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Abstract

In this note we consider the point process of eigenvalues of the tensor product of two
independent random unitary matrices of size m × m and n × n. When n becomes
large, the process behaves like the superposition of m independent sine processes.
When m and n go to infinity, we obtain the Poisson point process in the limit.
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1 Introduction

In quantum mechanics the time evolution of two noninteracting subsystems can be
described by an operator eitH ⊗ eitH′ , where H and H ′ are Hamiltonians of the subsys-
tems (see e.g. chapters 2.2 and 3.1 in [2]). In applications, the unitary operator eitH ,
which is a priori complicated, is replaced by a random unitary matrix, to make a model
tractable. This powerful idea goes back to E. Wigner. Here by a n × n random unitary
matrix we mean a matrix drawn according to the Haar measure on the unitary group
U(n). From this point of view it seems natural to study asymptotic local properties of
spectra of the tensor product Am ⊗ Bn of two independent m × m and n × n random
unitary matrices, to which this short note is devoted. The note, in a sense, continues
the investigations commenced in [5].

Some preliminaries are presented in the rest of this section, and the main result is
stated. The proofs are provided in the next section. The last section is devoted to some
concluding remarks concerning the tensor product of more than two matrices.

1.1 Background and notation

For a simple point process τ on R we denote its k-th correlation function, when it
exists, by ρ(k)

τ (for the definitions see e.g. [4]). Let us introduce three point processes
Π, Σ, and Ξn. By Π we shall denote the Poisson point process on R for which ρ

(k)
Π ≡ 1

for all k. By Σ we shall denote the sine point process on R which has the correlation
functions

ρ
(k)
Σ (x1, . . . , xk) = det [Q(xi, xj)]

k
i,j=1 , (1.1)
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where the sine kernel Q(x, y) = q(x− y) and q reads as follows

q(u) =
sin(πu)

πu
. (1.2)

Given a n × n random unitary matrix with eigenvalues eiξ1 , . . . , eiξn , where ξi ∈ [0, 2π)

are eigenphases, we define the point process Ξn = {ξ1, . . . , ξn}. It is well known that
this process is determinantal with the kernel Sn(x, y) = sn(x− y), where

sn(u) =
1

2π

sin
(
nu
2

)
sin
(
u
2

) , (1.3)

i.e.,
ρ

(k)
Ξn

(x1, . . . , xk) = det [Sn(xi, xj)]
k
i,j=1 . (1.4)

Since 2π
n sn

(
2π
n u
)
−−−−→
n→∞

q(u), when n becomes large, the process n
2π (Ξn − π) of the

rescaled eigenphases of the n × n random unitary matrix locally behaves as the sine
process Σ.

By superposition of two simple point processes Ψ = {ψ1, . . . , ψM}, Φ = {φ1, . . . , φN},
M,N ≤ ∞ we mean the union Ψ ∪ Φ = {ψ1, . . . , ψM , φ1, . . . , φN}.

1.2 Results

Given two independent m × m and n × n random unitary matrices A and A′ we
get two independent point processes of their eigenphases Ξm = {ξ1, . . . , ξm} and Ξ′n =

{ξ′1, . . . , ξ′n} respectively. We define the point process Ξm ⊗Ξ′n of the eigenphases of the
matrix A⊗A′ as

Ξm ⊗ Ξ′n = {ξi + ξ′j mod2π, i = 1, . . . ,m, j = 1, . . . , n}.

It has been recently shown [5, Theorem 1] that the process n2

2π (Ξn⊗Ξ′n) behaves locally
as the Poisson point process on R+. We refine this result and investigate what happens
when n becomes large with m being fixed, or when both m and n becomes large but not
necessarily m = n.

Theorem 1.1. Let Ξm and Ξ′n be point processes of eigenphases of two independent
m×m and n×n random unitary matrices. Let Σ1, . . . ,Σm be independent sine processes
and let Π be a Poisson process on R. Then for each k ≤ n the k-th correlation function
of the process Ξm ⊗ Ξ′n exists and

(a) ρ(k)
mn
2π (Ξm⊗Ξ′n−π) −−−−→n→∞

ρ
(k)
mΣ1∪...∪mΣm

,

(b) ρ(k)
mn
2π (Ξm⊗Ξ′n−π) −−−−−→m,n→∞

ρ
(k)
Π ,

uniformly on all compact sets in Rk.

Remark 1.2 (Weak convergence). According to [4], by a point process on R we mean a
random variable with values in the metric spaceM(R) of σ-finite Borel measures on R
(counting measures correspond to locally finite subsets ofR) endowed with the topology
generated by the functions µ 7→

∫
fdµ for continuous, compactly supported f . We say

that a sequence of point processes (τn) converges in distribution to a point process τ if
the law νn of τn converges weakly to that of τ , say ν, in the spaceM1(M(R)) of proba-
bility measures onM(R), i.e.

∫
fdνn →

∫
fdν for any bounded continuous function on

M(R). Clearly, these integrals can be expressed using correlation functions, hence the
theorem implies the convergence in distribution of the considered point processes.
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Remark 1.3 (Heuristic behind (a)). In view of the mentioned theorem from [5] result
(b) should not be surprising. Neither is (a) as in the simplest case m = 2 we have

Ξ2 ⊗ Ξ′n ={ξ1 + ξ′1 mod2π, . . . , ξ1 + ξ′n mod2π}
∪ {ξ2 + ξ′1 mod2π, . . . , ξ2 + ξ′n mod2π}.

After shifting and rescaling we end up with two families of the rescaled eigenphases of
a n × n random unitary matrix which differ roughly by a large shift n

2π (ξ1 − ξ2) which
is independent on the matrix. That makes the families independent and in the limit,
according to ρ(k)

n
2π (Ξn−π) −−−−→n→∞

ρ
(k)
Σ , they look like sine processes.

Remark 1.4 (Superposition of many sine processes becomes a Poisson point process).
Notice that for any independent copies Φ1, . . . ,Φm of a point process Φ we have

ρ
(k)
Φ1∪...∪Φm

(x1, . . . , xk) =

m∧k∑
p=1

∑
π∈S(k,p)

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Φ ((xi)i∈πj ),

where S(k, p) is the collection of all partitions into p nonempty pairwise disjoint subsets
of the set {1, . . . , k}. By this we mean that if π is such a partition then π = {π1, . . . , πp},
where πq = {π(q, 1), . . . , π(q, ]πq)} is the q-th block of the partition π.

Along with the fact that if we rescale, ρ(k)
λΦ(x) becomes 1

λk
ρ

(k)
Φ

(
1
λx
)
, the previous

observation yields

ρ
(k)
mΣ1∪...∪mΣm

(x) =

m∧k∑
p=1

∑
π∈S(k,p)

1

mk

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(xi)i∈πj

)
. (1.5)

When m goes to infinity we thus get

lim
m→∞

ρ
(k)
mΣ1∪...∪mΣm

(x) = lim
m→∞

p∏
j=1

ρ
(1)
Σ

(
1

m
(xi)i∈πj

)
= 1 = ρ

(k)
Π .

It retrieves the special case of a quite expected phenomenon put forward in [3]. Namely,
the authors say “[...] a Poisson process can be viewed as an infinite superposition of
determinantal or permanental point processes” (see Theorem 4 therein and the two
preceding paragraphs). Regarding Theorem (a) that implies

lim
m→∞

lim
n→∞

ρ
(k)
mn
2π (Ξm⊗Ξ′n−π) = 1.

Note that in the second part of the theorem we establish a stronger statement, that
letting the dimensions of two independent random unitary matrices to infinity reduces
all the correlations in their tensor product.

2 Proofs

For the sake of convenience, let us recall a few basic facts which shall be frequently
used.

Note the following easy estimate (for the definition see (1.3))

sup
x∈R

∣∣∣∣2πn sn(x)

∣∣∣∣ = 1. (2.1)

Combined with Hadamard’s inequality (see e.g. (3.4.6) in [1]), it allows us to bound the
correlation functions,

sup
x∈Rk

ρ
(k)
Ξn

(x) ≤ kk/2‖sn‖k∞ =
kk/2

(2π)k
nk. (2.2)
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2.1 Proof of Theorem (a)

Let Θm,n = mn
2π (Ξm⊗Ξ′n−π). Fix a natural number k. Since we will let n go to infinity,

we may assume that k ≤ n. First we show that there exists functions ρ(k)
Θm,n

: Rk −→
[0,∞) so that for any bounded and measurable function f : Rk −→ R we have

E
∑

f(θ1, . . . , θk) =

∫
Rk
f(x)ρ

(k)
Θm,n

(x)dx,

where the summation is over all ordered k-tuples (θ1, . . . , θk) of distinct points of Θm,n.

This will prove that ρ(k)
Θm,n

are the correlation functions of Θm,n. Then we will deal with
the limit when n→∞.

Fix f . Since for each s = 1, . . . , k, θs = mn
2π (ξis + ξ′js mod2π − π) for some is ∈

{1, . . . ,m}, js ∈ {1, . . . , n} we can write

E
∑

f(θ1, . . . , θk) = E
∑

i∈{1,...,m}k

j∈{1,...,n}k

f

((mn
2π

(ξis + ξ′js mod2π − π)
)k
s=1

)
,

where the second sum is subject to k-tuples i, j such that the pairs (i1, j1), . . . , (ik, jk)

are pairwise distinct. For sure it happens when all the js’s are distinct. Call these
choices of i and j good and the rest bad. So

E
∑
i,j

f = E
∑

good i,j

f + E
∑

bad i,j

f.

First we handle the good sum. Some is’s may overlap and we will control it using
partitions of the set {1, . . . , k} into p ≤ k ∧ m nonempty pairwise disjoint subsets (see
Remark 1.4 for the notation) so that is = it whenever s and t belong to the same block
of a partition. We have

E
∑

good i,j

f =

k∧m∑
p=1

∑
π∈S(k,p)

E
∑

distinct
iπ(1,1),...,iπ(p,1)

∑
distinct
j1,...,jk

f.

The sums over i’s and j’s have been separated. Therefore taking advantage of indepen-
dence as well as recalling definitions of the p-th and k-th correlation functions of Ξm
and Ξ′n we find

E
∑

good i,j

f =
∑
p,π

∫
[0,2π]p

∫
[0,2π]k

f

((mn
2π

(xπ(s) + ys mod2π − π)
)k
s=1

)
ρ

(p)
Ξm

(x1, . . . , xp)ρ
(k)
Ξ′n

(y1, . . . , yk)dx1 . . . dxpdy1 . . . dyk,

where we note π(s) = q ⇐⇒ s ∈ πq. Finally, we need to address the technicality
concerning the addition mod2π. Keeping in mind that we integrate over [0, 2π]p and
[0, 2π]k we consider for η ∈ {0, 1}k the set

Uη =

{
x ∈ [0, 2π]p, y ∈ [0, 2π]k; ∀s ≤ k xπ(s) + ys < 2π if ηs = 0, and

xπ(s) + ys ≥ 2π if ηs = 1

}
.

Then on Uη we have xπ(s) + ys mod2π = xπ(s) + ys − 2πηs, thus changing the variables
on Uη so that zs = mn

2π (xπ(s) + ys − 2πηs − π) we get

E
∑

good i,j

f =

∫
Rk
f(z)

( ∑
p,π,η

1Wη
(z)

∫
[0,2π]p

1Vη (x)ρ
(p)
Ξm

(x)

(
2π

mn

)k
ρ

(k)
Ξ′n

(y(z, x))dx

)
dz,
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where ys(z, x) = 2π
mnzs − xπ(s) + 2πηs + π,

Vη =

{
x ∈ Rp; ∀s ≤ k 2π

mn
zs + 2πηs − π ≤ xπ(s) ≤

2π

mn
zs + 2πηs + π

}
,

and
Wη =

{
z ∈ Rk; ∀s ≤ k zs ≤ mn/2 if ηs = 0, and zs ≥ −mn/2 if ηs = 1

}
.

Summarizing, we have just seen that the correlation function ρ(k)
Θm,n

(z) takes on the form

ρ
(k)
Θm,n

(z) =
∑
p,π,η

1Wη (z)

∫
[0,2π]p

1Vη (x)ρ
(p)
Ξm

(x)

(
2π

mn

)k
ρ

(k)
Ξ′n

(y(z, x))dx+Bm,n(z), (2.3)

where the term Bm,n corresponds to the sum over bad indices E
∑

bad i,j f . By the same
kind of reasoning we show that roughly

Bm,n(z) =

k∑
p=1

k−1∑
q=1

∑
π∈S(k,p)
τ∈S(k,q)

∑
η

1W̃η
(z)

(
2π

mn

)k ∫
[0,2π]p+q−k

1Ṽη (x)ρ
(p)
Ξm

(x̃(z, x))

ρ
(q)
Ξ′n

(ỹ(z, x))dx,

where the sums are over appropriate partitions and W̃η, Ṽη are suitable sets which
appear after changing the variables. Now, by (2.2),

‖ρ(p)
Ξm
· ρ(q)

Ξ′n
‖∞ ≤

pp/2qq/2

(2π)p+q
mpnq, (2.4)

so

Bm,n(z) ≤ Ck
1

n
,

where the constant Ck depends only on k (roughly, it equals the number of summands
times kk). Hence, when taking n→∞ we will not have to take care about Bm,n.

Let us have a look at (2.3) and compute now the limit of the first term when n→∞.
We observe that 1Wη → 1 pointwise on Rk. Moreover,

∑
η 1Vη → 1[0,2π)p , and 1Vη → 0

for η such that ηs 6= ηt but π(s) = π(t) for some s 6= t. Thus we consider only η’s such
that ηs = ηt whenever π(s) = π(t) and then the following simple observation

2π

mn
sn

(
2π

mn
u+ v

)
−−−−→
n→∞

{
0, v 6= 0
1
mq
(
u
m

)
, v = 0

(2.5)

yields for all these η’s,(
2π

mn

)k
ρ

(k)
Ξ′n

(y) = det

[
2π

mn
sn

(
2π

mn
(zs − zt) + 2π(ηs − ηt) + xπ(t) − xπ(s)

)]k
s,t=1

−−−−→
n→∞

p∏
j=1

det

[
1

m
q

(
zs − zt
m

)]
s,t∈πj

=
1

mk

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
.

By estimate (2.2),
(

2π
mn

)k
ρ

(k)
Ξ′n

(y) is bounded by kk/2/mk, so the integrand in (2.3) can be
simply bounded. Thus by Lebesgue’s dominated convergence theorem

ρ
(k)
Θm,n

(z) −−−−→
n→∞

∑
p,π

1

mk

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
·
∫

[0,2π]p
ρ

(p)
Ξm

(x)dx.
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For any p ≤ m the integral
∫

[0,2π)p
ρ

(p)
Ξm

(x)dx just equals m!/(m − p)!. Consequently, we
finally obtain

ρ
(k)
Θm,n

(z1, . . . , zk) −−−−→
n→∞

∑
p,π

1

mk

m!

(m− p)!

p∏
j=1

ρ
(]πj)
Σ

(
1

m
(zi)i∈πj

)
.

In view of (1.5) this completes the proof.

2.2 Proof of Theorem (b)

Fix a point z = (z1, . . . , zk) ∈ Rk. We let m and n tend to infinity and want to prove

that ρ(k)
Θmn

(z) tends to 1. Recall (2.3) and notice that due to estimate (2.4) all the terms
with p ≤ k − 1 are bounded above by Ck/m, so we can write

ρ
(k)
Θm,n

(z) = O

(
1

m
+

1

n

)
+
∑
η

1Wη (z)

∫
[0,2π]k

1Vη (x)

(
2π

mn

)k
ρ

(k)
Ξm

(x)ρ
(k)
Ξ′n

(y(z, x)) dx.

Using the formulas for the correlation functions and the permutational definition of the
determinant, we can put the integrand in the following form

1Vη (x)

(2π)k
· det

[
2π

m
sm(xs − xt)

]k
s,t=1

· det

[
2π

n
sn (ys − yt)

]k
s,t=1

=
1Vη (x)

(2π)k

(
1 +

∑
σ 6=id or τ 6=id

sgnσ sgn τ

k∏
i=1

2π

m
sm(xi − xσ(i)) ·

2π

n
sn(yi − yτ(i))

)
,

where the second summation runs through permutations σ and τ of k indices. The point
is that each term in this sum tends to zero with m and n going to infinity as we have
2π
m sm(xi − xσ(i))

a.e.−−−−→
m→∞

0 for i such that i 6= σ(i), and 2π
n sn(yi − yτ(i))

a.e.−−−−→
n→∞

0 if i 6= τ(i)

(see (2.5) and mind the fact that actually y depends on m and n). Recall also that
1Wη

→ 1 and
∑
η 1Vη → 1[0,2π)k . Moreover, (2.1) yields that the whole sum is bounded

by (k!)2/(2π)k. Therefore by Lebsegue’s dominated convergence theorem we conclude
that

ρ
(k)
Θm,n

(z) −−−−−→
m,n→∞

∫
1[0,2π)k(x)

1

(2π)k
dx = 1,

which finishes the proof.

3 Concluding remarks

At the very end we shall discuss the tensor product of more than two matrices. We
only briefly sketch what can be easily inferred looking at the proof of the main result.

Let Ξl, Ξ′m, Ξ′′n be the point processes of eigenphases of independent l × l, m ×m,
and n× n random unitary matrices respectively. Proceeding along the same lines as in
the proof of Theorem (a), we conclude that the point process 2π

lmn (Ξl ⊗ Ξ′m ⊗ Ξ′′n − π)

locally behaves as the Poisson point process on R when l is fixed but m and n tend to
infinity. Indeed, the asymptotics of the k-th correlation function ρ(k)(z) of that process
is governed by the integrals∫

[0,2π]p+k∩Vη

(
2π

lmn

)k
ρ

(p)
Ξl

(x)ρ
(k)
Ξ′m

(y)ρ
(k)
Ξ′′n

(w(x, y, z))dxdy,

which we then sum suitably. Expanding the determinantal correlation functions of
Ξ′m and Ξ′′n (see the proof of Theorem (b)) we find that the limit of ρ(k)(z) equals
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∑
p,π

1
lk

l!
(l−p)! = 1, where the last identity is due to the well-known combinatorial fact

that
∑k
p=1 ]S(k, p)x(x− 1) · . . . (x− p+ 1) = xk. The same line of reasoning applies also

when in addition l→∞. Then the asymptotics depends only on the integral∫
[0,2π]2k

(
2π

lmn

)k
ρ

(k)
Ξl

(x)ρ
(k)
Ξ′m

(y)ρ
(k)
Ξ′′n

(w(x, y, z))dxdy.

Again, we carry on as in the proof of Theorem (b).
Let A(i)

ni , i = 1, , 2, . . ., be independent ni × ni random unitary matrices. The other

cases of tensor products
⊗M

i=1A
(i)
ni , when for instance all but one of ni’s are fixed, seem

to be more delicate and we do not wish to go into detail here. Moreover, it looks
challenging to consider the tensor products when the number of terms M tends to
infinity and (ni)

∞
i=1 is fixed. The simplest case of ni = 2, i ≥ 1 has been addressed in [5].
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