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Abstract

We introduce the time dynamic random conductance model and consider the heat
kernel for the random walk on this environment. In the case where conductances
are bounded above, an example environment is presented which exhibits heat kernel
decay that is asymptotically slower than in the well studied time homogeneous case
- being close to O

(
n−1

)
as opposed to O

(
n−2

)
. The example environment given is a

modification of an environment introduced in [4]

Keywords: heat kernel; random walk in random environment; random conductances.

AMS MSC 2010: 60G50; 60J27; 05C81.

Submitted to ECP on October 28, 2011, final version accepted on November 28, 2012.

1 Introduction and results

Random walk amongst random conductances has been well studied over recent
years. Formally, take a weighted graph on the square lattice G (ω) =

(
Zd,Ed, (ωe)e∈Ed

)
with symmetry condition ωxy = ωyx and edge weights independent and identically dis-
tributed. The random walk on G (ω) is the Markov process (Xn)n≥0 with transition
probabilities

Pω (Xn = y |Xn−1 = x ) =
ωxy
π (x)

, π (x) :=
∑
z∼x

ωxz, (1.1)

where we write x ∼ z if and only if x and z are neighbours in Zd. The associated heat
kernel is then

qn (x, y) =
Pω (Xn = y |X0 = x )

π (x)
.

Various regimes for the conductances have been considered. If ω ∈ [a, b] for 0 <

a < b <∞ almost surely, then [11] provides uniform upper and lower Gaussian bounds
for qn, with a quenched invariance principle proven in [19]. When ω ∈ [1,∞) , the tail
behaviour of ω determines whether Brownian motion or a Fractional-Kinetics process
is the correct scaling limit [3].

This paper concerns an extension to the model where ω ∈ [0, 1] and hence we detail
known results in this case. Heat kernel decay is considered in several papers ([4], [5],
[7], [8]). The following theorem is taken from [4]:
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Dynamic random conductance model

Theorem 1.1 (Berger et al (2008)). Let d ≥ 2 and consider a collection ω = (ωb) of iid
conductances in [0, 1] with P (ωb > 0) > pc (d). For almost every ω ∈ {0 ∈ C∞}, there is
C = C (ω) <∞ such that

Pnω (0, 0) ≤ C (ω)


n−d/2 d = 2, 3,

n−2 log n d = 4,

n−2 d ≥ 5,

for all n ≥ 1.

The same paper and [5] prove that these are the best general upper bounds available
by presenting examples whose heat kernel displays corresponding lower bounds.

We will consider the dynamic random conductance model. That is, take a time inho-
mogeneous weighted graph

(Gt)t∈K =

(
Zd,Ed, ω = (ωe (t))e∈Ed

t∈K

)
for K either R or N. For any edge e ∈ Ed, the edge weights (ωe (t))t∈K are taken to
be iid Markov processes with unique invariant probability distribution µ. Further, take
(ωe (0))e∈Ed to be equal in distribution to µE

d

. As in the time homogeneous case, the
symmetry condition ωxy (t) = ωyx (t) is assumed for all edges and times.

The natural extension to (1.1) would be the random walk (Xn)n≥0 with transition
probabilities

Pω (Xn = y |Xn−1 = x ) =
ωxy (n− 1)

πn−1 (x)
, πn−1 (x) :=

∑
z∼x

ωxz (n− 1) .

This walk presents several technical challenges: if one looks for an invariant measure
for the walk considered on the space-time graph then the measure does not generally
have a simple form and the walk is not generally reversible. Further, this invariant
space-time measure is not temporally consistent - for a given environment, the projec-
tion of the invariant measure at time t onto Zd will in general be different from the
projection at time s 6= t. This restricts the tools available with which to analyze the
walk.

With this in mind we introduce the variable speed random walk in continuous time.
This is the Markov process (Xt)t≥0 with generator at time t

Ltf (x) =
∑
y∼x

ωxy (t) (f (y)− f (x)) . (1.2)

The flat measure π (x) = 1 for all x ∈ Zd, is the invariant measure for the variable speed
walk with

〈Ltf, g〉π = 〈f,Ltg〉π (1.3)

for all t ∈ R. Although this does not imply P (Xt = y |Xs = x ) = P (Xt = x |Xs = y ) the
fact that Lt is self-adjoint can be important.

One would perhaps expect that the environment evolving over time would reduce
the time that the walk spends in locally anomalous regions due to the time dynamic
removing these regions before the random walk can spend a large quantity of time in
them. This heuristic would suggest that the heat kernel behaviour should be no worse
than in the time homogeneous case. Intriguingly it is this dynamic - the disappearance
of anomalous regions - that leads to a change in the heat kernel. Anomalous heat kernel
decay in the static case is due to the walk becoming “trapped” close to the origin so
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Dynamic random conductance model

that when the walk escapes the trap it is much closer to the origin than would normally
be expected. However, the random walk must pay a price to enter and exit the trap - a
price of O

(
n−1

)
for both entrance and exit leading to the O

(
n−2

)
return probabilities

stated above. The key idea that we present is that it is possible to choose a dynamic
environment where the traps persist for long enough to trap the walk for a good length
of time - so that the walk is much closer to the origin than would be expected - but then
the trap disappears leaving the walk unimpeded to return to the origin. As the walk
only has to pay to enter the trap and not to exit we show that lower heat kernel bounds
close to O

(
n−1

)
can be achieved.

The main result of the paper is the following, to be proved in Section 2.

Theorem 1.2. Take κ > 1
d and d ≥ 3. There exists a law on environments P with iid

edge marginals that evolve in an ergodic Markov fashion with edge weights bounded
by one such that for almost all ω ∈ Ω there exists a constant C (ω) > 0 and a sequence
(ni (ω)) with limi→∞ ni =∞ such that

Pω(0,0) (Xni = 0) ≥ C (ω) e−(logni)
κ

ni

for all i, where Xn is the variable speed continuous time random walk on ω.

The statement of the theorem is very similar to Theorem 2.2 of [4]. This is deliberate.
The environment that we present is a modification of an environment presented in that
paper.

Note that Theorem 1.2 implies that the dynamic heat kernel has at least three ex-
trema: when the environment is strongly mixing the walk resembles the walk on the
annealed graph and hence has heat kernel bounds of order n−d/2; when the environ-
ment is highly persistent the walk is close to the walk on the static graph and hence
the heat kernel is bounded above by order n−2; in between these two cases sit the
environments we have outlined with heat kernel lower bounds of order n−1.

No corresponding upper bound is presented. It is natural to ask whether the walk
could also enter a trap for free by being at the correct site when the trap forms. It will
become clear that there is a trade-off between persistence of traps and their frequency
of occurrence. As we wish the traps to be persistent so that the walk remains trapped
for long time periods the traps cannot occur frequently and thus the walk is highly
unlikely to be at the trap site when the trap forms. We comment further on this open
problem at the end of the paper.

Dynamic random environment is not a new topic. There are several papers that
prove both annealed and quenched central limit theorems under various conditions,
frequently without the symmetry condition ωxy = ωyx (for example [6], [2] and [16]).
These papers generally show that if the walk is uniformly elliptic and the environment
is well mixing in time then the rescaled process converges to non-degenerate Brownian
motion. In terms of heat kernel estimates, there is not a huge amount in the literature.
The Appendix of [12] proves full off-diagonal results in the case where weights are
bounded away from zero and infinity. The paper [10] proves that if

m (x) :=
∑
y

ωxy (t)

is independent of t and the environment satisfies both a uniform ellipticity condition
and uniform Sobolev inequality then standard off-diagonal upper bounds and on diago-
nal lower bounds hold. One can in fact extend this result in the spirit of [14] to prove
standard on-diagonal upper bounds under assumptions of asymptotic isoperimetric di-
mension and ergodicity of the spatial environment over time [9], although this is not
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Dynamic random conductance model

proved here. There are also recent results in the case where space is taken to be finite,
these can be found in [17] and [18].

2 Heat kernel lower bounds

We take a space-time environment that only switches at discrete time points. This
choice of discrete environment does lead to a somewhat peculiar hybrid pair as the
walk is in continuous time. The choice does, however, make the combinatorics easier
and removes issues relating to exceptional times. Take weights ωe to be supported on
{2−n : n ≥ 0} and let the transition probabilities for the Markov chain (ωe (n))n∈Z be:

K
(
1, 2−n

)
= sn

K
(
2−n, 1

)
= pn

K
(
2−n, 2−n

)
= 1− pn

K
(
2−n, 2−m

)
= 0 for n,m 6= 0 and m 6= n,

where pn ∈ (0, 1) and
∑
n≥0 sn = 1. Then ωe (n) has an invariant distribution if and only

if the Markov chain is positive recurrent. Hence, the invariant distribution, µ, exists if
and only if ∑

n>0

sn
pn

<∞. (2.1)

Assume this to be the case, then for n ≥ 1 the invariant distribution satisfies

µ
(
2−n

)
= µ (1)

sn
pn
.

We define our space-time environment to be ω = (ωe (n)) e∈Ed
n∈N≥0

with ω being iid

in space with P
(
ωe (0) = 2−k

)
= µ

(
2−k

)
. Assume for the moment that sn and pn are

chosen such that µ (1) > pc (d) and hence for every t ∈ R, the bonds of unit conductance
percolate in Gt.

The traps that we consider are of the form shown in Figure 1. They consist of the fol-
lowing. At time zero there is a strong spatial path (made of bonds of unit conductance)
connecting the origin to a vertex x. x is connected to y by a weak bond of strength 2−n

and all other bonds are of lesser conductance. The trap, without necessarily the path to
the origin, remains in place until some time Tn (to be chosen later) at which point ωxy
switches to unit conductance. At time Tn there again exists a strong spatial path to the
origin.

If such a trap exists, we obtain a lower bound on Pω(0,0) (XTn+1 = 0) by conditioning
on the walk moving directly to x within one unit of time, jumping from x to y in one
unit of time, not jumping from y until time Tn and then proceeding directly back to the
origin within one unit of time:

Pω(0,0) (XTn+1 = 0)

≥ Pω(0,0) (X1 = x)Pω(1,x) (Xi = y for all i ∈ [2, Tn])Pω(Tn,x) (XTn+1 = 0)

≥ ce−c1(l
1
n log l1n+l

2
n log l2n)2−nc2, (2.2)

where l1n and l2n are the graph distances between the origin and x at times 0 and Tn
respectively. In the final line the 2−n is the cost to the walk of crossing the bond ωxy (1),
the exponential terms come from the lower bounds on the probability of the walk moving
a large distance in a short time proven in [15] (and given in more detail in the proof of
Theorem 1.2 below), and we have assumed that Tn ≤ 1

2d2n and hence the walk does not
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jump from y between time 2 and Tn with probability bounded independently of n. If we
can take lin = O (log n) and Tn = O (2n) then we would see

Pω(0,0) (X2n = (2n, 0)) ≥ f (n) 2−n

for some function f that decays slower than 2−n.
In order to prove the theorem we require some combinatorial estimates on the

strong paths that will connect the traps to the origin. For t ∈ R write x↔ y at time t if
there exists a nearest neighbour path from x to y consisting purely of bonds of unit con-
ductance in the graph Gt. As µ (1) > pc (d) there exists a unique infinite cluster at each
t ∈ R. Call this C∞ (t). The following proposition encapsulates the results required.

Proposition 2.1. Suppose µ (1) > pc (d). For any x ∈ Zd and k ≥ 1 set Bx [k] :=

x+ [−k, k]
d and define the events

C0 (k, x) = {x↔ ∂Bx [k] at time 0}
and Cm (k, x) = {x↔ ∂Bx [k] at time m} .

There exist constants c1,M1 > 0 such that for m ≥M1

P (C0 (k, x) ∩ Cm (k, x)) ≥ c1

for all k ≥ 1.
Further, for t ∈ R define Dt (n) to be the event that every connected component

contained in B0 [n]∩Gt of size at least c2 (log n)
2 is connected to C∞ (t). Then there exists

c2 > 0 such that for almost every ω ∈ Ω there exists N (ω) <∞ such that D0 (n)∩Dn (n)

occurs for all n ≥ N (ω) .

Proof. For the first claim we use the mixing properties of the Markov chain on edge
weights. We have to be careful as if Bx [k] contains edges with very light conductance
then these edges can take a long time to mix. To avoid this problem we delete all light
edges and percolate on what remains of the box.

Let

ε :=
µ (1)− pc (d)

4
and take M such that

∞∑
n=M

µ
(
2−n

)
< ε.

Figure 1: A space time trap
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Define EM :=
{
e ∈ Bx [k] : ωe (0) ≤ 2−M

}
, the set of all light edges - we will throw these

edges away as we cannot control their mixing properties.
Take M1 sufficiently large so that for all m ≥M1

P
(
ωe (m) = 1

∣∣ωe (0) = 2−n
)
> pc (d) + 2ε

for all n < M . M1 exists since the Markov chain on edge weights is irreducible, ape-
riodic, positive recurrent, n is bounded and pc (d) + 2ε < µ (1) through the choice of
ε.

For i ∈ {1, 2}, take
(
ω̃ie
)
e∈Zd to be independent bond percolation realizations with

P
(
ω̃ie = 1

)
= pc (d) + 2ε.

Define
(
ω̄1
e (m)

)
e∈Zd ,

(
ω̄2
e (m)

)
e∈Zd to be independent environments with law

ω̄ie (m) =

{
0 if e ∈ EM
ω̃ie otherwise

.

The laws of ω (0) and ω (m) conditioned on EM , are stochastically dominated by the
conditioned laws of ω̄1 (m) and ω̄2 (m) respectively. Hence, on a suitably extended prob-
ability space, the event C̄0 (k, x) :=

{
x↔ ∂Bx [k] in ω̄1

e (m)
}

conditioned on EM is domi-
nated by C0 (k, x) conditioned on EM and the event C̄m (k, x) := {x↔ ∂Bx [k] in ω̄e (m)}
conditioned on EM is dominated by Cm (k, x) conditioned on EM . Hence

P (C0 (k, x) ∩ Cm (k, x)) =
∑
E

P (C0 (k, x) ∩ Cm (k, x) |EM = E )P (EM = E)

≥
∑
E

P
(
C̄0 (k, x) ∩ C̄m (k, x) |EM = E

)
P (EM = E)

=
∑
E

P
(
C̄m (k, x) |EM = E

)2
P (EM = E)

≥ c,

where the final line follows from the definition of EM and standard percolation esti-
mates.

The second claim is straight forward to verify via standard percolation arguments.
Consider first the event Di (n) for i ∈ {0, n}. In either case this corresponds to static
percolation and hence Theorem 8.65 of [13] gives upper bounds on P (Di (n)

c
) that are

independent of i and summable over n. Now,

P (D0 (n) ∩Dn (n)
c
) = P (D0 (n)

c ∪Dn (n)
c
)

≤ P (D0 (n)
c
) + P (Dn (n)

c
)

and hence is also summable over n. The Borel-Cantelli Lemma ensures that the event
D0 (n) ∩Dn (n) happens only finitely often with probability one.

Proof of Theorem 1.2. Take ε > 0. For n > 0 set ln := n(1+(2d+1)ε)/d and Tn = 2n. For
n ∈ N choose sn = c2−nn−(1+ε), pn = 2−n so that µ (2−n) = cn−(1+ε) for n ≥ 1 and
µ (1) = 1−

∑
n≥1 cn

−1+ε. Choosing c sufficiently small ensures that µ (1) > pc (d) .

For a fixed point x ∈ Zd, let y = x+ e1 and An (x) be the event that:

• In the spatial environment at time zero, G0, x is connected to the boundary of the
spatial box of side c2 (log ln)

2 centred at x by a path of unit conductors.

• ωxy (i) = 2−n for i ∈ [0, Tn − 1], ωxy (Tn) = 1,
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• ωyz (i) ≤ 2−n for i ∈ [0, Tn], z 6= x,

• x is connected to the boundary of the spatial box of side c2 (log ln)
2 centred at x by

a path of unit conductors in the spatial environment GTn .

Proposition 2.1 holds with the events Ci modified to ensure that the paths connecting
x to ∂Bx [k] avoid using the edges emanating from y. Call these modified events C̃i.
Then

P (An (x)) = P
(
C̃0

(
c2 (log ln)

2
, x
)
∩ C̃Tn

(
c2 (log ln)

2
, x
))

× P
(
ωxy (i) = 2−n for i ∈ [0, Tn − 1) , ωxy (Tn) = 1

)
× P

(
ωe (i) ≤ 2−n for i ∈ [0, Tn]

)2d−1
≥ c1µ

(
2−n

)
(1− pn)Tnpn

∑
i≥n

µ
(
2−i
)2d−1

≥ c4n−1−2dε,

by the choice of pn.
Taking Gn to be a grid of sites in [−ln, ln]

d∩Zd that are spaced by distance 2(log ln)2.
The events {An(x) : x ∈ Gn} are independent, so using 1− x ≤ e−x for x ∈ [0, 1],

P

( ⋂
x∈Gn

An (x)
c

)
≤ exp

−c5
(

ln

(log ln)
2

)d
n−[1+2dε]

 ≤ e−cnε ,
hence by Borel-Cantelli, the intersection occurs for only finitely many n.

By Proposition 2.1, every connected component of diameter at least (log ln)
2 in

[−ln, ln]
d∩Gi will be connected to the largest component of [−2ln, 2ln]

d∩Gi for i ∈ {0, Tn}
and all large enough n. Now, the origin at time zero will not necessarily be connected
to this largest component. Take z to be the closest point to the origin that lies on the
infinite component at time zero. On the event An (x) for n large, take l1n to be the short-
est path from the origin to x in G0 that goes from 0 to z and then follows a strong path
to x.

Take ni to be a subsequence such that there is a strong path from x to 0 at time Tni
of length l2n with l2n bounded by c9ln. Such a subsequence (and constant c9) exist by [1].
The results of [1] also imply that l1n ≤ c9ln for all large enough n. We take a subsequence
as we then avoid the complication of the origin being surrounded by many weak bonds
as such a situation would make it difficult for the walk to return to the origin.

It is shown in [15] that for a one dimensional walk the following lower bound holds:
there exist constants ci such that for any x, y ∈ Zd and d (x, y) ≥ t ≥ 1

Px (Xt = y) ≥ c6 exp (−c7d (x, y) (1 + log d (x, y) /t)) . (2.3)

We wish to bound the probability that the walk travels fully along a strong path of length
lin in a unit of time. As we can bound the probability that the walk deviates from this
one dimensional path from below by e−c8l

1
n , we can condition so that the walk only sees

the one dimensional path and hence

Pω(x,Tn) (XTn+1 = 0) ≥ c6 exp
(
−c10l2n

(
1 + log dl2n/t

))
exp

(
−c8l2n

)
.

Similarly for the initial strong path from z to x, with a constant dependent on the local
environment around the origin replacing c6.
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Plugging this into (2.2) we obtain

Pω(0,0) (X2ni+1 = 0) ≥ C (ω) 2−ni exp
(
−cn(1+(2d+1)ε)/d

i log n
)

≥ C (ω) 2−ni exp
(
−c′n(1+(3d+1)ε)/d

i

)
,

taking ε small concludes the proof.

With this example of ω supported on {2−n : n ∈ N} in mind we can demonstrate three
distinct behaviours for the heat kernel for the dynamic random walk. Let Gt (ω) be the
environment at time t for ω ∈ Ω. For m > 0 define the dynamic graph Gmt := Gtm, that
is the graph speeded up so that edges flip m times per unit of time. Let Xm

t be the
space-time random walk on Gmt started at (0, 0). Theorem 1.2 proves that if m = 1 we
have a lower bound close to O

(
t−1
)
. As we let m tend to zero and infinity then we have

two further distinct behaviours.

Proposition 2.2. For almost all ω ∈ Ω there exist a constant C (ω) such that for all
t > 0 we have the limits:

C (ω)

t2
≥ lim
m→0

P (Xm
t = 0 |Xm

0 = 0) ≥ C (ω)
e−(log t)

κ

t2
for d ≥ 5

C1t
−d/2 ≥ lim

m→∞
P (Xm

t = 0 |Xm
0 = 0) ≥ C2t

−d/2 for d ≥ 1.

Proof. The first line is due to [4], as m→ 0 corresponds to the static case.
As m gets large the probability that the walk crosses an edge in time t tends towards

the probability that the random walk crosses an edge of conductance E (ωe) in time t.
Hence the limit as m→∞ corresponds to the annealed random walk. This is the simple
random walk on Zd with speed 2dE (ωe) and hence exhibits standard on diagonal heat
kernel behaviour.

We have been slightly disingenuous when suggesting that Theorem 1.2 shows be-
haviour more anomalous than presented in [4] as we are considering a different model
- the variable speed walk as opposed to the constant speed walk investigated in [4]. In
the constant speed case the above trap is not a trap at all as the transition rates are
normalized by

∑
y∼x ωxy so that the walk always moves at unit speed. There are thus

two obvious questions: what is the behaviour of the variable speed walk in the static
case and what is the behaviour of the constant speed walk in the dynamic case?

We begin with the first question. The trapping demonstrated above will lead to lower
bounds close to O

(
n−2

)
in the static case (the n−2 is due to the walk now having to pay

a price of O
(
n−1

)
to exit the trap as well as to enter). The upper bounds follow from

slight modifications to the arguments of [4], with summations replaced by integrals.
The answer to the second question is presented in Proposition 2.3 below where

lower bounds close to O
(
n−1

)
are again proven. The example that displays these lower

bounds is a very similar example of space-time trapping in the constant speed case -
again the environment changes at discrete time points with the walk being a continuous
time Markov process.

Proposition 2.3. Take d ≥ 3. For any α > 0 and κ > 1
d , there exist non-static random

space-time environments of the above form such that for almost every ω ∈ Ω there
exists C (ω) > 0 and an increasing sequence (ni)i≥0 such that limi→∞ ni =∞ and for all
i

Pniω (0, 0) ≥ C (ω)
e−(logni)

κ

n1+αi

.
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Figure 2: A space time trap for the constant speed walk

Proof. The proof is very similar to above. We will simply outline the type of traps that
lead to this behaviour.

Figure 2 demonstrates the types of trap we consider around a point x. Take y = x+e1
and z = y + 2e1. We initially take the bond between y and z to be of weight 1, with
the bond between x and y being of weight 2−n and all other bonds emanating from y

and z being of weight ωe ≤ 2−n. As time evolves all the weak bonds remain at their
initial value. The strong bond will weaken but will never be weaker than 2−cn for some
constant c that we can take to be as small as we like. At time Tn the bond between x

and y switches to unit weight. We condition on there existing strong paths between 0

and x in the spatial environments G0 and GTn .
Take rn to be the length of the space-time path from 0 to x at time zero and r′n to be

the length from x to 0 at time Tn. As in equation (2.2) above, if Tn = O (2cn) we have

Pω(0,0) (X1 = x) ≥ c1 exp (−c2rn (1 + log rn))

P 1
(1,x) (X1 = y) ≥ c12−n

P(2,y) (stay on yz for Tn) ≥ C
Pr′n (x, 0) ≥ c1 exp (−c2r′n (1 + log r′n))

and hence
Pω(0,0) (XTn+1 = 0) ≥ c2e−c3(rn(1+log rn)+r

′
n(1+log r′n))2−n.

The details are similar to the proof of Theorem 1.2.

Note that the traps introduced in the proofs of Theorem 1.2 and Proposition 2.3
would also be traps if one considered the discrete time random walks on these environ-
ments. However, as lower bounds of the form (2.3) can never hold in discrete time, one
would have to prove an exponential lower bound on the probability of moving straight
from the origin to the trap and then back from the trap to the origin. One method for
doing this would be to prove the existence of strong space-time paths from the origin
to the trap and back again - that is, paths in space-time consisting purely of edges of
unit weight that if followed would take the walk directly from the origin to the trap and
vice-versa. The requisite combinatorics are beyond this paper.

We conclude by remarking on whether or not this lower bound is sharp. If the trap-
ping strategy detailed above is the dominant strategy, then an upper bound of the same
order will hold. The strategy employed above is similar to the strategy that maximizes
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supy P
t (0, y) in the time homogeneous case - as the dominating strategy only pays to

enter a trap and not to leave. Such a link between the time homogenous and time inho-
mogeneous case is appealing. However, one must also consider the possibility that this
is not the dominating strategy in the time inhomogeneous case.

It is possible for the walk to escape from a trap for free, is it also possible for the
walk to be at a trap site when the trap forms and hence enter the trap for free too?
As we assume the existence of an invariant distribution for the Markov chain on edge
weights, there is a trade-off between persistence of a trap and how often a trap can
form. In the particular example discussed above, this is crystallized in equation (2.1).
In particular this ensures that if we wish a trap to persist for time O (n) then the trap
is unlikely to form logarithmically close to the origin with respect to the space-time dis-
tance. This somewhat compromises the lower bound calculations of equation (2.2), as
crudely bounding the probability that the walk moves from the origin to the space-time
point where the trap forms by the negative exponential of the corresponding distance
will lead to lower bounds that are smaller than those presented in Theorem 1.2 due to
the distance being large.

Although we have found no strategy to obtaining a more anomalous lower bound
than presented, we have no proof that such a bound fails to exist.
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