric space out of A0: this is done by identifying
two points of A0 which represent the same block. More precisely, let us define an
equivalence relation ∼ on A0 by saying that, for every pair of points (i, t) and (j, s),
(i, t) ∼ (j, s) if and only if d

(
(i, t), (j, s)

)
= 0 (which means that s = t and that i ∼Π(t−) j).

Then we let A we the quotient set of A0 by this relation:

A = A0/ ∼ .

The pseudo-metric d passes through the quotient and becomes an actual metric. Even
better, the four-point condition also passes through the quotient, and A is trivially path-
connected: every point (i, t) has a simple path connecting it to (i, 0) ∼ (1, 0), namely the
path (i, s)0≤s≤t. Therefore, A is an R-tree, and we will root it at ρ = (1, 0). Finally, we
let T be the metric completion of A. It is still a tree, since the four-point condition and
connectedness easily pass over to completions.

It is simple to see that T does satisfy assumptions (i), (ii), (iii) by choosing Qi =

(i,Di) for all i: (i) and (iii) are immediate, and (ii) comes from the definition of d, which
is such that for all i and j, d

(
(i,Di), (j,Dj)

)
= Di +Dj − 2Di,j .
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The natural order on T is simply described in terms of π:

Proposition 3.6. Let (i, t) and (j, s) be in A. We have (i, t) ≤ (j, s) if and only if t ≤ s

and j and i are in the same block of π(t−).

Proof. By definition, we have (i, t) ≤ (j, s) if and only if (i, t) is on the segment joining
the root and (j, s). Since this segment is none other than (j, u)u≤s, this means that
(i, t) ≤ (j, s) if and only if t ≤ s and (i, t) ∼ (j, t). Now, recall that (i, t) ∼ (j, t) if and
only if 2t − 2 min(Di,j , t) = 0, i.e. if and only if t ≤ Di,j , and then notice that this last
equation is equivalent to the fact that i and j are in the same block of π(t−). This ends
the proof.

The genealogy tree has a canonical measure to go with it, at least under a few condi-
tions: assume that T is compact, that, for all times t, π(t−) has asymptotic frequencies,
and that, for all i, the function t 7→ |π(i)(t

−)| (the asymptotic frequency of the block of
π(t−) containing i) is left-continuous (this is not necessarily true, but when it is true it
implies that the notation is in fact not ambiguous). Then Proposition 2.7 tells us that
there exists a unique measure µ on T such that, for all (i, t) ∈ T , µ(Ti,t) = |π(i)(t

−)|.

3.3 A family of subtrees, an embedding in `1, and measurability

Proposition 3.7. There exists a measurable function TREE : D → TW such that, when
Πα is a self-similar fragmentation process, TREE(Πα) is the genealogy tree T of Πα

equipped with its natural measure.

This will be proven by providing an embedding of T in the space `1 of summable
real-valued sequences:

`1 = {x = (xi)i∈N;

∞∑
i=1

|xi| <∞}

and approximating T by a family of simpler subtrees. For any finite block B, let TB be
the tree obtained just as before but limiting ourselves to the integers which are in B:

TB = {(i, t), i ∈ B, 0 ≤ t ≤ Di}/ ∼ .

Do notice that we keep the times (Di)i and that we do not change them to the time
where i is in a singleton of π ∩ B. Every TB is easily seen to be an R-tree since it is a
path-connected subset of T , and is also easily seen to be compact since it is just a finite
union of segments. Also note that one can completely describe TB by saying that it is
the reunion of segments indexed by B, such that the segment indexed by integer i has
length Di and two segments indexed by integers i and j split at height D{i,j}.

The tree TB is also equipped with a measure called µB, which we define by

µB =
1

#B

∑
i∈B

δQi .

Let us provide a simultaneous embedding of TB in `1 for all B such that, if B ⊂ C,
TB ⊂ TC . It should be clear that the crucial part of this embedding will be the points
(i,Di) for integers i. We are therefore going first to build points Qi in `1 which will
be the images of all the (i,Di) through our embedding. We use a method inspired by
Aldous’ "stick-breaking" method used in [2]: the path from 0 to Qi will be followed by
"increasing the coordinate corresponding to the smallest integer in the block containing
i".
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Figure 1: A representation of T[7]. Here, D[7] = t1, D{5,6,7} = t2 and D{1,2,3} = t3

More precisely, let i ∈ B and j ≤ i, we let Qji be the total time for which j has been
the smallest element of the block of π containing i. If 1 < j < i, this can be written as

Qji = max
k≤j

D{k,i} − max
k≤j−1

D{k,i},

while Q1
i = D{1,i} and Qii = Di − max

k≤i−1
D{k,i}. By then letting

Qi = (Q1
i , Q

2
i , . . . , Q

i
i, 0, 0, . . .),

we have defined a point Qi which has norm Di.
Now that we have constructed what are going to be the endpoints of TB, we need

to explicit the paths from 0 to those endpoints. Let, for every n, pn be the natural
projection of `1 onto Rn × {(0, 0, . . .)} which sets all coordinates after the first n ones to
0. Then, for x ∈ `1, we define the specific path

J0, xK = ∪∞n=0[pn(x), pn+1(x)]

(where, for two points a and b, [a, b] is the line segment between those two points).
We will now prove that the set ∪i∈BJ0, QiK, equipped with the metric inherited from

the `1 norm, is isometric to TB. We only need to check that, for integers i and j,
the segments J0, QiK and J0, QjK coincide until time D{i,j} and never cross afterwards.
Notice that, for integers k such that D{k,i} < D{i,j}, we have D{k,i} = D{k,j}. Then by
construction, the two segments do indeed coincide until time D{i,j}. After this time, the
smallest element of the blocks containing i and j will always be different, so the paths
will always follow different coordinates, and therefore they will never cross again.

Lemma 3.8. For every finite block B, there exists a measurable function TREEB :

D → TW such that, when π is a decreasing element of D such that Di is finite for all i,
TREEB(π) is the tree TB defined above, equipped with the measure µB.
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Proof. Note that, since the set of decreasing functions in D is measurable and all the
Di all also measurable functions, we only need to define TREEB in our case of interest,
and can set it to be any measurable function otherwise.

We will now in fact prove that TB is a measurable function of π as a compact subset
of `1 with the Hausdorff metric. First notice that, for all i, Qi is a measurable function
of π (this is because all of its coordinates are themselves measurable). Note then that
the map x → J0, xK from `1 to the set of its compact subsets is a 1-Lipschitz continuous
function of x. This follows from the fact that, for every n ∈ N, and given two points
x = (xi)i∈N and y = (yi)i∈N,

dH({pn(x) + txn+1en+1, t ∈ [0, 1]}, {pn(y) + tyn+1en+1, t ∈ [0, 1]}) ≤ ||pn+1(x− y)||
≤ ||x− y||.

Then finally notice that the union operator is continuous for the Hausdorff distance.
Combining these three facts, one gets that TB = ∪

i∈B
J0, QiK is indeed a measurable

function of π.
The fact that µB is also a measurable function of π is immediate since all the Qi are

measurable.

Lemma 3.9. For all t > 0 and ε > 0, let Nε
t be the number of blocks of π(t) which are

not completely reduced to singletons by time t + ε. If, for any choice of t and ε, Nε
t is

finite, then the sequence (T[n])n∈N is Cauchy for dl1,H , and the limit is isometric to T .
In particular, T is compact.

Proof. We first want to show that the points (Qi)i∈N are tight in the sense that for every
ε > 0, there exists an integer n such that any point Qj is within distance ε of a certain
Qi with i ≤ n. The proof of this is essentially the same as the second half of the proof of
Lemma 5 in [20], so we will not burden ourselves with the details here. The main idea
is that, for any integer l, all the points Qi with i such that ht(Qi) ∈ (lε, (l + 1)ε] can be
covered by a finite number of balls centered on points of height belonging to ((l−1)ε, lε]

because of our assumption.
From this, it is easy to see that the sequence (T[n])n∈N is Cauchy. Let ε > 0, we take

n just as in earlier, and m ≥ n. Then we have

d`1,H(T[n], T[m]) ≤ max
n+1≤i≤m

(
d(Qi, T[n])

)
≤ ε.

However, since our sequence is increasing, the limit has no choice but to be the com-
pletion of their union. By the uniqueness property of the genealogy tree, this limit is
T .

Lemma 3.10. The process Πα almost surely satisfies the hypothesis of Lemma 3.9.

Proof. Once again, we refer to [20], where this is proved in the first half of Lemma 5.
The fact that we are restricted to conservative fragmentations in [20] does not change
the details of the computations.

Thus we have in particular proven that the genealogy tree of Πα is compact. Let us
now turn to the convergence of the measures µB to the measure on the genealogy tree.

Lemma 3.11. Assume that T is compact, that, for all t, all the blocks of π(t−) and
π(t) have asymptotic frequencies, and that, for all i, the function t 7→ |π(i)(t

−)| (the
asymptotic frequency of the block of π(t−) containing i) is left-continuous. Then the
sequence (µ[n])n∈N of measures on T converges to µ.

EJP 18 (2013), paper 101.
Page 14/45

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2703
http://ejp.ejpecp.org/


General fragmentation trees

Proof. Since T is compact, Prokhorov’s theorem assures us that a subsequence of
(µ[n])n∈N converges, and we will call its limit µ′. Use of the portmanteau theorem (see
[10] ) will show that µ′(T(i,t)) = |π(i)(t

−)| for (i, t) ∈ T , and the uniqueness part of Propo-
sition 2.7 will imply that µ′ and µ must be equal. Let us introduce the notation T(i,t+) =

∪s>tT(i,s) (this is a sub-tree of T , with its root removed). Notice that, for all n, by defi-
nition of µ[n], we have µ[n](T(i,t)) = 1

n#
(
π(i)(t

−)∩ [n]
)

and µ[n](T(i,t+)) = 1
n#
(
π(i)(t)∩ [n]

)
and, by definition of the asymptotic frequency of a block, these do indeed converge to
|π(i)(t

−)| and |π(i)(t)|. Since T(i,t) is closed in T and T(i,t+) is open in T , the portmanteau
theorem tells us that µ′(T(i,t+)) ≥ |π(i)(t)| and µ′(T(i,t)) ≤ |π(i)(t

−)|. By writing out

T(i,t) = ∩n∈NT(i,(t− 1
n )+),

we then get
µ′(T(i,t)) ≥ lim

s→t−
µ′(T(i,s+)) ≥ lim

s→t−
|π(i)(s)| ≥ |π(i)(t

−)|.

Thus µ′(T(i,t)) = |π(i)(t
−)| for all choices of i and t, and Proposition 2.7 shows that

µ′ = µ. This ends the proof of the lemma.

Note that, if we assume that |π(i)(t)| is right-continuous in t for all i, a similar argu-
ment would show that µ(T(i,t+)) = |π(i)(t)| for all i and t.

Combining everything we have done so far shows that, under a few conditions,
(T[n], µ[n]) converges as n goes to infinity to (T , µ) in the dGHP sense. We can now define
the function TREE which was announced in Proposition 3.7. The set of decreasing ele-
ments π of D such that the sequence (T[n], µ[n])n∈N converges is measurable since every
element of that sequence is measurable. Outside of this set, TREE can have any fixed
value. Inside of this set, we let TREE be the aforementioned limit. Since, in the case
of the fragmentation process Πα, the conditions for convergence are met, TREE(Πα) is
indeed the genealogy tree of Πα.

3.4 Proof of Theorem 3.3

We let (T , µ) = TREE(Πα) and want to show that it is indeed an α-self-similar tree
as defined earlier. Let t ≥ 0, and let π = Πα(t). For all i ∈ N such that πi is not a
singleton, let Ti(t) be the connected component of {x ∈ T , ht(x) > t} containing Qj for
all j ∈ πi, and let xi = (j, t) for any such j. We let also fi be any bijection: N → πi and
Ψi be the process defined by Ψi(s) = fi

(
Πα(t+ |πi|−αs)∩πi

)
for s ≥ 0. Let us show that,

for all i, (|πi|α(Ti(t)∪{xi}), µTi(t)) = TREE(Ψi). First, Ti(t)∪{xi} is compact since it is a
closed subset of T . The death points of Ψi, which we will call (Q′j)j∈N are easily found:
for all j ∈ N, we let Q′j = Qf(j), it is in Ti since f(j) is in πi. By the definition of Ψ, these
points have the right distances between them. Similarly, the measure is the expected
one: for (j, s) ∈ Ti, we have µ(Tj,s) = |Πα

(j)(s
−)| = |πi||Ψ(j)((s− t)−)|, which is what was

expected.
From the equation (|πi|α(Ti(t)∪{xi}), µTi(t)) = TREE(Ψi) will come the α-self-simimlarity

property. Recall that
Gt = σ(Πα(s), s ≤ t)

and let
Ct = σ(|Πα

i (s)|, s ≤ t, i ∈ N) = σ(µ(Ti(s)), s ≤ t, i ∈ N).

We know that, conditionally on Ft, the law of the sequence (Ψi)i∈N is that of a sequence
of independent copies of Πα. Since this law is fixed and Ct ⊂ Ft, we deduce that this
is also the law of the sequence conditionally on Ct. Applying TREE then says that,
conditionally on Ct, the (|πi|α(Ti(t)∪{xi}), µTi(t))i∈N are mutually independent and have
the same law as (T , µ) for all choices of i ∈ N.
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Finally, we need to check that the fragmentation process derived from (T , µ) has
the same law as Πα. Let (Pi)i∈N be an exchangeable sequence of T -valued variables
directed by µ. The partition-valued process ΠT defined in Proposition 3.2 is an α-self-
similar fragmentation process. To check that it has the same law as Πα, one only needs
to check that it has almost surely the same asymptotic frequencies as Πα. Indeed,
Bertoin’s Poissonian construction shows that the distribution of the asymptotic frequen-
cies of a fragmentation process determine α, c and ν. Let t ≥ 0, take any non-singleton
block B of ΠT (t), and let C be the connected component of {x ∈ T , ht(x) > t} contain-
ing Pi for all i ∈ B. By the law of large numbers, we have |B| = µ(C) almost surely.
Thus the nonzero asymptotic frequencies of the blocks of ΠT (t) are the µ-masses of the
connected components of T>t, which are of course the asymptotic frequencies of the
blocks of Πα(t). We then get this equality for all t almost surely by first looking only at
rational times and then using right-continuity.

3.5 Leaves of the fragmentation tree

Definition 3.12. There are three kinds of points in T = TREE(Πα):

-skeleton points, which are of the form (i, t) with t < Di.

-"dead" leaves, which come from the sudden total disappearance of a block: they
are the points (i,Di) such that |Πα

(i)(D
−
i )| 6= 0 but Πα(Di) ∩ Πα

(i)(D
−
i ) is only made of

singletons. These only exist if ν gives some mass to (0, 0, . . .), and are the leaves which
are atoms of µ.

-"proper" leaves, which are either of the form (i,Di) such that |Πα
(i)(D

−
i )| = 0 or

which are limits of sequences of the form (in, tn)n∈N such that (tn)n∈N is strictly in-
creasing and |Πα

(in)(tn)| tends to 0 as n goes to infinity.

Note that, if ν is conservative and the erosion coefficient is zero, then not only
are there no dead leaves, but all the (i,Di) are proper leaves: none of the processes
(|Πα

(i)(t)|)t<Di suddenly jump to 0. On the other hand, if ν is not conservative or if there
is some erosion, then all the (i,Di) are either skeleton points or dead leaves, and all
the proper leaves can only be obtained by taking limits, which implies that µ does not
charge the proper leaves at all.

Recall the construction of the α-self-similar fragmentation process through a homo-
geneous fragmentation process, which we will call Π, and the time changes τi defined,
for all i and t by τi(t) = inf{u,

∫ u
0
|Π(i)(r)|−αdr > t}. Notice also that if t > Di, τi(t) =∞.

Proposition 3.13. Let (in, tn)n∈N be a strictly increasing sequence of points of the
skeleton of T , which converges in T . The following are equivalent:

(i) |Πα
(in)(t

−
n )| goes to 0 as n tends to infinity, making the limit of (in, tn)n∈N a proper

leaf.

(ii) τin(tn) goes to infinity as n tends to infinity.

Proof. To show that (ii) implies (i), first note that, for every pair (i, t) which is in T , we
have by definition t ≥ τi(t)|Πα

(i)(t
−)||α|. Since T is bounded, the product τin(tn)|Πα

(in)(t
−
n )||α|

must stay bounded. Thus, if one factor tends to infinity, the other one must tend to 0.
For the converse, let us show that if (ii) does not hold, then (i) also does not. Assume
that τ(in)(tn) converges to a finite number l. Now we know that, because of the Pois-
sonian way that Π is constructed, ∩

n∈N
Π(in)(τin(tn)) is a block of Π(l−). Let i be in this

block, we can now assume that in = i for all n, and that tn converges to Di as n goes to
infinity, with τ(i)(Di) = l. The limit of |Πα

(i)(t
−
n )| as n tends to infinity is then |Π(i)(l

−)|,
which is nonzero because the subordinator − log(|Π(i)(t)|)t≥0 cannot continuously reach
infinity in finite time.
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General leaves of T can also be described the following way: let L be a leaf. For
all t < ht(L), L has a unique ancestor with height t. This ancestor is a skeleton point
of the form (j, t) with j ∈ N. Letting iL(t) be the smallest element of Π(j)(t

−), then
(iL(t), t)t<ht(L) is a kind of canonical description of the path going to L and uniquely
determines L.

4 Malthusian fragmentations, martingales, and applications

In order to study the fractal structure of T in detail, we will need some additional
assumptions on c and ν: we turn to the Malthusian setting which was first introduced
by Bertoin and Gnedin in [6], albeit in a very different environment, since they were
interested in fragmentations with a nonnegative index of self-similarity.

4.1 Malthusian hypotheses and additive martingales

In this section, we will mostly be concerned with homogeneous fragmentations:
(Π(t))t≥0 is the (ν, 0, c)-fragmentation process derived from a point process (∆t, kt)t≥0,
with dislocation measure ν and erosion coefficient c, and (Ft)t≥0 is the canonical filtra-
tion of the point process.

We first start with a few analytical preliminaries. For convenience’s sake, we will do
a translation of the variable p of the Laplace exponent φ defined in Section 2.1.4:

Lemma 4.1. For all real p, let ψ(p) = φ(p − 1) = cp +
∫
S↓(1 −

∑
i s
p
i )dν(s). Then

ψ(p) ∈ [−∞,+∞), and this function is strictly increasing and concave on the set where
it is finite.

Proof. The only difficult point here is to prove for all real p that ψ(p) ∈ [−∞,+∞). In
other words, we want to give an upper bound to 1 −

∑
i s
p
i which is integrable with

respect to ν. This bound is 1 − sp1. Indeed, by letting Cp = supx∈[0,1[
1−xp
1−x (which is

finite), we have 1− sp1 ≤ Cp(1− s1), and 1− s1 is integrable by assumption.

Note that, even for negative p, as soon as φ(p) > −∞, we have, for all t,

E
[
|Π(1)(t)|p1{|Π(1)(t)|>0}

]
= e−tφ(p).

This follows from the description of the Lévy measure of the subordinator ξt = − log |Π(1)(t)|
(see [3], Theorem 3).

Definition 4.2. We say that the pair (c, ν) is Malthusian if there exists a strictly positive
number p∗ (which is necessarily unique), called the Malthusian exponent such that

φ(p∗ − 1) = ψ(p∗) = cp∗ +

∫
S↓

(
1−

∞∑
i=1

sp
∗

i

)
dν(s) = 0.

The typical example of pairs (c, ν) with a Malthusian exponent are conservative frag-
mentations, where c = 0 and

∑
i si = 1 ν-almost everywhere. In that case, the Malthu-

sian exponent is simply 1. Note that assumption (H) defined in the introduction implies
the existence of the Malthusian exponent, since ψ(1) ≥ 0 for all choices of ν and c.

We assume from now on the existence of the Malthusian exponent p∗. This allows us
to define, for i ∈ N, t ≥ 0 and s ≥ 0,

Mi,t(s) =

∞∑
j=1

|Πj(t+ s) ∩Π(i)(t)|p
∗
.

This is the sum of the sizes of the blocks of the part of the fragmentation which is
issued from Πi(t), each one taken to the p∗-th power. In the of i = 1, t = 0, we let M(s) =
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M1,0(s), the sum of the sizes of all the blocks of Π(s) to the p∗-th power. These processes
are interesting because the Malthusian hypothesis naturally makes them martingales.

Proposition 4.3. For all i ∈ N and t ≥ 0, the process (Mi,t(s))s≥0 is a càdlàg martingale
with respect to the filtration (Ft+s)s≥0.

Proof. Let us first notice that, as a consequence of the fragmentation property, for ev-
ery (i, t), the process (Mi,t(s))s≥0 has the same law as a copy of the process (M(s))s≥0

which is independent of Ft, multiplied by |Π(i)(t)|p
∗

(which is an Ft-measurable vari-
able). Thus, we only need to prove the martingale property for (M(s))s≥0. Recall that,
given π ∈ PN, rep(π) is the set of integers which are the smallest element of the block
of π containing them and let t ≥ 0 and s ≥ 0, we have,

E[M(t+ s) | Fs] = E

 ∑
i∈rep(Π(s))

Mi,s(t) | Fs


=
∑
i∈N

E[1{i∈rep(Π(s))}Mi,s(t) | Fs]

=
∑
i∈N

1{i∈rep(Π(s))}|Π(i)(s)|p
∗
E[M(t)]

=
∑

i∈rep(Π(s))

|Π(i)(s)|p
∗
E[M(t)]

= M(s)E[M(t)].

Thus we only need to show that E[M(t)] = 1 for all t and our proof will be complete.
To do this, one uses the fact that, since Π(t) is an exchangeable partition, the asymptotic
frequency of the block containing 1 is a size-biased pick from the asymptotic frequencies
of all the blocks. This tells us that

E

[∑
i

|Πi(t)|p∗
]

= E

[∑
i

|Πi(t)||Πi(t)|p∗−11|Π(i)(t)|6=0

]
= E[|Π(1)(t)|p

∗−11{|Π(i)(t)|6=0}]

= exp[−tφ(p∗ − 1)]

= 1.

We refer to [7] for the proof that (M(t))t≥0 is càdlàg (it is assumed in [7] that c = 0

and that ν is conservative but these assumptions have no effect on the proof).

Since these martingales are nonnegative, they all converge almost surely. For inte-
ger i and real t, we will call Wi,t the limit of the martingale Mi,t on the event where
this martingale converges. We also write W instead of W1,0 for simplicity. Our goal is
now to investigate these limits. To this effect, let us introduce a family of integrability
conditions indexed by a parameter q > 1: we let (Mq) be the assumption that∫

S↓

∣∣∣∣∣1−
∞∑
i=1

sp
∗

i

∣∣∣∣∣
q

ν(ds) <∞.

We will assume through the rest of this section that there exists some q > 1 such that
(Mq) holds.

The following is a generalization of Theorem 1.1 and Proposition 1.5 of [5] which
were restricted to the case where ν has finite total mass.
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Proposition 4.4. Assume (Mq) for some q > 1. Then the martingale (M(t))t≥0 con-
verges to W in Lq.

Proof. We will first show that the martingale (M(t))t≥0 is purely discontinuous in the
sense of [12], which we will do by proving that it has finite variation on any bounded
interval [0, T ] with T > 0. To this effect, write, for all t, M(t) = e−cp

∗t
∑
i(Xi(t))

p∗

where the (Xi(t))i∈N are the sizes of the blocks of a homogeneous fragmentation with
dislocation measure ν, but no erosion. Since the product of a bounded nonincreasing
function with a bounded function of finite variation has finite variation, we only need to
check that t 7→

∑
iXi(t)

p∗ has finite variation on [0, T ]. Since this function is just a sum
of jumps, its total variation is equal to the sum of the absolute values of these jumps.
Thus we want to show that |

∑
t≤T

∑
i

(Xi(t))
p∗ − (Xi(t

−))p
∗ | is finite. This sum is equal to∑

t≤T
ecp
∗t|M(t)−M(t−)|, which is bounded above by ecp

∗T
∑
t≤T
|M(t)−M(t−)|. We will not

show the finiteness of this sum, because it can be done by computing its expectation
similarly to our next computation.

Knowing that the martingale is purely discontinuous, according to [26] (at the bot-
tom of page 299), to show that the martingale is bounded in Lq, one only needs to show
that the sum of the q − th powers of its jumps is also bounded in Lq, i.e. that

E
[∑

t

|M(t)−M(t−)|q
]
<∞.

This expected value can be computed with the Master formula for Poisson point
processes (see [28], page 475). Recall from Section 2.1.2 the construction of Π through
a family of Poisson point processes ((∆k(t))t≥0)k∈N: for t and k such that there is an
atom ∆k(t), the k-th block of Π(t−) is replaced by its intersection with ∆k(t). We then
have

E

∑
t≥0

|M(t)−M(t−)|q
 = E

 ∞∑
k=1

∑
t≥0

|Πk(t−)|qp
∗

(
|1−

∞∑
i=1

|∆k
i (t)|p

∗
|

)q
= E

[∫ ∞
0

∑
k

|Πk(t−)|qp
∗
dt

]∫
S↓
|1−

∑
i

sp
∗

i |
qdν(s)

=

∫ ∞
0

e−tψ(qp∗)dt

∫
S↓
|1−

∑
i

sp
∗

i |
qdν(s).

Since qp∗ > p∗, we have ψ(qp∗) > 0 and thus the expectation is finite.

Proposition 4.5. Assume that E[W ] = 1 (which is equivalent to assuming that the
martingale M((t))t≥0 converges in L1). Then, almost surely, if Π does not die in finite
time then W is strictly positive.

Proof. We discretize the problem and only look at integer times: for n ∈ N, let Zn is the
number of blocks of Π(n) which have nonzero mass. The process (Zn)n∈N is a Galton-
Watson process (possibly taking infinite values. See Appendix 2 to check that standard
results stay true in this case). If it is critical or subcritical then there is nothing to
say, and if it is supercritical, notice that the event {W = 0} is hereditary (in the sense
that W = 0 if and only if all the Wi,1 are also zero). This implies that the probability
of the event {W = 0} is either equal to 1 or to the probability of extinction. But since
E[W ] = 1, W cannot be 0 almost surely and thus {W = 0} and the event of extinction
have the same probabilities. Since {W = 0} is a subset of the event of extinction, W is
nonzero almost surely on nonextinction.
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The following proposition states the major properties of these martingale limits.

Proposition 4.6. There exists an event of probability 1 on which the following are true:
(i) For every i and t, the martingale Mi,t converges to Wi,t.
(ii) For every integer i, and any times t and s with s > t, we have

Wi,t =
∑

j∈Π(i)(t)∩rep(Π(s))

Wj,s.

(iii) For every i, the function t 7→ Wi,t is nonincreasing and right-continuous. The
left-limits can be described as follows: for every t, we have

Wi,t− =
∑

j∈Π(i)(t−)∩rep(Π(t))

Wj,t.

To prove this we will need the help of several lemmas. The first is an intermediate
version of point (ii)

Lemma 4.7. For any integer i and any times t and s such that s > t, there exists an
event of probability 1 on which the martingales Mi,t and Mj,s converge for all j and we
have the relation

Wi,t =
∑

j∈Π(i)(t)∩rep(Π(s))

Wj,s.

Proof. For clarity’s sake, we are going to restrict ourselves to the case where i = 1 and
t = 0, but the proof for the other cases is similar. We have, for all r ≥ s,

M(r) =
∑

j∈rep(Π(s))

Mj,s(r − s).

We cannot immediately take the limits as r goes to∞ because we do not have any kind
of dominated convergence under the sum. However, Fatou’s Lemma does give us the
inequality

W ≥
∑

j∈rep(Π(s))

Wj,s.

To show that these are actually equal almost surely, we show that their expectations
are equal. We know that E[W ] = 1 and that, for all j ∈ N and s ≥ 0, one can write
Wj,s = |Π(j)(s)|p

∗
W ′j,s where W ′j,s is a copy of W which is independent of Fs. We thus

have

E

 ∑
j∈rep(Π(s))

Wj,s

 = E

∑
j∈N

1j∈rep(Π(s))|Π(j)(s)|p
∗
W ′j,s


=
∑
j∈N

E[1j∈rep(Π(s))|Π(j)(s)|p
∗
W ′j,s]

=
∑
j∈N

E[W ′j,s]E[1j∈rep(Π(s))|Π(j)(s)|p
∗
]

=
∑
j∈N

E[1j∈rep(Π(s))|Π(j)(s)|p
∗
]

= E[M(s)]

= 1.
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Lemma 4.8. For every pair of integers i and j, let fi,j be a nonnegative function defined
on [0,+∞). For every i, we let fi be the function

∑
j fi,j , and we also let f =

∑
i fi. We

assume that, for every i and j, the function fi,j converges at infinity to a limit called li,j ,
and we also assume that f converges, its limit being l =

∑
i,j li,j . Then, for every i, the

function fi also converges at infinity and its limit is li =
∑
j li,j .

Proof. We are going to prove that lim inf fi = lim sup fi = li for all i. Let N be any
integer, taking the upper limit in the relation f ≥

∑
i≤N fi gives us l ≥

∑
i≤N lim sup fi,

and by taking the limit as N goes to infinity, we have l ≥
∑
i lim sup fi. Similarly, for

every i, the relation fi =
∑
j fi,j gives us lim inf fi ≥

∑
j li,j . We thus have the following

chain: ∑
i,j

li,j ≤
∑
i

lim inf fi ≤
∑
i

lim sup fi ≤
∑
i,j

li,j ,

and this implies that, for every i, lim inf fi = lim sup fi = li.

Proof of Proposition 4.6: let t < s be two times and assume that the martingale
Mj,s converges for all j, and also assume the relation W =

∑
j∈repΠ(s)

Wj,s. Apply Lemma

4.8 with, for nonnegative r, f(r) = M(s + r), fi(r) = 1{i∈repΠ(t)}Mi,t(r + s − t) and
fi,j(r) = 1{i∈repΠ(t)}1{j∈repΠ(s)∩Π(i)(t)}Mj,s(r). Then, for all i, the martingale Mi,t does
indeed converge, and point (ii) of the proposition is none other than the relation li =∑
j li,j . We also get that W =

∑
i∈repΠ(t)

Wi,t and thus can use the same reasoning to obtain

Wi,r =
∑

j∈Π(i)(r)∩repΠ(t)

Wj,t for all r < t < s.

By Lemma 4.7, the assumption of the previous paragraph is true for any value of s
with probability 1, we then obtain points (i) and (ii) by taking a sequence of values of s
tending to infinity.

We can turn ourselves to point (iii). Fixing an integer i, it is clear that t 7→ Wi,t

is nonincreasing. Right-continuity is obtained by the monotone convergence theorem,
noticing that Π(i)(t) ∩ rep(Π(s)) is the increasing union, as u decreases to t, of sets
Π(i)(u)∩ rep(Π(s)). Similarly, the fact that Wi,t− =

∑
j∈Π(i)(t−)∩rep(Π(t))Wj,t is only a mat-

ter of noticing that Π(i)(t
−) is the decreasing intersection, as u increases to t, of sets

Π(i)(u) and taking the infimum on both sides of the relationWi,u =
∑
j∈Π(i)(u)∩rep(Π(t))Wj,t.

From now on we will restrict ourselves to the aforementioned almost-sure event:
all the additive martingales are now assumed to converge, and the limits satisfy the
natural additive properties.

4.2 A measure on the leaves of the fragmentation tree.

In this section we are going to assume that E[W ] = 1. We let T be the genealogy
tree of the self-similar process Πα and are going to use the martingale limits to define
a new measure on T .

Theorem 4.9. On an event with probability one, there exists a unique measure µ∗ on
T which is fully supported by the proper leaves of T and which satisfies

∀i ∈ N, t ≥ 0, µ∗(T(i,t+)) = Wi,τi(t).

where Ti,t+ is as defined in the proof of Lemma 3.11: T(i,t+) = ∪s>tT(i,s).
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Proof. This will be a natural consequence of Proposition 2.7, and our previous study of
the convergence of additive martingales. Note that, since, for all (i, t) ∈ T , we have

T(i,t) =
⋃

j∈Π(i)(t−)∩rep(Π(t))

T(j,t+),

any candidate for µ∗ would then have to satisfy, for every (i, t), the relation

µ∗(T(i,t)) =
∑

j∈Π(i)(t−)∩rep(Π(t))

Wj,τi(t) = Wi,(τi(t))− .

We thus know that we can apply Proposition 2.7 to the function m defined by m(i, t) =

Wi,(τi(t))− . This function is indeed decreasing and left-continuous on T , and we also
have, for every point (i, t) of T , m

(
(i, t)+

)
= m(i, t) in the sense of Section 2.2.4 (this is

point (iii) of Proposition 4.6). Thus µ∗ exists and is unique, and we only now need to
check that it is fully supported by the set of proper leaves of T . To do this, notice first
that, by Proposition 3.13, the complement of the set of proper leaves can be written as
∪N∈N{(i, s), i ∈ N, τi(s) ≤ N}, and then that, for every integer N ,

µ∗({(i, s), i ∈ N, τi(s) ≤ N}) = W −
∑

i∈rep(Π(N))

Wi,N = 0.

The measure µ∗ has total mass W , which is in general not 1. However, having
assumed that E[W ] = 1, we will be able to create some probability measures involving
µ∗. The following one can be interpreted as the "distribution" of the process of the size
of the fragment associated to a leaf with "distribution" µ∗. Recall first that to every
leaf L of T corresponds a family of integers (iL(t))t<ht(L) such that, for all t, iL(t) is the
smallest integer such that (iL(t), t) ≤ L in T .

Proposition 4.10. Define a probability measure Q on the space D([0,+∞)) of càdlàg
functions from [0,+∞) to [0,+∞) by setting, for all nonnegative measurable functionals
F : D([0,+∞))→ [0,+∞),

Q(F ) = E

[∫
T
F
(
(|Πα

(iL(t))(t)|)t≥0

)
µ∗(dL)

]
.

Let (xt)t≥0 be the canonical process, and let ζ be the time-change defined for all t ≥ 0

by:

ζ(t) = inf
{
u,

∫ u

0

xαt dr > u
}
.

Under the law Q, the process (ξt)t≥0 defined by ξt = − log(xζ(t)) for all t ≥ 0 is a
subordinator whose Laplace exponent φ∗ satisfies, for p such that ψ(p+ p∗) is defined:

φ∗(p) = cp+

∫
S↓

(∑
i

(1− spi )s
p∗

i

)
ν(ds) = ψ(p+ p∗).

As before, the function φ∗ can be seen as defined on R, in which case it takes values
in [−∞,∞).

Proof. Let us first show that, given a nonnegative and measurable function f on [0,+∞)

and a time t, we have

Q(f(xζ(t))) = E

[∑
i

|Πi(t)|p
∗
f(|Πi(t)|)

]
. (4.1)
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To do this, notice first that we have Πα
(iL(t))(τ

−1
iL(t)(t)) = Π(iL(t))(t). Thus, using the

definition of µ∗, one can change the integral with the respect to µ∗ into a sum on the
different blocks of Π(t):

Q(f(xζ(t))) = E

 ∑
i∈rep(Π(t))

Wi,tf(|Π(i)(t)|)

 .
Finally, with the fragmentation property, one can write, for all t and i,Wi,t = |Π(i)(t)|p

∗
W ′i,t

where W ′i,t is a copy of W which is independent of |Π(t)|. Since E[W ] = 1, we get for-
mula 4.1.

Applying this to the function f defined by f(x) = xp gives us our moments formula:

Q(e−pξ1) = Q(xpζ(1)) = E

[∑
i

|Πi(1)|p
∗+p

]
= E[Π1(1)p+p

∗−1] = exp[−(φ(p+ p∗ − 1)].

Independence and stationarity of the increments is proved the same way. Let s < t,
f be any nonnegative measurable functions on R and G be any nonnegative measurable
function on D([0, s]). Let us apply the fragmentation property for Π at time s: for i ∈
rep(Π(s)), the partition of Π(i)(s) formed by the blocks of Π(t) which are subsets of
Π(i)(s) can be written as Π(i)(s) ∩ Πi(t− s) where (Πi(u))u≥0 is an independent copy of
Π. Thus one can write

Q[f
(xζ(t)
xζ(s)

)
G
(
(xζ(u))u≤s

)
]

= E

 ∑
i∈repΠ(s)

|Π(i)(s)|p
∗
G((|Π(i)(u)|)u≤s)

∑
j∈N

W i
j |Πi

j(t− s)|p
∗
f(|Πi

j(t− s)|)

 ,
where the W i

j are copies of W independent of anything happening before time t, which
all have expectation 1. We thus get

Q[f(
xζ(t)

xζ(s)
)G((xζ(u))u≤s)]

= E

 ∑
i∈repΠ(s)

|Π(i)(s)|p
∗
G((|Π(i)(u)|)u≤s)

E
∑

j

|Πi(t− s)|p
∗
f(|Πj(t− s)|)

 ,
which is what we wanted.

Lemma 4.11. Assume that ν integrates the quantity
∑
i log(si)s

p∗

i and let p = sup{q ∈
R : φ∗(−q) > −∞}. Then if γ < 1 +

p

|α| , we have

E

[∫
T
ht(L)−γµ∗(dL)

]
<∞.

Proof. We know that the height of the leaf is equal to the death time of the fragment it
marks: ht(L) = inf{t, τiL(t)(t) =∞}. Thus we can write, using the measure Q

E

[∫
T
ht(L)−γµ∗(dL)

]
= Q[I−γ ],
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where I =
∫∞

0
eαξtdt is the exponential functional of the subordinator ξ with Laplace

exponent φ∗. Following the proof of Proposition 2 in [9], one has, if 1 < γ < 1 +
p

|α| ,

Q[I−γ ] =
−φ∗(−|α|(γ − 1))

γ − 1
Q[I−γ+1].

By induction we then only need to show that Q[I−γ ] is finite for γ ∈ (0, 1], and thus only
need to show that Q[I−1] is finite. However, it is well known (see for example [8] ) that

Q[I−1] = (φ∗)′(0+) = c−
∫
S↓(
∑
i log(si)s

p∗

i )ν(ds), which is finite by assumption.

The assumption that
∫
S↓(
∑
i log(si)s

p∗

i )ν(ds) is finite is for example verified when ν

has finite total mass, and (H) is satisfied: pick δ > 0 such that ψ(p∗−δ) > −∞, then pick

K > 0 such that | log(x)| ≤ Kx−δ for all x ∈ (0, 1], then one can bound
∑
i | log(si)|sp

∗

i by

K −K(1−
∑
i s
p∗−δ
i ) which is indeed integrable.

5 Tilted probability measures and a tree with a marked leaf

Recall that D is the space of càdlàg PN-valued functions on [0,+∞), and that it is
endowed with the σ-field generated by all the evaluation functions. For all t ≥ 0, let us
introduce the space Dt of càdlàg functions from [0, t] to PN, which we endow with the
product σ-field.

As was done in [7], we are going in this section to use the additive martingale to
construct a new probability measure under which our fragmentation process has a spe-
cial tagged fragment such that, heuristically, for all t, the tagged fragment is equal to
a block Πi(t) of Π(t) with "probability" |Πi(t)|p

∗
. Tagging a fragment will be done by

forcing the integer 1 to be in it, and for this we need some additional notation. If π
is a partition of N, we let Rπ be its restriction to N′ = N \ {1}. Partitions of N′ can
still be denoted as sequences of blocks ordered with increasing least elements. Given
a partition π of N′ and any integer i, we let Hi(π) be the partition of N obtained by
inserting 1 in the i-th block of π. Similarly, let us also define a way to insert the integer
1 in a finite-time fragmentation process with state space the partitions of N′. Let i ∈ N,
t ≥ 0 and let (π(s))s≤t be a family of partitions of N′. Now let j be any element of πi(t)
(if this block is empty then the choice won’t matter, one can just define Ht

i (π) to be any
fixed process) and, for all 0 ≤ s ≤ t, let Ht

i (π)(s) be the partition which is the same as
π(s), except that 1 is added to the block containing j. This defines a function Ht

i which
maps a process taking values in PN′ to processes taking value in PN. What is important
to note is that, if we now take (π(s))0≤s≤t ∈ Dt, then the process (Ht

iR(π)(s))0≤s≤t is
càdlàg (because the restrictions to finite subsets of N are pure-jump with finite num-
bers of jumps) and the map Ht

iR from Dt to itself is also measurable (because, for all s,
Ht
i (π)(s) is a measurable function of π(s) and π(t)).

5.1 Tilting the measure of a single partition

Here, we are going to work in a simple setting: we consider a random exchangeable
partition of N called Π which has a positive Malthusian exponent p∗, in the sense that
E
[∑

i |Πi|p
∗]

= 1. Note that this implies that E
[
|Π1|p

∗−11|Π1|6=0

]
= 1 as well (we will

omit the indicator function from now on).

Let us define two new random partitions Π∗ and Π′ through their distributions: we
let, for nonegative measurable functions f on PN,

E∗[f(Π∗)] = E

[∑
i

|RΠi|p
∗
f(HiRΠ)

]
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and

E′[f(Π′)] = E[|Π1|p
∗−1f(Π)].

These relations do define probability measures because p∗ is the Malthusian exponent
of Π, as can be checked by taking f = 1. We now state a few properties of these
distributions.

Proposition 5.1. (i) The two random partitions Π∗ and Π′ have the same distribution.

(ii) If we call m the law of the asymptotic frequencies of the blocks of Π, and m′ the
law of the asymptotic frequencies of the blocks of Π′, we have

m′(ds) = (
∑
i

sp
∗

i )m(ds).

In particular, with probability 1, Π′ is not the partition made uniquely of singletons.

(iii) Conditionally on the asymptotic frequencies of its blocks, the law of Π′ (or Π∗)
can be described as follows: the restriction of the partition toN′ is built with a standard
paintbox process from the law m′. Then, conditionally on RΠ′, for every integer i, 1 is

inserted in the block RΠ′i with probability |RΠ′i|
p∗∑

j |RΠ′j |p
∗ .

Proof. Item (i) is a simple consequence of the paintbox description of Π: we know that,
conditionally on the restriction of Π to N′, the integer 1 will be inserted in one of these
blocks in a size-biased manner. Thus we get, for nonnegative measurable f ,

E′[f(Π′)] = E[|Π1|p
∗−1f(Π)] = E

[∑
i

|RΠi||RΠi|p
∗−1f(HiRΠ)

]
= E∗[f(Π∗)].

To prove (ii), we just need to use the definition of the law of Π′: take any positive
measurable function f on S↓, we have

E′[f(|Π′|↓)] = E[|Π1|p
∗−1f(|Π|↓)] =

∫
S↓

(
∑
i

sis
p∗−1
i )f(s)m(ds) =

∫
S↓

(
∑
i

sp
∗

i )f(s)m(ds),

which is all we need.

For (iii), first use the definition of Π∗ to notice that its restriction to N′ is exchange-
able: if we take a measurable function f on PN′ and a permutation σ of N′, we have

E∗[f(σ(RΠ∗))] = E
[
(
∑
i

|RΠi|p
∗
)f(σ(RΠ))

]
= E

[
(
∑
i

|σRΠi|p
∗
)f(σ(RΠ))

]
= E

[
(
∑
i

|RΠi|p
∗
)f(RΠ)

]
= E∗[f(RΠ∗)].

This exchangeability and Kingman’s theorem then imply that the restriction of Π∗ to
N′ can indeed be built with a paintbox process. Now we only need to identify which
block contains 1, that is, find the distribution of Π∗ conditionally of RΠ∗. Thus, we
take a nonegative measurable function f on PN and another one g on PN′ and compute
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E∗[f(Π∗)g(RΠ∗)]:

E∗[f(Π∗)g(RΠ∗)] = E
[∑

i

|(RΠ)i|p
∗
f(HiRΠ)g(RΠ)

]

= E

∑
j

|(RΠ)j |p
∗

(∑
i

|(RΠ)i|p
∗∑

j |(RΠ)j |p∗
f(HiRΠ)

)
g(RΠ)


= E∗

[(∑
i

|(RΠ∗)i|p
∗∑

j |(RΠ∗)j |p∗
f(HiRΠ∗)

)
g(RΠ∗)

]
.

This ends the proof.

5.2 Tilting a fragmentation process

Here we aim to generalize the previous procedure to a homogeneous exchange-
able fragmentation process. Let t ≥ 0, we are going to define two random processes
(Π∗(s))s≤t and (Π′(s))s≤t, with corresponding expectation operators E∗t and E′t, by let-
ting, for measurable functions F on Dt,

E∗t
[
F ((Π∗(s))s≤t)

]
= E

[∑
i

|(RΠ(t))i|p
∗
F
(
(Ht

iRΠ(s))s≤t
)]

and
E′t
[
F ((Π′(s))s≤t)

]
= E

[
|Π1(t)|p

∗−1F
(
(Π(s))s≤t

)]
.

For the same reason as before, these define probability measures. We then want to use
Kolmogorov’s consistency theorem to extend these two probability measures to D. To
do this we have to check that, if u < t and (Π∗(s))s≤t has law P ∗t , then (Π∗(s))s≤u has law
P ∗u , and the same for Π′. The argument is that the block of Π∗(t) that 1 is inserted in only
matters through its ancestor at time u: if i and j are such that (RΠ∗(t))j ⊂ (RΠ∗(u))i
then (Ht

jΠ(s))s≤u = (Hu
i Π(s))s≤u. Taking any nonnegative measurable function F on D,

we have

E∗t
[
F
(
(Π∗(s))s≤u

)]
= E

[∑
j

|(RΠ(t))j |p
∗
F
(
(Ht

jΠ(s))s≤u
)]

= E
[∑

i

∑
j:(RΠ∗(t))j⊂(RΠ∗(u))i

|(RΠ(t))j |p
∗
F
(
(Hu

i Π(s))s≤u
)]

= E
[∑

i

F
(
(Hu

i Π(s))s≤u
) ∑
j:(RΠ∗(t))j⊂(RΠ∗(u))i

|(RΠ(t))j |p
∗
]

= E
[∑

i

F
(
(Hu

i Π(s))s≤u
)
|(RΠ(u))i|p

∗
]
.

The last equation comes from the martingale property of the additive martingale Mk,u

where k is any integer in (RΠ(u))i. Consistency for Π′ is a little bit simpler: it is once
again a consequence of the fact that the process (M ′t)t≥0 which we define by M ′t =

|Π1(t)|p∗−11{|Π1(t)|6=0} for all t is a martingale, which itself is an immediate consequence
of the homogeneous fragmentation property.

Kolmogorov’s consistency theorem then implies that there exist two random pro-
cesses (Π∗(t))t≥0 and (Π′(t))t≥0 defined on probability spaces with probability measures
P ∗ and P ′ and expectation operators E∗ and E′ such that, for any t ≥ 0 and any non-
negative measurable function F on Dt,

E∗
[
F
(
(Π∗(s))s≤t

)
] = E

[∑
i

|(RΠ(t))i|p
∗
F
(
(Ht

iΠ(s))s≤t
)]

(5.1)
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and
E′[F

(
(Π′(s))s≤t

)
] = E

[
|Π1(t)|p

∗−1F
(
(Π(s))s≤t

)]
.

Just as in the previous section, these two definitions are in fact equivalent:

Proposition 5.2. The two processes (Π∗(t))t≥0 and (Π′(t))t≥0 have the same law.

To prove this, we only need to show that these two processes have the same finite-
dimensional marginal distributions. The 1-dimensional marginals have already been
proven to be the same and we will continue with an induction argument which uses the
fact that the homogeneous fragmentation property generalizes to P ∗ and P ′.

Lemma 5.3. Let t ≥ 0, and Ψ∗ and Ψ′ be independent copies of respectively Π∗ and
Π′. Then, conditionally on (Π∗(s), s ≤ t), the process (Π∗(t+ s))s≥0 has the same law as
(Π∗(t) ∩Ψ∗(s))s≥0 and, conditionally on (Π′(s), s ≤ t), the process (Π′(t+ s))s≥0 has the
same law as (Π′(t) ∩Ψ′(s))s≥0.

Proof. Let t ≥ 0 and u ≥ 0, let F be a nonnegative measurable function on Dt and G be
a nonnegative measurable function on Du. We have, by the fragmentation property,

E∗
[
F ((Π∗(s))0≤s≤t)G((Π∗(t+ s))0≤s≤u)

]
= E

[∑
i

|(RΠ(t+ u))i|p
∗
F
(
(Ht+u

i RΠ(s))0≤s≤t
)
G
(
(Ht+u

i RΠ(t+ s))0≤s≤u
)]

= E
[∑

i

|R(Π(t) ∩Ψ(u))i|p
∗
F
(
(Ht+u

i RΨ)0≤s≤t
)
G
(
Ht+u
i (RΠ(t) ∩Ψ(s))0≤s≤u

)]
,

where Ψ is an independent copy of Π. The key now is to notice that a block of Π(t)∩Ψ(s)

is the intersection of a block of Π(t) and a block of Ψ(s). Thus we replace our sum over
integers i (representing blocks of Π(t) ∩ Ψ(s)) by two sums, one for the blocks of Π(t)

and another for those of Ψ(s).

E∗
[
F
(
(Π(s))0≤s≤t

)
G
(
(Π(t+ s))0≤s≤u

)]
= E

[∑
i

∑
j

|RΠi(t)|p
∗
|RΨj(t)

p∗ |F
(
(Ht

iRΠ(s))0≤s≤t
)
G
(
(Ht

iRΠ(t) ∩Hu
j Ψ(s))0≤s≤u

)]
= E∗[F ((Π(s))0≤s≤t)G((Π(t) ∩Ψ(s))0≤s≤u)].

The proof for Π′ again uses the same ideas but is simpler, so we will omit it.

We can now complete the proof of Proposition 5.2: we show by induction that the
finite-dimensional marginals of Π∗ and Π′ have the same distribution. Take an integer
n, let t1 < t2 < . . . < tn+1 and assume that we have shown that (Π∗(t1), . . . ,Π∗(tn)) and
(Π′(t1), . . . ,Π′(tn)) have the same law. Let Ψ be an independent copy of Π∗(tn+1 − tn)

(which is then also an independent copy of Π′(tn+1 − tn) ), then

(
Π∗(t1), . . . ,Π∗(tn+1)

) (d)
=
(
Π∗(t1), . . . ,Π∗(tn),Π∗(tn) ∩Ψ

)
(d)
=
(
Π′(t1), . . . ,Π′(tn+1)

)
,

and the proof is complete.

We can now proceed to the main part of this section, which is the description of Π∗

with Poisson point processes. First, we let κ∗ν be the measure on PN defined by

κ∗ν(dπ) = |π1|p
∗−11{|π1|6=0}dκν(dπ),
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where κν is as in section 2.1.3 (a paintbox procedure where the asymptotic frequencies
have distribution ν).

Let ∆1(t)t≥0 be a P.p.p. with intensity k∗ν and, for all k ≥ 2, (∆k(t))t≥0 a P.p.p. with
intensity κν . Let also T2, T3, . . . be exponential variables with parameter c (note that
there is no T1 in here). We assume that these variables are all independent. With
these, we can create a PN-valued process Π∗, just as is done in the case of classical
fragmentation processes. We start with Π∗(0) = (N, ∅, ∅, . . .). For every t such that there
is an atom ∆k(t), we let Π∗(t) be equal to Π∗(t−), except that we replace the block
Π∗k(t−) by its intersection with all the blocks of ∆k(t). Also, for every i, we let Π∗(Ti)

be equal to Π∗(T−i ), except that the integer i is removed from its block and placed into
a singleton. Just as in the classical case, it might not be clear that this is well-defined.
To make sure that it is the case, we are going to restrict this to finite subsets of N. Let
n ∈ N, we now only need to look at integers k ≤ n and times t such that ∆k(t) splits [n]

into at least two blocks. Conveniently enough, this set is in fact finite: indeed, we have

κν({[n] is split into two or more blocks}) =

∫
S↓

(1−
∞∑
i=1

sni )ν(ds) ≤
∫
S↓

(1−sn1 )ν(ds) <∞,

as well as

κ∗ν
(
{[n] is split into two or more blocks}

)
=

∫
S↓

(1−
∞∑
i=1

sni )

∞∑
i=1

sp
∗

i ν(ds)

= cp∗ +

∫
S↓

(1−
∞∑
i=1

sni

∞∑
i=1

sp
∗

i )ν(ds)

≤
∫
S↓

(1− sp
∗+n

1 )ν(ds)

<∞.

Since the set (T2, . . . , Tn) is also finite, the previous operations can be applied with-
out ambiguity. From this, we get, for all t, a sequence (Π∗(t) ∩ [n])n∈N of compatible
partitions, which determine a unique partition Π∗(t) of N.

Theorem 5.4. The process (Π∗(t))t≥0 constructed does have the distribution defined
by 5.1.

Proof. We start by extending the measure P ′, so that it contains not only the fragmenta-
tion process, but also the underlying Poisson point processes and exponential variables:
for t ≤ 0, and any nonegative measurable function F , let

E′t

[
F
(
(∆i(t)s≤t)i∈N, (Ti)i∈N′

)]
= E

[
|Π1(t)|p

∗−1F
(
(∆i(t)s≤t)i∈N, (Ti)i∈N′

)]
(remember that, under P , (∆1(t)s≤t) is a P.p.p. with intensity kν , and not k∗ν .) These
probability measures are still compatible, and we can still use Kolmogorov’s theorem
to extend them to a single measure P ′. Note that under P ′, 1 never falls in a singleton,
which is why we have ignored T1. With this new law P ′, the partition-valued process
(Π′(t))t≥0 is indeed built from the point processes (∆k(t))t≥0 with k ∈ N and the Ti with
i ∈ N, and all we need to do is now find their joint distribution. We start with the harder
part, which is finding the law of (∆1(t))t≥0, and will use a Laplace transform method
and the exponential formula for Poisson point processes. If t ≥ 0 and f is a nonnegative
measurable function on PN ×R, we have
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E′[e−
∑
s≤t f(∆1

s,s)] = E
[
|Π1(t)|p

∗−11{|Π1(t)|6=0}e
−

∑
s≤t f(∆1

s,s)
]

= e−cte−ct(p
∗−1)E

[∏
s≤t

|∆1
1(s)|p

∗−11|∆1
1(s)|6=0e

−
∑
s≤t f(∆1(s),s)

]

= e−ctp
∗
E

exp

−∑
s≤t

(−(p∗ − 1) log(|∆1
1(s)|) + f(∆1(s), s))


= e−ctp

∗
exp

(
−
∫ t

0

∫
PN

(1− e−(−(p∗−1) log(|π1|)+f(π,s)))κν(dπ)ds

)
= e−ctp

∗
exp

(
−
∫ t

0

∫
PN

(1− |π1|p
∗−1e−f(π,s))κν(dπ)ds

)
Now we use the the Malthusian hypothesis: we have cp∗ +

∫
S↓(1 −

∑
sp
∗

i )dν(s) = 0.

Translating this in terms of kν , we have∫
PN

(1− |π1|p
∗−1)κν(dπ) =

∫
S↓

(∑
i

si(1− sp
∗−1
i ) + s0

)
ν(ds)

= −cp∗.

Thus, in the last integral with respect to kν , we can replace 1 by |π1|p
∗−1, if we subtract

cp∗ outside of the integral:

E′[e−
∑
s≤t f(∆1

s,s)] = e−ctp
∗

exp

(
−
∫ t

0

(−cp∗ +

∫
PN

(|π1|p
∗−1 − |π1|p

∗−1e−f(π,s))κν(dπ))ds

)
= exp

(
−
∫ t

0

∫
PN

(1− e−f(π,s))|π1|p
∗−1κν(dπ)ds

)
.

This means that the point process (∆1(t))t≥0 does indeed have the law of a Poisson point
process with intensity |π1|p

∗−1dκν(π).

Let us now prove that the point processes and random variables are independent
from each other and that, except for (∆1

t )t≥0, they have the same law as under P . Take
n ∈ N and t ≥ 0, for every i ∈ [n], Fi a nonnegative measurable function on the space of
random measures on PN × [0, t], and for 2 ≤ i ≤ n, a nonnegative measurable function
gi on R. Using independence properties under P , we have

E′

[
n∏
i=1

Fi((∆
i(s))s≤t)

n∏
i=2

gi(Ti)

]

= E

∏
s≤t

|∆1
1(s)|p

∗−11|∆1
1(s)|6=0F1((∆1(s))s≤t)

n∏
i=2

Fi((∆
i(s))s≤t)gi(Ti)


= E

∏
s≤t

|∆1
1(s)|p

∗−11|∆1
1(s)|6=0F1((∆1(s))s≤t)

 n∏
i=2

E
[
Fi((∆

i(s))s≤t)
] n∏
i=2

E[gi(Ti)]

= E′[F1

(
(∆1(s)s≤t))

] n∏
i=2

E
[
Fi((∆

i(s)s≤t))
] n∏
i=2

E[gi(Ti)],

which is all we need.
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Remark 5.5. Here is an alternative description of a Poisson point process (∆1(t))t≥0

with intensity k∗ν . Let (s(t), i(t))t≥0 be a S↓ × N-valued Poisson point process with in-

tensity sp
∗

i ν(ds)#(di), where # is the counting measure on N (otherwise said, (s(t))t≥0

has intensity
∑
i s
p∗

i ν(ds) and i(t) is equal to an integer j with probability
sp
∗
j∑
i s
p∗
i

). When

there is an atom, construct a partition of N′ using the paintbox method (using for exam-
ple a coupled process of uniform variables), and then add 1 to the i(t)-th block, where
the blocks are ordered in decreasing order of their asymptotic frequencies.

5.3 Link between µ∗ and P ∗.

Let T be the fragmentation tree derived from Πα, equipped with its list of death
points (Qi)i∈N, as well as the measure µ∗ which has total mass W , and we keep the
assumption that E[W ] = 1. Given any leaf L, we can build a new partition process
(Πα

L(t))t≥0 from this, by declaring the "new death point" of 1 to be L. More precisely,
for all t ≥ 0, the restriction of Πα

L(t) to N′ is the same as that of Πα(t), while 1 is put
in the block containing all the integers j such that Qj is in the same tree component of
T>t as L. As in the proof of Proposition 3.2, one can show that Πα

L is decreasing and in
D. Our main result here is that, if L is chosen with "distribution" µ∗, then Πα

L has the
same distribution as the Π∗,α, where Π∗,α is the "α-self-similar" version of Π∗, obtained
through the usual time-change.

Proposition 5.6. Let F be any nonnegative measurable function ofD, then
∫
T F (Πα

L)µ∗(dL)

is a random variable and we have

E

[∫
T
F (Πα

L)µ∗(dL)

]
= E∗[F (Π∗,α)].

Proof. For any leaf L of T , we let ΠL = G−α(Πα
L), then Πα

L = Gα(ΠL) (recall from Sec-
tion 2.1.3 that Gα and G−α are the measurable functions which transform Π to Πα and
back). By renaming, we are reduced to proving that, for any nonnegative measurable
function F on D,

∫
T F (ΠL)µ∗(dL) is a random variable and

E

[∫
T
F (ΠL)µ∗(dL)

]
= E∗[F (Π∗)].

We let M(F ) =
∫
T F (ΠL)µ∗(dL). Assume first that F is of the form F

(
(π(s))s≥0

)
=

K
(
(π(s))0≤s≤t

)
, for a certain t ≥ 0 and a function K on Dt. We then have, by definition

of µ∗,
M(F ) =

∑
i

|RΠi(t)|p
∗
XiK((Ht

i (RΠ)(s))0≤s≤t),

where Xi is defined for all i by Xi =
Wj,t

|RΠi(t)|p∗
for any choice of j ∈ Πi(t), so Xi has the

same law as W and is independent of (Π(s))s≤t. We thus know that M(F ) is a random
variable such that

E[M(F )] = E[W ]E

[∑
i

|RΠi(t)|p
∗
K
(

(Ht
i (RΠ)(s))0≤s≤t

)]
= E∗[F (Π∗)].

A measure theory argument then extends this to any nonnegative measurable func-
tion F . Let A be the set of measurable subsets A ∈ D such that M(1A) is a random
variable and E[M(1A)] = P ∗[Π∗ ∈ A]. Standard properties of integrals show that A
is a monotone class, and since it contains the generating π-system of sets of the form
A = {π ∈ D, (π(s))0≤s≤t ∈ B} with t ≥ 0 and B ⊂ Dt, the monotone class theorem
implies that A is D’s Borel σ-field. We then conclude by approximating F by linear
combinations of indicator functions.
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5.4 Marking two points

We now want to go further and mark two points on T with distribution µ∗. However,
in order to avoid having to manipulate partitions with both integers 1 and 2 being forced
into certain blocks, we will instead work with the tree T ∗ = TREE(Π∗,α). To make sure
that this is properly defined, we need to check that Π∗,α satisfies the hypotheses of
Lemmas 3.9 and 3.11. The first one is immediate because, for all t ≥ 0, when restricted
to the complement of Π∗,α1 (t), (Π∗,α(s)s≥t) is an α-self-similar fragmentation process,
while the second one comes from the Poissonian construction.

Let us give an alternate description of T ∗ which we will use here. Let (∆(t))t≥0 be a
Poisson point process with intensity measure κ∗ν , and, for all t ≥ 0, ξ(t) = e−ct

∏
s≤t |∆(s)|.

From this we define the usual time-change: for all t ≥ 0, τ(t) = inf{u,
∫ u

0
ξ(t)−αdr > t}.

The tree T ∗ is then made of a spine of length T = τ−1(∞) on which we have attached
many small independent copies of T . More precisely, for each t such that (∆(s))s≥0

has an atom at time τ(t), we graft on the spine at height t a number of trees equal
to the number of blocks of ∆(t) minus one (an infinite amount if ∆t has infinitely
many). These are indexed by j ≥ 2 and, for every such j, we graft precisely a copy

of
(

(ξ(t−)|∆j(t)|)−αT , (ξ(t−)|∆j(t)|)µ
)

, which will be called (T ′j,t, µ′j,t). All of these then

naturally come with their copy of µ∗ which we will call µ∗i,t. These can then all be added
to obtain a measure µ∗∗ on T , which satisfies, for all (i, t) ∈ T ∗,

µ∗∗(T ∗i,t+) = lim
s→∞

∑
j∈Π∗(τi(t)+s)∩rep(Π∗(τi(t)))

|Π∗j (t+ s)|p
∗
.

The measure µ∗∗ is the natural analogue of µ∗ on the biased tree.
We will need a Gromov-Hausdorff-type metric for trees with two extra marked points:

let (T , ρ, d) and (T ′, ρ′, d′) be two compact rooted trees, and then let (x, y) ∈ T 2 and
(x′, y′) ∈ (T ′)2. We now let the 2-pointed Gromov-Hausdorff d2

GH((T , x, y), (T ′, x′, y′)) be
equal to

inf
[

max
(
dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ′(ρ′)), dZ(φ(x), φ′(x′)), dZ(φ(y), φ′(y′))

)]
,

where the infimum is once again taken on all possible isometric embeddings φ and φ′ of
T and T ′ in a common space Z. Taking classes of such trees up to the relation d2

GH , we
then get a Polish space T2 which is the set of 2-pointed compact trees. For more details
in a more general context (pointed metric spaces instead of trees), the reader can refer
to [27], Section 6.4.

Proposition 5.7. Let F be any nonnegative measurable function on T2. Then∫
T F (T , L, L′)µ∗(dL)µ∗(dL′) is a random variable, and we have

E

[∫
T

∫
T
F (T , L, L′)µ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗
F (T ∗, L1, L

′)µ∗∗(dL′)

]
.

Proof. As in the proof of Proposition 5.6, we let Πα
L be the fragmentation-like process

obtained by setting the leaf L as the new death point of the integer 1 in T , and then
we let ΠL be its homogeneous version. The other leaf L′ will be represented by a
sequence of integers (jαL′(t))0≤t<ht(L′) where, for all t with 0 ≤ t < ht(L′), jαL′(t) is the
smallest integer j 6= 1 such that (j, t) ≤ L′ in T ∗. We then let (jL′(t))t≥0 we the image of
(jαL′(t))0≤t≤ht(L′) through the reverse Lamperti transformation.

Notice that (T , L, L′) is the image of (ΠL(t), jL′(t))t≥0 by a measurable function. In-
deed, going back to the representation in `1 of our trees, T is no more than TREE(Πα

L),
L1 is Q1, while L′ is the limit as t goes to infinity of QjL′ (t).
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Thus, with some renaming, we now just need to check that, if F is a nonnegative
measurable function on the space of PN×N-valued càdlàg functions (equipped with the
product σ-algebra generated by the evaluation functions), then

∫
T F ((ΠL(t), jL′(t))t≥0)µ∗(dL)µ∗(dL′)

is a random variable, and

E

[∫
T

∫
T
F
(

(ΠL(t), jL′(t))t≥0

)
µ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗
F
(

(Π∗(t), jL′(t)
)
t≥0

)µ∗∗i,t(dL
′)

]
.

This will be done the same way as before: suppose that F is of the formK((π(s), j(s))0≤s≤t),
then one can write∫
T

∫
T
F ((ΠL(t), jL′(t))t≥0)µ∗(dL)µ∗(dL′) =

∫
T

∑
j

Wj(t),tK((ΠL(s), j(s))0≤s≤t)µ
∗(dL).

(In the right-hand side, j(s) denotes the smallest element of the block of ΠL(s) which
contains (ΠL(t))j .) By Proposition 5.6, this is a random variable, and we know that its
expectation is equal to

E∗

∑
j

|Π∗j (t)|p
∗
K((Π∗(s), j(s))0≤s≤t)

 = E∗
[∫
T ∗
F ((Π∗(t), jL′(t))t≥0)µ∗∗(dL′)

]
.

A monotone class argument similar to the one at the end of Proposition 5.6 ends the
proof.

6 The Hausdorff dimension of T
The reader is invited to read [17] for the basics on the Hausdorff dimension dimH of

a set, which we will not recall here.

6.1 The result

Theorem 6.1. Assume (H), that is that the function ψ takes at least one strictly neg-
ative value on [0, 1]. Then there exists a Malthusian exponent p∗ for (c, ν) and, almost
surely, on the event that Π does not die in finite time, we have

dimH(L(T )) =
p∗

|α|
.

If Π does die in finite time, then the leaves of T form a countable set, which has dimen-
sion 0.

The last statement is a consequence of Proposition 3.13: if Π does die in finite time,
then there are no proper leaves, which implies that every leaf of T is the death point of
some integer.

6.2 The lower bound

An elaborate use of Frostman’s lemma (Theorem 4.13 in [17]) with the measure µ∗

combined with a truncation of the tree similar to what was done in [20] will show that
dimH(L(T )) ≥ p∗

|α| almost surely when Π does not die in finite time.

6.2.1 A first lower bound

Here we assume that E[W ] = 1, and thus Π dies in finite time if and only if µ∗ is the

zero measure. We also assume the integrability condition
∫
S↓(
∑
i | log(si)|sp

∗

i )ν(ds) <∞
of Lemma 4.11.
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Lemma 6.2. Recall that p = sup{q ∈ R : φ∗(−q) > −∞}, and let also

A = sup{a ≤ p∗ :

∫
S↓

∑
i 6=j

sp
∗−a
i sp

∗

j ν(ds) <∞, } ∈ [0, p∗].

On the event where Π does not die in finite time, we have the lower bound:

dimH(L(T )) ≥
A ∧ (|α|+ p)

|α|
.

Proof. We want to apply Proposition 5.7 to the function F defined on the space T2

by F (T , ρ, d, x, y) = d(x, y)−γ1x 6=y. To do this we need to check that it is measurable,
which can be done by showing that d(x, y) is continuous. In fact, it is even Lipschitz-
continuous: for all (T , ρ, d, x, y) and (T ′, ρ′, d′, x′, y′) and any embeddings φ and φ′ of T
and T ′ in a common Z, we have

|d(x, y)−d′(x′, y′)| = |dZ(φ(x), φ(y))−dZ(φ′(x′), φ′(y′))| ≤ dZ(φ(x), φ′(x′))+dZ(φ(y), φ′(y′))

and then taking the infimum, we obtain

|d(x, y)− d′(x′, y′)| ≤ 2d2
GH

(
(T , x, y), (T ′, x′, y′)

)
.

Applying Proposition 5.7 to F , we then get

E

[∫
T

∫
T

(d(L,L′))−γµ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗

(d(L1, L
′))−γµ∗∗(dL′)

]
.

Recall the Poisson description of T ∗ of Section 5.4. Let, for all relevant j ≥ 2 and
t ≥ 0, Xj,t be the root of T ′j,t and Zj,t =

∫
T ′j,t

d(L′, Xk,t)
−γµ∗(dL′). One can then write

Zj,t =
(
ξ(t−)|∆j(t)|

)p∗+αγ
(Ij,t)

−γ where Ii,t is a copy of I (defined in the proof of Lemma
4.11) which is independent from the process (∆)t≥0 and all the other T ′k,s for (k, s) 6=
(j, t). Thus, the process (∆t, (Ij,t)j≥2)t≥0 is a Poisson point process whose intensity is
the product of κ∗ν and the law of an infinite sequence of i.i.d. copies of I. We then have

E∗
[∫

d(L1, L
′)γµ∗(dL′)

]
= E∗

∑
t≥0

∑
j≥2

∫
T ′j,t

d(L1, L
′)−γµ∗∗(dL′)


≤ E∗

∑
t≥0

∑
j≥2

∫
T ′j,t

d(L′, Xi,t)
−γµ∗∗(dL′)


= E∗

∑
t≥0

∑
j≥2

(
ξ(t−)|∆j(t)|

)p∗+αγ
(Ij,t)

−γ


= Q

[
I−γ ]E∗

[ ∫
ξp
∗+αγ
t− dt

] ∫
S↓

∑
i

sp
∗

i

∑
j 6=i

sp
∗+αγ
j ν(ds).

The last equality directly comes from the Master Formula for Poisson point processes.
We have a product of three factors, and we want to know when they are finite. The

case of the first factor has already been studied in Lemma 4.11, we know that it is finite
when γ < 1 +

p

|α| . For the second factor to be finite we simply need φ∗(p∗ + αγ) > 0,

which is true as soon as p∗ + αγ > 0 i.e. when γ < p∗

|α| . Finally, by definition of A, the

third factor is finite as soon as γ < A
|α| . Since A ≤ p∗ by definition, Frostman’s lemma

implies Lemma 6.2.
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6.2.2 A reduced fragmentation and the corresponding subtree

Let N ∈ N and ε > 0, we define a function GN,ε from S↓ to S↓ by

GN,ε(s) =

{
(s1, . . . , sN , 0, 0, . . .) if s1 ≤ 1− ε
(s1, 0, 0, . . .) if s1 > 1− ε.

A similar function can be defined on partitions on PN. If a partition π does not have
asymptotic frequencies (a measurable event which doesn’t concern us), we letGN,ε(π) =

π. If it does, we first reorder its blocks by decreasing order of their asymptotic frequen-
cies by letting, for all i, π↓i be the block with i-th highest asymptotic frequency (if there
is a tie, we just rank those blocks by increasing order of their first elements). Then we
let

GN,ε(π) =

{
(π↓1 , . . . , π

↓
N , singletons) if |π↓1 | ≤ 1− ε

(π↓1 , singletons) if |π↓1 | > 1− ε.

We let νN,ε be the image of ν by GN,ε. Then the image of kν by GN,ε on PN is kνN,ε .
The following is immediate.

Proposition 6.3. Let (∆t, kt)t≥0 be a Poisson point process with intensity kν ⊗#, then
(GN,ε(∆t), kt)t≥0 is a Poisson point process with intensity kνN,ε ⊗ #. Using them, one
gets two coupled fragmentation processes (Π(t))t≥0 and (ΠN,ε(t))t≥0 such that, for all
t, ΠN,ε(t) is finer than Π(t). Also, TN,ε, the tree built from (ΠN,ε(t))t≥0, is naturally a
subset of T .

6.2.3 Using the reduced fragmentation

Recall the concave function ψ defined from R to [−∞,+∞) by

ψ(p) = cp+

∫
S↓

(1−
∑
i

spi )ν(ds).

We now assume (H): there exists p > 0 such that −∞ < ψ(p) < 0.

Proposition 6.4. For N ∈ N ∪ {∞}, ε ∈ [0, 1] and p ∈ R, define the reduced Laplace
exponent ψN,ε(p) = cp+

∫
S↓(1−

∑
i s
p
i )νN,ε(ds). One can then write

ψN,ε(p) = cp+

∫
S↓

((
1−

N∑
i=1

spi

)
1{s1≤1−ε} + (1− sp1)1{s1>1−ε}

)
ν(ds).

(i) This is a nonincreasing function of N and a nondecreasing function of ε.
(ii) We have ψ(p) = inf

N,ε
ψN,ε(p).

(iii) There exist N0 and ε0 such that, for N > N0 and ε < ε0, the pair (c, νN,ε) satisfies
(H) and has a Malthusian exponent p∗N,ε.

(iv) We have p∗ = sup
N,ε

p∗N,ε.

Proof. The first point is immediate. The second one is a straightforward application of
the monotone convergence theorem as N tends to infinity and ε tends to 0, which is
valid because we have, for all s, the upper bound(

1−
N∑
i=1

spi

)
1{s1≤1−ε} + (1− sp1)1{s1>1−ε} ≤ (1− sp1) ≤ Cp(1− s1),

and (1− s1) is ν-integrable.
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The third point is a direct consequence of the second: let p ∈ [0, 1] such that ψ(p) < 0,
there exist N0 and ε0 such that ψN0,ε0(p) < 0. Then by monotonicity, for all N > N0 and
ε < ε0, ψN,ε(p) < 0 and thus νN,ε has a Malthusian exponent p∗N,ε.

Now for the last point: first notice that, for all N and ε, we have φN,ε(p∗) ≥ φ(p∗) = 0

and thus, if it exists, p∗N,ε is smaller than or equal to p∗. Then, for p < p∗, by taking N

large enough and ε small enough, we have ψN,ε(p) < 0 and thus p∗N,ε ≥ p. This concludes
the proof.

Proposition 6.5. For all N and ε such that p∗N,ε exists, and for all q > 1, the measure

νN,ε satisfies assumption (Mq):
∫
S↓ |1−

∑∞
i=1 s

p∗N,ε
i |q νN,ε(ds) <∞.

Proof. It is simply a matter of bounding (1 −
∑N
i=1 s

p∗N,ε
i )1s1≤1−ε + (1 − sp

∗
N,ε

1 )1s1>1−ε in
such a way that both the upper and lower bound’s absolute values have an integrable
q-th power. For the upper bound, write(

1−
N∑
i=1

s
p∗N,ε
i

)
1{s1≤1−ε} + (1− sp

∗
N,ε

1 )1{s1>1−ε} ≤ 1− sp
∗
N,ε

1 ≤ Cp∗N,ε(1− s1)

and since q > 1, we can bound (1 − s1)q by 1 − s1 which is integrable. For the lower
bound, write(

1−
N∑
i=1

s
p∗N,ε
i

)
1{s1≤1−ε} + (1− sp

∗
N,ε

1 )1{s1>1−ε} > (1−N)1{s1≤1−ε}

and then note that, since ν integrates 1− s1, the set {s1 ≤ 1− ε} has finite measure.

Proposition 6.6. Let N, ε be such that p∗N,ε exists. Let then AN,ε and p
N,ε

correspond-

ing quantities to A and p (see Lemma 6.2), replacing ν by νN,ε. Then AN,ε = p∗N,ε and
p
N,ε
≥ p∗N,ε.

Proof. The important fact to note here is that, since 1− s1 is integrable with respect to
ν, we have ν({s1 ≤ 1− ε}) <∞. Now notice that, for all p < p∗N,ε, we have∫
S↓

∞∑
i=1

(1− s−pi )s
p∗N,ε
i νN,ε(ds) = cp∗N,ε +

∫
S↓

(
1−

∞∑
i=1

s
p∗N,ε−p
i

)
νN,ε(ds)

= cp∗N,ε +

∫
S↓

(
1−

N∑
i=1

s
p∗N,ε−p
i 1{s1≤1−ε} + (1− sp

∗
N,ε−p

1 )1{s1>1−ε}

)
ν(ds)

≥ cp∗N,ε − (N − 1)ν({s1 ≤ 1− ε})
> −∞.

This shows that p
N,ε
≥ p∗N,ε. Similarly, for a < p∗N,ε, we have∫

S↓

∑
i 6=j

s
p∗N,ε−a
i s

p∗N,ε
j νN,ε(ds) =

∫
S↓

∑
i 6=j≤N

s
p∗N,ε−a
i s

p∗N,ε
j 1{s1≤1−ε}ν(ds)

≤ N2ν({s1 ≤ 1− ε})
<∞.

Thus AN,ε = p∗N,ε

By applying Lemma 6.2 for N tending to infinity and ε going to 0 (recall that (Mq)

does imply E[W ] = 1), we immediately obtain the following:
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Proposition 6.7. Assume (H). Then, on the event where at least one of the ΠN,ε does
not die in finite time, we almost surely have

dimH(T ) ≥
supN,ε p

∗
N,ε

|α|
=
p∗

|α|
.

Thus, to complete our proof, we want to check the following lemma:

Lemma 6.8. Almost surely, if Π does not die in finite time, then for N large enough
and ε small enough, ΠN,ε also does not.

Proof. We will argue using Galton-Watson processes. Let, for all integers n, Z(n) be
the number of non-singleton and nonempty blocks of Π(n) and, for all N and ε, ZN,ε(n)

be the number of non-singleton and nonempty blocks of ΠN,ε(n). These are Galton-
Watson processes, which might take infinite values. We want to show that, on the event
that Z doesn’t die, there exist N and ε such that ZN,ε also survives. By letting q be
the extinction probability of Z and qN,ε be the extinction probability of ZN,ε, this will
be proved by showing that q = inf

N,ε
qN,ε. By monotonicity properties, this infimum is

actually equal to q′ = lim
N→∞

qN, 1
N

.

Assume that q < 1 (otherwise there is nothing to prove). This implies that E[Z(1)] >

1, and by monotone convergence, there exists N such that E[ZN, 1
N

(1)] > 1, and thus

qN, 1
N
< 1. Let, for x ∈ [0, 1], F (x) = E[xZ(1)] and, for all N and ε, FN,ε(x) = E[xZN,ε(1)].

The sequence of nondecreasing functions (FN, 1
N

)N∈N converges simply to F . Since F is
continuous on the compact interval [0, qN, 1

N
], the convergence is in fact uniform on this

interval. We can take the limit in the relation FN, 1
N

(qN, 1
N

) = qN, 1
N

and get F (q′) = q′.
Since q′ < 1 and since F only has two fixed points on [0, 1] which are q and 1, we obtain
that q = q′.

We have thus proved the lower bound of Theorem 6.1: assuming (H), almost surely,
if Π does not die in finite time, then dimH(L(T )) ≥ p∗

|α| .

6.3 Upper bound

Here we will not need the existence of an exact Malthusian exponent, and we will
simply let

p′ = inf
{
p ≥ 0, ψ(p) ≥ 0

}
.

Proposition 6.9. We have almost surely

dimH
(
L(T )

)
≤ p′

|α|
.

This statement is in fact slightly stronger than the upper bound of Theorem 6.1. In
particular it states that, if there exists p ≤ 0 such that ψ(p) ≥ 0, then the Hausdorff
dimension of the set of leaves of T is almost surely equal to zero.

Proof. We will find a good covering of the set of proper leaves, in the same spirit as in
[20], but which takes account of the sudden death of whole fragments. Let ε > 0. For
all i ∈ N, let

tεi = inf{t ≥ 0 : |Π(i)(t)| < ε}.

Note that this is in fact a stopping line as defined in section 2.1.4. We next define
an exchangeable partition Πε by saying that integers i and j are in the same block if
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Π(i)(t
ε
i ) = Π(j)(t

ε
j). This should be thought of as the partition formed by the blocks of Π

the instant they get small enough. Now, for all integers i, consider

τε(i) = sup
j∈Π(i)(t

ε
i )

inf{t ≥ tεi : |Π(j)(t)| = 0} − tεi ,

the time this block has left before it is completely reduced to dust. This allows us to
define our covering. For all integers i, we let bεi be the vertex of [0, Qi] at distance tεi
from the root. We take a closed ball with center bεi and radius τε(i). These balls are the
same if we take two integers in the same block of Πε, so we will only need to consider
one integer i representing each block of Πε.

Let us check that this covers all of the proper leaves of T . Let L be a proper leaf and
(i(t))0≤t≤ht(L) be any sequence of integers such that, for all 0 ≤ t ≤ ht(L), (i(t), t) ≤ L

in T . By definition of a proper leaf, |Π(i(t))(t)| does not suddenly jump to zero, so there
exists a t < ht(L) such that 0 < |Π(i(t))(t)| ≤ ε. This implies that L is in the closed ball
centered at bεi(t) with radius τε(i(t)).

The covering is also fine in the sense that supi τ
ε
i goes to 0 as ε goes to 0; indeed, if

that wasn’t the case, one would have a sequence (in)n∈N and a positive number η such
that τ2−n

in
≥ η for all n. By compactness, one could then take a limit point x or a sequence

(b2
−n

in
)n∈N , and we would have µ(Tx) = 0 despite x not being a leaf, a contradiction.

Now, for 0 < γ ≤ 1, we have, summing one integer i per block of Πε, and using the
extended fragmentation property with the stopping line (tεi )i∈N,

E

 ∑
i∈rep(Πε)

(τε(i))
γ
|α|

 ≤ E
 ∑
i∈rep(Πε)

E
[
τγ/|α|

]
|Πε

(i)|
γ


≤ E

[
τγ/|α|

]
E

 ∑
i∈rep(Πε)

|Πε
(i)|

γ

 .
Since τ has exponential moments (see [19], Proposition 14), the first expectation is finite
and we only need to check when the second one is finite. Since Πε is an exchangeable
partition, we know that, given its asymptotic frequencies, the asymptotic frequency of
the block containing 1 is a size-biased pick among them and we therefore have

E

[∑
i

|Πε
i |γ
]

= E
[
|Πε

1|γ−11{|Πε1|6=0}
]

= E
[
|Π1(Tε)|γ−11{|Π1(Tε)|6=0}

]
≤ E

[
|Π1(T−0 )|γ−1

]
,

where Tε = inf{t, |Π1(t)| ≤ ε} and T0 = inf{t, |Π1(t)| = 0}. Now recall that, up to a
time-change which does not concern us here, the process (|Π1(t)|t≥0) is the exponential
of the opposite of a killed subordinator (ξ(t))t≥0 with Laplace exponent φ. This last
expectation can be easily computed: let k be the killing rate of ξ and φ0 = φ − k, φ0 is
then the Laplace exponent of a subordinator ξ′ which evolves as ξ, but is not killed. By
considering an independent random time T following the exponential distribution with
parameter k and killing ξ′ at time T , one obtains a process with the same distribution
as ξ. We thus have

E[e−(γ−1)ξT− ] = E[e−(γ−1)ξ′
T− ] =

∫ ∞
0

ke−kte−t(φ0(γ−1))dt =

∫ ∞
0

ke−φ(γ−1)tdt.

Thus, if ψ(γ) > 0, then γ
|α| is greater than the Hausdorff dimension of the leaves of

T .
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7 Some comments and applications

7.1 Comparison with previous results

In [20], the dimension of some conservative fragmentation trees was computed. The
result was, as expected, 1

|α| , but this was obtained with very different assumptions on
the dislocation measure:

Proposition 7.1. Let ν be a conservative dislocation measure, α < 0, and let T be a
fragmentation tree with parameters (α, 0, ν). Assume that ν satisfies the assumption
(H′) which we define by ∫

S↓
(s−1

1 − 1)ν(ds) <∞.

Then, almost surely, we have

dimH(L(T )) =
1

|α|
.

This result complements ours - neither (H) nor (H′) is stronger than the other, which
we are going to show by producing two corresponding examples.

For all n ≥ 2, let sn1 = 1− 1
n and, for i ≥ 2, sni = S

n
1

i(log(i))2 , where S =
(∑∞

i=2
1

(i(log(i))2)

)−1

(this ensures that
∑
i s
n
i = 1). Let then sn = (sni )i∈N ∈ S↓ and

ν1 =
∑
n≥2

1

n
δsn .

We will show that this σ-finite measure on S↓ is a dislocation measure which satisfies
(H′) but not (H). First,

∫
S↓(1 − s1)ν1(ds) =

∑
n≥2

1
n2 < ∞ so we do have a dislocation

measure. Next, let us check (H′):∫
S↓

(s−1
1 − 1)ν1(ds) =

∑
n≥2

1

n
(

n

n− 1
− 1) =

∑
n≥2

1

n(n− 1)
<∞.

Finally, (H) is not verified: indeed, for any p < 1, n ≥ 2 and i ≥ 2, (sni )p = Sp

np

(
i(log(i))2

)−p
which is the general term of a divergent series.

Now we are going to do the same on the other side. For all n ∈ N, let tn1 = 1
n and,

for i ≥ 2, let tni = T (1 − 1
n ) 1

i2 , where T =
(∑∞

i=2( 1
i2 )
)−1

. Since tn2 > tn1 for large n,
the sequence tn = (tni )i∈N is not a mass partition (despite its sum being equal to 1),

and we will solve this problem by splitting its terms. Let N(n) =
⌈
tn2
tn1

⌉
, and then let

un = (uni )n∈N ∈ S↓ such that un1 = tn1 and, for i ≥ 2, uni =
tnk
N(n) where k is such that

i ∈ {(k − 2)N(n) + 2, . . . , (k − 1)N(n) + 1}. In other words, un starts with tn1 , and then
every term of tn is divided by N(n) and repeated N(n) times. Now let us define

ν2 =
∑
n∈N

1

n2
δun .

The measure ν2 integrates 1−s1 since it is finite, but
∑
n∈N

1
n2 ( 1

tn1
−1) =

∑
n∈N

1
n −

1
n2 =

∞, so (H′) is not verified. On the other hand, for any p < 1, we have∫
S↓

∑
i

sp
∗

i ν2(ds) =
∑
n∈N

1

n2

 1

np
+N(n)

(T (1− 1
n )

N(n)

)p(∑
i≥2

1

i2p
) ,

which is finite as soon as p > 1
2 , since N(n) is asymptotically equivalent to Tn

4 as n goes
to infinity. Thus ν2 satisfies (H).
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7.2 Influence of parameters on the Malthusian exponent

We will here investigate what happens when we change some parameters of the
fragmentation process. We start with a "basic" function ψ to which we will add either a
constant (which amounts to increasing ν({(0, 0, . . .)}) ) or a linear part (which amounts
to adding some erosion). We let p0 = inf{p ≥ 0, ψ(p) > −∞}. We also exclude the trivial
case where ν(s2 > 0) = 0, where the tree is always a line segment.

7.2.1 Influence of the killing rate

We assume here that ν((0, 0, . . .)) = 0, which implies that ψ(0) < 0, while we do not
make any assumptions on the erosion parameter c ≥ 0. We will quickly study how
the Malthusian exponent changes when we add to ν a component of the form kδ(0,0,...)
with k ≥ 0. Let therefore, for k ≥ 0, νk = ν + kδ(0,0,...) and, for p ∈ R, ψk(p) =

cp+
∫
S↓(1−

∑
i s
p
i )νk(ds) = ψ(p)+k and, if it exists, p∗(k) the only number in (0, 1] which

nulls the function ψk.

Proposition 7.2. Assume (H) for (c, ν), that is ψ(p+
0 ) < 0, and let kmax = |ψ(p+

0 )|. Then,
for k ∈ [0, kmax), the pair (c, νk) also satisfies (H). Letting p∗(kmax) = p0 (though it is not
a Malthusian exponent in our sense when p0 = 0), the function p∗(k) on [0, kmax] is the
inverse function of −ψ. It is thus strictly decreasing and is differentiable as many times
as ψ. For k ≥ kmax, (H) is no longer satisfied (in fact there is no Malthusian exponent
if k > kmax), however we have in this case p0 = inf{p ≥ 0, ψk(p) ≥ 0} which is the
equivalent of p′ in Section 6.3.

7.2.2 Influence of erosion

Here we do not make any assumptions of ν, and let, for nonnegative c and any p, ψc(p) =

cp+
∫
S↓(1−

∑
i s
p
i )ν(ds). Note that, unlike in the previous section, the standard coupling

between (α, c, ν)-fragmentations of Section 2.1.3 for all c ≥ 0 is such that, almost surely,
if for one c, Π0,c dies in finite time, then Π = Π0,c dies in finite time for all c. Thus,
placing ourselves on the event where they do not die in a finite time, and calling Tc =

TREE(Πα,c), we have dimH(L(Tc)) = p∗(c)
|α| , p∗(c) being the corresponding Malthusian

exponent.

Proposition 7.3. Assume (H) for (0, ν), that is ψ(p+
0 ) < 0. If p0 = 0 then the couple

(c, ν) satisfies (H) for all c, and its Malthusian exponent p∗(c) tends to zero as c tends to
infinity with the following asymptotics:

p∗(c) ∼
c→∞

|ψ(0)|
c

.

If p0 > 0, then (c, ν) satisfies (H) for c < cmax with cmax =
|ψ(p+

0 )|
p0

. By setting p∗(cmax) = p0,
the function c → p∗(c) is decreasing and is differentiable as many times as ψ is. For
c ≥ cmax (H) is no longer satisfied, however we do have p0 = inf{p ≥ 0, ψk(p) ≥ 0}.

7.3 An application to the boundary of Galton-Watson trees

In this part we generalize some simple well-known results on the boundary of dis-
crete Galton-Watson trees (see for example [23]) to trees where the lifetime of an in-
dividual is exponentially distributed. Unsurprisingly, the Hausdorff dimension of this
boundary is the same in both cases.

Let ξ =
∑
piδi be a probability measure onN∪{0} which is supercritical in the sense

that m =
∑
i ipi > 1. Let T be a Galton-Watson tree with offspring distribution ξ and

such that the individuals have exponential lifetimes with parameter 1. Seeing T as an
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R-tree, we define a new metric on it by changing the length of every edge: let a ∈ (1,∞)

and e be an edge of T connecting a parent and the child, we define the new length of
e to be the old length of e times a−n, where the parent is in the n-th generation of the
Galton-Watson process. We let d′ be this new metric.

The metric completion of (T , d′) can then be seen as T ∪ ∂T where ∂T are points at
the end of the infinite rays of T .

Proposition 7.4. On the event where T is infinite, we have

dimH(∂T ) =
logm

log a
.

Proof. We start with the case where there exists N ∈ N such that, for i ≥ N + 1, pi = 0.
We aim to identify (T , d′) as a fragmentation tree and apply Theorem 1.1. To do this,
we first have to build a measure µ on it, as usual with Proposition 2.7. Let x ∈ T , and
let n be its generation, we then let m(x) = 1

Nn . What this means is that the mass of the
whole tree is 1, then each of the subtrees spawned by the death of the initial ancestor
have mass 1

N , then the death of each of these spawns trees with mass 1
N2 , and so on.

We leave to the reader the details of the proof that (T , d′, µ) is a fragmentation
tree, the corresponding parameters being c = 0, α = − log a

logN and ν =
∑
piδsi , with

si = (si1, s
i
2, . . .) such that sij = 1

N if j ≤ i and sij = 0 otherwise. One method of proof
would be to couple T with an actual (α, 0, ν)-fragmentation process which would be
obtained by constructing the death points one by one, following the tree and choosing a
branch uniformly at each branching point, which is possible since the branching points
of T form a countable set.

We then just need to compute the Malthusian exponent and check condition (H). We

are looking for a number p∗ such that
∫
S↓(1−

∑N
i=1 s

p∗

i )ν(ds) = 0. This can be rewritten:

∫
S↓

(1−
N∑
j=1

sp
∗

j )ν(ds) =
∑
i

pi(1− i
1

Np∗
)

= 1− m

Np∗
.

Thus we have p∗ = logm
logN . Condition (H) is also easily checked, since ψ(0) = 1−m < 0

and we thus get

dimH(∂T ) =
p∗

|α|
=

logm

log a
.

The proof in the general case is once again done with a truncation argument, as
in Section 6.2.3: once again leaving the details, we let, for all N ∈ N, ξN be the law
of X ∧ N where X has law ξ. The monotone convergence theorem shows that the
average of ξN converges to that of ξ, and the tree T with offspring distribution ξ can be
simultaneously coupled with trees (TN )N∈N with offspring distributions (ξN )N∈N, such
that T has finite height (for its original metric) if and only if all the (TN )N∈N also do.

Appendices

A Proof of Proposition 2.7

We will want to apply a variation of Caratheodory’s extension theorem to a natural
semi-ring of subsets of the tree T which generates the Borel topology. The reader is
invited to look in [13] for definitions and its Theorem 3.2.4 which is the one we will use.
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Definition A.1. Let x ∈ T , and C be a finite subset of Tx. We say that C is a pre-cutset
of Tx if x ≤ y for all y ∈ C and none of the elements of C are on the same branch as
another. We then let B(x,C) = Tx \

⋃
y∈C
Ty. Such a set is called a pre-ball. We let B be

the set of all pre-balls of T .

Note that any set of the form Tx \
⋃
i∈[k]

Txi is a pre-ball, even if one does not specify

that {xi, i ∈ [k]} is a pre-cutset of Tx. Indeed, if x is not on the same branch as xi for
some i, then we can remove this one from the union, if we have xi ≤ x for some i then
we have just written the empty set, and, if for some i 6= j, we have xi ≤ xj , we might as
well remove xj from the union. All these removals leave us with a pre-cutset of Tx. Also
note that, given a pre-ball B, there exists a unique x ∈ T and a unique finite pre-cutset
C which is unique up to reordering such that B = B(x,C).

Lemma A.2. B is a semi-ring which contains all the Tx for x ∈ T , and it generates the
Borel σ-field of T .

Proof. The fact that D contains all the sets of the form Tx for x ∈ T , as well as the empty
set, is in the definition. Stability by intersection is easily proven: let B

(
x, (xi)i∈[k]

)
and

(
y, (yi)i∈[l]

)
be two pre-balls. If x and y are not on the same branch, then the

intersection is the empty set, and otherwise, we can assume y ≥ x, and we are left with
Tx \ (

⋃
i∈[k]

Txi ∪
⋃
j∈[l]

Tyj ) which is indeed a pre-ball.

Now let B
(
x, (xi)i∈[k]

)
and B

(
y, (yi)i∈[l]

)
be two pre-balls, we want to check that

B
(
x, (xi)i∈[k]

)
\
(
y, (yi)i∈[l]

)
is a finite union of disjoint pre-balls. Exceptionally, we will

write here for any subset A of T , Ā = T \A, for clarity’s sake. We have:

B
(
x, (xi)i∈[k]

)
∩B

(
y, (yi)i∈[l]

)
= Tx ∩

⋂
i∈[k]

T̄xi ∩ (T̄y ∪
⋃
y∈[l]

Tyi)

= (Tx ∩ T̄y ∩
⋂
i∈[k]

T̄xi) ∪
⋃
y∈[l]

(Tx ∩ Tyi ∩
⋂
i∈[l]

T̄xi).

Since for every i, Tx ∩ Tyi is either equal to Tx or Tyi , we do have a finite union of
pre-balls. This union is also disjoint, because T̄y, Ty1

, . . . , Tyl are all disjoint.

Finally, we want to check that D does indeed span the Borel σ-field of T , which
will be proven by showing that every open ball in T is the intersection of a countable
amount of pre-balls. Let x ∈ T and r ≥ 0, and let B the closed ball centered at x with
radius r. Let y be the unique ancestor of x such that ht(y) = (ht(x)− r) ∨ 0. Since Ty is
compact and B ∈ Ty is open, we know that Ty \B has a countable amount of closed tree
components, which we will call (Txi)i∈N. Writing out B =

(
Ty \ ∪

i∈N
Txi
)
\ {y} then shows

that it is indeed a countable intersection of pre-balls. As a consequence, there exists at
most one measure on T such that µ(Tx) = m(x) for all x ∈ T : uniqueness in Proposition
2.7 is proven.

Lemma A.3. For every x ∈ T and every finite pre-cutset C, we let

µ(B(x,C)) = m(x)−
∑
y∈C

m(y).

This defines a nonnegative function on D which is σ-additive.

Proof. Let us first prove the positivity of µ. This can be done by induction on the number
of elements k in the pre-cutset C = {xi, i ∈ [k]} of Tx. If k = 0 then there is nothing to
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do, µ(B(x, ∅)) = m(x) ≥ 0 by definition. Now assume k ≥ 1 and that the positivity has
been proved for k−1. Let y be the greatest common ancestor of all the (xi)i∈[k], we have

x ≤ y, and thus m(x) ≥ m(y), and it will suffice to prove m(y) −
∑k
i=1m(xi) ≥ 0. The

set Ty \ {y} has a finite, but strictly greater than 1 number of connected components
which contain the points (xi)i∈[k], let us call them C1, . . . , Cl, with 1 ≤ l ≤ k. Since every
Cl contains at most l − 1 ≤ k − 1 elements from the (xi)i∈[k], one can use the induction
hypothesis in every Cj: for all j, let yj ∈ Cj be such that, for all i such that xi ∈ Cj ,
yj ≤ xi, then we have m(yj) ≥

∑
i: xi∈Cj

m(xi). Now, by letting every yj converge to y, we

end up with
m(y) ≥ m(y+) ≥

∑
j

lim
yj→y+

m(yj) ≥
∑
i

m(xi)

which ends the proof of the positivity of µ.

The proof that µ is σ-additive on D will be done in three steps. First, we will prove
that it is finitely additive, i.e. that, if a pre-ball can be written as a finite disjoint union
of pre-balls, then the µ-masses add up properly. Next, we will prove that it is finitely
subadditive, which means that if a pre-ball B can be written as a subset of the finite
union of other pre-balls B1, . . . , Bn, we have µ(B) ≤

∑
i µ(Bi). The σ-additivity itself will

then be proved by proving both inequalities separately.
First, we want to show that µ is finitely additive, i.e. that if a pre-ballB = B

(
x, (xi)i∈[k]

)
can be written as the disjoint union of pre-balls Bj = B

(
xj , (xji )i∈[kj ]

)
for 1 ≤ j ≤ n, we

have µ(B) =
∑
j µ(Bj). Note that since D is not stable under union, one cannot simply

prove this for n = 2 and then do a simple induction. We will indeed do an induction on n,
but it will be a bit more involved. The initial case, n = 1 is immediate. Now assume that
n ≥ 2 and that, for every pre-ball which can be written as the disjoint union of fewer
than n−1 pre-balls, the masses add up, and let B = B

(
x, (xi)i∈[k]

)
be a pre-ball which is

the union of Bj = B
(
xj , (xji )i∈[kj ]

)
for 1 ≤ j ≤ n. We are first going to show that we can

restrict ourselves to the case where B = Tx. To do this, first notice that, since the union
is disjoint, for every i with 1 ≤ i ≤ k, there is only one j, which we will call j(i), such
that xi is in the set {xjp, p ∈ [kj ]}. Thus, if we add Txi to the pre-ball Bj(i) and do this
for all i, the result is that Tx (which is none other than B ∪ ∪

1≤i≤k
Txi) is written as the

disjoint union of pre-balls Aj = Bj ∪ ∪
i:j(i)=j

Txi . Since µ(Tx) = µ(B) +
∑k
i=1m(xi) and,

for all j, µ(Aj) = µ(Bj) +
∑

i:j(i)=j

m(xi), it suffices consider the case when B = Tx. By

reordering, one can also assume that x1 = x. Now, for every i with 1 ≤ i ≤ k1, consider
the pre-balls Bj with j such that x1

i ≤ xj . These are disjoint, and their union is none
other than Tx1

i
, and they are strictly less than n in number. The induction hypothesis

then tells us that µ(Tx1
l
) is the sum of µ(Bj) for such j. Repeat this for all i, and we get∑n

j=2 µ(Bj) =
∑k1

i=1 µ(Tx1
i
) = µ(Tx)− µ(B1), which is what we wanted.

Now we go on to µ’s finite subadditivity. This can actually be proven with pure
measure theory. Let B be a pre-ball and B1, . . . , Bn be pre-balls such that B ⊂ ∪

i∈[n]
Bi.

Let us first start with the case where n = 1, in other words, let us show that µ is
nondecreasing: since D is a semi-ring, B1 \ B can be rewritten as a finite disjoint of
pre-balls C1, . . . , Ck, and by finite additivity, we have µ(B1) = µ(B) +

∑
j µ(Cj) ≥ µ(B).

Now, going back to the general case, one can assume that for every i, we have Bi ⊂ B,
because if it is not the case, one can replace Bi by Bi ∩B. Now, consider the sequence
Ci defined by C1 = B1 and, for i ≥ 2, Ci = Bi\(B1∪B2 . . .∪Bi−1). Since D is a semi-ring,
every Bi can be written as the disjoint union of a finiteamount of pre-balls: for every

i, there exists disjoint pre-balls D1(i), . . . , Dk(i)(i) such that Ci =
k(i)
∪
j=1

Dj(i). By finite
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additivity, we then have µ(B) =
∑n
i=1

∑k(i)
j=1 µ(Dj(i)). Now all that is left to do is show

that, for all i, we have
k(i)∑
j=1

µ(Dj(i)) ≤ µ(Bi), which is immediate because Bi \ (
k(i)
∪
j=1

Dj(i))

is a disjoint finite union of pre-balls.
Finally, we can move on to µ’s σ-additivity . Assume that a pre-ballB = B

(
x, (xi)i∈[k]

)
can be written as the disjoint union of pre-balls Bj = B

(
xj , (xji )i∈[kj ]

)
for j ∈ N. Let

us first prove the easy inequality µ(B) ≥
∑
i µ(Bi). Fix n ∈ N, since B is a semi-ring,

the set B \ ( ∪
1≤i≤n

Bi) is a finite disjoint union of pre-balls, which we will call C1, . . . , Ck.

By finite additivity, we have µ(B) =
∑n
i=1 µ(Bi) +

∑k
j=1 µ(Cj) ≥

∑n
i=1 µ(Bi), and we

just need to take the limit. To prove the reverse inequality, we will slightly modify our
sets so that we can get a open cover of a compact set, and bring ourselves back to
the finite case. Let ε > 0. For every j such that xj 6= ρ (and ε small enough), let
xj(ε) be an ancestor of xj such that m(xj(ε)) −m(xj) ≤ ε2−j−1, and if xj = ρ we keep
xj(ε) = ρ. In the same vein, for 1 ≤ i ≤ k, we choose an ancestor xi(ε) such that
m(xi(ε))−m(xi) ≤ 1

k , and such that (xi(ε))i∈[k] is still a pre-cutset of Tx. Now consider,

for every j, the open set Dj which is equal to B
(
xj(ε), (xji )i∈[kj ]

)
\ {xj(ε)} if xj 6= ρ, and

equal to Bj otherwise. These form a cover of B
(
x, (xi(ε))i∈[k]

)
and therefore also cover

its closure, B
(
x, (xi(ε))i∈[k]

)
∪

⋃
1≤i≤k

{xi(ε)}. Since T is compact, B
(
x, (xi(ε))i∈[k]

)
can

be covered by a finite amount of the Dj , which we can assume are D1, . . . , Dn. We can
then use finite subadditivity:

µ(B) = m(x)−
k∑
i=1

m(xi) ≤ m(x)−
k∑
i=1

m(xi(ε)) + ε

≤ µ(B(x, (xi(ε))i∈[k])) + ε ≤
n∑
j=1

µ(Dj) + ε

≤
∞∑
j=1

µ(Dj) + ε ≤
∞∑
j=1

(
µ(Bj) + ε2−j−1

)
+ ε

≤
∞∑
j=1

µ(Bj) + 2ε.

This gives us our final inequality.

Theorem 3.2.4 of [13] ends the proof of Proposition 2.7.

B Possibly infinite Galton-Watson processes

The purpose of this section is to extend the most basic results from the theory of
discrete time Galton-Watson processes to the case where one parent may have an infi-
nite amount of children. We refer to [21] for the classical results. Let Z be a random
variable taking values inN∪{0}∪{∞} with P (Z ≥ 1) 6= 1, and (Zin)i,n∈N be independent
copies of Z. Let also, for x ≥ 0, F (x) = E[xZ ]. We define the process (Xn)n∈N by X1 = 1

and, for all n, Xn+1 =
∑Xn
i=1 Z

i
n.

Proposition B.1. The following are all true:
(i) Almost surely, X either hits 0 in finite time or tends to infinity.
(ii) If X hits the infinite value once, then it stays there almost surely.
(iii) If E[Z] > 1 then the function F has two fixed points on [0, 1]: one is the proba-

bility of extinction q, and the other is 1. If E[Z] ≤ 1 then q = 1 and F only has one fixed
point.
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Proof. The proof of (i) is the same proof as in the classical case. For (ii), it is only
a matter of seeing that, if we have Xn = ∞ for some n, then P (Z = 0) 6= 1 and
E[Z] > 0, thus Xn+1 is infinite by the law of large numbers. For (iii), in the case
where P (Z = ∞) 6= 0, we first show that q 6= 1 by taking an integer k such that
E[min(Z, k)] > 1, and noticing that X dominates the classical Galton-Watson process
where we have replaced, for all n and i, Zin by min(Zin, k), which is supercritical and
thus has an extinction probability which is different from 1. Then, the fact that q is a
fixed point of F and that F has at most two fixed points on [0, 1] are proved the same
way as in the classical case.
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