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Abstract

In this paper we present a new local Lévy Central Limit Theorem, showing conver-
gence to stable states that are not necessarily the Gaussian, and use it to find new
and intuitive entropically chaotic families with underlying one-particle function that
has moments of order 2α, with 1 < α < 2. We also discuss a lower semi continuity
result for the relative entropy with respect to our specific family of functions, and use
it to show a form of stability property for entropic chaos in our settings.
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1 Introduction

One of the most influential equations in the kinetic theory of gases, describing the
evolution in time of the distribution function of a dilute gas, is the so-called Boltzmann
equation. While widely used, the Boltzmann equation poses two fundamental questions
in Kinetic Theory, pertaining to the spatially homogeneous case: The validity of the
equation and the rate of convergence to equilibrium in it.
In his 1956 paper, [19], Kac attempted to give a partial solution to these two problems.
Kac introduced a many-particle model, consisting of N indistinguishable particle with
one dimensional velocities, undergoing binary collision and constrained to the energy

sphere SN−1
(√

N
)

, which we will call ’the Kac’s sphere’. Kac’s evolution equation is

given by
∂FN
∂t

(v1, . . . , vN ) = −N(I −Q)FN (v1, . . . , vN ) , (1.1)
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Chaos and entropic chaos in Kac’s model without high moments

where FN represents the probability density function of the N particles, and the gain
term Q is given by

QF (t, v1, . . . , vN ) =
1

2π

2

N(N − 1)

∑
i<j∫ 2π

0

F (t, v1, . . . , vi(θ), . . . , vj(θ), . . . , vN ) dθ,

(1.2)

with

vi(θ) = vi cos(θ) + vj sin(θ), vj(θ) = −vi sin(θ) + vj cos(θ). (1.3)

Motivated by Boltzmann’s ’Stosszahlansatz’ assumption, Kac defined the concept of
Chaoticity (what he called ’the Boltzmann property’ in his paper) which measures the
asymptotic independence of a finite, fixed, number of particles, as the number of total
particles goes to infinity. In its modern variant the definition of chaoticity is:

Definition 1.1. Let X be a Polish space. A family of symmetric probability measures
on XN , {µN}N∈N, is called µ−chaotic, where µ is a probability measure on X, if for any
k ∈ N

lim
N→∞

Πk (µN ) = µ⊗k, (1.4)

where Πk(µN ) is the k−th marginal of µN and the limit is in the weak topology.

In the context of Kac’s work, the symmetric family of measures under investigation
is supported on Kac’s sphere and is given by µN = FNdσ

N , where dσN is the uniform
probability measure on Kac’s sphere. The limit measure µ is absolutely continuous with
respect to the Lebesgue measure onR with a probability density function f . We say that
the family {FN}N∈N is f−chaotic in that particular setting. As an interesting remark,
we note that it is known, see for instance [27], that it is enough to check the marginals
for k = 1, 2 in order to conclude chaoticity.
Using a beautiful combinatorial argument, Kac showed that the property of chaoticity
propagates with his evolution equation, i.e. if {FN (0, v1, . . . , vN )}N∈N is f0−chaotic then
the solution to equation (1.1), {FN (t, v1, . . . , vN )}N∈N is ft−chaotic, where ft solves a
caricature of the Boltzmann equation.

While Kac’s model is not entirely realistic (as it doesn’t conserve momentum) and
his limit equation wasn’t the Boltzmann equation, the ideas presented in his paper were
powerful enough that McKean managed to extend them to the d−dimensional case (see
[24]). Under similar condition to those presented by Kac, McKean construct a simi-
lar N−particle model from which the real spatially homogeneous Boltzmann equation
arose as mean field limit for many cases. We will not discuss this model in this work,
and refer the interested reader to [8, 13, 24] for more information.
Giving a partial answer to the validation of the Boltzmann equation, Kac set out to try
and find a partial solution to the rate of convergence as well. Using his linear model he
conjectured that the rate of convergence to equilibrium in the natural L2 norm would
be exponential, with a rate that is independent of the number of particles (the so-called
spectral gap problem). While this proved to be true eventually, it is easy to see that for
very natural chaotic families the norm of the initial datum depends very strongly on N
- exponentially so, making the possibility of taking a limit impossible. This effect is due
to the multiplicative nature of the L2 norm and the definition of chaoticity.
A different kind of ’distance’ was needed, one that respects the property of chaoticity.
To that end the concept of the relative entropy was invoked.
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Definition 1.2. Given two probability measures, µ, ν, on a Polish space X, we define
the relative entropy of µ with respect to ν, H(µ|ν), as

H(µ|ν) =

∫
X

h log hdν, (1.5)

where h = dµ
dν , and H(µ|ν) =∞ if µ is not absolutely continuous with respect to ν.

Definition 1.3. Given a probability density function FN on Kac’s sphere we define the
entropy of FN to be

HN (FN ) = H
(
FNdσ

N |dσN
)

=

∫
SN−1(

√
N)

FN logFNdσ
N . (1.6)

The reason for this choice of a distance functional lies with the so-called extensivity
property of the entropy: In a very intuitive way, we’d like to think that ’nice’ f−chaotic
families behave like FN ≈ f⊗N , as such

HN (FN ) ≈ N
∫
R

f(v) log

(
f(v)

γ(v)

)
dv, (1.7)

where γ is the standard Gaussian on R, giving a linear dependence in N , instead of an
exponential one. This intuition was defined formally in [7], where the authors investi-
gated the entropy functional on the Kac’s sphere:

Definition 1.4. A symmetric µ−chaotic family of probability measures on Kac’s sphere,
{µN}N∈N, is called entropically chaotic if

lim
N→∞

HN

(
µN |dσN

)
N

= H (µ|γ) , (1.8)

where dσN is the uniform probability measure on Kac’s sphere andH(µ|γ) is the relative
entropy of µ and γ(v)dv.

As before, in the setting of Kac’s model we use the measures µN = FNdσ
N and

µ = f(x)dx, and say that {FN}N∈N is f−entropically chaotic if (1.8) is satisfied. The
concept of entropic chaoticity is much stronger than that of chaoticity as it involves the
correlation between arbitrary number of particles. This was shown to be true in [7] and
we will verify it in our particular setting as well later on in this paper.
At this point we’d like to mention that the notion of chaoticity, and the use of a rescaled
relative entropy between two measures onXN and its connection to the relative entropy
of the limit measures, doesn’t solely lie in the realm of Kac’s Model. Indeed, in [4] the
authors have investigated propagation of chaos for the mean field Gibbs measure with
potential F using exactly such ideas and a type of lower semi continuity result for the
relative entropy.
Of particular interest to the study of chaoticity, and entropic chaoticity, are special
measures that are obtained by a tensorising a measure, µ, on R, and restricting the
tensor product to Kac’s sphere. In our particular study, much like that of [7], we’ll be
interested in measures on Kac’s sphere with probability density function

FN (v1, . . . , vN ) =
f⊗N (v1, . . . .vN )

ZN
(
f,
√
N
) , (1.9)

where f is a probability density function on R and the so-called normalisation function,
ZN (f, r), is defined by

ZN (f, r) =

∫
SN−1(r)

f⊗NdσNr , (1.10)
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with dσNr the uniform probability measure on SN−1(r). In what follows we will call prob-
ability density functions FN of the form (1.9) conditioned tensorisation of f . It is worth
to mention that Kac himself considered such functions, and have shown that they are
chaotic when f has very strong integrability conditions.
The question of whether or not conditioned tensorisation of the function f is well de-
fined rests heavily on the concentration of the tensorised measure f⊗N on Kac’s sphere.
The main technical tool that is required is a local central limit theorem that shows ex-
actly how ZN (f, r) behaves asymptotically, for any r > 0. In [7], the authors have
managed to prove that:

Theorem 1.5. Let f be a probability density on R such that f ∈ Lp(R) for some p > 1,∫
R
x2f(x) = 1 and

∫
R
x4f(x)dx <∞. Then

ZN (f,
√
u) =

2
√
NΣ |SN−1|uN−2

2

e− (u−N)2

2NΣ2

√
2π

+ λN (u)

 , (1.11)

where Σ2 =
∫
R
v4f(v)dv − 1 and supu |λN (u)| −→

N→∞
0.

The above approximation yielded more than just an explanation to why our definition
is appropriate. Once proven, the above easily proves the following, which can also be
found in [7]:

Theorem 1.6. Let f be a probability density on R such that f ∈ Lp(R) for some p > 1,∫
R
x2f(x) = 1 and

∫
R
x4f(x)dx < ∞. Then the family of conditioned tensorisation of f ,

given by (1.9), is f−chaotic. Moreover, it is f−entropically chaotic.

We’d like to mention at this point that the above theorems were extended to to McK-
ean’s model by the first author in [9].

The appearance of the fourth moment of the function f in Theorem 1.5 shouldn’t
be too surprising: As we’re trying to measure fluctuation of the random variable KN =∑N
i=1 V

2
i from its mean, N , a useful quantity to consider is the variance of KN , pertain-

ing to the fourth moment of the underlying function f . This, however, is not a necessary
condition to be able to obtain the desired concentration result. In this work we will
consider families of conditioned tensorisation of a function f , where the underlying
generating function f has moment of order 2α, with 1 < α < 2.
The main approximation theorem of this paper, one that extends Theorem 1.5 and lies at
the heart of many subsequent proofs, relies on concepts related to α−stable processes.
We will introduce them at this point so we’ll be able to state our main results.

Definition 1.7. A random variable U is said to be α−stable for 0 < α < 2, α 6= 1 if∑n
i=1Xi

n
1
α

has the same probability distribution function as U , where Xi are independent copies
of U . Equivalently, the characteristic function of U is of the form

γ̂CS ,α,p,q(ξ) = e−CS |ξ|
α· Γ(3−α)
α(α−1)

cos(πα2 )(1+isgn(ξ)(p−q) tan απ
2 ), (1.12)

with CS > 0, p, q ≥ 0 and p+ q = 1.
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In the above, and what is to follow, we have used the convention

ϕ̂(ξ) =

∫
R

e−ixξϕ(x)dx. (1.13)

for the characteristic function, ϕ̂, of a probability density ϕ. It is also worth to mention
that some books, including Feller’s, refer to above definition as strict stability.

Remark 1.8. Equation (1.12) can be rewritten in the form

γ̂σ,α,β(ξ) = e−σ|ξ|
α(1+iβsgn(ξ) tan απ

2 ), (1.14)

where

σ = CS ·
Γ(3− α)

α(α− 1)
cos
(πα

2

)
> 0, β = p− q.

We will use both forms in accordance to the situation.

Definition 1.9. The Domain of Attraction (in short, DA) of γσ,α,β is the set of all real
random variables X such that there exist sequences {an}n∈N > 0 and {bn}n∈N ∈ R such
that ∑n

i=1Xi

an
− nbn −→

n→∞
U, (1.15)

where Xi are independent copies of X, U is the real random variable with characteristic
function γ̂σ,α,β and the limit is to be understood in the weak sense. Equivalently, one can
prove that the DA of γσ,α,β is the set of all real random variables X, whose characteristic

function ψ̂ satisfies

n

(
ψ̂

(
ξ

an

)
e−ibnξ − 1

)
−→
n→∞

−σ|ξ|α
(

1 + iβsgn(ξ) tan
(πα

2

))
, (1.16)

where {an}n∈N and {bn}nN are sequences as in (1.15) (See [15]).

Definition 1.10. The Natural Domain of Attraction (in short, NDA) of γσ,α,β is the
subset of the DA of γ̂σ,α,β for which an = n

1
α and bn = 0 are applicable as a sequences

in (1.15).

Definition 1.11. The Fourier Domain of Attraction (in short, FDA) of γσ,α,β is the set

of all real random variables X whose characteristic function ψ̂ satisfies

ψ̂(ξ) = 1− σ |ξ|α
(

1 + iβsgn(ξ) tan
(πα

2

))
+ ηψ(ξ), (1.17)

where ηψ(ξ)
|ξ|α ∈ L

∞ and ηψ(ξ)
|ξ|α −→ξ→0

0. The function ηψ is called the reminder function of ψ̂.

The general local Lévy central limit theorem we prove in this paper the following:

Theorem 1.12. Let g be the probability density function of a random real variable X.
Assume that g ∈ Lp(R) for some p > 1 and g is in the NDA of γσ,α,β for some σ > 0, β
and 1 < α < 2. Assume in addition that g has finite moment of some order. Define

gN (x) = N
1
α g∗N

(
N

1
αx
)
,

and

γσ,α,β(x) =
1

2π

∫
R

γ̂σ,α,β(ξ)eiξxdξ. (1.18)
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Then, for any positive sequence {βN}N→∞ that converges to zero as N goes to infinity,
any τ > 0 and N large enough we have that

‖gN − γσ,α,β‖∞ ≤ Cg,α

(
N

1
α (1− β2+τ

N + φτ (βN ))N−q + e−
σNβαN

2

+ωg(βN ) + 2σβαN

(
1 + β2 tan2

(πα
2

)))
= ετ (N),

(1.19)

where

(i) Cg,α > 0 is a constant depending only on g, its moments and α.

(ii) q can be chosen to be the Hölder conjugate of min(2, p).

(iii) φτ satisfies

lim
x→0

φτ (x)

|x|2+τ
= 0,

(iv) ηg is the reminder function of ĝ, defined in Definition 1.11, and ωg(β) = sup|x|≤β
|ηg(x)|
|x|α .

Section 3, where we prove the above theorem, also provides simple condition to
check when a probability density function is in the NDA of some γσ,α,β as well as a
simplified case of the general theorem, one we will use in most of our applications.
Theorem 1.12 will allow us to show that:

Theorem 1.13. Let f be a probability density such that f ∈ Lp for some p > 1 and∫
x2f(x)dx = 1. Let

νf (x) =

∫ √x
−
√
x

y4f(y)dy (1.20)

and assume that νf (x) ∼
x→∞

CSx
2−α for some CS > 0 and 1 < α < 2. Then the

family of conditioned tensorisation of f , given by (1.9), is f−chaotic. Moreover, it is
f−entropically chaotic.

As a special case, one has that

Theorem 1.14. Let f be a probability density such that f ∈ Lp for some p > 1 and∫
x2f(x)dx = 1. Assume in addition that

f(x) ∼
x→∞

D

|x|1+2α
, (1.21)

for some 1 < α < 2 and D > 0. Then the family of conditioned tensorisation of f , given
by (1.9), is f−chaotic. Moreover, it is f−entropically chaotic.

The family of conditioned tensorisation of a function f ,

νN = FNdσ
N , (1.22)

where FN is given by (1.9), plays an important role on Kac’s sphere as an ’attractor
of chaoticity’. The first clue to this is the following distorted lower semi continuity
property:
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Theorem 1.15. Let f be a probability density such that f ∈ Lp for some p > 1 and∫
x2f(x)dx = 1. Let

νf (x) =

∫ √x
−
√
x

y4f(y)dy

and assume that νf (x) ∼
x→∞

CSx
2−α for some CS > 0 and 1 < α < 2. Let µN be a

symmetric probability measure on Kac’s sphere such that for some k ∈ N

Πk(µN ) ⇀
N→∞

µk, (1.23)

where µk is a probability measure on Rk. Then, we find that

(i) Π1(µN ) ⇀
N→∞

Π1 (µk) = µ and

H(µ|f) ≤ lim inf
N→∞

HN (µN |νN )

N
, (1.24)

where H(µ|f) is the relative entropy between µ and the measure f(v)dv.

(ii) For any δ > 0 we have that

lim inf
N→∞

H(µN |νN )

N
≥ H(µk|f⊗k)

k
− lim sup

N→∞

∫
R

log (f(v) + δ) dΠ1 (µN ) (v)

+

∫
log (f(v)) dµ(v)−

1−
∫
|v|2dµ(v)

2
,

(1.25)

where νN is given by (1.22).

Theorem 1.15 is the key to proving the following stability property of entropic chaotic-
ity:

Theorem 1.16. Let f be a probability density such that f ∈ Lp for some p > 1 and∫
x2f(x)dx = 1. Let

νf (x) =

∫ √x
−
√
x

y4f(y)dy

and assume that νf (x) ∼
x→∞

CSx
2−α for some CS > 0 and 1 < α < 2. Assume in addition

that f ∈ L∞(R). Then, if {µN}N∈N is a family of symmetric probability measures on
Kac’s sphere and

lim
N→∞

H(µN |νN )

N
= 0, (1.26)

where νN is given by (1.22), we have that µN is f−chaotic. Moreover, µN is f−entropically
chaotic.

A different approach to the stability problem involves the concept of the relative
Fisher information functional on R, I, and on Kac’s sphere, IN :

Definition 1.17. Given two probability measures, µ, ν on R, we define the relative
Fisher information of µ with respect to ν, I(µ|ν), as

I(µ|ν) =

∫
R

|h′(x)|2

h(x)
dν(x) = 4

∫
R

∣∣∣∣ ddx√h(x)

∣∣∣∣2 dν(x), (1.27)
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where h = dµ
dν , and I(µ|ν) =∞ if µ is not absolutely continuous with respect to ν.

Given two probability measures, µN , νN on Kac’s sphere, we define the relative Fisher
information of µN with respect to νN , IN (µN |νN ), as

IN (µN |νN ) =

∫
SN−1(

√
N)

|∇Sh|2

h
dν, (1.28)

where h = dµN
dνN

, and IN (µN |νN ) = ∞ if µN is not absolutely continuous with respect to

νN . Here ∇S denotes the components of the usual gradient on RN that is tangential to
Kac’s sphere.

Theorem 1.18. Let {µN}N∈N be a family of symmetric probability measures on Kac’s
sphere that is f−chaotic. Assume that there exists CS > 0 and 1 < α < 2 such that

∫ √x
−
√
x

v4
1dΠ1(µN )(v1) ∼

x→∞
CSx

2−α (1.29)

uniformly in N , and that

HN (µN |σN )

N
≤ C, IN (µN |σN )

N
≤ C (1.30)

for all N . Then µN is f−entropically chaotic.

The presented work is structured as follows: In Section 2 we will present some
preliminaries to the work, including known results on the normalisation function and
marginals of probability measures on Kac’s sphere. Section 3 will be focused on proving
the newly found local Lévy Central Limit Theorem, described in Theorem 1.12, as well
as giving a particular version of it (with additional conditions). While we will use it in
Section 4 where we will prove Theorems 1.13 and 1.14, Section 3 is interesting in its
own right. As such, we present it in a self contained way (referring to definitions pre-
sented in the introduction) in hope for it to be accessible to people who are not familiar
with Kac’s model. In Section 5 we will discuss the lower semi continuity property of pro-
cesses of our type (Theorem 1.15) and prove the stability theorems, Theorems 1.16 and
1.18. Once all the proofs are done, Section 6 will give more details about the spectral
gap problem, the entropy method, Cercignani’s many body conjecture and explain the
connection between it and the presented work. Section 7 will see closing remarks for
our work, including some connection between the current work and Cercignani’s many
body conjecture, while the Appendix will discuss a quantitative Lévy type approxima-
tion theorem, and include some additional computation that would otherwise encumber
the presentation of our paper.

Lastly, we’d like to mention some references for topics that we’ve touched here. For
more information about the Boltzmann equation we refer the interested reader to [10,
25, 29, 28]. For more information about Kac’s and McKean Model, the spectral gap
problem and the related Entropy method and Cercignani’s many body conjecture we
refer the interested reader to [3, 5, 6, 7, 9, 12, 13, 14, 17, 18, 19, 20, 22, 24, 25, 29].
For more information about propagation of chaos, from view points of Analysis, Proba-
bility and PDE, we refer the interested reader to [1, 2, 4, 7, 9, 11, 14, 17, 25, 27], and
for more information about the roles of central limit theorem in the study of Kac-like
equation we refer the interested reader to [2, 16, 23].
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2 Preliminaries.

The Normalisation Function.

As discussed in the introduction, the normalisation function, ZN (f,
√
r), plays an

important role in the proofs of chaoticity and entropic chaoticity of distribution families
of the form

FN =
f⊗N

ZN
(
f,
√
N
) .

In this short subsection we will give a probabilistic interpretation to it, as well as ex-
plain why it is well defined under simple conditions on f .

Lemma 2.1. Let f be a probability density function for the real random variable V .
Then

ZN
(
f,
√
r
)

=
2h∗N (r)

|SN−1| rN−2
2

(2.1)

where h be the associated probability density function for the real random variable V 2

and h∗N is the N−th iterated convolution of h.

Proof for the above lemma can be found in [7, 12], yet we present it here for com-
pletion.

Proof. Denote by SN =
∑N
i=1 V

2
i the sum of independent copies of the real random

variable V 2. For any function ϕ ∈ Cb
(
RN
)
, depending only on r =

√∑N
i=1 v

2
i we find

that

Eϕ =

∫
RN

ϕ


√√√√ N∑

i=1

v2
i

ΠN
i=1f(vi)dv1 . . . dvN =

∣∣SN−1
∣∣ ∫ ∞

0

ϕ(r)rN−1

(∫
SN−1(r)

ΠN
i=1f(vi)dσ

N
r

)
dr =

∣∣SN−1
∣∣ ∫ ∞

0

ϕ(r)rN−1ZN (f, r) dr

On the other hand

Eϕ =

∫ ∞
0

ϕ
(√
r
)
sN (r)dr = 2

∫ ∞
0

rϕ(r)sN
(
r2
)
dr.

Since the above is valid for any ϕ we conclude that

ZN
(
f,
√
r
)

=
2sN (r)

|SN−1| rN−2
2

.

A known fact from probability theory states that the density function for SN , sN , is given
by

sN (u) = h∗N (u)

where h∗N is the N−th iterated convolution of h. This completes the proof.

Remark 2.2. It is easy to see that probability density function h, associated to the
probability density function f as described in the above lemma, is given by

h(u) =


f(
√
u)+f(−

√
u)

2
√
u

u > 0

0 u ≤ 0
(2.2)
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Chaos and entropic chaos in Kac’s model without high moments

As such, using the convexity of t→ tq for any q > 1, we find that if in addition f ∈ Lp(R)

then ∫
h(u)p

′
du ≤ 1

2

∫ ∞
0

f(
√
u)p

′
+ f(−

√
u)p

′

u
p′
2

du =

∫
R

f(x)p
′

xp′−1

≤
∫

[−1,1]

f(x)p
′

xp′−1
+

∫
R

f(x)p
′
dx

≤

(∫
[−1,1]

f(x)pdx

) p′
p
(∫

[−1,1]

dx

x
p(p′−1)

p−p′

) p−p′
p′

+

∫
f>1

f(x)pdx+

∫
f<1

f(x)dx,

(2.3)

where p′ < p. Choosing 1 < p′ < 2p
1+p we find h ∈ Lp′ (R), showing that h itself gains

extra integrability properties in this case. This will serve us later on in Section 4.

Marginals on Kac’s Sphere.

By its definition, chaoticity depends strongly on understanding how finite marginal
on Kac’s sphere behave. In particular, in our presented cases, we’ll be interested to find
a simple formula for the k−th marginal of probability measures of the form FNdσ

N . To
do that we state the following simple lemma, whose proof we’ll omit, but can be found
in [12]:

Lemma 2.3. Let FN be an integrable function on SN−1(r), then

∫
SN−1(r)

FNdσ
N
r =

∣∣SN−j−1
∣∣

|SN−1|
1

rN−2

∫ (
r2 −

j∑
i=1

v2
i

)N−j−2
2

+(∫
SN−j−1

(√
r2−

∑j
i=1 v

2
i

) FNdσN−j√
r2−

∑j
i=1 v

2
i

)
dv1 . . . dvj ,

where g+ = max(g, 0) for a function g.

Using the above lemma, one can easily show the following:

Lemma 2.4. Given a distribution function FN on Kac’s sphere, then the probability
density function of the k−th marginal of the probability measure FNdσN is given by

Πk(FN ) (v1, . . . , vk) =

∣∣SN−k−1
∣∣

|SN−1|
1

N
N−2

2

(
N −

k∑
i=1

v2
i

)N−k−2
2

+(∫
SN−k−1

(√
r2−

∑k
i=1 v

2
i

) FNdσN−k√
r2−

∑j
i=1 v

2
k

)
.

(2.4)

Next we show a simple condition for chaoticity, one we will use later on in Section
4:

Lemma 2.5. Let {FN}N∈N be a family of distribution functions on Kac’s sphere. As-
sume that there exists a distribution function f , on R, such that

lim
N→∞

Πk(FN ) (v1, . . . , vk) = f⊗k (v1, . . . , vk) (2.5)

pointwise for all k ∈ N. Then

lim
N→∞

∥∥Πk(FN ) (v1, . . . , vk)− f⊗k (v1, . . . , vk)
∥∥
L1(Rk)

= 0, (2.6)

for all k ∈ N, and n particular {FN}N∈N is f−chaotic.
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The proof for this (and a more general statement) can be found in [14]. Since the
proof is very simple we will add it here, for completion.

Proof. Let k ∈ N be fixed. Define gN = Πk(FN ) + f⊗k. By assumption (2.5) we know
that

lim
N→∞

gN = 2f⊗k = g,

pointwise and since
∣∣Πk(FN )− f⊗k

∣∣ ≤ gN , and∫
Rk
gN (v1, . . . , vk) dv1 . . . dvk =

∫
Rk
g (v1, . . . , vk) dv1 . . . dvk

for all N , we can use the generalised dominated convergence theorem to conclude
(2.6).

3 Lévy Type Local Central Limit Theorem.

This section’s purpose is the introduce a new local Lévy type central limit theorem,
one that will help us in our investigation of families of conditioned tensorisation of a
function f , extending results presented in [7]. The bulk of the work is inspired from [7]
and [16] though there are some significant changes on which we will remark.
We start this section with an important technical theorem, taken from [16], which plays
a crucial role in the proof of our local central limit theorem. The fact that it only works
in R will affect the lower semi-continuity property, discussed in Section 5. At this point
we advice the reader to review the definition of α−stability, DA, NDA, FDA of γσ,α,β
given in Definition 1.7, 1.9, 1.10, 1.11, as well as Remark 1.8 and equation (1.18).

Theorem 3.1. For any γ̂σ,α,β we have that the NDA equals the FDA.

Due to its importance, we will present a full proof for this theorem. The proof relies
on the following technical lemma (again, taken from [16]):

Lemma 3.2. Let g : R\{0} → R be a continuous function that satisfies limn→∞ g
(
x
n

)
= 0

for any x ∈ R \ {0}. Then limx→0 g(x) = 0.

We leave the proof to the Appendix, and show how one can prove Theorem 3.1 using
it.

Proof of Theorem 3.1. We start with the easy direction. Assume that ψ̂ is in the FDA of
γσ,α,β . We have that

n

(
ψ̂

(
ξ

n
1
α

)
− 1

)
= −n · σ|ξ|

α

n

(
1 + iβsgn

(
ξ

n
1
α

)
tan

(πα
2

))
+ nη

(
ξ

n
1
α

)
.

= −σ |ξ|α
(

1 + iβsgn(ξ) tan
(πα

2

))
+ |ξ|α ·

η
(

ξ

n
1
α

)
(

ξ

n
1
α

)α ,
concluding the desired result.
Conversely, assume that ψ̂ is in the NDA of γσ,α,β and define

η(ξ) = ψ̂(ξ)− 1 + σ|ξ|α
(

1 + iβsgn(ξ) tan
(πα

2

))
.

We have that for any ξ 6= 0

η
(

ξ

n
1
α

)
∣∣∣ ξ

n
1
α

∣∣∣α =
1

|ξ|α

(
n

(
ψ̂

(
ξ

n
1
α

)
− 1

)
+ σ|ξ|α

(
1 + iβsgn(ξ) tan

(πα
2

)))
−→
n→∞

0.
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Defining g(ξ) = η(ξ)
|ξ|α we find that g is continuous on R \ {0} and

g

(
ξ

n
1
α

)
−→
n→∞

0

for any ξ 6= 0. A simple modification of Lemma 3.2 proves that limξ→0 g(ξ) = 0. This also

shows, since η is continuous, that η(ξ)
|ξ|α is bounded around ξ = 0. For |ξ| > δ we have that

|η(ξ)|
|ξ|α

≤ 2

δα
+ σ

(
1 + |β|

∣∣∣tan
(πα

2

)∣∣∣) ,
proving that η(ξ)

|ξ|α ∈ L
∞, and the result follows.

Theorem 3.1 gives us a very convenient approximation for the characteristic function
of any real random variable in the NDA of γσ,β,α, one we will use quite strongly.
Next, we’re like to find some simple conditions for when a real random variable belongs
to the NDA of γσ,β,α. This is given by a theorem from Feller’s book, [15]:

Theorem 3.3. Let F be a probability distribution function of a real random variable,
X, that has zero mean, and let 1 < α < 2. Denote by

µ(x) =

∫ x

−x
y2F (dy). (3.1)

If

(i)
µ(x) ∼

x−→∞
x2−αL(x), (3.2)

where L is slowly varying (i.e. L(tx)
L(x) −→x→∞ 1 for any t > 0).

(ii)
1− F (x)

1− F (x) + F (−x)
−→
x→∞

p,

F (−x)

1− F (x) + F (−x)
−→
x→∞

q.

(3.3)

(iii) There exists a sequence {an}n∈N > 0 such that

nµ(an)

a2
n

−→
n→∞

CS . (3.4)

Then X is in the DA of γCS ,α,p,q with {an}n∈N found in (iii) and bn = 0.

Remark 3.4. It is worth mentioning that a similar, less restrictive theorem, holds in
the case 0 < α < 1. Since we will not use it in this work, we decided to exclude it from
this section. For more information we refer the interested reader to [15].

Remark 3.5. Of particular interest to us are the following cases:

• If in condition (i) of Theorem 3.3 one has that L(x) ∼
x→∞

CS then the sequence

an = n
1
α

will be suitable for condition (iii) of the same theorem.
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• If the probability distribution function, F (x), is supported in [κ,∞) for some κ ∈ R
then condition (ii) of Theorem 3.3 is immediately satisfied with p = 1 and q = 0.

We now turn our attention to the proof of Theorem 1.12. The main idea of the proof
is to evaluate the supremum of the difference between the probability density functions
using inversion formula and their characteristic functions. An integral will emerge,
one we will have to divide into two domains: frequencies that are close to zero, and
frequencies that are ’far’ from zero. The domain of frequencies that are almost zero
will be taken care of by requiring that the characteristic function would be in the NDA
of some stable distribution. The other frequencies will be dealt with presently:

Theorem 3.6. Let g be a probability density function on R such that

Eλ =

∫
R

|x|λg(x)dx <∞, (3.5)

for some λ > 0, and

H(g) =

∫
R

g(x) log g(x)dx <∞. (3.6)

Then for any β > 0, there exists η = η (β,H(g), Eλ) > 0 such that if |ξ| > β then
|ĝ(ξ)| ≤ 1− η. Moreover, given τ > 0 one can get the estimation

|ĝ(ξ)| ≤ 1− β2+τ + φτ (β), (3.7)

for β < β0 small enough, where φδ(τ)
β2+τ −→

β→0
0.

Remark 3.7. The proof of the first part of the above theorem, to be presented shortly,
is very similar to the proof found in [7]. The novelty of our approach manifests itself in
(3.7), where an explicit distance from 1 is given. The surprising part is that to show this
estimation no new machinery is required, only an intermediate approximation.

Proof. For a given ξ ∈ R we can find a z ∈ R such that

|ĝ(ξ)| = ĝ(ξ)e−iξz.

By the definition of the Fourier transform, and the fact that ĝ(0) = 1, we have that

|ĝ(ξ)| =
∫
R

g(x)e−i(x+z)ξdx = 1−
∫
R

g(x)
(

1− e−i(x+z)ξ
)
dx.

Since |ĝ| is real we find that

|ĝ(ξ)| = 1−
∫
R

g(x) (1− cos ((x+ z)ξ)) dx

≤ 1−
∫
B

g(x) (1− cos ((x+ z)ξ)) dx

(3.8)

for any measurable set B.
Define:

Bδ,R = {x ∈ [−R,R] | 1− cos ((z + x)ξ) ≤ δ} ,

where δ and R are to be specified later. From its definition, and (3.8), we conclude that

|ĝ(ξ)| ≤ 1−
∫

[−R,R]\Bδ,R
g(x) (1− cos ((x+ z)ξ)) dx

≤ 1− δ
∫

[−R,R]\Bδ,R
g(x)dx.

(3.9)
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Next we notice that x ∈ Bδ,R if and only if x ∈ [−R,R] and

|(z + x)ξ + 2πk| ≤ arccos(1− δ)

for some k ∈ Z. Since arccos(1 − δ) ≤
√

2δ we conclude that if x ∈ Bδ,R then, for some
k ∈ Z, ∣∣∣∣x− (2πk

ξ
− z
)∣∣∣∣ ≤

√
2δ

|ξ|
. (3.10)

We denote by Ik the closed intervals centred in 2πk
ξ − z, with radius

√
2δ
|ξ| . Since the

distance between the centres of any two Ik−s is at least 2π
|ξ| , while the length of each

interval is at most 2
|ξ| , if we pick δ < 1

2 , we conclude that the intervals Ik−s are mutually
disjoint.
From (3.10) we see that the set Bδ,R is contained in a union of Ik−s.
Let n be the number of k ∈ Z such that 2πk

ξ − z ∈ [−R,R]. All such k−s, but possibly the

biggest and smallest k, satisfy that
[

2π(k−1)
|ξ| , 2πk

|ξ|

]
⊂ [−R,R]. Thus,

(n− 2) · 2π

|ξ|
=
∑
k

∣∣∣∣[2π(k − 1)

|ξ|
,

2πk

|ξ|

]∣∣∣∣ ≤ 2R.

With |·| denoting the Lebesgue measure, we conclude that

|Bδ,R| ≤ n ·
√

2δ

|ξ|
≤
(
R

π
+

2

|ξ|

)√
2δ ≤ R

π

(
1 +

2π

Rβ

)√
2δ. (3.11)

At this point we will use the entropy and moment conditions on g to connect between
the known value |Bδ,R| and the desired value

∫
Bδ,R

g(x)dx. To do that we will use the
relative entropy (see Definition 1.5) and the following known inequality:

µ(B) ≤ 2H(µ|ν)

log
(

1 + H(µ|ν)
ν(B)

) , (3.12)

where µ and ν are regular probability measure on R and B is a measurable set.
Define

dµ(x) =
χ[−R,R](x)g(x)∫

[−R,R]
g(x)dx

dx, dν(x) =
χ[−R,R](x)

2R
dx. (3.13)

We have that dµ
dν (x) =

2Rχ[−R,R](x)g(x)∫
[−R,R]

g(x)dx
and

H(µ|ν) =

∫
[−R,R]

log

(
2Rg(x)∫

[−R,R]
g(x)dx

)
g(x)∫

[−R,R]
g(x)dx

dx

= log(2R)− log

(∫
[−R,R]

g(x)dx

)
+

1∫
[−R,R]

g(x)dx

∫
[−R,R]

g(x) log g(x)dx

≤ log(2R)− log

(
1− Eλ

Rλ

)
+

1

1− Eλ
Rλ

∫
g(x)| log g(x)|dx.

(3.14)

We have used the fact that∫
[−R,R]

g(x)dx = 1−
∫
|x|>R

g(x)dx ≥ 1− 1

Rλ

∫
|x|>R

|x|λg(x)dx ≥ 1− Eλ
Rλ

. (3.15)

We will now turn our attention to the term
∫
g(x) |log(g(x))| dx. For any positive function

ψ(x), we have that

ψ(x)

(
g(x)

ψ(x)
log

(
g(x)

ψ(x)

)
− g(x)

ψ(x)
+ 1

)
≥ 0.
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Thus, for any measurable set A we have that

∫
A

g(x) log g(x)dx ≥
∫
A

g(x) logψ(x)dx+

∫
A

g(x)−
∫
A

ψ(x)dx,

when the right hand side is finite. Choosing ψ(x) = e−|x|
λ

and A = {g < 1} we find that

∣∣∣∣∫
g<1

g(x) log g(x)dx

∣∣∣∣ = −
∫
g<1

g(x) log g(x)

≤
∫
g<1

|x|λg(x)dx−
∫
g<1

g(x)dx+

∫
g<1

ψ(x)dx < Eλ + Cλ.

(3.16)

where Cλ =
∫
ψ(x)dx. Since

∫
g(x)| log(g(x)| = H(g)− 2

∫
g<1

g(x) log g(x)dx.

we conclude that

H(µ|ν) ≤ log(2R)− log

(
1− Eλ

Rλ

)
+
H(g) + 2Eλ + 2Cλ

1− Eλ
Rλ

. (3.17)

Together with (3.11) and (3.12) we find that

µ(Bδ,R) ≤
2 log(2R)− 2 log

(
1− Eλ

Rλ

)
+ 2H(g)+4Eλ+4Cλ

1−Eλ
Rλ

log

1 +

log(2R)−log
(

1−Eλ
Rλ

)
+
H(g)+2Eλ+2Cλ

1−Eλ
Rλ

1
2π (1+ 2π

Rβ )
√

2δ

 . (3.18)

Next, we notice that

∫
[−R,R]\Bδ,R

g(x)dx =

(∫
[−R,R]

g(x)dx

)
µ ([−R,R] \Bδ,R) ≥

(
1− Eλ

Rλ

)
(1− µ(Bδ,R))

which, along with (3.9) and (3.18) gives us the following control:

|ĝ(ξ)| ≤ 1− δ ·
(

1− Eλ
Rλ

)
1−

2 log(2R)− 2 log
(
1− Eλ

Rλ

)
+ 2H(g)+4Eλ+4Cλ

1−Eλ
Rλ

log

1 +

log(2R)−log
(

1−Eλ
Rλ

)
+
H(g)+2Eλ+2Cλ

1−Eλ
Rλ

1
2π (1+ 2π

Rβ )
√

2δ



 (3.19)

At this point we can choose R and δ < 1
2 appropriately. For any τ > 0 we choose
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δ = β2+τ and R = − log β we find that for β going to zero

2 log(2R)− 2 log
(
1− Eλ

Rλ

)
+ 2H(g)+4Eλ+4Cλ

1−Eλ
Rλ

log

1 +

log(2R)−log
(

1−Eλ
Rλ

)
+
H(g)+2Eλ+2Cλ

1−Eλ
Rλ

1
2π (1+ 2π

Rβ )
√

2δ



≈
2 log (− log(β))

(
1 +O

(
log
(

1− 1

(− log(β))λ

)
log(− log(β))

)
+O

(
1

log(− log(β))
(

1− 1

(− log(β))λ

)
))

log

1 +

2π log(− log(β))

1+O

 log

(
1− 1

(− log(β))λ

)
log(− log(β))

+O

 1

log(− log(β))

(
1− 1

(− log(β))λ

)


√
2β1+ τ

2 − 2π
√

2β
τ
2

log(β)


≈ 2 log (− log(β))

log
(

1− log(− log(β)) log(β)√
2β

τ
2 (1+O(β log(β)))

) ≈ 2 log (− log(β))

log
(
− log(− log(β)) log(β)√

2β
τ
2

)
≈ − 4 log (− log(β))

τ log(β)− 2 log (− log(β) log (− log(β)))
−→
β→0

0.

Thus,

|ĝ(ξ)| ≤ 1− β2+τ + φτ (β),

where φτ (β)
β2+τ −→

β→0
0.

Before we present the proof for Theorem 1.12, we state the next simple lemma,
whose proof we leave to the appendix. A similar argument can be found in [16].

Lemma 3.8. Let ĝ be the characteristic function of a random real variable X that is in
the NDA of γσ,α,β . Then there exists β0 > 0 such that for all |ξ| < β0 we have that

|ĝ(ξ)| ≤ e−
σ|ξ|α

2 . (3.20)

Proof of Theorem 1.12. We start by noticing that

ĝN (ξ) = ĝN
(

ξ

N
1
α

)
,

and from the inversion formula for characteristic functions (see [15]) we have that γ̂σ,α,β
is the characteristic function of γσ,α,β .
Since g ∈ L1(R) ∩ Lp(R) we conclude that g ∈ Lp

′
(R) for any 1 ≤ p′ ≤ p. Thus, its

characteristic function belongs to some Lq(R) for some q > 1. One can choose q to be
the Hölder conjugate of min(2, p). For any N > q we have that

∫
R

|ĝN (ξ)| dξ ≤ ‖ĝ‖N−q∞

∫
R

∣∣∣∣ĝ( ξ

N
1
α

)∣∣∣∣q dξ ≤ N 1
α ‖ĝ‖qLq <∞.
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This implies that we can use the inversion formula for g: For any x ∈ R:

|gN (x)− γσ,α,β(x)| ≤ 1

2π

∫
R

∣∣∣∣ĝN ( ξ

N
1
α

)
− γ̂σ,α,β(ξ)

∣∣∣∣ dξ
=

1

2π

∫
R

∣∣∣∣ĝN ( ξ

N
1
α

)
− γ̂Nσ,α,β

(
ξ

N
1
α

)∣∣∣∣ dξ
≤ 1

2π

∫
|ξ|<βNN

1
α

∣∣∣∣ĝN ( ξ

N
1
α

)
− γ̂Nσ,α,β

(
ξ

N
1
α

)∣∣∣∣ dξ
+

1

2π

∫
|ξ|>βNN

1
α

∣∣∣∣ĝN ( ξ

N
1
α

)∣∣∣∣ dξ +
1

2π

∫
|ξ|>βNN

1
α

|γ̂σ,α,β(ξ)| dξ

= I1 + I2 + I3.

(3.21)

The partition in (3.21) corresponds to the near to/far from zero discussed earlier. We
wil start with estimating I1.
Since ĝ is in the NDA of γσ,α,β , Theorem 3.1 assures us that ĝ is in the FDA of γσ,α,β and
there exists a reminder function, ηg, such that

|ĝ(ξ)− γ̂σ,α,β(ξ)| = |ηg(ξ)|+ |ηγ(ξ)| , (3.22)

with
|ηγ(ξ)| ≤ 2σ2 |ξ|2α

(
1 + β2 tan2

(πα
2

))
(3.23)

when |ξ| < β1 for some small β1 > 0. Thus,

sup
|ζ|<βN

|ĝ(ζ)− γ̂σ,α,β(ζ)|
|ζ|α

≤ ωg(βN ) + 2σβαN

(
1 + β2 tan2

(πα
2

))
(3.24)

for N large enough such that βN < β1.
Next, we see that ∣∣∣∣ĝN ( ξ

N
1
α

)
− γ̂Nσ,α,β

(
ξ

N
1
α

)∣∣∣∣
≤
∣∣∣∣ĝ( ξ

N
1
α

)
− γ̂σ,α,β

(
ξ

N
1
α

)∣∣∣∣N−1∑
k=0

∣∣∣∣ĝ( ξ

N
1
α

)∣∣∣∣k ∣∣∣∣γ̂σ,α,β ( ξ

N
1
α

)∣∣∣∣N−1−k

.

(3.25)

Picking N such that |ξ|
N

1
α
< βN < β0 from Lemma 3.8 we find that

N−1∑
k=0

∣∣∣∣ĝ( ξ

N
1
α

)∣∣∣∣k ∣∣∣∣γ̂σ,α,β ( ξ

N
1
α

)∣∣∣∣N−1−k

≤
N−1∑
k=0

e−
σk|ξ|α

2N · e−
σ(N−k−1)|ξ|α

N

≤ Ne−
σ(N−1)|ξ|α

2N ≤ Ne−
σ|ξ|α

4 ,

(3.26)

when N ≥ 2. Combining (3.24), (3.25) and (3.26) we see that

I1 ≤
ωg(βN ) + 2σβαN

(
1 + β2 tan2

(
πα
2

))
2π

∫
|ξ|<βNN

1
α

|ξ|α

N
·Ne−

σ|ξ|α
4 dξ

≤ C
(
ωg(βN ) + 2σβαN

(
1 + β2 tan2

(πα
2

)))
,

(3.27)

where C =
∫
R
|ξ|α e−

σ|ξ|α
4 dξ. Next, we estimate I2.

The expression I2 is connected to Theorem 3.6, and as such we need to check that its
conditions are satisfied. From the conditions given in the statement of our theorem, we
know that there exists λ > 0 such that Eλ <∞, following the notations of Theorem 3.6.
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We only need to show that H(g) < ∞. Indeed, since g ∈ Lp(R) for some p > 1 we have
that ∫

R

g(x) |log g(x)| dx = −
∫
g<1

g(x) log g(x)dx+

∫
g≥1

g(x) log g(x)dx.

We already showed in the proof of Theorem 3.6 that −
∫
g<1

g(x) log g(x)dx < ∞, and

since we can always find Cp > 0 such that log x ≤ Cpxp−1 for x ≥ 1 we conclude that∫
g≥1

g(x) log g(x)dx ≤ Cp ‖g‖pLp(R) <∞,

showing that H(g) <∞. Thus, for any τ > 0 and for β small enough we have that

|ĝ(ξ)| ≤ 1− β2+τ + φτ (β),

with φδ(τ)
β2+τ −→

β→0
0.

Using the above, we conclude that

I2 =
N

1
α

2π

∫
|ξ|>βN

|ĝ(ξ)|N dξ ≤ N
1
α

2π

(
1− β2+τ

N + φτ (βN )
)N−q ‖ĝ‖qLq(R) . (3.28)

Lastly, we need to estimate I3, which is the simplest of the three integrals. Indeed

I3 =
1

2π

∫
|ξ|>βNN

1
α

e−σ|ξ|
α

dξ ≤ e−
σNβαN

2

2π

∫
|ξ|>βNN

1
α

e−
σ|ξ|α

2 dξ

≤ De−
σNβαN

2 ,

(3.29)

where D = 1
2π

∫
R
e−

σ|ξ|α
2 dξ. Combining (3.27), (3.28) and (3.29) yields the desired re-

sult.

Remark 3.9. It is clear that if {βN}N∈N is chosen such that it goes to zero and

β2+τ
N N −→

N→∞
∞

then ετ (N), defined in the above theorem, goes to zero as N goes to infinity, and we
have an explicit rate to how fast it does it. A different method to undertake here is to
pick β0 small enough that all the steps of the proof the theorem work, and get that

‖gN − γσ,α,β‖∞ ≤ Cg,α

(
N

1
α (1− β2+τ

0 + φτ (β0))N−q + e−
σNβα0

2

+ωg(β0) + 2σβα0

(
1 + β2 tan2

(πα
2

)))
.

Thus

lim sup
N→∞

‖gN − γσ,α,β‖∞ ≤ lim
β0→0

(
ωg(β0) + 2σβα0

(
1 + β2 tan2

(πα
2

)))
= 0,

proving the desired convergence, but losing the explicit N dependency!

An immediate corollary of Theorem 1.12 is the following:

Theorem 3.10. Let g be the probability density function of a random real variable X.
Assume that g ∈ Lp′(R) for some p′ > 1 and
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(1)
∫
|x|g(x)dx <∞.

(2) µg(x) ∼
x→∞

CSx
2−α for some CS > 0 and 1 < α < 2 where

µg(x) =

∫ x

−x
y2g(y)dy.

(3)
1−G(x)

1−G(x) +G(−x)
−→
x→∞

p

G(−x)

1−G(x) +G(−x)
−→
x→∞

q,

where G(x) =
∫ x
−∞ g(y)dy.

Then, for any positive sequence {βN}N∈N that converges to zero as N goes to infinity
and satisfies

β2+τ
N N −→

N→∞
∞, (3.30)

for some τ > 0 and for N large enough, we have that

sup
x

∣∣∣∣∣∣g∗N (x)−
γσ,α,β

(
x−NE
N

1
α

)
N

1
α

∣∣∣∣∣∣ ≤ Cg,α

N
1
α

(
N

1
α (1− β2+τ

N + φτ (βN ))N−q
′

+e−
σNβαN

2 + ωη(βN ) + 2σβαN

(
1 + β2 tan2

(πα
2

)))
=
ετ (N)

N
1
α

,

(3.31)

where

(i) σ = CS
Γ(3−α)
α(α−1) cos

(
πα
2

)
, β = p− q.

(ii) E =
∫
R
xg(x)dx.

(iii) Cg,α > 0 is a constant depending only on g, its moments and α.

(iv) q′ can be chosen to be the Hölder conjugate of min(2, p′).

(v) φτ satisfies

lim
x→0

φτ (x)

|x|2+τ
= 0,

(vi) η(ξ) is the reminder function of e−iξE ĝ(ξ), defined in Definition 1.11, and ωη(β) =

sup|x|≤β
|η(x)|
|x|α .

Under the condition (3.30) and the conclusions (i)− (vi) one finds that

lim
N→∞

ετ (N) = 0.

Proof. We start by defining g0(x) = g(x+E). Clearly g0 ∈ Lp′(R) and
∫
R
|x|g0(x)dx <∞.

If we will be able to show that g0 is in the NDA of γσ,α,β , then, using Theorem 1.12, we
can conclude that

sup
x

∣∣∣∣g∗N (N 1
αx+NE

)
− γσ,α,β(x)

N
1
α

∣∣∣∣ ≤ ετ (N)

N
1
α

,
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as g∗N0 (x) = g∗N (x+NE), and the desired result follows.
We only have to prove that g0 is in the appropriate NDA. To do that we will use Theorem
3.3. From its definition we know that g0 has zero mean. Clearly

1−G0(x)

1−G0(x) +G0(−x)
−→
x→∞

p

G0(−x)

1−G0(x) +G0(−x)
−→
x→∞

q,

with G0(x) =
∫ x
−∞ g0(y)dy, as G0(x) = G(x+ E).

Next, we see that

µg0
(x) =

∫ x

−x
y2g0(y)dy =

∫ x+E

−x+E

y2g(y)dy − 2E

∫ x+E

−x+E

yg(y)dy + E2

∫ x+E

−x+E

g(y)dy.

The first term is bounded between µg(x − E) and µg(x + E) and as such behaves like
CSx

2−α as x goes to infinity. The rest of the terms have a limit as x goes to infinity,
implying that

µg0
(x) ∼ CSx2−α.

All the conditions of Theorem 3.3 are satisfied (see Remark 3.5), with σ and β given by
(i), and the proof is complete.

Before we end this section we’d like to mention that with additional conditions on g,
the estimation on ετ , defined in Theorem 3.10, can become more explicit. This will be
done via an explicit estimation for ωη(ξ). Such estimation can be found in [16], yet the
additional conditions are very restrictive. As it is still of interest we will provide some
information on the matter in the Appendix.

4 Chaoticity and Entropic Chaoticity for Families with Unbounded
Fourth Moment.

The study of the chaoticity and entropic chaoticity of probability density functions,
{FN}N∈N, on Kac’s sphere that are obtained by conditioning a tensorisation of a one
particle function, f (equation (1.9)), is intimately connected to the asymptotic behaviour
of the normalisation function ZN (f, r) at all r, and not only its value at r =

√
N . Formula

(2.1) for the normalisation function, presented in Section 2, and the local central limit
theorem we proved in Section 3 provide us with the necessary tools to find the desired
behaviour.

Theorem 4.1. Let f be the probability density function of a random real variable V

such that f ∈ Lp(R) for some p > 1 and let

νf (x) =

∫ √x
−
√
x

y4f(y)dy.

Assume that ∫
R

x2f(x)dx = E <∞.

and νf (x) ∼
x→∞

CSx
2−α for some CS > 0 and 1 < α < 2. Then

sup
x

∣∣∣∣∣∣h∗N (x)−
γσ,α,1

(
x−NE
N

1
α

)
N

1
α

∣∣∣∣∣∣ ≤ ε(N)

N
1
α

, (4.1)
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where limN→∞ ε(N) = 0, σ = CS
Γ(3−α)
α(α−1) cos

(
πα
2

)
and h is the probability density function

of the random variable V 2. Moreover, ε(N) can be bound by ετ (N), given in Theorem
3.10, with η the reminder function of e−iξĥ.
In addition,

ZN
(
f,
√
r
)

=
2

|SN−1| rN−2
2

1

N
1
α

(
γσ,α,1

(
r −NE
N

1
α

)
+ λN (r)

)
, (4.2)

where supu |λN (u)| −→
N→∞

0.

Proof. We start by noticing that (4.2) follows immediately from (2.1) and (4.1). Next, we
will show that the conditions of Theorem 3.10 are satisfied by h, concluding inequality
(4.1), and the estimation for ε(N).
As was mentioned before, the function h is given by

h(x) =


f(
√
x)+f(−

√
x)

2
√
x

x > 0

0 x ≤ 0

and h ∈ Lp′(R) for some p′ > 1 when f ∈ Lp(R) with p > 1 (see Remark 2.2). Moreover,
for any κ > 0 ∫

R

|x|κh(x)dx =

∫
R

|x|2κf(x)dx,

from which we conclude that∫
R

|x|h(x)dx =

∫
R

xh(x) = E <∞.

By its definition

µh(x) =

∫ x

−x
y2h(y)dy = νf (x) ∼

x→∞
CSx

2−α,

and recalling Remark 3.5, we conclude that if H is the probability distribution function
of V 2 then for any x > 0

1−H(x)

1−H(x) +H(−x)
= 1

H(−x)

1−H(x) +H(−x)
= 0.

Thus, all the condition of Theorem 3.10 are satisfied by h with the appropriate σ, α and
β = 1, and the proof is complete.

Remark 4.2. A couple of remarks:

• As was discussed in the introduction: the finiteness of the fourth moment of f
guarantees a normal local central limit theorem. When f lacks that condition, a
thing that manifests itself via the function νf (x) in the above theorem, there is still
something that can be said and our local central limit theorem comes into play by
replacing the Gaussian with the stable laws.

• The parameter β represents the skewness of the stable distribution. In general
β ∈ [−1, 1] and the closer it is to 1, the more right skewed the distribution is. The
closer it gets to −1, the more left skewed the distribution is. Since our probability
density function h is supported on the positive real line, it is not surprising that
we got that β must be 1!

We are now ready to prove Theorems 1.13 and 1.14.
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Proof of Theorem 1.13. Due to the given information on f , we see that it satisfies all
the conditions of Theorem 4.1, and as such for any finite k ∈ R∣∣SN−k−1

∣∣ rN−k−2
2 ZN−k

(
f,
√
r
)

=
2

(N − k)
1
α

(
γσ,α,1

(
r − (N − k)

(N − k)
1
α

)
+ λN−k(r)

)
,

(4.3)

for some σ = CS
Γ(3−α)
α(α−1) cos

(
πα
2

)
and λN−k such that

εN−k = sup
r
|λN−k(r)| −→

N→∞
0.

Using Lemma 2.4 with FN = f⊗N

ZN(f,
√
N)

we find that

Πk(FN ) (v1, . . . , vk) =

∣∣SN−k−1
∣∣ (N −∑k

i=1 v
2
i

)N−k−2
2

+
ZN−k

(
f,
√
N −

∑k
i=1 v

2
i

)
|SN−1|N N−2

2 ZN
(
f,
√
N
)

·f⊗k (v1, . . . , vk) .

Combining this with (4.3) yields

Πk(FN ) (v1, . . . , vk) =

(
N

N − k

) 1
α
γσ,α,1

(
k−
∑k
i=1 v

2
i

(N−k)
1
α

)
+ λN−k

(
N −

∑k
i=1 v

2
i

)
γσ,α,1(0) + λN (N)

·f⊗k (v1, . . . , vk)χ∑k
i=1 v

2
i≤N

(v1, . . . , vk) ,

(4.4)

where χA is the characteristic function of the set A. By its definition, given in (1.18),
and the properties of γ̂σ,α,β , we know that γσ,α,1 is bounded and continuous on R. As
such, along with the conditions on λN−k and λN , we conclude that

Πk(FN ) (v1, . . . , vk) −→
N→∞

f⊗k (v1, . . . , vk) ,

pointwise. Using Lemma 2.5 we obtain that {FN}N∈N is f−chaotic.
Next we turn our attention to the entropic chaos. Using symmetry, (4.3) and (4.4) we
find that

HN (FN ) =
1

ZN
(
f,
√
N
) ∫

SN−1(
√
N)

f⊗N log
(
f⊗N

)
dσN − log

(
ZN

(
f,
√
N
))

= N

∫
R

Π1(FN )(v1) log (f(v1)) dv1 − log

(
2 (γσ,α,1(0) + λN (N))

|S|N−1
N

N−2
2 + 1

α

)

= N

(
N

N − 1

) 1
α
∫ √N
−
√
N

γσ,α,1

(
1−v2

1

(N−1)
1
α

)
+ λN−1

(
N − v2

1

)
γσ,α,1(0) + λN (N)

f(v1) log f(v1)dv1

− log

(
2
√
π (γσ,α,1(0) + λN (N))

(
1 +O

(
1

N

)))
+

(
1

α
− 1

2

)
logN +

N

2
log (2πe) .

where we have used the fact that
∣∣SN−1

∣∣ = 2π
N
2

Γ(N2 )
, and an asymptotic approximation for

the Gamma function.
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We have that ∣∣∣∣∣∣∣∣
γσ,α,1

(
1−v2

1

(N−1)
1
α

)
+ λN−1

(
N − v2

1

)
γσ,α,1(0) + λN (N)

f(v1) log f(v1)

∣∣∣∣∣∣∣∣
≤
‖γσ,α,1‖∞ + εN−1

γσ,α,1(0)− εN
f(v1) |log f(v1)|

≤
2
(
‖γσ,α,1‖∞ + 1

)
γσ,α,1(0)

f(v1) |log f(v1)| ∈ L1(R),

for N large enough. Combining this with the fact that {Π1(FN )}N∈N converges to f

pointwise, we can use the dominated convergence theorem to conclude that

lim
N→∞

HN (FN )

N
=

∫
R

f(v1) log f(v1)dv1 +
log 2π + 1

2
= H(f |γ), (4.5)

and the proof is complete.

Proof of Theorem 1.14. It is easy to see that the condition f(x) ∼
x→∞

D
|x|1+2α for some

1 < α < 2 and D > 0 implies that

νf (x) ∼
x→∞

D

2− α
x2−α.

Thus, with the added information given in the theorem we know that f satisfies the
conditions of Theorem 1.13, and we conclude the desired result.

Remark 4.3. Theorem 1.14 gives rise to many, previously unknown, entropically chaotic
families, determined mainly by a simple growth condition. An explicit example to such
family is the one generated by the function

f(x) =

√
2

π (1 + x4)
.

5 Lower Semi Continuity and Stability Property.

As discussed in Section 1, the concept of entropic chaoticity is much stronger than
that of normal chaoticity. This is due to the inclusion of all correlation information and
an appropriate rescaling of the relative entropy. In this section we will show that the
rescaled entropy is a good form of distance, one that is stable under certain conditions.
The first step we must make, inspired by [7], is a form of lower semi continuity property
for the relative entropy on Kac’s sphere, expressed in Theorem 1.15. To begin with, we
mention that in [7], the authors proved the following:

Theorem 5.1. Let f be a probability density function on R such that f ∈ Lp(R) for
some p > 1. Assume in addition that∫

R

x2f(x)dx = 1,

∫
R

x4f(x)dx <∞.

Denote by dνN = FNdσ
N , where FN = f⊗N

ZN(f,
√
N)

, restricted to Kac’s sphere and let

{µN}N∈N be a family of symmetric probability measures on Kac’s sphere such that for
some k ∈ N we have that

Πk(µN ) ⇀
N→∞

µk.

Then
H
(
µk|f⊗k

)
k

≤ lim inf
N→∞

HN (µN |νN )

N
. (5.1)

EJP 18 (2013), paper 78.
Page 23/38

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2683
http://ejp.ejpecp.org/


Chaos and entropic chaos in Kac’s model without high moments

Note that due to the so-called Csiszar-Kullback-Leibler-Pinsker inequality ([26]) one
has that

‖µ− ν‖TV ≤
√

2H(µ|ν), (5.2)

showing that (5.1) gives a stronger result than an L1 convergence. We will use this the-
orem as a motivation for our lower semi continuity property, as well as in the particular
case of

f(x) = γ(x), dνN = FNdσ
N = dσN ,

where γ(x) is the standard Gaussian.
Before we begin the proof of Theorem 1.15 we point out the obvious difference between
the k = 1 and k > 1 cases. This is due to the fact that the proof relies heavily on our
approximation theorem, Theorem 4.1, which is valid only in one dimension. The higher
dimension case needs to be tackled differently, unlike the proof of Theorem 5.1, where
the higher dimension case is proven in a very similar way.
The proof of Theorem 1.15 follows ideas presented in [7], with some modification to our
current discussion.

Proof of Theorem 1.15. We start by noticing that since Cb
(
Rk0

)
can be considered a

subspace of Cb
(
Rk
)

whenever k0 ≤ k, the weak convergence condition on Πk(µN ) im-
plies that

Πk0(µN ) ⇀
N→∞

µk0 = Πk0(µk).

In particular we find that Π1(µN ) converges weakly to µ = Π1(µk).
Next, we recall a duality formula for the relative entropy (see [21] for instance, for the
compact case):

H(µ|ν) = sup
ϕ∈Cb

{∫
ϕdµ− log

(∫
eϕdν

)}
. (5.3)

Given ε > 0 we can find ϕε ∈ Cb(R) such that∫
R

eϕε(v)f(v)dv = 1

and

H(µ|f) ≤
∫
R

ϕε(v)dµ(v) +
ε

2
. (5.4)

We can find a compact set Kε ⊂ R such that

µ (Kc
ε ) ≤

ε

4 ‖ϕε‖∞
,

∫
Kc
ε

f(v)dv ≤ ε

2e‖ϕε‖∞
.

Let ηε ∈ Cc(R) be such that

0 ≤ ηε ≤ 1, ηε|Kε = 1,

and define ϕ(v) = ηε(v)ϕε(v). Clearly ϕ ∈ Cc(R), |ϕ| ≤ |ϕε| and

H(µ|f) ≤
∫
R

ϕ(v)dµ(v) + 2 ‖ϕε‖∞ µ (Kc
ε ) +

ε

2
<

∫
R

ϕ(v)dµ(v) + ε. (5.5)

Also, ∣∣∣∣∫
R

eϕ(v)f(v)dv −
∫
R

eϕε(v)f(v)dv

∣∣∣∣ ≤ 2e‖ϕε‖∞
∫
Kc
ε

f(v)dv < ε. (5.6)
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For any N ∈ N, define φN (v1, . . . , vN ) =
∑N
i=1 ϕ(vi) ∈ Cb

(
RN
)
. Plugging φN as a

candidate in (5.3), in the setting of Kac’s sphere, and using symmetry we find that

HN (µN |νN ) ≥ N
∫
R

ϕ(v1)dΠ1(µN )(v1)− log

 1

ZN
(
f,
√
N
) ∫

SN−1(
√
N)

ΠN
i=1

(
eϕ(vi)f(vi)

)
dσN


= N

∫
R

ϕ(v1)dΠ1(µN )(v1)− log

ZN
(
eϕf
a ,
√
N
)

ZN
(
f,
√
N
)
−N log a,

where a =
∫
R
eϕ(v)f(v)dv. Since f satisfies the conditions of Theorem 4.1, so does the

probability density function eϕ

a f . Denoting by E = 1
a

∫
R
v2eϕ(v)f(v)dv we find that

ZN
(
eϕf
a ,
√
N
)

ZN (f,
√
N)

=
γσ1,α,1

(
N−NE
N

1
α

)
+ ε1(N)

γσ,α,1 (0) + ε2(N)
, (5.7)

for some σ, σ1, and {εi(N)}i=1,2 that go to zero as N goes to infinity. Since γσ1,α,1 is the
defined as the inverse Fourier transform of an L1 function we know that

lim
|x|→∞

γσ1,α,1(x) = 0.

Thus,

lim inf
N→∞

− log
(
γσ1,α,1

(
N−NE
N

1
α

)
+ ε1(N)

)
N

 ≥ 0. (5.8)

Together with the fact that

lim
N→∞

(
− log (γσ,α,1(0) + ε2(N))

N

)
= 0,

the weak convergence of Π1(µN ) and (5.5), we find that

lim inf
N→∞

HN (µN |νN )

N
≥
∫
R

ϕ(v)dµ(v)− log(1 + ε)

≥ H(µ|f)− ε− log(1 + ε),

(5.9)

where we have used (5.6) to conclude that |a− 1| < ε. Since ε was arbitrary, (i) is
proved.
In order to show (ii), we notice that

HN (µN |νN ) =

∫
SN−1(

√
N)

log

(
dµN

FNdσN

)
dµN = HN (µN |σN )−

∫
SN−1(

√
N)

log (FN ) dµN

= HN (µN |σN )−N
∫
R

log (f(v1)) dΠ1(µN ) + log
(
ZN

(
f,
√
N
))

.

Thus, for any δ > 0,

lim inf
N→∞

HN (µN |νN )

N
+ lim sup

N→∞

∫
R

log (f(v1) + δ) dΠ1(µN )

≥ lim inf
N→∞

HN (µN |σN )

N
− log(2π) + 1

2
,

(5.10)
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where we have used the fact that limN→∞
log(ZN(f,

√
N))

N = − log(2π)+1
2 , shown in the

proof of Theorem 1.13. From Theorem 5.1 we know that

lim inf
N→∞

HN (µN |σN )

N
≥ H(µk|γ⊗k)

k
,

and since

H(µk|f⊗k) = H(µk|γ⊗k) +

∫
Rk

log

(
γ⊗k

f⊗k

)
dµk

= H(µk|γ⊗k)−
k
(
log(2π) +

∫
R
v2dµ(v)

)
2

− k
∫
R

log (f(v)) dµ(v)

we get the desired result from (5.10).

We will now prove our first stability result, Theorem 1.16. Again, the ideas presented
here are motivated by [7].

Proof of Theorem 1.16. We start with the simple observation that if {µN}N∈N is a family
of symmetric probability measures on Kac’s sphere then {Πk(µN )}N∈N is a tight family,
for any k ∈ N. Indeed, given k ∈ N we can find mN , rN ∈ N such that

N = mNk + rN ,

where 0 ≤ rN < k. We have that

Πk(µN )


√√√√ k∑

i=1

v2
i > R


 ≤ 1

R2

∫
∑k
i=1 v

2
i>R

2

(
k∑
i=1

v2
i

)
dΠk(µN )

≤ 1

mNR2

∫
SN−1(

√
N)

(
mNk∑
i=1

v2
i

)
dµN ≤

N

mNR2
<

2k

R2
,

proving the tightness.

Since {Π1µN}N∈N is tight, we can find a subsequence,
{

Π1

(
µNkj

)}
j∈N

, to any subse-

quence {Π1 (µNk)}k∈N, that converges to a limit. Denote by κ the weak limit of such one
subsequence. Using (1.24) we conclude that

H(κ|f) ≤ lim inf
j→∞

HNkj

(
µNkj |νNkj

)
Nkj

= 0, (5.11)

due to condition (1.26). Thus, κ = f(v)dv, and since κ was an arbitrary weak limit, we
conclude that all possible weak limit points must be f(v)dv. Since the weak topology on
P (R) is metrisable we conclude that

Π1(µN ) ⇀
N→∞

f(v)dv = µ.

We will show that the convergence is actually in L1 with the weak topology.
As an intermediate step in the proof of Theorem 1.15 we have shown that

H(µN |νN ) = H(µN |σN )−N
∫
R

log (f(v1)) dΠ1(µN )(v1)

+ log
(
ZN

(
f,
√
N
))

.

(5.12)
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Using condition (1.26), the fact that limN→∞
ZN(f,

√
N)

N = − log(2π)+1
2 , and the fact that

f ∈ L∞(R) we conclude that there exists C > 0, independent of N , such that for any
δ > 0

H(µN |σN )

N
≤ C + log (‖f‖∞ + δ) . (5.13)

The inequality
H
(
Πk(µN )|Πk(σN )

)
k

≤ 2
HN (µN |σN )

N

proven in [3] and valid for any k ≥ 1 and N ≥ k, implies that

H
(
Πk(µN )|Πk(σN )

)
≤ 2k (C + log (‖f‖∞) + δ) , (5.14)

for all k ∈ N, N ≥ k and δ > 0.
Similar to the proof of Theorem 1.15, one can easily see that

H
(
Πk(µN )|γ⊗k

)
= H

(
Πk(µN )|Πk(σN )

)
+

∫
Rk

log

(
Πk(σN )

γ⊗k

)
dΠk(µN ) (5.15)

where γ is the standard Gaussian. Since dσN = γ⊗N

ZN(γ,
√
N)
dσN , and γ is a probability

density with finite fourth moment, one can employ similar theorems to those presented
here and find that

Πk(σN ) (v1, . . . , vk)

γ⊗k (v1, . . . , vk)
=

√
N

N − k
·
γ
(
k−
∑k
i=1 v

2
i√

2N

)
+ λN−k

(
N − k −

∑k
i=1 v

2
I

)
1 + λN (N)

χ∑k
i=1 v

2
i≤N

,

where supu |λN−k(u)| −→
N→∞

0 and λN (N) −→
N→∞

0 (see [7] for more details). As such,

∫
Rk

log

(
Πk(σN )

γ⊗k

)
dΠk(µN ) ≤ log

(
max
N>k

√
N

N − k
‖γ‖∞ + supN supu |λN−k(u)|

1 + infN λN (N)

)
,

which, together with (5.14) and (5.15) shows that

H
(
Πk(µN )|γ⊗k

)
≤ 2k (C + log (‖f‖∞) + δ) +D,

for some C,D > 0 independent of N , and δ > 0. Thus, {ΠkµN}N∈N has bounded relative
entropy with respect to γ⊗k and we can apply the Dunford-Pettis compactness theorem
and conclude that the densities of {Πk(µN )}N∈N form a relatively compact set in L1(Rk)

with the weak topology. Since this is true for all k, and we know that {Π1(µN )}N∈N
converge weakly (in the measure sense) to µ, with density function f(v), we conclude
that for any φ ∈ L∞(R) we have that∫

R

φ(v)dΠ1(µN )(v) −→
N→∞

∫
R

φ(v)f(v)dv. (5.16)

In particular, since f ∈ L∞(R) and f ≥ 0 we have that for any δ > 0∫
R

log (f(v) + δ) dΠ1(µN )(v) −→
N→∞

∫
R

log (f(v) + δ) f(v)dv. (5.17)

Combining (5.17), (1.26) with the fact that Π1(µN ) converges to f(v)dv, we find that if{
Πk

(
µNj

)}
j∈N converges weakly to κk, then by (1.25)

H(κk|f⊗k)

k
≤
∫
R

log (f(v) + δ) f(v)dv −
∫
R

log (f(v)) f(v)dv (5.18)
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where we have used the fact that
∫
R
v2dµ(v) =

∫
R
v2f(v)dv = 1. Using the dominated

convergence theorem to take δ to zero shows that H(κk|f⊗k) = 0, and so

κk = f⊗k (v1, . . . , vk) dv1 . . . dvk.

Much like {Π1(µN )}N∈N, since {Πk(µN )}N∈N is tight we can always find weak limits for
some subsequences of it. We have just proved that all possible weak limits of subse-
quences of {Πk(µN )}N∈N are f⊗k, from which we conclude that

Πk(µN ) ⇀
N→∞

f⊗k,

showing the chaoticity. It is worth to note that we actually proved more than the above:
we have proved convergence in L1(Rk) with the weak topology.

Going back to (5.12), and using (1.26), (5.17) and the known limit of
log(ZN(f,

√
N))

N we
find that

lim sup
N→∞

HN (µN |σN )

N
≤
∫
R

log (f(v) + δ) f(v)dv +
log(2π) + 1

2
. (5.19)

Taking δ to zero we conclude that

lim sup
N→∞

HN (µN |σN )

N
≤ H(f |γ). (5.19)

Since the inequality

lim inf
N→∞

HN (µN |σN )

N
≥ H(f |γ)

follows from Theorem 5.1, we see that

lim
N→∞

HN (µN |σN )

N
= H(f |γ), (5.18)

proving the entropic chaoticity and completing the proof.

The last proof of this section will involve the second ’closeness’ criteria, associated
with the Fisher information functional, and given by Theorem 1.18. The proof is similar
to those appearing in [17] and [9] with appropriate modifications. The proof will rely
heavily on tools from the field of Optimal Transportation.

Proof of Theorem 1.18. The first step of the proof will be to show that conditions (1.29)
and (1.30) imply that the marginal limit, f , satisfies the conditions of Theorem 1.13.
We start by showing that f ∈ Lp(R) for some p > 1. In [17] the authors have presented a
lower semi continuity result for the relative Fisher Information, from which we conclude
that

I(f |γ) ≤ lim inf
N→∞

IN (µN |σN )

N
≤ C. (5.19)

Denoting by

I(f) =

∫
R

|f ′(x)|
f(x)

dx = 4

∫
R

∣∣∣∣ ddx√f(x)

∣∣∣∣2 dx
we see that

I(f) = I(f |γ) + 2−
∫
R

v2f(v)dv < C + 2−
∫
R

v2f(v)dv <∞,

as f is a weak limit of Π1(µN ), implying that∫
R2

v2f(v)dv ≤ lim inf
N→∞

∫
R

v2dΠ1(µN )(v) = 1.
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We conclude that
√
f ∈ H1(R) and using a Sobolev embedding theorem we find that√

f ∈ L∞(R). Thus, since f is also in L1(R), we have that f ∈ Lp(R) for all p ≥ 1.
The next step will be to show that condition (1.29) implies a uniform bound for the 1+α

moment of Π1(µN ), i.e. ∫
R

|v1|1+α
dΠ1(µN )(v1) ≤ C, (5.20)

for some C > 0, independent of N . This will show that∫
R

v2f(v)dv = lim
N→∞

∫
R

v2dΠ1(µN )(v) = 1, (5.21)

as well as ∫
R

|v|1+α
f(v)dv ≤ lim inf

N→∞

∫
R

|v|1+α
dΠ1(µN )(v) ≤ C. (5.22)

To prove (5.20) we notice that∫
R

|v1|1+αdΠ(µN )(v1) =
3− α

23−α − 1

∫
R

∫ |v1|

|v1|
2

xα−4v4
1dΠ1(µN )(v1)dx

=
3− α

23−α − 1

∫ ∞
0

xα−4

(∫ −x
−2x

v4
1dΠ(µN )(v1) +

∫ 2x

x

v4
1dΠ(µN )(v1)

)
dx

=
3− α

23−α − 1

∫ ∞
0

xα−4

(∫ 2x

−2x

v4
1dΠ(µN )(v1)−

∫ x

−x
v4

1dΠ(µN )(v1)

)
dx

(5.23)

Using condition (1.29) we know that for any ε > 0 we can find R > 0, such that for any
|x| > R and any N ∈ N

(1− ε)CSx2−α ≤
∫ √x
−
√
x

v4
1dΠ1(µN )(v1) ≤ (1 + ε)CSx

2−α (5.24)

In addition, for any probability measure µ on R we have that∫ x

−x
v4dµ(v) ≤ 2x4. (5.25)

Combining (5.23), (5.24) and (5.25) we conclude that∫
R

|v1|1+αdΠ(µN )(v1) ≤ 3− α
23−α − 1

(
32R

α+1
2

+CS
(
(1 + ε)24−2α − (1− ε)

) ∫ ∞
√
R

dx

xα

)
= C

(5.26)

for a choice of 0 < ε < 1.
Lastly, we want to show that νf , defined in Theorem 1.13, satisfies the appropriate
growth condition.
Since Π1(µN ) converges to f weakly, we have that for any lower semi continuous func-
tion, φ, that is bounded from below,∫

R

φ(v)f(v)dv ≤ lim inf
N→∞

∫
R

φ(v1)dΠ1(µN )(v1). (5.27)

Similarly, if φ is upper semi continuous and bounded from above then∫
R

φ(v)f(v)dv ≥ lim sup
N→∞

∫
R

φ(v1)dΠ1(µN )(v1). (5.28)
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Choosing φ(v) = v4χ(−
√
x,
√
x)(v) and φ(v) = v4χ[−

√
x,
√
x](v) respectively, and using con-

dition (1.29) proves that

νf (x) =

∫ √x
−
√
x

v4f(v)dv ∼
x→∞

CSx
2−α,

and we can conclude that f satisfies the conditions of Theorem 1.13. This implies that

the function FN = f⊗N

ZN(f,
√
N)

is well defined, and as usual we denote νN = FNdσ
N .

Next, we will show that IN (νN |σN )
N is uniformly bounded in N . Denoting by ∇ the normal

gradient on RN and by ∇S its tangential component to Kac’s sphere we find that∫
SN−1(

√
N)

|∇SFN |2

FN
dσN ≤ 1

ZN
(
f,
√
N
) ∫

SN−1(
√
N)

∣∣∇f⊗N ∣∣2
f⊗N

dσN

=

N∑
i=1

1

ZN
(
f,
√
N
) ∫

SN−1(
√
N)

|f ′(vi)|2

f(vi)
ΠN
j=1,j 6=if(vj)dσ

N

= N

∫
R

∣∣SN−2
∣∣ (N − v2

1

)N−3
2

+

|SN−1|N N−2
2

ZN−1

(
f,
√
N − v2

1

)
ZN

(
f,
√
N
) · |f

′(v1)|2

f(v1)
dv1,

(5.29)

where we have used Lemma 2.3, and the definition of the normalisation function. Using
the asymptotic behaviour of ZN (f,

√
r) from Theorem 4.1 we conclude that

IN (νN |σN )

N
≤
(

N

N − 1

) 1
α
∫
R

γσ,α,1

(
1−v2

1

N
1
α

)
+ λN−1

(
N − v2

1

)
γσ,α,1(0) + λN (N)

|f ′(v1)|2

f(v1)
dv1

≤ CI(f) ≤ C1,

(5.30)

for C1 > 0, independently of N .
At this point we’d like to invoke the HWI inequality, a strategy that was first proved to
be successful in this context in [17] and [25]. In our settings we find that

H(µN |σN )−H(νN |σN ) ≤ π

2

√
IN (µN |σN )W2(µN , νN )

H(νN |σN )−H(µN |σN ) ≤ π

2

√
IN (νN |σN )W2(µN , νN ),

(5.31)

where W2 stands for the quadratic Wasserstein distance with distance function induced
from the quadratic distance function on RN :

W 2
2 (µN , νN ) = inf

π∈Π(µN ,νN )

∫
SN−1(

√
N)×SN−1(

√
N)
|x− y|2 dπ(x, y),

where Π(µN , νN ), the space of pairing, is the space of all probability measures on

SN−1
(√

N
)
× SN−1

(√
N
)

with marginal µN and νN respectively.

The reason we are allowed to use the HWI inequality follows from the fact that Kac’s
sphere has a positive Ricci curvature. Moreover, in the original statement of the HWI
inequality, the quadratic Wasserstein distance is taken with the quadratic geodesic dis-
tance, yet, fortunately for us, it is equivalent to the normal distance on RN , hence the
factor π

2 that appears in (5.31). For more information about the Wasserstein distance
and the HWI inequality, we refer the interested reader to [30].
Combining (5.31) with the boundness of the rescaled relative Fisher information of µN
and νN with respect to σN , we conclude that∣∣∣∣H(µN |σN )

N
− H(νN |σN )

N

∣∣∣∣ ≤ CW2(µN , νN )√
N

(5.32)

EJP 18 (2013), paper 78.
Page 30/38

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2683
http://ejp.ejpecp.org/


Chaos and entropic chaos in Kac’s model without high moments

for some C > 0.
The next step of the proof is to show that the first marginals of µN and νN have some
joint bounded moment of order l > 2, uniformly in N . This will help us give a quanti-
tative estimation to the quadratic Wasserstein distance. Indeed, using several results
from [17], one can show the following estimation:

W2(κN , f
⊗N )√

N
≤ C1B

1
l

l

(
W1

(
Π2(κN ), f⊗2

)
+

1

Np1

) 1
2−

1
l

(5.33)

where C1 and p1 are positive constants that depends only on l > 2, κN is a probability
measure on Kac’s sphere, f is a probability measure on R and

Bl =

∫
R

|v1|ldΠ1(κN )(v1) +

∫
R

|v1|lf(v1)dv1 <∞.

We have already shown that {Π1(µN )}N∈N has a uniformly bounded moment of order
1 + α. Using (4.4) from the proof of Theorem 1.13, we find that

∫
R

|v1|1+αdΠ1(νN )(v1) =

(
N

N − 1

) 1
α
∫
|v1|≤

√
N

γσ,α,1

(
1−v2

1

N
1
α

)
+ λN−1

(
N − v2

1

)
γσ,α,1(0) + λN (N)

|v1|1+α
f(v1)dv1

for some σ > 0, 1 < α < 2 and λN−k, λN with

sup
u
|λN−1(u)| −→

N→∞
0, λN (N) −→

N→∞
0.

Thus, along with (5.22), we conclude that∫
R

|v1|1+αdΠ1(νN )(v1) ≤ C, (5.34)

for some C > 0.
Defining

M =

∫
R

|v1|1+αdΠ1(µN )(v1) +

∫
R

|v1|1+αdΠ1(νN )(v1)

+

∫
R

|v1|1+αf(v1)dv1 <∞
(5.35)

and combining (5.32), (5.33), and the triangle inequality for the Wasserstein distance,
leads us to conclude that∣∣∣∣H(µN |σN )

N
− H(νN |σN )

N

∣∣∣∣ ≤ CM 1
1+α

[(
W1

(
Π2(µN ), f⊗2

)
+

1

Np1

) 1
2−

1
1+α

+

(
W1

(
Π2(νN ), f⊗2

)
+

1

Np1

) 1
2−

1
1+α

]
.

(5.36)

As Π2(νN ),Π2(νN ) and f⊗2 all have unit second moment (for any N ), the Wasserstein
distance is equivalent to weak topology with respect to them. Since {µN}N∈N and
{νN}N∈N are f−chaotic, we conclude that

W1

(
Π2(µN ), f⊗2

)
−→
N→∞

0, W1

(
Π2(νN ), f⊗2

)
−→
N→∞

0,

implying that

lim
N→∞

∣∣∣∣H(µN |σN )

N
− H(νN |σN )

N

∣∣∣∣ = 0. (5.37)
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We are almost ready to conclude the proof. Before we do, we use the lower semi conti-
nuity of the entropy, discussed in Theorem 5.1, to see that

H(f |γ) ≤ lim inf
N→∞

HN (µN |σN )

N
≤ C <∞.

Thus, ∣∣∣∣H(µN |σN )

N
−H(f |γ)

∣∣∣∣ ≤ ∣∣∣∣H(µN |σN )

N
− H(νN |σN )

N

∣∣∣∣
+

∣∣∣∣H(νN |σN )

N
−H(f |γ)

∣∣∣∣ −→N→∞
0,

(5.38)

where we have used (5.37) and Theorem 1.13, completing proof.

Remark 5.2. We’d like to point out that following the above proof, one can see that
condition (1.29), giving us a uniform asymptotic behaviour for the fourth moments of
the first marginals of {µN}N∈N, can be replaced with the conditions that f satisfies
the conditions of Theorem 1.13, and the first marginals of {µN}N∈N have a uniformly
bounded k−th moment, for some k > 2. This gives us a different approach to the
stability problem, expressed with the Fisher information functional, one that assumes
less information on the first marginals, but more conditions on the marginal limit.

6 Connections to the Trend to Equilibrium in Kac’s Model and
Cercignani’s Conjecture.

The study of the conditioned tensorisation of a function f is closely related to the
problem of finding the rate of convergence to equilibrium in Kac’s Model. In this sec-
tion we will outline some of the history, and recent results, dealing with this subject.
Recall that Kac’s model have managed to show validity (in some sense) for the spatially
homogenous Boltzmann equation. Kac hoped to use his simple model to infer quantita-
tive rate of convergence to equilibrium in Boltzmann equation, as a limit of his ’master’
equation. He started by noticing that his evolution equation, (1.1), is ergodic, with an
equilibrium state represented by the constant function 1. As such, for any fixed N , one
can easily see that

lim
t→∞

FN (t, v1, . . . , vN ) = 1,

for any solution to Kac’s equation, FN (t, v1, . . . , vN ). The rate of convergence to equilib-
rium under the L2 norm is determined by the spectral gap

∆N = inf

 〈ϕ,N(I −Q)ϕ〉L2(SN−1(
√
N))

‖ϕ‖2L2(SN−1(
√
N))

| ϕ is symmetric , ϕ ∈ L2
(
SN−1

(√
N
))

, ϕ ⊥ 1

 .

Kac’s conjectured that
∆ = lim inf

N→∞
∆N > 0,

resulting in an exponential convergence to equilibrium, for any fixed N , with a rate that
is independent with the number of particles.
The spectral gap problem remained open until 2000, when a series of papers by authors
such as Janversse, Maslen, Carlen, Carvahlo, Loss and Geronimo gave a satisfactory
positive answer to the conjecture, even in McKean’s model (see [18, 22, 5, 8] for more
details). However, the L2 norm is catastrophic when dealing with chaotic families and
in this setting attempts to pass to the limit in the number of particles is futile. Indeed,
one can easily find a chaotic family, {FN}N∈N, such that

‖FN‖L2 ≥ CN ,
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where C > 1 (for example, the conditioned tensorisation of a function f we discussed
so extensively in this paper!).
As was mentioned in the introduction, the next ’distance’ to be considered was the
entropy

HN (FN ) =

∫
SN−1(

√
N)

FN logFNdσ
N .

In an attempt to imitate the idea behind the spectral gap method, one can define the
entropy production to be the minus of the formal derivation of the entropy under Kac’s
evolution equation

DN (FN ) = − d

dt
HN (FN ) = 〈logFN , N(I −Q)FN 〉L2(SN−1(

√
N)) , (6.1)

The appropriate ’spectral gap’ will be given by

ΓN = inf
FN

DN (FN )

HN (FN )

and the appropriate conjecture is: Can one find a positive constant, C > 0, such that

ΓN ≥ C

for all N . This problem is called Cercignani’s many body conjecture, named after a
similar conjecture posed for the real Boltzmann equation in [10]. If there exists such a
C, we have that

HN (FN (t)) ≤ e−CtHN (FN (0))

then, hoping the entropic chaoticity propagates with time, one can divide by N and take
a limit as N to find that

H(ft|γ) ≤ e−CtH(f0|γ). (6.2)

This, along with a known inequality on H(f |γ) gives an exponential rate of decay to-
wards the equilibrium.
Unfortunately, in general, Cercignani’s many body conjecture is false. The first hint to
it was revealed in [29] where Villani managed to prove that

ΓN ≥
2

N − 1
.

Villani has conjectured that ΓN = O
(

1
N

)
, which was proven to be essentially true by

the second author. In [12] (and later on in [13] for McKean’s model) the second author
extended the normal local central limit theorem, Theorem 1.5, to the case where the
underlying generating function, f , also varies with N . In particular, the second author
showed that:

Theorem 6.1. Let 0 < η < 1 and δN = 1
Nη . Define

fN (v) = δNM 1
2δN

(v) + (1− δN )M 1
2(1−δN )

(v),

where Ma(v) = e−
v2

2a√
2πa

. Then

ZN (f,
√
u) =

2
√
NΣN |SN−1|uN−2

2

e− (u−N)2

2NΣ2
N

√
2π

+ λN (u)

 , (6.3)
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where Σ2 = 3
4δN (1−δN ) − 1 and supu |λN (u)| −→

N→∞
0. Moreover, using the same notation

as (1.9) with f replaced by fN , one finds that there exists Cη′ > 0, depending only on η′

such that

ΓN ≤
DN (FN )

HN (FN )
<
Cη′

Nη′
(6.4)

for 0 < η′ < η.

The above theorem poses an interesting insight: The family constructed in Theorem
6.1 has two peculiar properties:

(i) ∫
R

v4fN (v)dv =
3

4δN (1− δN )
−→
N→∞

∞

so the fourth moment condition unbounded in some sense in this example.

(ii) FN is M 1
2
−chaotic yet limN→∞

HN (FN )
N exists but doesn’t equal H

(
M 1

2
|γ
)

!

This insinuates that moments of the limit function, as well as entropic chaoticity, may be
very important to the validity of Cercignani’s many body conjecture. This is one reason
that prompted us to try and investigate the conditioned tensorisation of a function f that
has an unbounded fourth moment. While we have attained some answers, we believe
that there is much more that can be discovered.

7 Final Remarks.

While Kac’s model, chaoticity and entropic chaoticity, and Cercignani’s many body
conjecture are far from being completely understood and resolved, we hope that our
paper has shed some light on the interplay between the moments of a generating func-
tion and its associated tensorised measure, restricted to Kac’s sphere. As an epilogue,
we present here a few remarks about our work, along with associated questions we’ll
be interested in investigating next.

• One fundamental problem we’re very interested in is finding conditions under
which Cercignani’s many body conjecture is valid. While our work showed that
the requirement of a bounded fourth moment is not a major issue for chaotic-
ity and even entropic chaoticity, we still believe that the fourth moment plays an
important role in the conjecture. At the very least, due to its probabilistic interpre-
tation as a measurement of deviation from the sphere, we believe that the fourth
moment will be needed for an initial positive answer to the conjecture.

• The following was communicated to us by Clément Mouhot: Using a Talagrand
inequality, one can show that if the family of functions {GN}N∈N, restricted to the
sphere, satisfies a Log-Sobolev inequality that is uniform in N , one has that

lim
N→∞

H(FN |GN )

N
= 0

implies that limN→∞ (Πk(FN )−Πk(GN )) = 0. Our stability result, Theorem 1.16,
gives many examples where the function GN doesn’t satisfy any Log-Sobolev in-
equality (due to how the underlying function behaves), but we still get equality of
marginal. Moreover, we actually get that FN is entropically chaotic! The connec-
tion between the limit of the ’distance’

d(FN , GN ) =
H(FN |GN )

N

and the convergence of marginals is still not understood fully.
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• We’ll be interested to know if one can find an easy criteria for which we can eval-
uate quantitatively the convergence of h∗N (appearing in Theorem 4.1) without
relying on the reminder function. This will allow for possibilities to extend the
work done by the second author in [12, 13] and allow the underlying generating
function, f , to rely on N as well. While we present such quantitative estimation
in the Appendix, we found them to be unusable while trying to deal with concrete
examples.

A Additional Proofs.

In this section of the appendix we will present several proofs of technical items we
thought would only hinder the flow of the paper.

Proof of Lemma 3.2. Assume that the conclusion is false. We can find a sequence xn −→
n→∞

0, xn 6= 0, and an ε0 > 0 such that
|g(xn)| ≥ ε0.

Due to continuity, we can find d1 > 0 such that for any x ∈ [x1, x1 + d1] we have

|g(x)| ≥ ε0
2
.

Denote n1 = 1, xk1
= x1 and ξ1 = n1 · x1 = x1.

Since xn converges to zero and is non zero, we can find xk2
such that 0 < xk2

< ξ1
2 . Let

n2 =
[
ξ1
xk2

]
+ 1 ≥ 2, where [·] is the lower integer part function. We may assume that

xk2
< d1 and conclude that

ξ1 ≤ n2xk2
< ξ1 + xk2

≤ ξ1 + n1d1.

Next, we can find d2 such that n2(xk2 + d2) ≤ ξ1 + n1d1. We may also assume that d2 is
small enough so that x ∈ [xk2 , xk2 + d2] implies

|g(x)| ≥ ε0
2
.

Denoting by ξ2 = n2xk2
, we notice that [ξ2, ξ2 + n2d2] ⊂ [ξ1, ξ1 + n1d1] and the closed

intervals are non empty.
We continue by induction. Assume we found ni, ki ∈ N, ni ≥ i, and di > 0 for i = 1, . . . , j

such that ξi = nixki satisfies

[ξi, ξi + nidi] ⊂ [ξi−1, ξi−1 + ni−1di−1]

and for any x ∈ [ξi, ξi + nidi] we have that∣∣∣∣g( x

ni

)∣∣∣∣ ≥ ε0
2
.

We find xkj+1
such that xkj+1

<
ξj
j+1 and define nj =

[
ξj

xkj+1

]
+ 1 ≥ j + 1. As such, we

have that
ξj ≤ nj+1xkj+1 < ξj + xkj+1 < ξj + njdj ,

where the last inequality is valid since we can pick xkj+1
< njdj . We can find dj+1 such

that nj+1(xkj+1
+ dj+1) < ξj + njdj and for any x ∈ [xkj+1

, xkj+1
+ dj+1]

|g(x)| ≥ ε0
2
.
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Denoting ξj+1 = nj+1xkj+1
gives us the interval with the desired properties.

Since we have a nested sequence of non-empty closed intervals in R we know that the
intersection of all of them must be non-empty. Thus, there exists x ∈ [ξi, ξi +nidi] for all
i ∈ N. Moreover, by construction ∣∣∣∣g( x

ni

)∣∣∣∣ ≥ ε0
2

which contradicts the assumption that limn→∞ g
(
x
n

)
= 0 for any x 6= 0.

The next result we will prove, is Lemma 3.8:

Proof of Lemma 3.8. Since ĝ is in the NDA of γσ,α,β we conclude that ĝ is actually in the

FDA of γσ,α,β , due to Theorem 3.1. Thus, there exists η1, with η1(ξ)
|ξ|α ∈ L

∞(R) and

η1(ξ)

|ξ|α
−→
ξ→0

0,

such that

ĝ(ξ) = 1− σ |ξ|α
(

1 + iβsgn(ξ) tan
(πα

2

))
+ η1(ξ)

= e−σ|ξ|
α(1+iβsgn(ξ) tan(πα2 )) + η2(ξ) + η1(ξ),

where η2(ξ) has the same properties as η1(ξ). We conclude that

|ĝ(ξ)| ≤ e−σ|ξ|
α

+ |η1(ξ) + η2(ξ)| ≤ 1− σ |ξ|α + |η1(ξ)|+ |η2(ξ)|+ |η3(ξ)| ,

where η3(ξ) has the same properties as η1(ξ).
Let β0 > 0 be such that if |ξ| < β0

|η1(ξ)|+ |η2(ξ)|+ |η3(ξ)| ≤ σ |ξ|α

2
.

For any |ξ| < β0 one has that

|ĝ(ξ)| ≤ 1− σ |ξ|α

2
≤ e−

σ|ξ|α
2 ,

completing the proof.

B Quantitative Approximation Theorem.

An item of great importance in Kinetic Theory, and our problem in particular, is
quantitative estimation of errors. Our local Lévy Central Limit Theorem involves such
an estimation, yet it is dependent on the function

ω(β) = sup
|ξ|

|η(ξ)|
|ξ|α

,

where η is the reminder function of a probability density function g in the NDA of some
γσ,α,β . In some cases one can find explicit estimation for the behaviour of η near zero,
and get a better quantitative estimation on the error term ε(N). Such conditions are
explored in [16] and we will satisfy ourselves by mentioning them, but providing no
proof.
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Definition B.1. Let δ > 0. The Fourier Domain of Attraction of order δ of γσ,α,β is the
subset of the FDA of γσ,α,β such that the reminder function, η, satisfies

|η(ξ)|
|ξ|α

≤ C |ξ|δ ,

for some C > 0.

Clearly the FDAs of order δ are nested sets, all contained in the FDA. Also, if g is in
the FDA of order δ of γσ,α,β then we can replace ω(β), defined in Theorem 1.12 by Cβδ

and get an explicit estimation to the error term ε(N)!.
The following is a variant of a theorem appearing in [16] that gives sufficient conditions
to be in the FDA of order δ of some γσ,α,β:

Theorem B.2. Let g be a probability density on R that has zero mean. Let 1 < α < 2

and 0 < δ < 2− α be given. Then if∫
R

|x|α+δ |g(x)− γσ,α,β(x)| dx <∞ (B.1)

for some σ > 0 and β ∈ [−1, 1], g is in the FDA of order δ of γσ,α,β .
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