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for a general class of random matrices
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Abstract

We consider a general class of N × N random matrices whose entries hij are in-
dependent up to a symmetry constraint, but not necessarily identically distributed.
Our main result is a local semicircle law which improves previous results [17] both
in the bulk and at the edge. The error bounds are given in terms of the basic small
parameter of the model, maxi,j E|hij |2. As a consequence, we prove the universality
of the local n-point correlation functions in the bulk spectrum for a class of matrices
whose entries do not have comparable variances, including random band matrices
with band width W � N1−εn with some εn > 0 and with a negligible mean-field
component. In addition, we provide a coherent and pedagogical proof of the local
semicircle law, streamlining and strengthening previous arguments from [17, 19, 6].
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1 Introduction

Since the pioneering work [31] of Wigner in the fifties, random matrices have played
a fundamental role in modelling complex systems. The basic example is the Wigner
matrix ensemble, consisting of N×N symmetric or Hermitian matrices H = (hij) whose
matrix entries are identically distributed random variables that are independent up
to the symmetry constraint H = H∗. From a physical point of view, these matrices
represent Hamilton operators of disordered mean-field quantum systems, where the
quantum transition rate from state i to state j is given by the entry hij .
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The local semicircle law for a general class of random matrices

A central problem in the theory or random matrices is to establish the local uni-
versality of the spectrum. Wigner observed that the distribution of the distances be-
tween consecutive eigenvalues (the gap distribution) in complex physical systems fol-
lows a universal pattern. The Wigner-Dyson-Gaudin-Mehta conjecture, formalized in
[25], states that this gap distribution is universal in the sense that it depends only on
the symmetry class of the matrix, but is otherwise independent of the details of the
distribution of the matrix entries. This conjecture has recently been established for all
symmetry classes in a series of works [14, 19, 7]; an alternative approach was given in
[29] for the special Wigner Hermitian case. The general approach of [14, 19, 7] to prove
universality consists of three steps: (i) establish a local semicircle law for the density
of eigenvalues; (ii) prove universality of Wigner matrices with a small Gaussian com-
ponent by analysing the convergence of Dyson Brownian motion to local equilibrium;
(iii) remove the small Gaussian component by comparing Green functions of Wigner
ensembles with a few matching moments. For an overview of recent results and this
three-step strategy, see [16].

Wigner’s vision was not restricted to Wigner matrices. In fact, he predicted that
universality should hold for any quantum system, described by a large Hamiltonian H,
of sufficient complexity. In order to make such complexity mathematically tractable,
one typically replaces the detailed structure of H with a statistical description. In this
phenomenological model, H is drawn from a random ensemble whose distribution mim-
ics the true complexity. One prominent example where random matrix statistics are
expected to hold is the random Schrödinger operator in the delocalized regime. The
random Schrödinger operator differs greatly from Wigner matrices in that most of its
entries vanish. It describes a model with spatial structure, in contrast to the mean-field
Wigner matrices where all matrix entries are of comparable size. In order to address
the question of universality of general disordered quantum systems, and in particular
to probe Wigner’s vision, one therefore has to break the mean-field permutational sym-
metry of Wigner’s original model, and hence to allow the distribution of hij to depend
on i and j in a nontrivial fashion. For example, if the matrix entries are labelled by
a discrete torus T ⊂ Zd on the d-dimensional lattice, then the distribution of hij may
depend on the Euclidean distance |i − j| between sites i and j, thus introducing a non-
trivial spatial structure into the model. If hij = 0 for |i − j| > 1 we essentially obtain
the random Schrödinger operator. A random Schrödinger operator models a physical
system with a short-range interaction, in contrast to the infinite-range, mean-field inter-
action described by Wigner matrices. More generally, we may consider a band matrix,
characterized by the property that hij becomes negligible if |i − j| exceeds a certain
parameter, W , called the band width, describing the range of the interaction. Hence,
by varying the band width W , band matrices naturally interpolate between mean-field
Wigner matrices and random Schrödinger operators; see [28] for an overview.

For definiteness, let us focus on the case of a one-dimensional band matrix H. A
fundamental conjecture, supported by nonrigorous supersymmetric arguments as well
as numerics [23], is that the local spectral statistics of H are governed by random
matrix statistics for large W and by Poisson statistics for small W . This transition
is in the spirit of the Anderson metal-insulator transition [23, 28], and is conjectured
to be sharp around the critical value W =

√
N . In other words, if W �

√
N , we

expect the universality results of [17, 18, 19] to hold. In addition to a transition in
the local spectral statistics, an accompanying transition is conjectured to occur in the
behaviour localization length of the eigenvectors of H, whereby in the large-W regime
they are expected to be completely delocalized and in the small-W regime exponentially
localized. The localization length for band matrices was recently investigated in great
detail in [8].
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The local semicircle law for a general class of random matrices

Although the Wigner-Dyson-Gaudin-Mehta conjecture was originally stated for Wigner
matrices, the methods of [14, 19, 7] also apply to certain ensembles with independent
but not identically distributed entries, which however retain the mean-field character
of Wigner matrices. More precisely, they yield universality provided the variances

sij
..= E|hij |2

of the matrix entries are only required to be of comparable size (but not necessarily
equal):

c

N
6 sij 6

C

N
(1.1)

for some positive constants c and C. (Such matrices were called generalized Wigner
matrices in [19].) This condition admits a departure from spatial homogeneity, but still
imposes a mean-field behaviour and hence excludes genuinely inhomogeneous models
such as band matrices.

In the three-step approach to universality outlined above, the first step is to establish
the semicircle law on very short scales. In the scaling of H where its spectrum is
asymptotically given by the interval [−2, 2], the typical distance between neighbouring
eigenvalues is of order 1/N . The number of eigenvalues in an interval of length η is
typically of order Nη. Thus, the smallest possible scale on which the empirical density
may be close to a deterministic density (in our case the semicircle law) is η � 1/N .
If we characterize the empirical spectral density around an energy E on scale η by its
Stieltjes transform, mN (z) = N−1 Tr(H − z)−1 for z = E + iη, then the local semicircle
law around the energy E and in a spectral window of size η is essentially equivalent to

|mN (z)−m(z)| = o(1) (1.2)

as N →∞, where m(z) is the Stieltjes transform of the semicircle law. For any η � 1/N

(up to logarithmic corrections) the asymptotics (1.2) in the bulk spectrum was first
proved in [13] for Wigner matrices. The optimal error bound of the form O((Nη)−1)

(with an Nε correction) was first proved in [18] in the bulk. (Prior to this work, the
best results were restricted to regime η > N−1/2; see Bai et al. [1] as well as related
concentration bounds in [20].) This result was then extended to the spectral edges in
[19]. (Some improvements over the estimates from [13] at the edges, for a special class
of ensembles, were obtained in [30].) In [19], the identical distribution of the entries of
H was not required, but the upper bound in (1.1) on the variances was necessary. Band
matrices in d dimensions with band width W satisfy the weaker bound sij 6 C/W d.
(Note that the band width W is typically much smaller than the linear size L of the
configuration space T, i.e. the bound W−d is much larger than the inverse number of
lattice sites, L−d = |T|−1 = N−1.) This motivates us to consider even more general
matrices, with the sole condition

sij 6 C/M (1.3)

on the variances (instead of (1.1)). Here M is a new parameter that typically satisfies
M � N . (From now on, the relation A � B for two N -dependent quantities A and B

means that A 6 N−εB for some positive ε > 0.) The question of the validity of the local
semicircle law under the assumption (1.3) was initiated in [17], where (1.2) was proved
with an error term of order (Mη)−1/2 away from the spectral edges.

The purpose of this paper is twofold. First, we prove a local semicircle law (1.2),
under the variance condition (1.3), with a stronger error bound of order (Mη)−1, in-
cluding energies E near the spectral edge. Away from the spectral edge (and from the
origin E = 0 if the matrix does not have a band structure), the result holds for any
η � 1/M . Near the edge there is a restriction on how small η can be. This restriction
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depends explicitly on a norm of the resolvent of the matrix of variances, S = (sij); we
give explicit bounds on this norm for various special cases of interest.

As a corollary, we derive bounds on the eigenvalue counting function and rigidity
estimates on the locations of the eigenvalues for a general class of matrices. Combined
with an analysis of Dyson Brownian motion and the Green function comparison method,
this yields bulk universality of the local eigenvalue statistics in a certain range of pa-
rameters, which depends on the matrix S. In particular, we extend bulk universality,
proved for generalized Wigner matrices in [17], to a large class of matrix ensembles
where the upper and lower bounds on the variances (1.1) are relaxed.

The main motivation for the generalizations in this paper is the Anderson transi-
tion for band matrices outlined above. While not optimal, our results nevertheless
imply that band matrices with a sufficiently broad band plus a negligible mean-field
component exhibit bulk universality: their local spectral statistics are governed by ran-
dom matrix statistics. For example, the local two-point correlation functions coincide if
W � N33/34. Although eigenvector delocalization and random matrix statistics are con-
jectured to occur in tandem, delocalization was actually proved in [8] under more gen-
eral conditions than those under which we establish random matrix statistics. In fact,
the delocalization results of [8] hold for a mean-field component as small as (N/W 2)2/3,
and, provided that W � N4/5, the mean-field component may even vanish (resulting in
a genuine band matrix).

The second purpose of this paper is to provide a coherent, pedagogical, and self-
contained proof of the local semicircle law. In recent years, a series of papers [12, 13,
17, 18, 19, 6] with gradually weaker assumptions, was published on this topic. These pa-
pers often cited and relied on the previous ones. This made it difficult for the interested
reader to follow all the details of the argument. The basic strategy of our proof (that is,
using resolvents and large deviation bounds) was already used in [12, 13, 17, 18, 19, 6].
In this paper we not only streamline the argument for generalized Wigner matrices
(satisfying (1.1)), but we also obtain sharper bounds for random matrices satisfying the
much weaker condition (1.3). This allows us to establish universality results for a class
of ensembles beyond generalized Wigner matrices.

Our proof is self-contained and simpler than those of [17, 18, 19, 6]. In particular, we
give a proof of the Fluctuation Averaging Theorem, Theorems 4.6 and 4.7 below, which
is considerably simpler than that of its predecessors in [18, 19, 6]. In addition, we
consistently use fluctuation averaging at several key steps of the main argument, which
allows us to shorten the proof and relax previous assumptions on the variances sij . The
reader who is mainly interested in the pedagogical presentation should focus on the
simplest choice of S, sij = 1/N , which corresponds to the standard Wigner matrix (for
which M = N ), and focus on Sections 2, 4, 5, and 6, as well as Appendix B.

We conclude this section with an outline of the paper. In Section 2 we define the
model, introduce basic definitions, and state the local semicircle law in full generality
(Theorem 2.3). Section 3 is devoted to some examples of random matrix models that
satisfy our assumptions; for each example we give explicit bounds on the spectral do-
main on which the local semicircle law holds. Sections 4, 5, and 6 are devoted to the
proof of the local semicircle law. Section 4 collects the basic tools that will be used
throughout the proof. The purpose of Section 5 is mainly pedagogical; in it, we state
and prove a weaker form of the local semicircle law, Theorem 5.1. The error bounds in
Theorem 5.1 are identical to those of Theorem 2.3, but the spectral domain on which
they hold is smaller. Provided one stays away from the spectral edge, Theorems 5.1
and 2.3 are equivalent; near the edge, Theorem 2.3 is stronger. The proof of Theorem
5.1 is very short and contains several key ideas from the proof of Theorem 2.3. The
expert reader may therefore want to skip Section 5, but for the reader looking for a
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pedagogical presentation we recommend first focusing on Sections 4 and 5 (along with
Appendix B). The full proof of our main result, Theorem 2.3, is given in Section 6. In
Sections 7 and 8 we draw consequences from Theorem 2.3. In Section 7 we derive esti-
mates on the density of states and the rigidity of the eigenvalue locations. In Section 8
we state and prove the universality of the local spectral statistics in the bulk, and give
applications to some concrete matrix models. In Appendix A we derive explicit bounds
on relevant norms of the resolvent of S (denoted by the abstract control parameters
Γ̃ and Γ), which are used to define the domains of applicability of Theorems 2.3 and
5.1. Finally, Appendix B is devoted to the proof of the fluctuation averaging estimates,
Theorems 4.6 and 4.7.

We use C to denote a generic large positive constant, which may depend on some
fixed parameters and whose value may change from one expression to the next. Simi-
larly, we use c to denote a generic small positive constant.

2 Definitions and the main result

Let (hij
.. i 6 j) be a family of independent, complex-valued random variables hij ≡

h
(N)
ij satisfying Ehij = 0 and hii ∈ R for all i. For i > j we define hij ..= h̄ji, and denote

by H ≡ HN = (hij)
N
i,j=1 the N×N matrix with entries hij . By definition, H is Hermitian:

H = H∗. We stress that all our results hold not only for complex Hermitian matrices
but also for real symmetric matrices. In fact, the symmetry class of H plays no role,
and our results apply for instance in the case where some off-diagonal entries of H are
real and some complex-valued. (In contrast to some other papers in the literature, in
our terminology the concept of Hermitian simply refers to the fact that H = H∗.)

We define

sij
..= E|hij |2 , M ≡ MN

..=
1

maxi,j sij
. (2.1)

In particular, we have the bound
sij 6 M−1 (2.2)

for all i and j. We regard N as the fundamental parameter of our model, and M as
a function of N . We introduce the N × N symmetric matrix S ≡ SN = (sij)

N
i,j=1. We

assume that S is (doubly) stochastic: ∑
j

sij = 1 (2.3)

for all i. For simplicity, we assume that S is irreducible, so that 1 is a simple eigenvalue.
(The case of non-irreducible S may be trivially dealt with by considering its irreducible
components separately.) We shall always assume the bounds

Nδ 6 M 6 N (2.4)

for some fixed δ > 0.
It is sometimes convenient to use the normalized entries

ζij
..= (sij)

−1/2hij , (2.5)

which satisfy Eζij = 0 and E|ζij |2 = 1. (If sij = 0 we set for convenience ζij to be a
normalized Gaussian, so that these relations continue hold. Of course in this case the
law of ζij is immaterial.) We assume that the random variables ζij have finite moments,
uniformly in N , i, and j, in the sense that for all p ∈ N there is a constant µp such that

E|ζij |p 6 µp (2.6)
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for all N , i, and j. We make this assumption to streamline notation in the statements
of results such as Theorem 2.3 and the proofs. In fact, our results (and our proof) also
cover the case where (2.6) holds for some finite large p; see Remark 2.4.

Throughout the following we use a spectral parameter z ∈ C satisfying Im z > 0. We
use the notation

z = E + iη

without further comment, and always assume that η > 0. Wigner semicircle law % and
its Stieltjes transform m are defined by

%(x) ..=
1

2π

√
(4− x2)+ , m(z) ..=

1

2π

∫ 2

−2

√
4− x2

x− z
dx . (2.7)

To avoid confusion, we remark that m was denoted by msc in the papers [12, 13, 14, 15,
17, 18, 19, 6, 7], in which m had a different meaning from (2.7). It is well known that
the Stieltjes transform m is the unique solution of

m(z) +
1

m(z)
+ z = 0 (2.8)

satisfying Imm(z) > 0 for Im z > 0. Thus we have

m(z) =
−z +

√
z2 − 4

2
. (2.9)

Some basic estimates on m are collected in Lemma 4.3 below.
An important parameter of the model is1

ΓN (z) ≡ Γ(z) ..=
∥∥∥(1−m(z)2S

)−1
∥∥∥
`∞→`∞

. (2.10)

A related quantity is obtained by restricting the operator
(
1−m(z)2S

)−1
to the sub-

space e⊥ orthogonal to the constant vector e ..= N−1/2(1, 1, . . . , 1)∗. Since S is stochas-
tic, we have the estimate −1 6 S 6 1 and 1 is a simple eigenvalue of S with eigenvector
e. Set

Γ̃N (z) ≡ Γ̃(z) ..=
∥∥∥(1−m(z)2S

)−1
∣∣∣
e⊥

∥∥∥
`∞→`∞

, (2.11)

the norm of (1 − m(z)2S)−1 restricted to the subspace orthogonal to the constants.
Clearly, Γ̃(z) 6 Γ(z). Basic estimates on Γ and Γ̃ are collected in Proposition A.2 below.
Many estimates in this paper depend critically on Γ and Γ̃. Indeed, these parameters
quantify the stability of certain self-consistent equations that underlie our proof. How-
ever, Γ and Γ̃ remain bounded (up to a factor logN ) provided E = Re z is separated from
the set {−2, 0, 2}; for band matrices (see Example 3.2) it suffices that E be separated
from the spectral edges {−2, 2}; see Appendix A. At a first reading, we recommend that
the reader neglect Γ and Γ̃ (i.e. replace them with a constant). For band matrices, this
amounts to focusing on the local semicircle law in the bulk of the spectrum.

We define the resolvent or Green function of H through

G(z) ..= (H − z)−1 ,

and denote its entries by Gij(z). The Stieltjes transform of the empirical spectral mea-
sure of H is

mN (z) ..=
1

N
TrG(z) . (2.12)

The following definition introduces a notion of a high-probability bound that is suited
for our purposes. It was introduced (in a slightly different form) in [9].

1Here we use the notation ‖A‖`∞→`∞ = maxi
∑

j |Aij | for the operator norm on `∞(CN ).
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Definition 2.1 (Stochastic domination). Let

X =
(
X(N)(u) .. N ∈ N, u ∈ U (N)

)
, Y =

(
Y (N)(u) .. N ∈ N, u ∈ U (N)

)
be two families of nonnegative random variables, where U (N) is a possibly N -dependent
parameter set. We say that X is stochastically dominated by Y , uniformly in u, if for all
(small) ε > 0 and (large) D > 0 we have

sup
u∈U(N)

P
[
X(N)(u) > NεY (N)(u)

]
6 N−D

for large enough N > N0(ε,D). Unless stated otherwise, throughout this paper the
stochastic domination will always be uniform in all parameters apart from the param-
eter δ in (2.4) and the sequence of constants µp in (2.6); thus, N0(ε,D) also depends
on δ and µp. If X is stochastically dominated by Y , uniformly in u, we use the nota-
tion X ≺ Y . Moreover, if for some complex family X we have |X| ≺ Y we also write
X = O≺(Y ).

For example, using Chebyshev’s inequality and (2.6) one easily finds that

|hij | ≺ (sij)
1/2 ≺ M−1/2 , (2.13)

so that we may also write hij = O≺((sij)
1/2). Another simple, but useful, example is a

family of events Ξ ≡ Ξ(N) with asymptotically very high probability: If P(Ξc) 6 N−D for
any D > 0 and N > N0(D), then the indicator function 1(Ξ) of Ξ satisfies 1− 1(Ξ) ≺ 0.

The relation ≺ is a partial ordering, i.e. it is transitive and it satisfies the familiar
arithmetic rules of order relations. For instance if X1 ≺ Y1 and X2 ≺ Y2 then X1 +X2 ≺
Y1 + Y2 and X1X2 ≺ Y1Y2. More general statements in this spirit are given in Lemma
4.4 below.

Definition 2.2 (Spectral domain). We call an N -dependent family

D ≡ D(N) ⊂
{
z .. |E| 6 10 , M−1 6 η 6 10

}
a spectral domain. (Recall that M ≡MN depends on N .)

In this paper we always consider families X(N)(u) = X
(N)
i (z) indexed by u = (z, i),

where z takes on values in some spectral domain D, and i takes on values in some finite
(possibly N -dependent or empty) index set. The stochastic domination X ≺ Y of such
families will always be uniform in z and i, and we usually do not state this explicitly.
Usually, which spectral domain D is meant will be clear from the context, in which case
we shall not mention it explicitly.

In this paper we shall make use of two spectral domains, S defined in (5.2) and S̃

defined in (2.17). Our main result is formulated on the larger of these domains, S̃. In
order to define it, we introduce an E-dependent lower boundary η̃E on the spectral
domain. We choose a (small) positive constant γ, and define for each E ∈ [−10, 10]

η̃E
..= min

{
η ..

1

Mη
6 min

{
M−γ

Γ̃(z)3
,

M−2γ

Γ̃(z)4 Imm(z)

}
for all z ∈ [E + iη,E + 10i]

}
.

(2.14)
Note that η̃E depends on γ, but we do not explicitly indicate this dependence since we
regard γ as fixed. At a first reading we advise the reader to think of γ as being zero.
Note also that the lower bound in (A.3) below implies that η̃E > M−1. We also define
the distance to the spectral edge,

κ ≡ κE
..=

∣∣|E| − 2
∣∣ . (2.15)
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Finally, we introduce the fundamental control parameter

Π(z) ..=

√
Imm(z)

Mη
+

1

Mη
, (2.16)

which will be used throughout this paper as a sharp, deterministic upper bound on the
entries of G. Note that the condition in the definition of η̃E states that the first term of
Π is bounded by M−γΓ̃−2 and the second term by M−γΓ̃−3. We may now state our main
result.

Theorem 2.3 (Local semicircle law). Fix γ ∈ (0, 1/2) and define the spectral domain

S̃ ≡ S̃(N)(γ) ..=
{
E + iη .. |E| 6 10 , η̃E 6 η 6 10

}
. (2.17)

We have the bounds

max
i,j

∣∣Gij(z)− δijm(z)
∣∣ ≺ Π(z) (2.18)

uniformly in z ∈ S̃, as well as ∣∣mN (z)−m(z)
∣∣ ≺ 1

Mη
(2.19)

uniformly in z ∈ S̃. Moreover, outside of the spectrum we have the stronger estimate∣∣mN (z)−m(z)
∣∣ ≺ 1

M(κ+ η)
+

1

(Mη)2
√
κ+ η

(2.20)

uniformly in z ∈ S̃ ∩ {z .. |E| > 2 , Mη
√
κ+ η >Mγ}.

We remark that the main estimate for the Stieltjes transform mN is (2.19). The other
estimate (2.20) is mainly useful for controlling the norm of H, which we do in Section
7. We also recall that uniformity for the spectral parameter z means that the threshold
N0(ε,D) in the definition of ≺ is independent of the choice of z within the indicated
spectral domain. As stated in Definition 2.1, this uniformity holds for all statements
containing ≺, and is not explicitly mentioned in the following; all of our arguments are
trivially uniform in z and any matrix indices.

Remark 2.4. Theorem 2.3 has the following variant for matrix entries where the con-
dition (2.6) is only imposed for some large but fixed p. More precisely, for any ε > 0 and
D > 0 there exists a constant p(ε,D) such that if (2.6) holds for p = p(ε,D) then

P
(
|mN (z)−m(z)| > Nε(Mη)−1

)
6 N−D

for all z ∈ S̃ and N > N0(ε,D). An analogous estimate replaces (2.18) and (2.20). The
proof of this variant is the same as that of Theorem 2.3.

Remark 2.5. Most of the previous works [12, 13, 17, 18, 19, 6] assumed a stronger,
subexponential decay condition on ζij instead of (2.6). Under the subexponential de-
cay condition, certain probability estimates in the results were somewhat stronger and
precise tolerance thresholds were sharper. Roughly, this corresponds to operating with
a modified definition of ≺, where the factors Nε are replaced by high powers of logN

and the polynomial probability bound N−D is replaced with a subexponential one. The
proofs of the current paper can be easily adjusted to such a setup, but we shall not
pursue this further.
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A local semicircle law for Wigner matrices on the optimal scale η & 1/N was first
obtained in [13]. The optimal error estimates in the bulk were proved in [18], and
extended to the edges in [19]. These estimates underlie the derivation of rigidity es-
timates for individual eigenvalues, which in turn were used in [19] to prove Dyson’s
conjecture on the optimal local relaxation time for the Dyson Brownian motion.

Apart from the somewhat different assumption on the tails of the entries of H (see
Remark 2.5), Theorem 2.3, when restricted to generalized Wigner matrices, subsumes
all previous local semicircle laws obtained in [12, 13, 18, 19]. For band matrices, a
local semicircle law was proved in [17]. (In fact, in [17] the band structure was not
required; only the conditions (2.2), (2.3), and the subexponential decay condition for
the matrix entries (instead of (2.6)) were used.) Theorem 2.3 improves this result in
several ways. First, the error bounds in (2.18) and (2.19) are uniform in E, even for E
near the spectral edge; the corresponding bounds in Theorem 2.1 of [17] diverged as
κ−1. Second, the bound (2.19) on the Stieltjes transform is better than (2.16) in [17]
by a factor (Mη)−1/2. This improvement is due to exploiting the fluctuation averaging
mechanism of Theorem 4.6. Third, the domain of η for which Theorem 2.3 applies is
essentially η � κ−7/2M−1, which is somewhat larger than the domain η � κ−4M−1 of
[17].

While Theorem 2.3 subsumes several previous local semicircle laws, two previous
results are not covered. The local semicircle law for sparse matrices proved in [6] does
not follow from Theorem 2.3. However, the argument of this paper may be modified
so as to include sparse matrices as well; we do not pursue this issue further. The
local semicircle law for one-dimensional band matrices given in Theorem 2.2 of [8] is,
however, of a very different nature, and may not be recovered using the methods of the
current paper. Under the conditions W � N4/5 and η � N2/W 3, Theorem 2.2 of [8]
shows that (focusing for simplicity on the one-dimensional case)

∣∣Gij(z)− δijm(z)
∣∣ ≺ 1

(Nη)1/2
+

1

(W
√
η)1/2

(2.21)

in the bulk spectrum, which is stronger than the bound of order (Wη)−1/2 in (2.18).
The proof of (2.21) relies on a very general fluctuation averaging result from [9], which
is considerably stronger than Theorems 4.6 and 4.7; see Remark 4.8 below. The key
open problem for band matrices is to establish a local semicircle law on a scale η below
W−1. The estimate (2.21) suggests that the resolvent entries should remain bounded
throughout the range η & max{N−1,W−2}.

The local semicircle law, Theorem 2.3, has numerous consequences, several of which
are formulated in Sections 7 and 8. Here we only sketch them. Theorem 7.5 states that
the empirical counting function converges to the counting function of the semicircle law.
The precision is of orderM−1 provided that we have the lower bound sij > c/N for some
constant c > 0. As a consequence, Theorem 7.6 states that the bulk eigenvalues are
rigid on scales of order M−1. Under the same condition, in Theorem 8.2 we prove the
universality of the local two-point correlation functions in the bulk provided that M �
N33/34; we obtain similar results for higher order correlation functions, assuming a
stronger restriction on M . These results generalize the earlier theorems from [19, 6, 7],
which were valid for generalized Wigner matrices satisfying the condition (1.1), under
which M is comparable to N . We obtain similar results if the condition sij > c/N in
(1.1) is relaxed to sij > N−1−ξ with some small ξ. The exponent ξ can be chosen near
1 for band matrices with a broad band W � N . In particular, we prove universality for
such band matrices with a rapidly vanishing mean-field component. These applications
of the general Theorem 8.2 are listed in Corollary 8.3.
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3 Examples

In this section we give some important example of random matrix models H. In
each of the examples, we give the deterministic matrix S = (sij) of the variances of the
entries of H. The matrix H is then obtained from hij = sijζij . Here (ζij) is a Hermitian
matrix whose upper-triangular entries are independent and whose diagonal entries are
real; moreover, we have Eζij = 0, E|ζij |2 = 1, and the condition (2.6) for all p, uniformly
in N , i, and j.

Definition 3.1 (Full and flat Wigner matrices). Let a ≡ aN and b ≡ bN be possibly
N -dependent positive quantities. We call H an a-full Wigner matrix if S satisfies (2.3)
and

sij >
a

N
. (3.1)

Similarly, we call H a b-flat Wigner matrix if S satisfies (2.3) and

sij 6
b

N
.

(Note that in this case we have M > N/b.)
If a and b are independent of N we call an a-full Wigner matrix simply full and a

b-flat Wigner matrix simply flat. In particular, generalized Wigner matrices, satisfying
(1.1), are full and flat Wigner matrices.

Definition 3.2 (Band matrix). Fix d ∈ N. Let f be a bounded and symmetric (i.e.
f(x) = f(−x)) probability density on Rd. Let L and W be integers satisfying

Lδ
′
6 W 6 L

for some fixed δ′ > 0. Define the d-dimensional discrete torus

TdL = [−L/2, L/2)d ∩Zd .

Thus, TdL has N = Ld lattice points; and we may identify TdL with {1, . . . , N}. We define
the canonical representative of i ∈ Zd through

[i]L
..= (i+ LZd) ∩TdL .

Then H is a d-dimensional band matrix with band width W and profile function f if

sij =
1

ZL
f

(
[i− j]L
W

)
,

where ZL is a normalization chosen so that (2.3) holds.

Definition 3.3 (Band matrix with a mean-field component). Let HB a d-dimensional
band matrix from Definition 3.2. Let HW be an independent a-full Wigner matrix in-
dexed by the set TdL. The matrix H ..=

√
1− νHB +

√
νHW , with some ν ∈ [0, 1], is called

a band matrix with a mean-field component.

The example of Definition 3.3 is a mixture of the previous two. We are especially
interested in the case ν � 1, when most of the variance comes from the band matrix,
i.e. the profile of S is very close to a sharp band.

We conclude with some explicit bounds for these examples. The behaviour of Γ and
Γ̃ near the spectral edge is governed by the parameter

θ ≡ θ(z) ..=

{
κ+ η√

κ+η
if |E| 6 2

√
κ+ η if |E| > 2 ,

(3.2)
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where we set, as usual, κ ≡ κE and z = E + iη. Note that the parameter θ may be
bounded from below by (Imm)2. The following results follow immediately from Propo-
sitions A.2 and A.3 in Appendix A. They hold for an arbitrary spectral domain D.

(i) For general H and any constant c > 0, there is a constant C > 0 such that

C−1 6 Γ̃ 6 Γ 6 C logN

provided dist(E, {−2, 0, 2}) > c.

(ii) For a full Wigner matrix we have

c 6 Γ̃ 6 C logN ,
c√
κ+ η

6 Γ 6
C logN

θ
,

where C depends on the constant a in Definition 3.1 but c does not.

(iii) For a band matrix with a mean-field component, as in Definition 3.3, we have

c 6 Γ̃ 6
C logN

(W/L)2 + νa+ θ
.

The case ν = 0 corresponds to a band matrix from Definition 3.2.

4 Tools

In this subsection we collect some basic facts that will be used throughout the paper.
For two positive quantities AN and BN we use the notation AN � BN to mean cAN 6
BN 6 CAN . Throughout the following we shall frequently drop the arguments z and N ,
bearing in mind that we are dealing with a function on some spectral domain D.

Definition 4.1 (Minors). For T ⊂ {1, . . . , N} we define H(T) by

(H(T))ij
..= 1(i /∈ T)1(j /∈ T)hij .

Moreover, we define the resolvent of H(T) through

G
(T)
ij (z) ..=

(
H(T) − z

)−1

ij
.

We also set
(T)∑
i

..=
∑
i..i/∈T

.

When T = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we write
(ab) instead of ({a, b}).

Definition 4.2 (Partial expectation and independence). Let X ≡ X(H) be a random
variable. For i ∈ {1, . . . , N} define the operations Pi and Qi through

PiX
..= E(X|H(i)) , QiX

..= X − PiX .

We call Pi partial expectation in the index i. Moreover, we say that X is independent of
T ⊂ {1, . . . , N} if X = PiX for all i ∈ T.

We introduce the random z-dependent control parameters

Λo
..= max

i 6=j
|Gij | , Λd

..= max
i
|Gii −m| , Λ ..= max{Λo,Λd} , Θ ..= |mN −m| .

(4.1)
We remark that the letter Λ had a different meaning in several earlier papers, such as
[19]. The following lemma collects basic bounds on m.
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Lemma 4.3. There is a constant c > 0 such that for E ∈ [−10, 10] and η ∈ (0, 10] we
have

c 6 |m(z)| 6 1− cη , (4.2)

|1−m2(z)| �
√
κ+ η , (4.3)

as well as

Imm(z) �

{√
κ+ η if |E| 6 2
η√
κ+η

if |E| > 2 .
(4.4)

Proof. The proof is an elementary exercise using (2.9).

In particular, recalling that −1 6 S 6 1 and using the upper bound |m| 6 C from
(4.2), we find that there is a constant c > 0 such that

c 6 Γ̃ 6 Γ . (4.5)

The following lemma collects basic algebraic properties of stochastic domination ≺.
Roughly, it states that ≺ satisfies the usual arithmetic properties of order relations. We
shall use it tacitly throughout the following.

Lemma 4.4. (i) Suppose that X(u, v) ≺ Y (u, v) uniformly in u ∈ U and v ∈ V . If
|V | 6 NC for some constant C then∑

v∈V
X(u, v) ≺

∑
v∈V

Y (u, v)

uniformly in u.

(ii) Suppose that X1(u) ≺ Y1(u) uniformly in u and X2(u) ≺ Y2(u) uniformly in u. Then
X1(u)X2(u) ≺ Y1(u)Y2(u) uniformly in u.

(iii) If X ≺ Y +N−εX for some ε > 0 then X ≺ Y .

Proof. The claims (i) and (ii) follow from a simple union bound. The claim (iii) is an
immediate consequence of the definition of ≺.

The following resolvent identities form the backbone of all of our calculations. The
idea behind them is that a resolvent matrix element Gij depends strongly on the i-th
and j-th columns of H, but weakly on all other columns. The first identity determines
how to make a resolvent matrix element Gij independent of an additional index k 6= i, j.
The second identity expresses the dependence of a resolvent matrix element Gij on the
matrix elements in the i-th or in the j-th column of H.

Lemma 4.5 (Resolvent identities). For any Hermitian matrix H and T ⊂ {1, . . . , N} the
following identities hold. If i, j, k /∈ T and i, j 6= k then

G
(T)
ij = G

(Tk)
ij +

G
(T)
ik G

(T)
kj

G
(T)
kk

,
1

G
(T)
ii

=
1

G
(Tk)
ii

−
G

(T)
ik G

(T)
ki

G
(T)
ii G

(Tk)
ii G

(T)
kk

. (4.6)

If i, j /∈ T satisfy i 6= j then

G
(T)
ij = −G(T)

ii

(Ti)∑
k

hikG
(Ti)
kj = −G(T)

jj

(Tj)∑
k

G
(Tj)
ik hkj . (4.7)

Proof. This is an exercise in linear algebra. The first identity (4.6) was proved in Lemma
4.2 of [17] and the second is an immediate consequence of the first. The identity (4.7)
is proved in Lemma 6.10 of [7].
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Our final tool consists of the following results on fluctuation averaging. They exploit
cancellations in sums of fluctuating quantities involving resolvent matrix entries. A very
general result was obtained in [9]; in this paper we state a special case sufficient for our
purposes here, and give a relatively simple proof in Appendix B. We consider weighted
averages of diagonal resolvent matrix entries Gkk. They are weakly dependent, but the
correlation betweenGkk andGmm form 6= k is not sufficiently small to apply the general
theory of sums of weakly dependent random variables; instead, we need to exploit the
precise form of the dependence using the resolvent structure.

It turns out that the key quantity that controls the magnitude of the fluctuations is Λ.
However, being a random variable, Λ itself is unsuitable as an upper bound. For tech-
nical reasons (our proof relies on a high-moment estimate combined with Chebyshev’s
inequality), it is essential that Λ be estimated by a deterministic control parameter,
which we call Ψ. The error terms are then estimated in terms of powers of Ψ. We shall
always assume that Ψ satisfies

M−1/2 6 Ψ 6 M−c (4.8)

in the spectral domain D, where c > 0 is some constant. We shall perform the averaging
with respect to a family of complex weights T = (tik) satisfying

0 6 |tik| 6 M−1 ,
∑
k

|tik| 6 1 . (4.9)

Typical example weights are tik = sik and tik = N−1. Note that in both of these cases T
commutes with S. We introduce the average of a vector (ai)

N
i=1 through

[a] ..=
1

N

∑
i

ai . (4.10)

Theorem 4.6 (Fluctuation averaging). Fix a spectral domain D and a deterministic
control parameter Ψ satisfying (4.8). Suppose that Λ ≺ Ψ and the weight T = (tik)

satisfies (4.9). Then we have∑
k

tikQk
1

Gkk
= O≺(Ψ2) ,

∑
k

tikQkGkk = O≺(Ψ2) . (4.11)

If T commutes with S then ∑
k

tikvk = O≺(ΓΨ2) . (4.12)

Finally, if T commutes with S and ∑
k

tik = 1 (4.13)

for all i then ∑
k

tik(vk − [v]) = O≺(Γ̃Ψ2) , (4.14)

where we defined vi ..= Gii −m. The estimates (4.11), (4.12), and (4.14) are uniform in
the index i.

In fact, the first bound of (4.11) can be improved as follows.

Theorem 4.7. Fix a spectral domain D deterministic control parameters Ψ and Ψo,
both satisfying (4.8). Suppose that Λ ≺ Ψ, Λo ≺ Ψo, and that the weight T = (tik)

satisfies (4.9). Then ∑
k

tikQk
1

Gkk
= O≺(Ψ2

o) . (4.15)
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Remark 4.8. The first instance of the fluctuation averaging mechanism appeared in
[18] for the Wigner case, where [Z] = N−1

∑
k Zk was proved to be bounded by Λ2

o.
Since Qk[Gkk]−1 is essentially Zk (see (5.6) below), this corresponds to the first bound
in (4.11). A different proof (with a better bound on the constants) was given in [19]. A
conceptually streamlined version of the original proof was extended to sparse matrices
[6] and to sample covariance matrices [26]. Finally, an extensive analysis in [9] treated
the fluctuation averaging of general polynomials of resolvent entries and identified the
order of cancellations depending on the algebraic structure of the polynomial. More-
over, in [9] an additional cancellation effect was found for the quantity Qi|Gij |2. These
improvements played a key role in obtaining the diffusion profile for the resolvent of
band matrices and the estimate (2.21) in [8].

All proofs of the fluctuation averaging theorems rely on computing expectations of
high moments of the averages, and carefully estimating the resulting terms. In [9], a
diagrammatic representation was developed for bookkeeping such terms, but this is
necessary only for the case of general polynomials. For the special cases given in Theo-
rem 4.6, the proof is relatively simple and it is presented in Appendix B. Compared with
[18, 19, 6], the algebra of the decoupling of the randomness is greatly simplified in the
current paper. Moreover, unlike their counterparts from [18, 19, 6], the fluctuation av-
eraging results of Theorems 4.6 and 4.7 do not require conditioning on the complement
of some “bad” low-probability event, because such events are automatically accounted
for by the definition of ≺ ; this leads to further simplifications in the proofs of Theorems
4.6 and 4.7.

5 A simpler proof using Γ instead of Γ̃

In this section we prove the following weaker version of Theorem 2.3. In analogy to
(2.14), we introduce the lower boundary

ηE
..= min

{
η ..

1

Mη
6 min

{
M−γ

Γ(z)3
,

M−2γ

Γ(z)4 Imm(z)

}
for all z ∈ [E + iη,E + 10i]

}
.

(5.1)

Theorem 5.1. Fix γ ∈ (0, 1/2) and define the spectral domain

S ≡ S(N)(γ) ..=
{
E + iη .. |E| 6 10 , ηE 6 η 6 10

}
. (5.2)

We have the bounds ∣∣Gij(z)− δijm(z)
∣∣ ≺ Π(z) (5.3)

uniformly in i, j and z ∈ S, as well as∣∣mN (z)−m(z)
∣∣ ≺ 1

Mη
(5.4)

uniformly in z ∈ S.

Note that the only difference between Theorems 2.3 and 5.1 is that Γ̃ was replaced
with the larger quantity Γ in the definition of the threshold ηE and the spectral domain,
so that

1

M
6 η̃E 6 ηE , S ⊂ S̃ . (5.5)

Hence Theorem 5.1 is indeed weaker than Theorem 2.3, since it holds on a smaller
spectral domain. As outlined after (2.11) and discussed in detail in Appendix A, The-
orems 5.1 and 2.3 are equivalent provided E is separated from the set {−2, 0, 2} (for
band matrices they are equivalent provided E is separated from the spectral edges ±2).
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The rest of this section is devoted to the proof of Theorem 5.1. We give the full proof
of Theorem 5.1 for pedagogical reasons, since it is simpler than that of Theorem 2.3
but already contains several of its key ideas. Theorem 2.3 will be proved in Section 6.
One big difference between the two proofs is that in Theorem 5.1 the main control
parameter is Λ, while in Theorem 2.3 we have to keep track of two control parameters,
Λ and the smaller Θ.

5.1 The self-consistent equation

The key tool behind the proof is a self-consistent equation for the diagonal entries of
G. The starting point is Schur’s complement formula, which we write as

1

Gii
= hii − z −

(i)∑
k,l

hikG
(i)
kl hli . (5.6)

The partial expectation with respect to the index i (see Definition 4.2) of the last term
on the right-hand side reads

Pi

(i)∑
k,l

hikG
(i)
kl hli =

(i)∑
k

sikG
(i)
kk =

(i)∑
k

sikGkk −
(i)∑
k

sik
GikGki
Gii

=
∑
k

sikGkk −
∑
k

sik
GikGki
Gii

,

where in the first step we used (2.1) and in the second (4.6). Introducing the notation

vi
..= Gii −m

and recalling (2.3), we therefore get from (5.6) that

1

Gii
= −z −m+ Υi −

∑
k

sikvk , (5.7)

where we introduced the fluctuating error term

Υi
..= Ai + hii − Zi , Ai

..=
∑
k

sik
GikGki
Gii

, Zi
..= Qi

(i)∑
k,l

hikG
(i)
kl hli . (5.8)

Using (2.8), we therefore get the self-consistent equation

−
∑
k

sikvk + Υi =
1

m+ vi
− 1

m
. (5.9)

Notice that this is an equation for the family (vi)
N
i=1, with random error terms Υi.

Self-consistent equations play a crucial role in analysing resolvents of random ma-
trices. The simplest one is the scalar (or first level) self-consistent equation for mN (z),
the Stieltjes transform of the empirical density (2.12). By averaging the inverse of (5.7)
and neglecting the error terms, one obtains that mN approximately satisfies the equa-
tion m = −(m + z)−1, which is the defining relation for the Stieltjes transform of the
semicircle law (2.8).

The vector (or second level) self-consistent equation, as given in (5.9), allows one to
control not only fluctuations of mN −m but also those of Gii −m. The equation (5.9)
first appeared in [17], where a systematic study of resolvent entries of random matrices
was initiated.

For completeness, we mention that a matrix (or third level) self-consistent equa-
tion for local averages of |Gij |2, was introduced in [8]. This equation constitutes the
backbone of the study of the diffusion profile of the resolvent entries of random band
matrices.
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5.2 Estimate of the error Υi in terms of Λ

Lemma 5.2. The following statements hold for any spectral domain D. Let φ be the
indicator function of some (possibly z-dependent) event. If φΛ ≺ M−c for some c > 0

then

φ
(
Λo + |Zi|+ |Υi|

)
≺

√
Imm+ Λ

Mη
(5.10)

uniformly in z ∈ D. Moreover, for any fixed (N -independent) η > 0 we have

Λo + |Zi|+ |Υi| ≺ M−1/2 (5.11)

uniformly in z ∈ {w ∈ D .. Imw = η}.

Proof. We begin with the first statement. We shall often use the fact that, by the lower
bound of (4.2) and the assumption φΛ ≺M−c, we have

φ/|Gii| ≺ 1 . (5.12)

First we estimate Zi, which we split as

φ|Zi| 6 φ

∣∣∣∣∣
(i)∑
k

(
|hik|2 − sik

)
G

(i)
kk

∣∣∣∣∣+ φ

∣∣∣∣∣
(i)∑
k 6=l

hikG
(i)
kl hli

∣∣∣∣∣ . (5.13)

We estimate each term using the large deviation estimates from Theorem C.1, by con-
ditioning on G(i) and using the fact that the family (hik)Nk=1 is independent of G(i).

By (C.2), the first term of (5.13) is stochastically dominated by φ
(∑(i)

k s2
ik

∣∣G(i)
kk

∣∣2)1/2 ≺
M−1/2, where we used the estimate (2.2) and φ

∣∣G(i)
kk

∣∣ ≺ 1, as follows from (4.6), (5.12),
and the assumption φΛ ≺ M−c. For the second term of (5.13) we apply (C.4) with
akl = s

1/2
ik G

(i)
kl s

1/2
li and Xk = ζik (see (2.5)). We find

φ

(i)∑
k,l

sik
∣∣G(i)

kl

∣∣2sli 6 φ
1

M

(i)∑
k,l

sik
∣∣G(i)

kl

∣∣2 = φ
1

Mη

(i)∑
k

sik ImG
(i)
kk ≺

Imm+ Λ

Mη
, (5.14)

where the second step follows by spectral decomposition of G(i), and in the last step we
used (4.6) and (5.12). Thus we get

φ|Zi| ≺

√
Imm+ Λ

Mη
, (5.15)

where we absorbed the bound M−1/2 on the first term of (5.13) into the right-hand side
of (5.15), using Imm > η as follows from (4.4).

Next, we estimate Λo. We can iterate (4.7) once to get, for i 6= j,

Gij = −Gii
(i)∑
k

hikG
(i)
kj = −GiiG(i)

jj

(
hij −

(ij)∑
k,l

hikG
(ij)
kl hlj

)
. (5.16)

The term hij is trivially O≺(M−1/2). In order to estimate the other term, we invoke (C.3)

with akl = s
1/2
ik G

(ij)
kl s

1/2
lj , Xk = ζik, and Yl = ζlj . As in (5.14), we find

φ

(ij)∑
k,l

sik
∣∣G(ij)

kl

∣∣2slj ≺ Imm+ Λ

Mη
.
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Thus we find

φΛo ≺

√
Imm+ Λ

Mη
, (5.17)

where we again absorbed the term hij ≺M−1/2 into the right-hand side.
In order to estimate Ai and hii in the definition of Υi, we use (5.12) to estimate

φ
(
|Ai|+ |hii|

)
≺ φΛ2

o +M−1/2 6 φΛo + C

√
Imm

Mη
≺

√
Imm+ Λ

Mη
,

where the second step follows from Imm > η (recall (4.4)). This completes the proof of
(5.10).

The proof of (5.11) is almost identical to that of (5.10). The quantities
∣∣G(i)

kk

∣∣ and∣∣G(ij)
kk

∣∣ are estimated by the trivial deterministic bound η−1. We omit the details.

5.3 A rough bound on Λ

The next step in the proof of Theorem 5.1 is to establish the following rough bound
on Λ.

Proposition 5.3. We have Λ ≺M−γ/3Γ−1 uniformly in S.

The rest of this subsection is devoted to the proof of Proposition 5.3. The core of the
proof is a continuity argument. Its basic idea is to establish a gap in the range of Λ of
the form 1(Λ 6 M−γ/4Γ−1)Λ ≺ M−γ/2Γ−1 (Lemma 5.4 below). In other words, for all
z ∈ S, with high probability either Λ 6 M−γ/2Γ−1 or Λ > M−γ/4Γ−1. For z with a large
imaginary part η, the estimate Λ 6M−γ/2Γ−1 is easy to prove using a simple expansion
(Lemma 5.5 below). Thus, for large η the parameter Λ is below the gap. Using the fact
that Λ is continuous in z and hence cannot jump from one side of the gap to the other,
we then conclude that with high probability Λ is below the gap for all z ∈ S. See Figure
5.1 for an illustration of this argument.

Lemma 5.4. We have the bound

1
(
Λ 6M−γ/4Γ−1

)
Λ ≺ M−γ/2Γ−1

uniformly in S.

Proof. Set
φ ..= 1

(
Λ 6M−γ/4Γ−1

)
.

Then by definition we have φΛ 6 M−γ/4Γ−1 6 CM−γ/4, where in the last step we used
(4.5). Hence we may invoke (5.10) to estimate Λo and Υi. In order to estimate Λd, we
expand the right-hand side of (5.9) in vi to get

φ

(
−
∑
k

sikvk + Υi

)
= φ

(
−m−2vi +O(Λ2)

)
,

where we used (4.2) and that |vi| 6 CM−γ/4 on the event {φ = 1}. Using (5.10) we
therefore have

φ

(
vi −m2

∑
k

sikvk

)
= O≺

(
Λ2 +

√
Imm+ Λ

Mη

)
.

We write the left-hand side as φ[(1−m2S)v]i with the vector v = (vi)
N
i=1. Inverting the

operator 1−m2S, we therefore conclude that

φΛd = φmax
i
|vi| ≺ Γ

(
Λ2 +

√
Imm+ Λ

Mη

)
.
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Recalling (4.5) and (5.10), we therefore get

φΛ ≺ φΓ

(
Λ2 +

√
Imm+ Λ

Mη

)
. (5.18)

Next, by definition of φ we may estimate

φΓΛ2 6 M−γ/2Γ−1 .

Moreover, by definitions of S and φ we have

φΓ

√
Imm+ Λ

Mη
6 Γ

√
Imm

Mη
+ Γ

√
Γ−1

Mη
6 M−γΓ−1 +M−γ/2Γ−1 6 2M−γ/2Γ−1 .

Plugging this into (5.18) yields φΛ ≺M−γ/2Γ−1, which is the claim.

In order to start the continuity argument underlying the proof of Proposition 5.3, we
need the following bound on Λ for large η.

Lemma 5.5. We have Λ ≺M−1/2 uniformly in z ∈ [−10, 10] + 2i.

Proof. We shall make use of the trivial bounds∣∣G(T)
ij

∣∣ 6
1

η
=

1

2
, |m| 6 1

η
=

1

2
. (5.19)

From (5.11) we get

Λo + |Zi| ≺ M−1/2 . (5.20)

Moreover, we use (4.6) and (5.16) to estimate

|Ai| 6
∑
j

sij

∣∣∣∣GijGjiGii

∣∣∣∣ 6 M−1 +

(i)∑
j

sij
∣∣GjiG(i)

jj

∣∣ ∣∣∣∣∣hij −
(ij)∑
k,l

hikG
(ij)
kl hlj

∣∣∣∣∣ ≺ M−1/2 ,

where the last step follows using (C.3), exactly as the estimate of the right-hand side of
(5.16) in the proof of Lemma 5.2. We conclude that |Υi| ≺M−1/2.

Next, we write (5.9) as

vi =
m
(∑

k sikvk −Υi

)(
m−1 −

∑
k sikvk + Υi

) .
Using |m−1| > 2 and |vk| 6 1 as follows from (5.19), we find∣∣∣∣m−1 +

∑
k

sikvk −Υi

∣∣∣∣ > 1 +O≺(M−1/2) .

Using |m| 6 1/2 we therefore conclude that

Λd 6
Λd +O≺(M−1/2)

2 +O≺(M−1/2)
=

Λd
2

+O≺(M−1/2) ,

from which the claim follows together with the estimate on Λo from (5.20).

We may now conclude the proof of Proposition 5.3 by a continuity argument in η =

Im z. The gist of the continuity argument is depicted in Figure 5.1.
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Figure 5.1: The (η,Λ)-plane for a fixed E. The shaded region is forbidden with high
probability by Lemma 5.4. The initial estimate, given by Lemma 5.5, is marked with a
black dot. The graph of Λ = Λ(E+ iη) is continuous and lies beneath the shaded region.
Note that this method does not control Λ(E + iη) in the regime η 6 ηE .

Proof of Proposition 5.3. Fix D > 10. Lemma 5.4 implies that for each z ∈ S we have

P
(
M−γ/3Γ(z)−1 6 Λ(z) 6M−γ/4Γ(z)−1

)
6 N−D (5.21)

for N > N0, where N0 ≡ N0(γ,D) does not depend on z.
Next, take a lattice ∆ ⊂ S such that |∆| 6 N10 and for each z ∈ S there exists a

w ∈ ∆ such that |z − w| 6 N−4. Then (5.21) combined with a union bounds gives

P
(
∃w ∈ ∆ .. M−γ/3Γ(w)−1 6 Λ(w) 6M−γ/4Γ(w)−1

)
6 N−D+10 (5.22)

for N > N0. From the definitions of Λ(z), Γ(z), and S (recall (4.5)), we immediately find
that Λ and Γ are Lipschitz continuous on S, with Lipschitz constant at most M2. Hence
(5.22) implies

P
(
∃z ∈ S .. 2M−γ/3Γ(z)−1 6 Λ(z) 6 2−1M−γ/4Γ(z)−1

)
6 N−D+10

for N > N0. We conclude that there is an event Ξ satisfying P(Ξ) > 1 − N−D+10 such
that, for each z ∈ S, either 1(Ξ)Λ(z) 6 2M−γ/3Γ(z)−1 or 1(Ξ)Λ(z) > 2−1M−γ/4Γ(z)−1.
Since Λ is continuous and S is by definition connected, we conclude that either

∀z ∈ S .. 1(Ξ)Λ(z) 6 2M−γ/3Γ(z)−1 (5.23)

or
∀z ∈ S .. 1(Ξ)Λ(z) > 2−1M−γ/4Γ(z)−1 . (5.24)

(Here the bounds (5.23) and (5.24) each hold surely, i.e. for every realization of Λ(z).)
It remains to show that (5.24) is impossible. In order to do so, it suffices to show

that there exists a z ∈ S such that Λ(z) < 2−1M−γ/4Γ(z)−1 with probability greater than
1/2. But this holds for any z with Im z = 2, as follows from Lemma 5.5 and the bound
Γ 6 Cη−1, which itself follows easily by a simple expansion of (1 − m2S)−1 combined
with the bounds ‖S‖`∞→`∞ 6 1 and (4.2). This concludes the proof.
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5.4 Iteration step and conclusion of the proof of Theorem 5.1

In the following a key role will be played by deterministic control parameters Ψ

satisfying

cM−1/2 6 Ψ 6 M−γ/3Γ−1 . (5.25)

(Using the definition of S and (4.4) it is not hard to check that the upper bound in
(5.25) is always larger than the lower bound.) Suppose that Λ ≺ Ψ in S for some
deterministic parameter Ψ satisfying (5.25). For example, by Proposition 5.3 we may
choose Ψ = M−γ/3Γ−1.

We now improve the estimate Λ ≺ Ψ iteratively. The iteration step is the content of
the following proposition.

Proposition 5.6. Let Ψ be a control parameter satisfying (5.25) and fix ε ∈ (0, γ/3).
Then

Λ ≺ Ψ =⇒ Λ ≺ F (Ψ) , (5.26)

where we defined

F (Ψ) ..= M−εΨ +

√
Imm

Mη
+
Mε

Mη
.

For the proof of Proposition 5.6 we need the following averaging result, which is a
simple corollary of Theorem 4.6.

Lemma 5.7. Suppose that Λ ≺ Ψ for some deterministic control parameter Ψ satisfying
(4.8). Then [Υ] = O≺(Ψ2) (recall the definition of the average [·] from (4.10)).

Proof. The claim easily follows from Schur’s complement formula (5.6) written in the
form

Υi = Ai +Qi
1

Gii
.

We may therefore estimate [Υ] using the trivial bound |Ai| ≺ Ψ2 as well as the fluctua-
tion averaging bound from the first estimate of (4.11) with tik = 1/N .

Proof of Proposition 5.6. Suppose that Λ ≺ Ψ for some deterministic control parameter
Ψ satisfying (5.25). We invoke Lemma 5.2 with φ = 1 (recall the bound (4.5)) to get

Λo + |Zi|+ |Υi| ≺

√
Imm+ Λ

Mη
≺

√
Imm+ Ψ

Mη
. (5.27)

Next, we estimate Λd. Define the z-dependent indicator function

ψ ..= 1(Λ 6M−γ/4) .

By (5.25), (4.5), and the assumption Λ ≺ Ψ, we have 1 − ψ ≺ 0. On the event {ψ = 1},
we expand the right-hand side of (5.9) to get the bound

ψ|vi| 6 Cψ

∣∣∣∣∑
k

sikvk −Υi

∣∣∣∣+ CψΛ2 .

Using the fluctuation averaging estimate (4.12) as well as (5.27), we find

ψ|vi| ≺ ΓΨ2 +

√
Imm+ Ψ

Mη
, (5.28)
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where we again used the lower bound from (4.5). Using 1− ψ ≺ 0 we conclude

Λd ≺ ΓΨ2 +

√
Imm+ Ψ

Mη
, (5.29)

which, combined with (5.27), yields

Λ ≺ ΓΨ2 +

√
Imm+ Ψ

Mη
. (5.30)

Using Young’s inequality and the assumption Ψ 6M−γ/3Γ−1 we conclude the proof.

For the remainder of the proof of Theorem 5.1 we work on the spectral domain S.
We claim that if Ψ satisfies (5.25) then so does F (Ψ). The lower bound F (Ψ) > cM−1/2

is a consequence of the estimate Imm/η > c, which follows from (4.4). The upper
bound M−γ/3−εΓ−1 on the first term of F (Ψ) is trivial by assumption on Ψ. Moreover,
the second term of F (Ψ) satisfies

√
Imm/(Mη) 6M−γΓ−2 6 CM−γΓ−1 6M−γ/3−εΓ−1

by definition of S and the lower bound (4.5). Similarly, the last term of F (Ψ) satisfies
Mε/(Mη) 6 CMε−γΓ−1 6M−γ/3−εΓ−1 by definition of S.

We may therefore iterate (5.26). This yields a bound on Λ that is essentially the
fixed point of the map Ψ 7→ F (Ψ), which is Π (up to the factor Mε). More precisely, the
iteration is started with Ψ0

..= M−γ/3Γ−1; the initial hypothesis Λ ≺ Ψ0 is provided by
the rough bound from Proposition 5.3. For k > 1 we set Ψk+1

..= F (Ψk). Hence from
(5.26) we conclude that Λ ≺ Ψk for all k. Choosing k ..= dε−1e yields

Λ ≺

√
Imm

Mη
+
Mε

Mη
.

Since ε was arbitrary, we have proved that

Λ ≺ Π , (5.31)

which is (5.3).
What remains is to prove (5.4), i.e. to estimate Θ. We expand (5.9) on {ψ = 1} to get

ψm2

(
−
∑
k

sikvk + Υi

)
= −ψvi +O(ψΛ2) . (5.32)

Averaging in (5.32) yields

ψm2
(
−[v] + [Υ]

)
= −ψ[v] +O(ψΛ2) .

By (5.31) and (5.27) with Ψ = Π, we have Λ + |Υi| ≺ Π. Moreover, by Lemma 5.7 we
have |[Υ]| ≺ Π2. Thus we get

ψ[v] = m2ψ[v] +O≺(Π2) .

Since 1− ψ ≺ 0, we conclude that [v] = m2[v] +O≺(Π2). Therefore

|[v]| ≺ Π2

|1−m2|
6

(
Imm

|1−m2|
+

1

|1−m2|Mη

)
2

Mη
6

(
C +

Γ

Mη

)
2

Mη
6

C

Mη
.

Here in the third step we used (4.3), (4.4), and the bound Γ > |1 − m2|−1 which fol-
lows from the definition of Γ by applying the matrix (1 − m2S)−1 to the vector e =

N−1/2(1, 1, . . . , 1)∗. The last step follows from the definition of S. Since Θ = |[v]|, this
concludes the proof of (5.4), and hence of Theorem 5.1.
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6 Proof of Theorem 2.3

The key novelty in this proof is that we solve the self-consistent equation (5.9) sep-
arately on the subspace of constants (the span of the vector e) and on its orthogonal
complement e⊥. On the space of constant vectors, it becomes a scalar equation for the
average [v], which can be expanded up to second order. Near the spectral edges ±2,
the resulting quadratic self-consistent scalar equation (given in (6.2) below) is more
effective than its linearized version. On the space orthogonal to the constants, we still
solve a self-consistent vector equation, but the stability will now be quantified using Γ̃

instead of the larger quantity Γ.
Accordingly, the main control parameter in this proof is Θ = |[v]|, and the key itera-

tive scheme (Lemma 6.7 below) is formulated in terms of Θ. However, many intermedi-
ate estimates still involve Λ. In particular, the self-consistent equation (5.9) is effective
only in the regime where vi is already small. Hence we need two preparatory steps. In
Section 6.1 we will prove an apriori bound on Λ, essentially showing that Λ � 1. This
proof itself is a continuity argument (see Figure 6.1 for a graphical illustration) similar
to the proof of Proposition 5.3; now, however, we have to follow Λ and Θ in tandem. The
main reason why Θ is already involved in this part is that we work in larger spectral
domain S̃ defined using Γ̃. Thus, already in this preparatory step, the self-consistent
equation has to be solved separately on the subspace of constants and its orthogonal
complement.

In Section 6.2, we control Λ in terms of Θ, which allows us to obtain a self-consistent
equation involving only Θ. In this step we use the Fluctuation Averaging Theorem to
obtain a quadratic estimate which, very roughly, states that Λ . Θ + Λ2 (see (6.20)
below for the precise statement). This implies Λ . Θ in the regime Λ� 1.

Finally, in Section 6.3, we solve the quadratic iteration for Θ. Since the correspond-
ing quadratic equation has a dichotomy and for large η = Im z we know that Θ is small
by direct expansion, a continuity argument similar to the proof of Proposition 5.3 will
complete the proof.

6.1 A rough bound on Λ

In this section we prove the following apriori bounds on both control parameters, Λ

and Θ.

Proposition 6.1. In S̃ we have the bounds

Λ ≺ M−γ/4Γ̃−1 , Θ ≺ (Mη)−1/3 .

Before embarking on the proof of Proposition 6.1, we state some preparatory lem-
mas. First, we derive the key equation for [v] = N−1

∑
i vi, the average of vi.

Lemma 6.2. Define the z-dependent indicator function

φ ..= 1(Λ 6M−γ/4Γ̃−1) (6.1)

and the random control parameter

q(Θ) ..=

√
Imm+ Θ

Mη
+

Γ̃

Mη
.

Then we have

φ
(

(1−m2)[v]−m−1[v]2
)

= φO≺
(
q(Θ) +M−γ/4Θ2

)
(6.2)

and
φΛ ≺ Θ + Γ̃ q(Θ) . (6.3)
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Proof. For the whole proof we work on the event {φ = 1}, i.e. every quantity is mul-
tiplied by φ. We consistently drop these factors φ from our notation in order to avoid
cluttered expressions. In particular, Λ 6 CM−γ/4 throughout the proof.

We begin by estimating Λo and Λd in terms of Θ. Recalling (4.5), we find that φ
satisfies the hypotheses of Lemma 5.2, from which we get

Λo + |Υi| ≺ r(Λ) , r(Λ) ..=

√
Imm+ Λ

Mη
. (6.4)

In order to estimate Λd, we expand the self-consistent equation (5.9) (on the event
{φ = 1}) to get

vi −m2
∑
k

sikvk = O≺
(
Λ2 + r(Λ)

)
; (6.5)

here we used the bound (6.4) on |Υi|. Next, we subtract the average N−1
∑
i from each

side to get
(vi − [v])−m2

∑
k

sik(vk − [v]) = O≺
(
Λ2 + r(Λ)

)
.

Note that the average of the left-hand side vanishes, so that the average of the right-
hand side also vanishes. Hence the right-hand side is perpendicular to e. Inverting the
operator 1−m2S on the subspace e⊥ therefore yields∣∣vi − [v]

∣∣ ≺ Γ̃
(
Λ2 + r(Λ)

)
. (6.6)

Combining with the bound Λo ≺ r(Λ) from (6.4), we therefore get

Λ ≺ Θ + Γ̃Λ2 + Γ̃r(Λ) . (6.7)

By definition of φ we have Γ̃Λ2 6 M−γ/4Λ, so that by Lemma 4.4 (iii) the second term
on the right-hand side of (6.7) may be absorbed into the left-hand side:

Λ ≺ Θ + Γ̃r(Λ) . (6.8)

Now we claim that
r(Λ) ≺ q(Θ) . (6.9)

If (6.9) is proved, clearly (6.3) follows from (6.8). In order to prove (6.9), we use (6.8)
and the Cauchy-Schwarz inequality to get

r(Λ) 6

√
Imm

Mη
+

√
Λ

Mη
≺

√
Imm

Mη
+

√
Θ

Mη
+

√
Γ̃ r(Λ)

Mη

6

√
Imm

Mη
+

√
Θ

Mη
+M−εr(Λ) +Mε Γ̃

Mη

for any ε > 0. We conclude that

r(Λ) ≺

√
Imm

Mη
+

√
Θ

Mη
+Mε Γ̃

Mη
.

Since ε > 0 was arbitrary, (6.9) follows.
Next, we estimate Θ. We expand (5.9) to second order:

−
∑
k

sikvk + Υi = − 1

m2
vi +

1

m3
v2
i +O(Λ3) . (6.10)
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In order to take the average and get a closed equation for [v], we write, using (6.6),

v2
i =

(
[v] + vi − [v]

)2
= [v]2 + 2[v](vi − [v]) +O≺

(
Γ̃2
(
Λ2 + r(Λ)

)2)
.

Plugging this back into (6.10) and taking the average over i gives

−m2[v] +m2[Υ] = −[v] +m−1[v]2 +O≺

(
Λ3 + Γ̃2Λ4 + Γ̃2r(Λ)2

)
.

Estimating [Υ] by max|Υi| ≺ r(Λ) (recall (6.4)) yields

(1−m2)[v]−m−1[v]2 = O≺

(
r(Λ) + Λ3 + Γ̃2Λ4 + Γ̃2r(Λ)2

)
.

By definitions of S̃ and φ, we have Γ̃2r(Λ) 6 1. Therefore we may absorb the last error
term into the first. For the second and third error terms we use (6.8) to get

(1−m2)[v]−m−1[v]2 = O≺

(
r(Λ) + Θ3 + Γ̃3r(Λ)3 + Γ̃2Θ4 + Γ̃6r(Λ)4

)
.

In order to conclude the proof of (6.2), we observe that, by the estimates Θ 6 Λ 6
CM−γ/4, Γ̃2r(Λ) 6 1, and Λ 6M−γ/4Γ̃−1, we have

Θ3 6 CM−γ/4Θ2 , Γ̃3r(Λ)3 6 r(Λ) ,

Γ̃2Θ4 6 Γ̃2Λ2Θ2 6 M−γ/2Θ2 , Γ̃6r(Λ)4 6 r(Λ) .

Putting everything together, we have

(1−m2)[v]−m−1[v]2 = O≺
(
r(Λ) +M−γ/4Θ2

)
.

Hence (6.2) follows from (6.9).

Next, we establish a bound analogous to Lemma 5.4, establishing gaps in the ranges
of Λ and Θ. To that end, we need to partition S̃ in two. For the following we fix ε ∈
(0, γ/12) and partition S̃ = S̃> ∪ S̃6, where

S̃>
..=

{
z ∈ S̃ ..

√
κ+ η > Mε(Mη)−1/3

}
, S̃6

..=
{
z ∈ S̃ ..

√
κ+ η 6Mε(Mη)−1/3

}
.

The bound relies on (6.2), whereby one of the two terms on the left-hand side of (6.2)
is estimated in terms of all the other terms, which are regarded as an error. In S̃> we
shall estimate the first term on the left-hand side of (6.2), and in S̃6 the second. Figure
6.1 summarizes the estimates on Θ of Lemma 6.3 and 6.4.

We begin with the domain S̃>. In this domain, the following lemma roughly says
that if Θ 6 Mε/2(Mη)−1/3 and Λ 6 M−γ/4Γ̃−1 then we get the improved bounds Θ ≺
(Mη)−1/3, Λ ≺M−γ/3Γ̃−1, i.e. we gain a small power of M . These improvements will be
fed into the continuity argument as before.

Lemma 6.3. Let ε ∈ (0, γ/12). Define the z-dependent indicator function

χ ..= 1
(

Θ 6Mε/2(Mη)−1/3
)

and recall the indicator function φ from (6.1). In S̃> we have the bounds

φχΘ ≺ (Mη)−1/3 , φχΛ ≺ M−γ/3Γ̃−1 . (6.11)
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Figure 6.1: The (η,Θ)-plane for a fixed E near the edge (i.e. with small κ). The shaded
regions are forbidden with high probability by Lemmas 6.3 and 6.4. The initial esti-
mate, given by Lemma 5.5, is marked with a black dot. The graph of Θ = Θ(E + iη) is
continuous, and hence lies beneath the shaded regions.

Proof. From the definition of S̃> and (4.3) we get

φχ |[v]| = φχΘ 6 Mε/2(Mη)−1/3 6 M−ε/2
√
κ+ η 6 CM−ε/2|1−m2| .

Therefore, on the event {φχ = 1}, in (6.2) we may absorb the second term on the left-
hand side and the second term on the right-hand side into the first term on the left-hand
side:

φχ (1−m2)[v] = φO≺
(
q(Θ)

)
.

Recalling |1−m2| �
√
κ+ η (see (4.3)), Imm 6 C

√
κ+ η (see (4.4)), (6.9), |[v]| = Θ, and

the definition of S̃>, we get

φχΘ ≺ φχ (κ+ η)−1/2

(√
Imm

Mη
+

√
Θ

Mη
+

Γ̃

Mη

)
6 (κ+ η)−1/4(Mη)−1/2 + (κ+ η)−1/2Mε/2(Mη)−2/3 + (κ+ η)−1/2Γ̃(Mη)−1

6 (Mη)−1/3 .

What remains is to estimate Λ. From (6.3), the bound Γ̃2
√

Imm(Mη)−1 6 M−γ from

the definition of S̃, and the estimate φΓ̃Θ 6 φΓ̃Λ 6 1 we get

φχΛ ≺ φχΘ +M−γΓ̃−1 + Γ̃

√
Γ̃−1(Mη)−1 + Γ̃2(Mη)−1

≺ (Mη)−1/3 +M−γ/2Γ̃−1 +M−γΓ̃−1

6 2M−γ/3Γ̃−1 .

This concludes the proof.

Next, we establish a gap in the range of Λ, in the domain S̃6. To that end, we
improve the estimate on Λ from Λ 6 M−γ/4Γ̃−1 to Λ ≺ Mε−γ/3Γ̃−1 as before. In this
regime there is no need for a gap in Θ, i.e. the continuity argument will be performed
on the value of Λ only.
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Lemma 6.4. In S̃6 we have the bounds

φΘ ≺ Mε(Mη)−1/3 , φΛ ≺ Mε−γ/3Γ̃−1 . (6.12)

Proof. We write (6.2) as

φ[v](1−m2 −m−1[v]) = φO≺
(
q(Θ) +M−γ/4Θ2

)
.

Solving this quadratic relation for [v], we get

φΘ ≺ |1−m2|+ φ
√
q(Θ) +M−γ/4Θ2 . (6.13)

Using (4.4), the bound Γ̃ 6 M−γ/3(Mη)1/3 6 (Mη)1/3 from the definition of S̃, and
Young’s inequality, we estimate√

q(Θ) +M−γ/4Θ2 6 (Imm)1/4(Mη)−1/4 + Θ1/4(Mη)−1/4 + Γ̃ 1/2(Mη)−1/2 +M−γ/8Θ

6 C
√
κ+ η + CMε(Mη)−1/3 + CM−εΘ .

Plugging this bound into (6.13), together with (4.3) and the definition of S̃6, we find

φΘ ≺
√
κ+ η +Mε(Mη)−1/3 6 2Mε(Mη)−1/3 .

This proves the first bound of (6.12).
What remains is the estimate of Λ. From (6.3) and the bounds Γ̃ 6 M−γ/3(Mη)1/3

and Γ̃2
√

Imm(Mη)−1 6M−γ from the definition of S̃, we get

φΛ ≺ φΘ +M−γΓ̃−1 + Γ̃

√
Γ̃−1(Mη)−1 + Γ̃2(Mη)−1

≺ Mε(Mη)−1/3 +M−γ/2Γ̃−1 +M−γΓ̃−1

6 2Mε−γ/3Γ̃−1 .

This concludes the proof.

We now have all of the ingredients to complete the proof of Proposition 6.1.

Proof of Proposition 6.1. The proof is a continuity argument similar to the proof of
Proposition 5.3. In a first step, we prove that

Λ ≺ M−γ/3Γ̃−1 , Θ ≺ (Mη)−1/3 . (6.14)

in S̃>. The continuity argument is almost identical to that following (5.21); the only
difference is that we keep track of the two parameters Λ and Θ. The required gaps
in the ranges of Λ and Θ are provided by (6.11), and the argument is closed using the
large-η estimate from Lemma 5.5, which yields Θ 6 Λ ≺M−1/2 for η = 2.

In a second step, we prove that

Λ ≺ Mε−γ/4Γ̃−1 , Θ ≺ Mε(Mη)−1/3

in S̃6. This is again a continuity argument almost identical to that following (5.21). Now
we establish a gap only in the range of Λ. The gap is provided by (6.12) (recall that by
definition of ε we have ε − γ/3 < −γ/4), and the argument is closed using the bound
(6.14) at the boundary of the domains S̃> and S̃6.

The claim now follows since we may choose ε ∈ (0, γ/12) to be arbitrarily small. This
concludes the proof of Proposition 6.1.
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6.2 An improved bound on Λ in terms of Θ

In (6.3) we already estimated Λ in terms of Θ; the goal of this section is to improve
this bound by removing the factor Γ̃ from that estimate. We do this using the Fluctuation
Averaging Theorem, but we stress that the removal of a factor Γ̃ is not the main rationale
for using the fluctuation averaging mechanism. Its fundamental use will take place in
Lemma 6.6 below. A technical consequence of invoking fluctuation averaging is that
we have to use deterministic control parameters instead of random ones. Thus, we
introduce a deterministic control parameter Φ that captures the size of the random
control parameter Θ through the relation Θ ≺ Φ. Throughout the following we shall
make use of the control parameter

p(Φ) ..=

√
Imm+ Φ

Mη
+

1

Mη
,

which differs from q(Φ) only by a factor Γ̃ in the second term.

Lemma 6.5. Suppose that Λ ≺ Ψ and Θ ≺ Φ in S̃ for some deterministic control
parameters Ψ and Φ satisfying

cM−1/2 6 Ψ 6 CM−γ/4Γ̃−1 , Φ 6 CM−γ/4Γ̃−1 . (6.15)

Then
Λo + |Zi| ≺ p(Φ) , Λ ≺ p(Φ) + Φ . (6.16)

We remark that, by Proposition 6.1, the choice Ψ = M−γ/4Γ̃−1 and Φ = (Mη)−1/3 6
M−γ/4Γ̃−1 satisfies the assumptions of Lemma 6.5.

Proof of Lemma 6.5. Choosing φ = 1 in Lemma 5.2 and recalling (4.5), we get

Λo + |Υi| ≺ r(Ψ) , r(Ψ) ..=

√
Imm+ Ψ

Mη
. (6.17)

In order to estimate Λd, as in (5.32), we expand (5.9) to get

−
∑
k

sikvk + Υi = −m−2vi +O≺(Ψ2) . (6.18)

As in the proof of (5.32) and (6.5), the expansion of (5.9) is only possible on the event
{Λ 6 M−δ} for some δ > 0. By Λ ≺ Ψ and (6.15), the indicator function of this event is
1 + O≺(0); the contribution O≺(0) of the complementary event can be absorbed in the
error term O≺(Ψ2).

Subtracting the average N−1
∑
i from both sides of (6.18) and estimating m2 by a

constant (see (4.2)) yields∣∣vi − [v]
∣∣ 6 C

∣∣∣∣∑
k

sik
(
vk − [v]

)
−
(
Υi − [Υ]

)∣∣∣∣+O≺(Ψ2) ≺ Γ̃Ψ2 + r(Ψ) , (6.19)

where in the last step we used the fluctuation averaging estimate (4.14) and |Υi| ≺ r(Ψ)

from (6.17). Together with |[v]| = Θ ≺ Φ , this gives the estimate Λd ≺ ΓΨ2 + Φ + r(Ψ).
Combining it with the bound (6.17), we conclude that

Λ ≺ Γ̃Ψ2 + Φ + r(Ψ). (6.20)

Now fix ε ∈ (0, γ/4). Using the assumption Γ̃Ψ 6 CM−γ/4 6 M−ε, we conclude: if Ψ

and Φ satisfy (6.15) then

Λ ≺ Ψ =⇒ Λ ≺ F (Ψ,Φ) , (6.21)
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where we defined

F (Ψ,Φ) ..= M−εΨ + Φ +

√
Imm

Mη
+
Mε

Mη
,

which plays a role similar to F (Ψ) in Proposition 5.6. (Here we estimated
√

Ψ(Mη)−1 in

r(Ψ) by M−εΨ + Mε(Mη)−1.) From (4.4) and the definition of S̃ it easily follows that if
(Ψ,Φ) satisfy (6.15) then so do (F (Ψ,Φ),Φ). Therefore iterating (6.21) dε−1e times and
using the fact that ε ∈ (0, γ/4) was arbitrary yields

Λ ≺

√
Imm

Mη
+

1

Mη
+ Φ . (6.22)

This implies the claimed bound (6.16) on Λ. Calling the right-hand side of (6.22) Ψ, we
find

r(Ψ) 6 Cp(Φ) . (6.23)

Hence the claimed bound (6.16) on Λo and Zi follows from (6.17).

6.3 Iteration for Θ and conclusion of the proof of Theorem 2.3

Next, we prove the following version of (5.9), which is the key tool for estimating Θ.

Lemma 6.6. Let Φ be some deterministic control parameter satisfying Θ ≺ Φ in S̃.
Then

(1−m2)[v]−m−1[v]2 = O≺
(
p(Φ)2 +M−γ/4Φ2

)
. (6.24)

Notice that this bound is stronger than the previous formula (6.2), as the power of
p(Φ) is two instead of one. The improvement is due to using fluctuation averaging in
[Υ]. Otherwise the proof is very similar to that of (6.2).

Proof. By Proposition 6.1, we may assume that

Φ 6 M−γ/4Γ̃−1 (6.25)

since Θ 6 Λ ≺M−γ/4Γ̃−1. From Lemma 6.5 we get Λo + |Zi| ≺ p(Φ) and Λ ≺ Ψ, where

Ψ ..= p(Φ) + Φ . (6.26)

By definition of S̃ and (6.25), we find that Ψ 6 2M−γ/4Γ̃−1.
Now we expand the right-hand side of (5.9) exactly as in (6.10) to get

−m2
∑
k

sikvk +m2Υi = −vi +m−1v2
i +O≺(Ψ3) . (6.27)

Using Theorem 4.7 and the bound Λo ≺ p(Φ) from Lemma 6.5, we may prove, exactly
as in Lemma 5.7, that |[Υ]| ≺ p(Φ)2. Taking the average over i in (6.27) therefore yields

(1−m2)[v]−m−1 1

N

∑
i

v2
i = −m2[Υ] +O≺(Ψ3) = O≺

(
p(Φ)2 + Ψ3

)
. (6.28)

Using the estimates (6.19) and (6.23), we write the quadratic term on the left-hand side
as

1

N

∑
i

v2
i = [v]2 +

1

N

∑
i

(
vi − [v]

)2
= [v]2 +O≺

((
Γ̃Ψ2 + p(Φ)

)2)
= [v]2 +O≺

(
M−γ/2Ψ2 + p(Φ)2

)
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where we also used Γ̃Ψ 6 2M−γ/4, as observed after (6.26). From (6.28) we therefore
get

(1−m2)[v]−m−1[v]2 = O≺
(
p(Φ)2 +M−γ/4Ψ2

)
.

The claim follows from (6.26).

The bound on Θ will follow by iterating the following estimate.

Lemma 6.7. Fix ε ∈ (0, γ/12) and suppose that Θ ≺ Φ in S̃ for some deterministic
control parameter Φ.

(i) If Φ >M3ε(Mη)−1 then
Θ ≺ M−εΦ . (6.29)

(ii) If |E| > 2, M3ε

M(κ+η) 6 Φ 6Mε√κ+ η, and Mη
√
κ+ η >M2ε, then

Θ ≺ 1

(Mη)2
√
κ+ η

+M−εΦ . (6.30)

Proof. We begin by partitioning S̃ = S̃>∪S̃6. This partition is analogous to the partition
S̃ = S̃>∪S̃6 from Section 6.1, and will determine which of the two terms in the left-hand
side of (6.24) is estimated in terms of the others. Here

S̃> ..=
{
z ∈ S̃ ..

√
κ+ η > M−εΦ

}
, S̃6 ..=

{
z ∈ S̃ ..

√
κ+ η 6M−εΦ

}
.

We begin with the domain S̃>. Let K > 0 be a constant large enough that

√
κ+ η 6

K

2

∣∣1−m2
∣∣|m| ;

such constant exists by (4.2) and (4.3). Define the indicator function

ψ ..= 1
(
Θ 6

√
κ+ η/K

)
. (6.31)

Hence on the event {ψ = 1} we may absorb the quadratic term on the left-hand side of
(6.24) into the linear term, to get the bound

ψΘ ≺ (κ+η)−1/2

(
Imm+ Φ

Mη
+

1

(Mη)2
+M−γ/4Φ2

)
6 C

Mε

Mη
+Mε−γ/4Φ 6 CM−2εΦ ,

(6.32)
where in the second step we used (4.4), the assumption (Mη)−1 6M−3εΦ 6 Φ, and the
definition of S̃>. We conclude that in S̃> we have

ψΘ ≺ M−2εΦ 6 M−ε
√
κ+ η , (6.33)

where in the last step we used the definition of S̃>. This means that there is a gap of
order

√
κ+ η between the bound in the definition of ψ in (6.31) and the right-hand side

of (6.33). Moreover, by Proposition 6.1 we have Θ ≺ M−ε
√
κ+ η for η = 2. Hence a

continuity argument on Θ, similar to the proof of Proposition 5.3, yields (6.29) in S̃>.
Let us now consider the domain S̃6. We write the left-hand side of (6.24) as (1 −

m2 −m−1[v])[v]. Solving the resulting equation for [v], as in the proof of (6.13), yields
the bound

Θ ≺ |1−m2|+ p(Φ) +M−γ/8Φ 6 CM−εΦ +

√
Imm+ Φ

Mη
+

1

Mη

6 CM−εΦ +
Mε

Mη
6 CM−εΦ , (6.34)
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where we used the definition of S̃6 and the bounds (4.3) and (4.4). This proves (6.29)
in S̃6, and hence completes the proof of part (i) of Lemma 6.7.

The proof of part (ii) is analogous. In this case we are in the domain S̃>, and use the
estimate Imm 6 Cη(κ + η)−1/2 from (4.4) instead of Imm 6 C

√
κ+ η in (6.32). Using

the other assumptions in part (ii), we have

ψΘ ≺ 1

(Mη)2
√
κ+ η

+ CM−2εΦ 6 M−ε
√
κ+ η , (6.35)

which replaces (6.32) and (6.33). The rest of the argument is unchanged.

Armed with Lemma 6.7, we may now complete the proof of Theorem 2.3. Fix ε ∈
(0, γ/12). From Proposition 6.1 we get that Θ ≺ Φ0 for Φ0

..= (Mη)−1/3 + M3ε(Mη)−1.
Iteration of Lemma 6.7 therefore implies that, for all k ∈ N, we have Θ ≺ Φk where

Φk+1
..=

M3ε

Mη
+M−εΦk 6 Ck

(
M3ε

Mη
+M−εkΦ0

)
.

Choosing k = dε−1e yields Θ ≺ M3ε(Mη)−1. Since ε can be made as small as desired,
we therefore obtain Θ ≺ (Mη)−1. This is (2.19).

In the regime |E| > 2, the same argument with the better iteration bound (6.30)
yields (2.20). The iteration can be started with Φ0 = M3ε(Mη)−1 from (2.19).

Finally, the bound Λ ≺ Π in (2.18) follows from (2.19) and Lemma 6.5. This concludes
the proof of Theorem 2.3.

7 Density of states and eigenvalue locations

In this section we apply the local semicircle law to obtain information on the den-
sity of states and on the location of eigenvalues. The techniques used here have been
developed in a series of papers [13, 15, 19, 6].

The first result is to translate the local semicircle law, Theorem 2.3, into a statement
on the counting function of the eigenvalues. Let λ1 6 λ2 6 · · · 6 λN denote the ordered
eigenvalues of H, and recall the semicircle density % defined in (2.7). We define the
distribution functions

n(E) ..=

∫ E

−∞
%(x) dx , nN (E) ..=

1

N

∣∣{α .. λα 6 E}
∣∣ (7.1)

for the semicircle law and the empirical eigenvalue density of H. Recall also the defi-
nition (2.15) of κx for x ∈ R and the definition (2.14) of η̃x for |x| 6 10. The following
result is proved in Section 7.1 below.

Lemma 7.1. Suppose that (2.19) holds uniformly in z ∈ S̃, i.e. for |E| 6 10 and η̃E 6
η 6 10 we have

|mN (z)−m(z)| ≺ 1

Mη
. (7.2)

For given E1 < E2 in [−10, 10] we abbreviate

η̃ ..= max
{
η̃E

.. E ∈ [E1, E2]
}
. (7.3)

Then, for −10 6 E1 < E2 6 10, we have∣∣∣(nN (E2)− nN (E1)
)
−
(
n(E2)− n(E1)

)∣∣∣ ≺ η̃ . (7.4)
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The accuracy of the estimate (7.4) depends on Γ̃ (see (A.3) for explicit bounds on
Γ̃), since Γ̃ determines η̃E , the smallest scale on which the local semicircle law (The-
orem 2.3) holds around the energy E. In the regime away from the spectral edges
E = ±2 and away from E = 0, the parameter Γ̃ is essentially bounded (see the example
(i) from Section 3); in this case η̃E � M−1 (up to an irrelevant logarithmic factor). For
E near 0, the parameter Γ̃ blows up as E−2, so that η̃E ∼ E−12M−1; however, if S has
a positive gap δ− at the bottom of its spectrum, Γ̃ remains bounded in the vicinity of
E = 0 (see (A.3)). See Definition A.1 in Appendix A for the definition of the spectral
gaps δ±.

A typical example of S without a positive gap δ− is a 2 × 2 block matrix with zero
diagonal blocks, i.e. sij = 0 if i, j 6 L or L + 1 6 i, j 6 N . In this case, the vector v =

(1, 1, . . . 1,−1,−1, . . .−1) consisting of L ones andN−Lminus ones satisfies Sv = −v, so
that −1 is in fact an eigenvalue of S. Since at energy E = 0 we have m2(z) = m2(iη) =

−1 + O(η), the inverse matrix (1 − m2S)−1, even after restricting it to e⊥, becomes
singular as η → 0. Thus, Γ̃(iη) ∼ η−1, and the estimates leading to Theorem 2.3 become
unstable. The corresponding random matrix has the form

H =

(
0 A

A∗ 0

)
where A is an L × (N − L) rectangular matrix with independent centred entries. The
eigenvalues ofH are the square roots (with both signs) of the eigenvalues of the random
covariance matrices AA∗ and A∗A, whose spectral density is asymptotically given by the
Marchenko-Pastur law [24]. The instability near E = 0 arises from the fact that H has
a macroscopically large kernel unless L/N → 1/2. In the latter case the support of the
Marchenko-Pastur law extends to zero and in fact the density diverges as E−1/2. We
remark that a local version of the Marchenko-Pastur law was given in [15] for the case
when the limit of L/N differs from 0, 1/2 and ∞; the “hard edge” case, L/N → 1/2, in
which the density near the lower spectral edge is singular, was treated in [2].

This example shows that the vanishing of δ− may lead to a very different behaviour of
the spectral statistics. Although our technique is also applicable to random covariance
matrices, for simplicity in this section we assume that δ− > c for some positive constant
c. By Proposition A.3, this holds for random band matrices, for full Wigner matrices
(see Definition 3.1), and for their combinations; these examples are our main interest
in this paper.

Under the condition δ− > c, the upper bound of (A.3) yields

Γ̃(E + iη) 6
C logN

δ+ + θ
, (7.5)

where θ was defined in (3.2) and δ+ is the upper gap of the spectrum of S given in
Definition A.1. Notice that θ vanishes near the spectral edge E = ±2 as η → 0. For
the purpose of estimating Γ̃, this deterioration is mitigated if the upper gap δ+ is non-
vanishing. While full Wigner matrices satisfy δ+ > c, the lower bound on δ+ for band
matrices is weaker; see Proposition A.3 for a precise statement.

We first give an estimate on η̃x using the explicit bound (7.5). While not fully optimal,
this estimate is sufficient for our purposes and in particular reproduces the correct
behaviour when δ+ > c.

Lemma 7.2. Suppose that δ− > c (so that (7.5) holds). Then we have for any |x| 6 2

η̃x 6
CM3γ

M(κx + δ+ +M−1/5)7/2
. (7.6)
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In the regime 2 6 |x| 6 10 we have the improved bound

η̃x 6
CM3γ

M(
√
κx + δ+ +M−1/5)3

. (7.7)

Proof. For any |x| 6 2 define η′x as the solution of the equation√√
κx + η

Mη

1

(κx + η2/3 + δ+)2
+

1

Mη

1

(κx + η2/3 + δ+)3
= M−

3γ
2 . (7.8)

This solution is unique since the left-hand side is decreasing in η. An elementary but
tedious analysis of (7.8) yields

η′x 6
CM3γ

M(κx + δ+ +M−1/5)7/2
. (7.9)

(The calculation is based on the observation that if η(a + ηα) 6 b for some a, b > 0 and
α > 0, then η 6 2b(b

α
1+α + a)−1.) From (7.5), Imm(x + iη) 6 C

√
κx + η (see (4.4)) and

the simple bound θ(x+ iη) > c(κx + η2/3), we get for η > η′x√
Imm(x+ iη)

Mη
Γ̃2(x+ iη) +

1

Mη
Γ̃3(x+ iη) 6 C(logN)3M−

3γ
2 .

From the definition (2.17) of S̃, we therefore get η̃x 6 η′x, which proves (7.6).
The proof of (7.7) is similar, but we use θ =

√
κ+ η and the stronger bound Imm 6

η/
√
κ+ η available in the regime |x| > 2. For 2 6 |x| 6 10, define η′x to be the solution

of the equation√
1

M
√
κx + η

1

(
√
κx + η + δ+)2

+
1

Mη

1

(
√
κx + η + δ+)3

= M−
3γ
2 . (7.10)

As for (7.9), a tedious calculation yields

η′x 6
CM3γ

M(
√
κx + δ+ +M−1/5)3

.

This concludes the proof.

Next, we obtain an estimate on the extreme eigenvalues.

Theorem 7.3 (Extremal eigenvalues). Suppose that δ− > c (so that (7.5) holds) and
that N3/4 6M 6 N . Then we have

‖H‖ 6 2 +O≺(X) , (7.11)

where we introduced the control parameter

X ..=
N2

M8/3
+

(
N

M2

)2[
δ+ +

( N

M2

)1/7
]−12

. (7.12)

In particular, if δ+ > c then

‖H‖ 6 2 +O≺

(
N2

M8/3

)
. (7.13)

Note that (7.13) yields the optimal error bound O≺(N−2/3) in the case of a full and
flat Wigner matrix (see Definition 3.1). Under stronger assumptions on the law of the
entries of H, Theorem 7.3 can be improved as follows.
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Theorem 7.4. Suppose that the matrix elements hij have a uniform subexponential
decay, i.e. that there exist positive constants C and ϑ such that

P
(
|hij | > xϑ

√
sij
)

6 C e−x . (7.14)

Then (7.11) holds with
X ..= M−1/4 . (7.15)

If in addition the law of each matrix entry is symmetric (i.e. hij and −hij have the same
law), then (7.11) holds with

X ..= M−2/3 . (7.16)

We remark that (7.15) can obtained via a relatively standard moment method ar-
gument combined with refined combinatorics. Obtaining the bound (7.16) is fairly in-
volved; it makes use of the Chebyshev polynomial representation first used by Feldheim
and Sodin [22, 27] in this context for a special distribution of hij , and extended in [5] to
general symmetric entries.

Proof of Theorem 7.3. We shall prove a lower bound on the smallest eigenvalue λ1 of
H; the largest eigenvalue λN may be estimated similarly from above. Fix a small γ > 0

and set

` ..= M6γ N2

M8/3
.

We distinguish two regimes depending on the location of λ1, i.e. we decompose

1(λ1 6 −2− `) = φ1 + φ2 ,

where
φ1

..= 1(−3 6 λ1 6 −2− `) , φ2
..= 1(λ1 6 −3) .

In the first regime we further decompose the probability space by estimating

φ1 6
k0∑
k=0

φ1,k , φ1,k
..= 1

(
−2− `− k + 1

N
6 λ1 6 −2− `− k

N

)
.

The upper bound k0 is the smallest integer such that 2 + ` + k0+1
N > 3; clearly k0 6 N .

For any k 6 k0 we set

zk
..= Ek + iηk , Ek

..= −2− κk , κk
..= `+

k

N
, ηk

..= M4γ N

M2
√
κk

.

Clearly, ηk 6 κk since M 6 N . On the support of φ1,k we have |λ1 − Ek| 6 C/N 6 ηk, so
that we get the lower bound

φ1,k ImmN (zk) = φ1,k
1

N

N∑
α=1

ηk
(λα − Ek)2 + η2

k

> φ1,k
1

N

ηk
(λ1 − Ek)2 + η2

k

>
c

Nηk
(7.17)

for some positive constant c. On the other hand, by (4.4), we have

Imm(zk) 6
Cηk√
κk

.

Therefore we get

φ1,k

∣∣ImmN (zk)− Imm(zk)
∣∣ >

c

Nηk
− Cηk√

κk
>

c′

Nηk
(7.18)
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for some positive constant c′. Here in the second step we used that ηk/
√
κk 6M−γ(Nηk)−1.

Suppose for now that δ+ > c. Then by (7.6) we have the upper bound η̃x 6 CM3γ−1,
uniformly for |x| 6 10. Since ηk > CM4γ−1 we find that zk ∈ S̃ with |Re zk| > 2. Hence
(2.20) applies for z = zk and we get∣∣ImmN (zk)− Imm(zk)

∣∣ ≺ 1

Mκk
+

1

(Mηk)2
√
κk

6 CM−γ
1

Nηk
. (7.19)

Comparing this bound with (7.18) we conclude that φ1,k ≺ 0 (i.e. the event {φ1,k = 1}
has very small probability). Summing over k yields φ1 ≺ 0. Note that in this proof
the stronger bound (2.20) outside of the spectrum was essential; the general bound of
order (Mηk)−1 from (2.19) is not smaller than the right-hand side of (7.18).

The preceding proof of φ1 ≺ 0 assumed the existence of a spectral gap δ+ > c. The
above argument easily carries over to the case without a gap of constant size, in which
case we choose

` ..= M6γ

(
N2

M8/3
+

(
N

M2

)2[
δ+ +

(
N

M2

)1/7]−12
)
,

Ek
..= −2− κk , κk

..= `+
k

N
, ηk

..= M4γ

(
N

M2
√
κk

+
1

M(
√
κk + δ+)3

)
.

The last term in ηk guarantees that zk ∈ S̃, by (7.7). Then we may repeat the above
proof to get φ1 ≺ 0 for the new function φ1.

All that remains to complete the proof of (7.11) and (7.13) is the estimate φ2 ≺ 0.
Clearly

P(λ1 6 −3) 6 E
∣∣{j .. λj 6 −3}

∣∣ .
In part (2) of Lemma 7.2 in [17] it was shown, using the moment method, that the
right-hand side is bounded by CN−c log logN provided the matrix entries hij have subex-
ponential decay, i.e.

P(|ζij | > xα) 6 βe−x (x > 0) ,

for some constants α, β (recall the notation (2.5)). In this paper we only assume poly-
nomial decay, (2.6). However, the subexponential decay assumption of [17] was only
used in the first truncation step, Equations (7.28)–(7.29) in [17], where a new set of
independent random variables ĥij was constructed with the properties that

P
(
ζij = ζ̂ij

)
> 1− e−n ,

∣∣ζ̂ij∣∣ 6 n , Eζij = 0 , E
∣∣ζ̂ij∣∣2 6 E|ζij |2 + e−n (7.20)

for n = (logN)(log logN). Under the condition (2.6) the same truncation can be per-
formed, but the estimates in (7.20) will be somewhat weaker; instead of the exponent
n = (logN)(log logN) we get n = D logN for any fixed D > 0. The conclusion of the
same proof is that, assuming only (2.6), we have

E
∣∣{j .. λj 6 −3}

∣∣ 6 N−D (7.21)

for any positive number D and for any N > N0(D). This guarantees that φ2‖H‖ ≺ 0.
Together with the estimate φ1‖H‖ 6 3φ1 ≺ 0 established above, this completes the
proof of Theorem 7.3.

Proof of Theorem 7.4. The estimate of ‖H‖ with X = M−1/6 follows from the proof of
part (2) of Lemma 7.2 in [17], by choosing k = M−1/6−ε with any small ε > 0 in (7.32) of
[17]. This argument can be improved to X = M−1/4 by the remark after (7.18) in [17].
Finally, the bound with X = M−2/3 under the symmetry condition on the entries of H is
proved in Theorem 3.4 of [5].
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Next, we establish an estimate on the normalized counting function nN defined in
(7.1). As above, the exponents are not expected to be optimal, but the estimate is in
general sharp if δ+ > c.

Theorem 7.5 (Eigenvalue counting function). Suppose that δ− > c (so that (7.5) holds).
Then

sup
E∈R

|nN (E)− n(E)| = O≺(Y ), (7.22)

where we introduced the control parameter

Y ..=
1

M

(
1

δ+ +M−1/5

)7/2

. (7.23)

Proof. First we prove the bound (7.22) for any fixed E ∈ [−10, 10]. Define the dyadic
energies Ek ..= −2− 2k(δ+ +M−1/5). By (7.6) we have for all k > 0

max
{
η̃E

.. E ∈ [Ek+1, Ek]
}

6
CM−1+4γ[

2k(δ+ +M−1/5)
]7/2 .

A similar bound holds for E′k
..= −2 + 2k(δ+ +M−1/5). For any E ∈ [−10, 0], we express

nN (E)− n(E) as a telescopic sum and use (7.4) to get

|nN (E)− n(E)| 6 |nN (−10)− n(−10)|+
∑
k>0

∣∣∣(nN (Ek+1)− nN (Ek)
)
−
(
n(Ek+1)− n(Ek)

)∣∣∣
+
∑
k>0

∣∣∣(nN (E′k+1)− nN (E′k)
)
−
(
n(E′k+1)− n(E′k)

)∣∣∣
≺ M−1+4γ(δ+ +M−1/5)−7/2. (7.24)

Here we used that n(−10) = 0 and nN (−10) 6 nN (−3) ≺ 0 by (7.21). In fact, (7.24)
easily extends to any E < −10. By an analogous dyadic analysis near the upper spectral
edge, we also get (7.21) for any E > 0. Since this holds for any γ > 0, we thus proved

|nN (E)− n(E)| ≺ Y (7.25)

for any fixed E ∈ [−10, 10].
To prove the statement uniformly in E, we define the classical location of the α-th

eigenvalue γα through ∫ γα

−∞
%(x) dx =

α

N
. (7.26)

Applying (7.25) for the N energies E = γ1, . . . , γN , we get∣∣∣∣nN (γα)− α

N

∣∣∣∣ ≺ Y (7.27)

uniformly in α = 1, . . . , N . Since nN (E) and n(E) are nondecreasing and Y > 1/N , we
find

sup
{
nN (E)− n(E) .. γα−1 6 E 6 γα

}
6 nN (γα)− n(γα−1)

= nN (γα)− n(γα) +
1

N
= O≺(Y )

uniformly in α = 2, 3, . . . . Below γ1 we use (7.27) to get

sup
E6γ1

(
nN (E)− n(E)

)
6 nN (γ1) = O≺(Y ) .
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Finally, for any E > γN , we have nN (E)− n(E) = nN (E)− 1 6 0 deterministically. Thus
we have proved

sup
E∈R

(
nN (E)− n(E)

)
= O≺(Y ) .

A similar argument yields infE∈R
(
nN (E)− n(E)

)
= O≺(Y ). This concludes the proof of

Theorem 7.5.

Next, we derive rigidity bounds on the locations of the eigenvalues. Recall the defi-
nition of γα from (7.26).

Theorem 7.6 (Eigenvalue locations). Suppose that δ− > c (so that (7.5) holds) and
that (7.11) and (7.22) hold with some positive control parameters X,Y 6 C. Define
α̂ ..= min{α,N + 1− α} and let ε > 0 be arbitrary. Then

|λα − γα| ≺ Y

(
N

α̂

)1/3

for α̂ >MεNY , (7.28)

and
|λα − γα| ≺ X + (MεY )2/3 for α̂ 6MεNY . (7.29)

Proof. To simplify notation, we assume that α 6 N/2 so that α̂ = α; the other eigen-
values are handled analogously. Without loss of generality we assume that λN/2 6 1.
Indeed, the condition λN/2 6 1 is equivalent to n(1) > 1/2, which holds with very high
probability by Theorem 7.5 and the fact that nsc(1) > 1/2.

The key relation is

α

N
= n(γα) = nN (λα) = n(λα) +O≺(Y ), (7.30)

where in the last step we used Theorem 7.5. By definition of n(x) we have for−2 6 x 6 1

that
n(x) � (2 + x)3/2 � κ3/2

x , n′(x) � n(x)1/3 . (7.31)

Hence for α 6 N/2 we have

γα + 2 �
(
α

N

)2/3

, n(γα) =
α

N
, n′(γα) �

(
α

N

)1/3

. (7.32)

Suppose first that α > α0
..= MεNY . Then n(γα) > MεY , so that the relation (7.30)

implies ∣∣n(γα)− n(λα)
∣∣ ≺ Y 6M−εn(γα) ,

which yields n(γα) � n(λα). By (7.31), we we therefore get that n′(γα) � n′(λα) as well.
Since n′ is nondecreasing, we get n′(x) � n′(γα) � n′(λα) for any x between γα and λα.
Therefore, by the mean value theorem, we have

|γα − λα| 6
C|n(γα)− n(λα)|

n′(γα)
≺ Y

(
N

α

)1/3

,

where in the last step we used (7.30) and (7.32). This proves (7.28) for α >MεNY .
For the remaining indices, α < α0, we get from (7.30) the upper bound

2 + λα 6 2 + λα0
= 2 + γα0

+O≺(Y 2/3) ≺ (MεY )2/3 ,

where in the second step we used (7.28) and in the last step (7.32). In order to obtain a
lower bound, we use Theorem 7.3 to get

−(2 + λα) 6 −(2 + λ1) ≺ X .
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Similar bounds hold for γα as well:

0 6 2 + γα 6 2 + γα0
6 (MεY )2/3 .

Combining these bounds, we obtain

|λα − γα| ≺ X + (MεY )2/3 .

This concludes the proof.

Finally, we state a trivial corollary of Theorem 7.6.

Corollary 7.7. Suppose that δ− > c and that (7.11) and (7.22) hold with some positive
control parameters X,Y 6 C. Then

N∑
α=1

|λα − γα|2 ≺ NY (Y +X2) .

7.1 Local density of states: proof of Lemma 7.1

In this section we prove Lemma 7.1. Define the empirical eigenvalue distribution

%N (x) =
1

N

N∑
α=1

δ(x− λα) ,

so that we may write

nN (E) =
1

N
|{α .. λα 6 E}| =

∫ E

−∞
%N (x) dx ,

mN (z) =
1

N
TrG(z) =

∫
%N (x) dx

x− z
.

We introduce the differences

%∆ ..= %N − % , m∆ ..= mN −m.

Following [11], we use the Helffer-Sjöstrand functional calculus [4, 21]. Introduce
E ..= max

{
E2 − E1, η̃

}
. Let χ be a smooth cutoff function equal to 1 on [−E , E ] and

vanishing on [−2E , 2E ]c, such that |χ′(y)| 6 CE−1. Let f be a characteristic function of
the interval [E1, E2] smoothed on the scale η̃: f(x) = 1 on [E1 + η̃, E2 − η̃], f(x) = 0 on
[E1, E2]c, |f ′(x)| 6 Cη̃−1, and |f ′′(x)| 6 Cη̃−2. Note that the supports of f ′ and f ′′ have
measure O(η̃).

Then we have the estimate (see Equation (B.13) in [11])∣∣∣∣∫ f(λ) %∆(λ) dλ

∣∣∣∣ 6 C

∣∣∣∣∫ dx

∫ ∞
0

dy (f(x) + yf ′(x))χ′(y)m∆(x+ iy)

∣∣∣∣
+C

∣∣∣∣∫ dx

∫ η̃

0

dy f ′′(x)χ(y) y Imm∆(x+iy)

∣∣∣∣+C∣∣∣∣∫ dx

∫ ∞
η̃

dy f ′′(x)χ(y) y Imm∆(x+iy)

∣∣∣∣ .
(7.33)

Since χ′ vanishes away from [E , 2E ] and f vanishes away from [E1, E2], we may apply
(7.2) to get

|mN (x+ iy)−m(x+ iy)| ≺ 1

My
(7.34)
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uniformly for x ∈ [E1, E2] and y > η̃. Thus the first term on the right-hand side of (7.33)
is bounded by

C

ME

∫
dx

∫ 2E

E
dy |f(x) + yf ′(x)| ≺ 1

M
. (7.35)

In order to estimate the two remaining terms of (7.33), we estimate Imm∆(x + iy). If
y > η̃ we may use (7.34). Consider therefore the case 0 < y 6 η̃. From Lemma 4.3 we
find

|Imm(x+ iy)| 6 C
√
κx + y . (7.36)

By spectral decomposition of H, it is easy to see that the function y 7→ y ImmN (x + iy)

is monotone increasing. Thus we get, using (7.36), x+ iη̃ ∈ S̃, and (7.2), that

y ImmN (x+ iy) 6 η̃ ImmN (x+ iη̃) ≺ η̃

(√
κx + η̃ +

1

Mη̃

)
≺ η̃

√
κx + η̃ +

1

M
, (7.37)

for y 6 η̃ and x ∈ [E1, E2]. Using m∆ = mN −m and recalling (7.36), we therefore get

|y Imm∆(x+ iy)| ≺ η̃
√
κx + η̃ +

1

M
, (7.38)

for y 6 η̃ and x ∈ [E1, E2]. The second term of (7.33) is therefore bounded by(
η̃
√
κx + η̃ +

1

M

)∫
dx |f ′′(x)|

∫ η̃

0

dy χ(y) 6 η̃
√
κx + η̃ +

1

M
.

In order to estimate the third term on the right-hand side of (7.33), we integrate by
parts, first in x and then in y, to obtain the bound

C

∣∣∣∣∫ dx f ′(x) η̃Rem∆(x+ iη̃)

∣∣∣∣+ C

∣∣∣∣∫ dx

∫ ∞
η̃

dy f ′(x)χ′(y)yRem∆(x+ iy)

∣∣∣∣
+ C

∣∣∣∣∫ dx

∫ ∞
η̃

dy f ′(x)χ(y) Rem∆(x+ iy)

∣∣∣∣ . (7.39)

The second term of (7.39) is similar to the first term on the right-hand side of (7.33),
and is easily seen to be bounded by 1/M as in (7.35).

In order to bound the first and third terms of (7.39), we estimate, for any y 6 η̃,

∣∣m∆(x+ iy)
∣∣ 6

∣∣m∆(x+ iη̃)
∣∣+

∫ η̃

y

du
(∣∣∂umN (x+ iu)

∣∣+
∣∣∂um(x+ iu)

∣∣) . (7.40)

Moreover, using the monotonicity of y 7→ y ImmN (x + iy) and the identity
∑
j |Gij |2 =

η−1 ImGii , we find for any u 6 η̃ that

∣∣∂umN (x+ iu)
∣∣ =

∣∣∣∣ 1

N
TrG2(x+ iu)

∣∣∣∣ 6
1

N

∑
i,j

∣∣Gij(x+ iu)
∣∣2

=
1

u
ImmN (x+ iu) 6

1

u2
η̃ ImmN (x+ iη̃) .

Similarly, we find from (2.7) that∣∣∂um(x+ iu)
∣∣ 6

1

u2
η̃ Imm(x+ iη̃) 6

Cη̃

u2
(u 6 η̃).

Thus (7.40) and (7.34) yield

∣∣m∆(x+ iy)
∣∣ ≺ 1

Mη̃
+

∫ η̃

y

du
η̃

u2

(
1 +

1

Mη̃

)
≺ η̃

y
(y 6 η̃) , (7.41)
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where we also used that η̃ > M−1. Using (7.41) for y = η̃, we may now estimate the
first term of (7.39) by η̃.

What remains is the third term of (7.39), which can be estimated, using (7.34), by∫
dx

∫ 2E

η̃

dy |f ′(x)| 1

My
6 CM−1(1 + |log η̃|) 6 CM−1 logM .

Summarizing, we have proved that∣∣∣∣∫ f(λ) %∆(λ) dλ

∣∣∣∣ ≺ 1

M
+ η̃
√
κx + η̃ + η̃ +

logM

M
≺ η̃ +

1

M
. (7.42)

Since ImmN (x+ iη̃) controls the local density on scale η̃, we may estimate |nN (E)−
n(E)| using (7.37) according to

|nN (x+ η̃)− nN (x− η̃)| 6 Cη̃ ImmN (x+ iη̃) ≺ η̃
√
κx + η̃ +

1

M
.

Thus we get∣∣∣∣nN (E1)−nN (E2)−
∫
f(λ) %N (λ) dλ

∣∣∣∣ 6 C
∑
i=1,2

(
n(Ei + η̃)− n(Ei − η̃)

)
≺ η̃

√
κx + η̃+

1

M
.

Similarly, since % has a bounded density, we find∣∣∣∣n(E1)− n(E2)−
∫
f(λ) %(λ) dλ

∣∣∣∣ 6 Cη̃ .

Together with (7.42) and recalling η̃ >M−1, we therefore get (7.4). This concludes the
proof of Lemma 7.1.

8 Bulk universality

Local eigenvalue statistics are described by correlation functions on the scale 1/N .
Fix an integer n > 2 and an energy E ∈ (−2, 2). Abbreviating x = (x1, x2, . . . xn), we
define the local correlation function

f
(n)
N (E,x) ..=

1

%(E)n
p

(n)
N

(
E +

x1

N%(E)
, E +

x2

N%(E)
, . . . , E +

xn
N%(E)

)
, (8.1)

where p(n)
N is the n-point correlation function of the N eigenvalues and %(E) is the den-

sity of the semicircle law defined in (2.7). Universality of the local eigenvalue statistics
means that, for any fixed n, the limit as N → ∞ of the local correlation function f

(n)
N

only depends on the symmetry class of the matrix entries, and is otherwise independent
of their distribution. In particular, the limit of f (n)

N coincides with that of a GOE or GUE
matrix, which is explicitly known. In this paper, we consider local correlation functions
averaged over a small energy interval of size ` = N−ε,

f̃
(n)
N (E,x) ..=

1

2`

∫ E+`

E−`
f

(n)
N (E′,x) dE′ . (8.2)

Universality is understood in the sense of the weak limit, as N → ∞ for fixed |E| < 2,

of f̃ (n)
N (E,x) in the variables x.
The general approach developed in [14, 15, 17] to prove the universality of the local

eigenvalue statistics in the bulk spectrum of a general Wigner-type matrix consists of
three steps.
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(i) A rigidity estimate on the locations of the eigenvalues, in the sense of a quadratic
mean.

(ii) The spectral universality for matrices with a small Gaussian component, via local
ergodicity of the Dyson Brownian motion (DBM).

(iii) A perturbation argument that removes the small Gaussian component by compar-
ing Green functions.

In this paper we do not give the details of steps (ii) and (iii), since they have been
concisely presented elsewhere, e.g. in [16]. Here we only summarize the results and
the key arguments of steps (ii) and (iii) for the general class of matrices we consider.
In this section we assume that H is either real symmetric or complex Hermitian. The
former case means that the entries of H are real. The latter means, loosely, that its
off-diagonal entries have a nontrivial imaginary part. More precisely, in the complex
Hermitian case we shall replace the lower bound on the variances sij from Definition
3.1 with the following, stronger, condition.

Definition 8.1. We call the Hermitian matrix H a complex a-full Wigner matrix if for
each i, j the 2× 2 covariance matrix

σij =

(
E(Rehij)

2 E(Rehij)(Imhij)

E(Rehij)(Imhij) E(Imhij)
2

)
satisfies

σ >
a

N

as a symmetric matrix. Note that this condition implies that H is a-full, but the converse
is not true.

We consider a stochastic flow of Wigner-type matrices generated by the Ornstein-
Uhlenbeck equation

dHt =
1√
N

dBt −
1

2
Htdt

with some given initial matrix H0. Here B is an N×N matrix-valued standard Brownian
motion with the same symmetry type as H. The resulting dynamics on the level of the
eigenvalues is Dyson Brownian motion (DBM). It is well known that Ht has the same
distribution as the matrix

e−t/2H0 + (1− e−t)1/2U , (8.3)

where U is an independent standard Gaussian Wigner matrix of the same symmetry
class as H. In particular, Ht converges to U as t → ∞. The eigenvalue distribution
converges to the Gaussian equilibrium measure, whose density is explicitly given by

µ(λ) =
1

Z
e−βNH(λ)dλ , H(λ) ..=

N∑
i=1

λ2
i

4
− 1

N

∑
i<j

log|λi − λj | ;

here β = 1 for the real symmetric case (GOE) and β = 2 for the complex Hermitian case
(GUE).

The matrix S(t) of variances of Ht is given by

S(t) = e−tS(0) + (1− e−t)ee∗,

where S(0) is the matrix of variances of H0. It is easy to see that the gaps δ±(t) of S(t)

satisfy δ±(t) > δ±(0); therefore the corresponding parameters (2.11) satisfy Γ̃t(z) 6
Γ̃0(z). Since all estimates behind our main theorems in Sections 2 and 7 improve if δ±
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increase, it is immediate that all results in these sections hold for Ht provided they hold
for H0.

The key quantity to be controlled when establishing bulk universality is the mean
quadratic distance of the eigenvalues from their classical locations,

Q ..= max
t>0

E(t) 1

N

∑
i

(λi − γi)2 , (8.4)

where E(t) denotes the expectation with respect to the ensemble Ht. By Corollary 7.7
we have

Q 6 NεY (Y +X2)

for any ε > 0 and N > N0(ε). Here we used that the estimate from Corollary 7.7 is
uniform in t, by the remark in the previous paragraph.

We modify the original DBM by adding a local relaxation term of the form 1
2τ

∑
i(λi−

γi)
2 to the original Hamiltonian H, which has the effect of artificially speeding up the

relaxation of the dynamics. Here τ � 1 is a small parameter, the relaxation time of the
modified dynamics. We choose τ ..= N1+4εQ for some ε > 0. As Theorem 4.1 of [15]
(see also Theorem 2.2 of [16]) shows, the local statistics of the eigenvalue gaps of Ht

and GUE/GOE coincide if t > Nετ = N1+4εQ, i.e. if

t > N1+5εY (Y +X2) . (8.5)

The local statistics are averaged over N1−ε consecutive eigenvalues or, alternatively, in
the energy parameter E over an interval of length N−ε.

To complete the programme (i)–(iii), we need to compare the local statistics of the
original ensemble H and Ht, i.e. perform step (iii). We first recall the Green func-
tion comparison theorem from [17] for the case M � N (generalized Wigner). The
result states, roughly, that expectations of Green functions with spectral parameter z
satisfying Im z > N−1−ε are determined by the first four moments of the single-entry
distributions. Therefore the local eigenvalue statistics on a very small scale, η = N−1−ε,
of two Wigner ensembles are indistinguishable if the first four moments of their matrix
entries match. More precisely, for the local n-point correlation functions (8.1) to match,
one needs to compare expectations of n-th order monomials of the form

n∏
k=1

mN (Ek + iη) , (8.6)

where the energies Ek are chosen in the bulk spectrum with Ek−Ek′ = O(1/N). (Recall
that mN (z) = 1

N TrG(z).)
The proof uses a Lindeberg-type replacement strategy to change the distribution

of each matrix entry hij one by one in a telescopic sum. The idea of applying Linde-
berg’s method in random matrices was recently used by Chatterjee [3] for comparing
the traces of the Green functions; the idea was also used by Tao and Vu [29] in the
context of comparing individual eigenvalue distributions. The error resulting from each
replacement is estimated using a fourth order resolvent expansion, where all resolvents
G(z) = (H − z)−1 with z = Ek + iη appearing in (8.6) are expanded with respect to the
single matrix entry hij (and its conjugate hji = h̄ij). If the first four moments of the two
distributions match, then the terms of at most fourth order in this expansion remain
unchanged by each replacement. The error term is of order E|hij |5 � N−5/2, which is
negligible even after summing up all N2 pairs of indices (i, j). This estimate assumes
that the resolvent entries in the expansion (and hence all factors mN (z) in (8.6)) are
essentially bounded.
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The Green function comparison method therefore has two main ingredients. First,
a high probability apriori estimate is needed on the resolvent entries at any spectral
parameter z with imaginary part η slightly below 1/N :

max
i,j
|Gij(E + iη)| ≺ N2ε (η > N−1−ε) (8.7)

for any small ε > 0. Clearly, the same estimate also holds for mN (E + iη). The bound
(8.7) is typically obtained from the local semicircle law for the resolvent entries, (2.18).
Although the local semicircle law is effective only for Im z � 1/N , it still gives an almost
optimal bound for a somewhat smaller η by using the trivial estimate

max
i,j
|Gij(E + iη)| 6 logN

(
η′

η

)
sup
η′′>η′

max
i

ImGii(E + iη′′) (η 6 η′) (8.8)

with the choice of η′ = N−1+ε. The proof of (8.8) follows from a simple dyadic decom-
position; see the proof of Theorem 2.3 in Section 8 of [17] for details.

The second ingredient is the construction of an initial ensemble H0 whose time evo-
lution Ht for some t 6 1 satisfying (8.5) is close to H; here closeness is measured by the
matching of moments of the matrix entries between the ensembles H and Ht. We shall
choose H0, with variance matrix S(0), so that the second moments of H and Ht match,

S = e−tS(0) + (1− e−t)ee∗ , (8.9)

and the third and fourth moments are close. We remark that the matching of higher
moments was introduced in the work of [29], while the idea of approximating a general
matrix ensemble by an appropriate Gussian one appeared earlier in [10]. They have
to be so close that even after multiplication with at most five resolvent entries and
summing up for all i, j indices, their difference is still small. (Five resolvent entries
appear in the fourth order of the resolvent expansion of G.) Thus, given (8.7), we
require that

max
i,j

∣∣Ehsij − E(t)hsij
∣∣ 6 N−2−(2n+9)ε (s = 3, 4) (8.10)

to ensure that the expectations of the n-fold product in (8.6) are close. This formulation
holds for the real symmetric case; in the complex Hermitian case all moments of order
s = 3, 4 involving the real and imaginary parts of hij have to be approximated. To
simplify notation, we work with the real symmetric case in the sequel.

The matching can be done in two steps. In the first we construct a matrix of vari-
ances S(0) such that (8.9) holds. This first step is possible if, given S associated with H,
(8.9) can be satisfied for a doubly stochastic S(0), i.e. if H is an a-full Wigner matrix and

a > Ct (8.11)

with some large constant C. For the complex Hermitian case, the condition (8.11) is
the same but H has to be complex a-full Wigner matrix (see Definition 8.1).

In the second step of moment matching, we use Lemma 3.4 of [18] to construct an
ensemble H0 with variances S(0), such that the entries of H and Ht satisfy

Ehij = E(t)hij = 0 , Eh2
ij = E(t)h2

ij = sij ,

Eh3
ij = E(t)h3

ij ,
∣∣Eh4

ij − E(t)h4
ij

∣∣ 6 Cts2
ij .

This means that (8.10) holds if

Cts2
ij 6 N−2−(2n+9)ε .
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Suppose that H is b-flat, i.e. that sij 6 b/N . Then this condition holds provided

Ctb2 6 N−(2n+9)ε . (8.12)

The argument so far assumed that M � N (H is a generalized Wigner matrix), in which
case Gij(E + iη′) remains essentially bounded down to the scale η′ ≈ 1/N . If M � N ,
then (2.18) provides control only down to scale η′ � 1/M and (8.8) gives only the
weaker bound

|Gij(E + iη)| ≺ 1

Mη
, (8.13)

for any η 6 1/M , which replaces (8.7). Using this weaker bound, the condition (8.12) is
replaced with

Ctb2 ≺ (Mη)n+4 , (8.14)

which is needed for n-fold products of the form (8.6) to be close. (For convenience,
here we use the notation AN ≺ BN even for deterministic quantities to indicate that
AN 6 NεBN for any ε > 0 and N > N0(ε).) The bound (8.14) thus guarantees that, for
any fixed n, the expectations of the n-fold products of the form (8.6) with respect to the
ensembles H and Ht are close. Following the argument in the proof of Theorem 6.4 of
[17], this means that for any smooth, compactly supported function O .. Rn → R, the
expectations of observables∑

i1 6=i2 6=... 6=in

Oη

(
N(λi1 − E), N(λi2 − E), . . . , N(λin − E)

)
(8.15)

are close, where the smeared out observable Oη on scale η is defined through

Oη(β1, . . . , βn) ..=
1

(πN)n

∫
Rn

dα1 · · · dαnO(α1, . . . , αn)

n∏
j=1

θη

(
βj − αj
N

)
,

where

θη(x) ..= Im
1

x− iη
.

To conclude the result for observables with O instead of Oη in (8.15), we need to
estimate, for both ensembles, the difference

E
∑

i1 6=i2 6=... 6=in

(O −Oη)
(
N(λi1 − E), N(λi2 − E), . . . , N(λin − E)

)
. (8.16)

Due to the smoothness of O, we can decompose O −Oη = Q1 +Q2, where

|Q1(β1, . . . , βn)| 6 CNη

n∏
j=1

1(|βj | 6 K)

and

|Q2(β1, . . . , βn)| 6 C

n∑
j=1

1(|βj | > K)

n∏
j=1

1

1 + β2
j

,

with an arbitratry parameter K � N/M . Here the constants depend on O. The contri-
bution from Q1 to (8.16) can thus be estimated by

E
∑

i1 6=i2 6=... 6=in

Q1

(
. . .
)
≺ CNηKn ,
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where we used that the expected number of eigenvalues in the interval [E −K/N,E +

K/N ] is O≺(K), since (8.13) guarantees that the density is bounded on scales larger
than 1/M . The contribution from Q2 to (8.16) is estimated by

E
∑

i1 6=i2 6=...6=in

Q2

(
. . .
)
≺ CK−1

(
N

M

)n
. (8.17)

In the last step we used (8.13) to estimate

N∑
k=1

1

1 +N2(λk − E)2
=

1

N
Im TrG

(
E +

i

N

)
≺ N

M
. (8.18)

Optimizing the choice of K and η, (8.14) becomes

Ctb2 ≺
(
M

N

)(n2+1)(n+4)

. (8.19)

Summarizing the conditions (8.5), (8.11), and (8.19), we require that

N1+5εY (Y +X2) ≺ min

{
a, b−2

(
M

N

)(n2+1)(n+4)}
in order to have bulk universality. We have therefore proved the following result.

Theorem 8.2. Suppose that H is N/M -flat and a-full (in the real symmetric case) or
complex a-full (in the complex Hermitian case). Suppose moreover that (7.11) and
(7.22) hold with some positive control parameters X,Y 6 C. Fix an arbitrary positive
parameter ε > 0. Then the local n-point correlation functions of H, averaged over the
energy parameter in an interval of size N−ε around |E| < 2 (see (8.2)), coincide with
those of GOE or GUE provided that

N1+6εY (Y +X2) 6 min

{
a,

(
M

N

)(n2+1)(n+4)+2}
. (8.20)

In particular, if N3/4 6 M 6 N then (7.11) and (7.22) hold with X and Y defined in
(7.12) and (7.23).

We conclude with a few examples illustrating Theorem 8.2.

Corollary 8.3. Fix an integer n > 2. There exists a positive number p(n) > cn−3 with
the following property. Suppose that H satisfies any of the following conditions for
some sufficiently small ξ > 0.

(i) cN−1−ξ 6 sij 6 CN−1+p(n)−ξ.

(ii) cN−
9
8 +ξ 6 sij 6 CN−1.

(iii) H is a one-dimensional band matrix with band width W with a mean-field compo-
nent of size ν (see Definition 3.3) such that W > N1−p(n)+ξ and ν > N15+ξW−16.

Then there exists an ε > 0 (depending on ξ and n) such that the local n-point correlation
functions of H, averaged over the energy parameter in an interval of size N−ε around
|E| < 2, coincide with those of GOE or GUE (depending on the symmetry class of H).

We remark that the conditions for the upper bound on sij in parts (i) and (iii) are
similar. But the band structure in (iii) allows one to choose a much smaller mean-field
component than in (i).
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Proof. In Case (i), we have a = cN−ξ and b = N/M in Definition 3.1; hence δ± > cN−ξ

by Proposition A.3. Therefore Y = M−1N−7ξ/2 and X = N2M−8/3 from (7.12) and
(7.23), so that (8.20) reads

N

M

( 1

M
+

N4

M16/3

)
6 N−(1+6ε)N7ξ min

{
N−ξ,

(M
N

)(n2+1)(n+4)+2
}
.

By Theorem 8.2 bulk universality therefore holds provided that M > N1−p(n)+ξ with
any sufficiently small positive ξ > 0 (and ε chosen appropriately, depending on ξ and n).
The function p(n) can be easily computed.

We remark that if we additionally assume that hij has a symmetric law with subexpo-
nential decay (7.14), then by Theorem 7.4 we can use the improved control parameter
X = M−2/3. This yields a better threshold p(n). For example, for n = 2 we obtain
p(n) = 1

34 .
In Case (ii) we take M = N , i.e. b = c and δ+ > a = N−1/8+ξ. Then with the choice

(7.12) and (7.23) we have Y 6 CN−1δ
−7/2
+ , X 6 CN−2/3 + CN−2(δ+ + N−1/7)−12, so

that (8.20) reads

δ
−7/2
+

(
N−1δ

−7/2
+ +N−4/3 +N−4(δ+ +N−1/7)−24

)
� a ,

which holds since δ+ > a > N−1/8.
Finally, in Case (iii) we have W � M , b = N/M , a = ν, δ+ > cν + c(M/N)2, and

δ− > c. Since M > N22/23 we have δ+ > cM−1/5, Thus, with the choice (7.12) and
(7.23), we have

Y � 1

Mδ
7/2
+

6 C
N7

M8
, X 6 C

N2

M8/3
+ C

N26

M28
� N26

M28
,

and (8.20) reads

N8

M8

(N7

M8
+
N52

M56

)
� min

{
ν ,
(M
N

)(n2+1)(n+4)+2
}
.

This leads to the conditions

ν � N15

M16
, M � N1−p(n) , (8.21)

with some positive p(n), which concludes the proof.

A Behaviour of Γ and Γ̃

In this section we give basic bounds on the parameters Γ and Γ̃. As it turns out, their
behaviour is intimately linked with the spectrum of S, more precisely with its spectral
gaps. Recall that the spectrum of S lies in [−1, 1], with 1 being a simple eigenvalue.

Definition A.1. Let δ− be the distance from −1 to the spectrum of S, and δ+ the dis-
tance from 1 to the spectrum of S restricted to e⊥. In other words, δ± are the largest
numbers satisfying

S > −1 + δ−, S
∣∣
e⊥ 6 1− δ+ .

The following proposition gives explicit bounds on Γ and Γ̃ depending on the spectral
gaps δ±. We recall the notations z = E + iη, κ ..=

∣∣|E| − 2
∣∣ and the definition of θ from

(3.2).
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Proposition A.2. There is a universal constant C such that the following holds uni-
formly in the domain

{
z = E + iη .. |E| 6 10, M−1 6 η 6 10

}
, and in particular in any

spectral domain D.

(i) We have the estimate

1

C
√
κ+ η

6 Γ(z) 6
C logN

1−max±
∣∣ 1±m2

2

∣∣ 6
C logN

min{η + E2, θ}
. (A.1)

(ii) In the presence of a gap δ− we may improve the upper bound to

Γ(z) 6
C logN

min{δ− + η + E2, θ}
. (A.2)

(iii) For Γ̃ we have the bounds

C−1 6 Γ̃(z) 6
C logN

min{δ− + η + E2, δ+ + θ}
. (A.3)

Proof. The first bound of (A.1) follows from (1−m2S)−1e = (1−m2)−1e combined with
(4.3). In order to prove the second bound of (A.1), we write

1

1−m2S
=

1

2

1

1− 1+m2S
2

and observe that ∥∥∥∥1 +m2S

2

∥∥∥∥
`2→`2

6 max
±

∣∣∣∣1±m2

2

∣∣∣∣ =.. q . (A.4)

Therefore∥∥∥∥ 1

1−m2S

∥∥∥∥
`∞→`∞

6
n0−1∑
n=0

∥∥∥∥1 +m2S

2

∥∥∥∥n
`∞→`∞

+
√
N

∞∑
n=n0

∥∥∥∥1 +m2S

2

∥∥∥∥n
`2→`2

6 n0 +
√
N

qn0

1− q

6
C logN

1− q
,

where in the last step we chose n0 = C0 logN
1−q for large enough C0. Here we used that

‖S‖`∞→`∞ 6 1 and (4.2) to estimate the summands in the first sum. This concludes the
proof of the second bound of (A.1). The third bound of (A.1) follows from the elementary
estimates∣∣∣∣1−m2

2

∣∣∣∣ 6 1− c(η+E2) ,

∣∣∣∣1 +m2

2

∣∣∣∣ 6 1− c
(

(Imm)2 +
η

Imm+ η

)
6 1− cθ (A.5)

for some universal constant c > 0, where in the last step we used Lemma 4.3.
The estimate (A.2) follows similarly. Due to the gap δ− in the spectrum of S, we may

replace the estimate (A.4) with∥∥∥∥1 +m2S

2

∥∥∥∥
`2→`2

6 max

{
1− δ− − η − E2 ,

∣∣∣∣1 +m2

2

∣∣∣∣} . (A.6)

Hence (A.2) follows using (A.5).
The lower bound of (A.3) was proved in (4.5). The upper bound is proved similarly

to (A.2), except that (A.6) is replaced with∥∥∥∥1 +m2S

2

∣∣∣∣
e⊥

∥∥∥∥
`2→`2

6 max

{
1− δ− − η − E2 , min

{
1− δ+ ,

∣∣∣∣1 +m2

2

∣∣∣∣}
}
.

This concludes the proof of (A.3).
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The following proposition gives the behaviour of the spectral gaps δ± for the example
matrices from Section 3.

Proposition A.3 (Spectrum of S for example matrices). (i) If H is an a-full Wigner
matrix then δ− > a and δ+ > a.

(ii) If H is a band matrix there is a positive constant c, depending on the dimension d
and the profile function f , such that δ− > c and δ+ > c(W/L)2.

(iii) If H =
√

1− νHB +
√
νHW , where HB is a band matrix, HW is an a-full Wigner

matrix independent of HB, and ν ∈ [0, 1] (see Definition 3.3), then there is a con-
stant c depending only on the dimension d and the profile function f of HB, such
that δ− > c and δ+ > c(W/L)2 + νa.

Proof. For the case where H is an a-full Wigner matrix, the claim easily follows by
splitting

S = (S − aee∗) + aee∗ .

By assumption, the first term is (1 − a) times a doubly stochastic matrix. Hence its
spectrum lies in [−1 + a, 1− a]. The claims on δ± now follow easily.

The claims about band matrices were proved in Lemma A.1 of [17] and Equation
(5.16) of [8], respectively. Finally, (iii) easily follows from (i) and (ii).

B Proof of Theorems 4.6 and 4.7

Theorems 4.6 and 4.7 are essentially simple special cases of the much more involved,
and general, fluctuation averaging estimate from [9]. Nevertheless, here we give the
details of the proofs because (a) they do not strictly follow from the formulation of the
result in [9], and (b) their proof is much easier than that of [9], so that the reader only
interested in the applications of fluctuation averaging to the local semicircle law need
not read the lengthy proof of [9]. We start with a simple lemma which summarizes the
key properties of ≺ when combined with expectation.

Lemma B.1. Suppose that the deterministic control parameter Ψ satisfies Ψ > N−C ,
and that for all p there is a constant Cp such that the nonnegative random variable X
satisfies EXp 6 NCp . Suppose moreover that that X ≺ Ψ. Then for any fixed n ∈ N we
have

EXn ≺ Ψn . (B.1)

(Note that this estimate involves deterministic quantities only, i.e. it means that EXn 6
NεΨn for any ε > 0 if N > N0(n, ε).) Moreover, we have

PiX
n ≺ Ψn , QiX

n ≺ Ψn (B.2)

uniformly in i. If X = X(u) and Ψ = Ψ(u) depend on some parameter u and the above
assumptions are uniform in u, then so are the conclusions.

Proof of Lemma B.1. It is enough to consider the case n = 1; the case of larger n follows
immediately from the case n = 1, using the basic properties of ≺ from Lemma 4.4.

For the first claim, pick ε > 0. Then

EX = EX1(X 6 NεΨ) + EX1(X > NεΨ) 6 NεΨ +
√
EX2

√
P(X > NεΨ)

6 NεΨ +NC2/2−D/2 ,

for arbitrary D > 0. The first claim therefore follows by choosing D large enough.
The second claim follows from Chebyshev’s inequality, using a high-moment esti-

mate combined with Jensen’s inequality for partial expectation. We omit the details,
which are similar to those of the first claim.
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We shall apply Lemma B.1 to resolvent entries of G. In order to verify its assump-
tions, we record the following bounds.

Lemma B.2. Suppose that Λ ≺ Ψ and Λo ≺ Ψo for some deterministic control param-
eters Ψ and Ψo both satisfying (4.8). Fix p ∈ N. Then for any i 6= j and T ⊂ {1, . . . , N}
satisfying |T| 6 p and i, j /∈ T we have

G
(T)
ij = O≺(Ψo) ,

1

G
(T)
ii

= O≺(1) . (B.3)

Moreover, we have the rough bounds
∣∣G(T)

ij

∣∣ 6M and

E

∣∣∣∣∣ 1

G
(T)
ii

∣∣∣∣∣
n

6 Nε (B.4)

for any ε > 0 and N > N0(n, ε).

Proof. The bounds (B.3) follow easily by a repeated application of (4.6), the assumption
Λ ≺ M−c, and the lower bound in (4.2). The deterministic bound

∣∣G(T)
ij

∣∣ 6 M follows
immediately from η >M−1 by definition of a spectral domain.

In order to prove (B.4), we use Schur’s complement formula (5.6) applied to 1/G
(T)
ii ,

where the expectation is estimated using (2.6) and
∣∣G(T)

ij

∣∣ 6 M . (Recall (2.4).) This
gives

E

∣∣∣∣∣ 1

G
(T)
ii

∣∣∣∣∣
p

≺ NCp

for all p ∈ N. Since 1/G
(T)
ii ≺ 1, (B.4) therefore follows from (B.1).

Proof of Theorem 4.7. First we claim that, for any fixed p ∈ N, we have∣∣∣∣Qk 1

G
(T)
kk

∣∣∣∣ ≺ Ψo (B.5)

uniformly for T ⊂ {1, . . . ,N}, |T| 6 p, and k /∈ T. To simplify notation, for the proof we
set T = ∅; the proof for nonempty T is the same. From Schur’s complement formula
(5.6) we get |Qk(Gkk)−1| 6 |hkk| + |Zk|. The first term is estimated by |hkk| ≺ M−1/2 6
Ψo. The second term is estimated exactly as in (5.13) and (5.14):

|Zk| ≺

(
(k)∑
x 6=y

skx
∣∣G(k)

xy

∣∣2syk)1/2

≺ Ψo ,

where in the last step we used that
∣∣G(k)

xy

∣∣ ≺ Ψo as follows from (B.3), and the bound
1/|Gkk| ≺ 1 (recall that Λ ≺ Ψ 6M−c). This concludes the proof of (B.5).

Abbreviate Xk
..= Qk(Gkk)−1. We shall estimate

∑
k tikXk in probability by estimat-

ing its p-th moment by Ψ2p
o , from which the claim will easily follow using Chebyshev’s

inequality. Before embarking on the estimate for arbitrary p, we illustrate its idea by
estimating the variance

E

∣∣∣∣∑
k

tikXk

∣∣∣∣2 =
∑
k,l

tiktilEXkX l =
∑
k

|tik|2EXkXk +
∑
k 6=l

tiktilEXkX l . (B.6)

Using Lemma B.1 and the bounds (4.9) on tik, we find that the first term on the right-
hand side of (B.6) is O≺(M−1Ψ2

o) = O≺(Ψ4
o), where we used the estimate (4.8). Let us
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therefore focus on the second term of (B.6). Using the fact that k 6= l, we apply (4.6) to
Xk and Xl to get

EXkX l = EQk

(
1

Gkk

)
Ql

(
1

Gll

)
= EQk

(
1

G
(l)
kk

− GklGlk

GkkG
(l)
kkGll

)
Ql

(
1

G
(k)
ll

− GlkGkl

GllG
(k)
ll Gkk

)
. (B.7)

We multiply out the parentheses on the right-hand side. The crucial observation is
that if the random variable Y is independent of i (see Definition 4.2) then EQi(X)Y =

EQi(XY ) = 0. Hence out of the four terms obtained from the right-hand side of (B.7),
the only nonvanishing one is

EQk

(
GklGlk

GkkG
(l)
kkGll

)
Ql

(
GlkGkl

GllG
(k)
ll Gkk

)
≺ Ψ4

o .

Together with (4.9), this concludes the proof of E
∣∣∑

k tikXk

∣∣2 ≺ Ψ4
o.

After this pedagogical interlude we move on to the full proof. Fix some even integer
p and write

E

∣∣∣∣∑
k

tikXk

∣∣∣∣p =
∑

k1,...,kp

tik1 · · · tikp/2tikp/2+1
· · · tikp EXk1 · · ·Xkp/2Xkp/2+1

· · ·Xkp .

Next, we regroup the terms in the sum over k ..= (k1, . . . , kp) according to the partition
of {1, . . . , p} generated by the indices k. To that end, let Pp denote the set of partitions
of {1, . . . , p}, and P(k) the element of Pp defined by the equivalence relation r ∼ s if
and only if kr = ks. In short, we reorganize the summation according to coincidences
among the indices k. Then we write

E

∣∣∣∣∑
k

tikXk

∣∣∣∣p =
∑
P∈Pp

∑
k

tik1 · · · tikp/2tikp/2+1
· · · tikp 1(P(k) = P )V (k) , (B.8)

where we defined
V (k) ..= EXk1 · · ·Xkp/2Xkp/2+1

· · ·Xkp .

Fix k and set P ..= P(k) to be partition induced by the coincidences in k. For any
r ∈ {1, . . . , p}, we denote by [r] the block of r in P . Let L ≡ L(P ) ..= {r .. [r] = {r}} ⊂
{1, . . . , p} be the set of “lone” labels. We denote by kL

..= (kr)r∈L the summation indices
associated with lone labels.

The resolvent entry Gkk depends strongly on the randomness in the k-column of H,
but only weakly on the randomness in the other columns. We conclude that if r is a lone
label then all factors Xks with s 6= r in V (k) depend weakly on the randomness in the
kr-th column of H. Thus, the idea is to make all resolvent entries inside the expectation
of V (k) as independent of the indices kL as possible (see Definition 4.2), using the

identity (4.6). To that end, we say that a resolvent entry G(T)
xy with x, y /∈ T is maximally

expanded if kL ⊂ T ∪ {x, y}. The motivation behind this definition is that using (4.6)
we cannot add upper indices from the set kL to a maximally expanded resolvent entry.
We shall apply (4.6) to all resolvent entries in V (k). In this manner we generate a
sum of monomials consisting of off-diagonal resolvent entries and inverses of diagonal
resolvent entries. We can now repeatedly apply (4.6) to each factor until either they are
all maximally expanded or a sufficiently large number of off-diagonal resolvent entries
has been generated. The cap on the number of off-diagonal entries is introduced to
ensure that this procedure terminates after a finite number of steps.
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In order to define the precise algorithm, let A denote the set of monomials in the
off-diagonal entries G(T)

xy , with T ⊂ kL, x 6= y, and x, y ∈ k \ T, as well as the inverse

diagonal entries 1/G
(T)
xx , with T ⊂ kL and x ∈ k \ T. Starting from V (k), the algorithm

will recursively generate sums of monomials in A. Let d(A) denote the number of off-
diagonal entries in A ∈ A. For A ∈ A we shall define w0(A), w1(A) ∈ A satisfying

A = w0(A) + w1(A) , d(w0(A)) = d(A) , d(w1(A)) > max
{

2, d(A) + 1
}
. (B.9)

The idea behind this splitting is to use (4.6) on one entry of A; the first term on the right-
hand side of (4.6) gives rise to w0(A) and the second to w1(A). The precise definition of
the algorithm applied to A ∈ A is as follows.

(1) If all factors of A are maximally expanded or d(A) > p+ 1 then stop the expansion
of A. In other words, the algorithm cannot be applied to A in the future.

(2) Otherwise choose some (arbitrary) factor of A that is not maximally expanded. If
this entry is off-diagonal, G(T)

xy , write

G(T)
xy = G(Tu)

xy +
G

(T)
xu G

(T)
uy

G
(T)
uu

(B.10)

for the smallest u ∈ kL \ (T∪ {x, y}). If the chosen entry is diagonal, 1/G
(T)
xx , write

1

G
(T)
xx

=
1

G
(Tu)
xx

− G
(T)
xu G

(T)
ux

G
(T)
xx G

(Tu)
xx G

(T)
uu

(B.11)

for the smallest u ∈ kL \ (T∪{x}). Then the splitting A = w0(A) +w1(A) is defined
by the splitting induced by (B.10) or (B.11), in the sense that we replace the factor
G

(T)
xy or 1/G

(T)
xx in the monomial A by the right-hand sides of (B.10) or (B.11).

(This algorithm contains some arbitrariness in the choice of the factor of A to be ex-
panded. It may be removed for instance by first fixing some ordering of all resolvent
entries G(T)

ij . Then in (2) we choose the first factor of A that is not maximally expanded.)
Note that (B.10) and (B.11) follow from (4.6). It is clear that (B.9) holds with the algo-
rithm just defined.

We now apply this algorithm recursively to each entry Ar ..= 1/Gkrkr in the definition
of V (k). More precisely, we start with Ar and define Ar0

..= w0(Ar) and Ar1
..= w1(Ar). In

the second step of the algorithm we define four monomials

Ar00
..= w0(Ar0) , Ar01

..= w0(Ar1) , Ar10
..= w1(Ar0) , Ar11

..= w1(Ar1) ,

and so on, at each iteration performing the steps (1) and (2) on each new monomial
independently of the others. Note that the lower indices are binary sequences that
describe the recursive application of the operations w0 and w1. In this manner we gen-
erate a binary tree whose vertices are given by finite binary strings σ. The associated
monomials satisfy Arσi

..= wi(A
r
σ) for i = 0, 1, where σi denotes the binary string ob-

tained by appending i to the right end of σ. See Figure B.1 for an illustration of the
tree.

We stop the recursion of a tree vertex whenever the associated monomial satisfies
the stopping rule of step (1). In other words, the set of leaves of the tree is the set of
binary strings σ such that either all factors of Arσ are maximally expanded or d(Arσ) >
p + 1. We claim that the resulting binary tree is finite, i.e. that the algorithm always
reaches step (1) after a finite number of iterations. Indeed, by the stopping rule in (1),
we have d(Arσ) 6 p+1 for any vertex σ of the tree. Since each application of w1 increases
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Figure B.1: The binary tree generated by applying the algorithm (1)–(2) to a monomial
Ar. Each vertex of the tree is indexed by a binary string σ, and encodes a monomial Arσ.
An arrow towards the left represents the action of w0 and an arrow towards the right
the action of w1. The monomial Ar11 satisfies the assumptions of step (1), and hence its
expansion is stopped, so that the tree vertex 11 has no children.

d(·) by at least one, and in the first step (i.e. when applied to Ar) by two, we conclude
that the number of ones in any σ is at most p. Since each application of w1 increases the
number of resolvent entries by at most four, and the application of w0 does not change
this number, we find that the number of resolvent entries in Arσ is bounded by 4p + 1.
Hence the maximal number of upper indices in Arσ for any tree vertex σ is (4p + 1)p.
Since each application of w0 increases the total number of upper indices by one, we
find that σ contains at most (4p + 1)p zeros. We conclude that the maximal length of
the string σ (i.e. the depth of the tree) is at most (4p + 1)p + p = 4p2 + 2p. A string σ

encoding a tree vertex contains at most p ones. Denoting by k the number of ones in
a string encoding a leaf of the tree, we find that the number of leaves is bounded by∑p
k=0

(
4p2+2p

k

)
6 (Cp2)p. Therefore, denoting by Lr the set of leaves of the binary tree

generated from Ar, we have |Lr| 6 (Cp2)p.
By definition of the tree and w0 and w1, we have the decomposition

Xkr = Qkr
∑
σ∈Lr

Arσ . (B.12)

Moreover, each monomial Arσ for σ ∈ Lr either consists entirely of maximally expanded
resolvent entries or satisfies d(Arσ) = p + 1. (This is an immediate consequence of the
stopping rule in (1)).

Next, we observe that for any string σ we have

Akσ = O≺
(
Ψb(σ)+1
o

)
, (B.13)

where b(σ) is the number ones in the string σ. Indeed, if b(σ) = 0 then this follows from
(B.5); if b(σ) > 1 this follows from the last statement in (B.9) and (B.3).

Using (B.8) and (B.12) we have the representation

V (k) =
∑
σ1∈L1

· · ·
∑
σp∈Lp

E
(
Qk1A

1
σ1

)
· · ·
(
QkpA

p
σp

)
. (B.14)

We now claim that any nonzero term on the right-hand side of (B.14) satisfies(
Qk1A

1
σ1

)
· · ·
(
QkpA

p
σp

)
= O≺

(
Ψp+|L|
o

)
. (B.15)
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Proof of (B.15). Before embarking on the proof, we explain its idea. By (B.13), the
naive size of the left-hand side of (B.15) is Ψp

o. The key observation is that each lone
label s ∈ L yields one extra factor Ψo to the estimate. This is because the expectation
in (B.14) would vanish if all other factors

(
QkrA

r
σr

)
, r 6= s, were independent of ks. The

expansion of the binary tree makes this dependence explicit by exhibiting ks as a lower
index. But this requires performing an operation w1 with the choice u = ks in (B.10) or
(B.11). However, w1 increases the number of off-diagonal element by at least one. In
other words, every index associated with a lone label must have a “partner” index in a
different resolvent entry which arose by application of w1. Such a partner index may
only be obtained through the creation of at least one off-diagonal resolvent entry. The
actual proof below shows that this effect applies cumulatively for all lone labels.

In order to prove (B.15), we consider two cases. Consider first the case where for
some r = 1, . . . , p the monomial Arσr on the left-hand side of (B.15) is not maximally ex-
panded. Then d(Arσr ) = p+1, so that (B.3) yields Arσr ≺ Ψp+1

o . Therefore the observation
that Asσs ≺ Ψo for all s 6= r, together with (B.2) implies that the left-hand side of (B.15)
is O≺

(
Ψ2p
o

)
. Since |L| 6 p, (B.15) follows.

Consider now the case where Arσr on the left-hand side of (B.15) is maximally ex-
panded for all r = 1, . . . , p. The key observation is the following claim about the left-
hand side of (B.15) with a nonzero expectation.

(∗) For each s ∈ L there exists r = τ(s) ∈ {1, . . . , p} \ {s} such that the monomial Arσr
contains a resolvent entry with lower index ks.

In other words, after expansion, the lone label s has a “partner” label r = τ(s), such that
the index ks appears also in the expansion of Ar (note that there may be several such
partner labels r). To prove (∗), suppose by contradiction that there exists an s ∈ L such
that for all r ∈ {1, . . . , p}\{s} the lower index ks does not appear in the monomial Arσr . To
simplify notation, we assume that s = 1. Then, for all r = 2, . . . , p, since Arσr is maximally
expanded, we find that Arσr is independent of k1 (see Definition 4.2). Therefore we have

E
(
Qk1A

1
σ1

)(
Qk2A

2
σ2

)
· · ·
(
QkpA

p
σp

)
= EQk1

(
A1
σ1

(
Qk2A

2
σ2

)
· · ·
(
QkpA

p
σp

))
= 0 ,

where in the last step we used that EQi(X)Y = EQi(XY ) = 0 if Y is independent of i.
This concludes the proof of (∗).

For r ∈ {1, . . . , p} we define `(r) ..=
∑
s∈L 1(τ(s) = r), the number of times that the

label r was chosen as a partner to some lone label s. We now claim that

Arσr = O≺
(
Ψ1+`(r)
o

)
. (B.16)

To prove (B.16), fix r ∈ {1, . . . , p}. By definition, for each s ∈ τ−1({r}) the index ks
appears as a lower index in the monomial Arσr . Since s ∈ L is by definition a lone label
and s 6= r, we know that ks does not appear as an index in Ar. By definition of the
monomials associated with the tree vertex σr, it follows that b(σr), the number of ones
in σr, is at least

∣∣τ−1({r})
∣∣ = `(r) since each application of w1 adds precisely one new

(lower) index. Note that in this step it is crucial that s ∈ τ−1({r}) was a lone label.
Recalling (B.13), we therefore get (B.16).

Using (B.16) and Lemma B.1 we find

∣∣∣(Qk1A1
σ1

)
· · ·
(
QkpA

p
σp

)∣∣∣ ≺ p∏
r=1

Ψ1+`(r)
o = Ψp+|L|

o .

This concludes the proof of (B.15).
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Summing over the binary trees in (B.14) and using Lemma B.1, we get from (B.15)

V (k) = O≺
(
Ψp+|L|
o

)
. (B.17)

We now return to the sum (B.8). We perform the summation by first fixing P ∈ Pp, with
associated lone labels L = L(P ). We find∣∣∣∣∑

k

1(P(k) = P ) tik1 · · · tikp/2tikp/2+1
· · · tikp

∣∣∣∣ 6 (M−1)p−|P | 6 (M−1/2)p−|L| ;

in the first step we used (4.9) and the fact that the summation is performed over |P |
free indices, the remaining p− |P | being estimated by M−1; in the second step we used
that each block of P that is not contained in L consists of at least two labels, so that
p− |P | > (p− |L|)/2. From (B.8) and (B.17) we get

E

∣∣∣∣∑
k

tikXk

∣∣∣∣p ≺ ∑
P∈Pp

(M−1/2)p−|L(P )|Ψp+|L(P )|
o 6 CpΨ

2p
o ,

where in the last step we used the lower bound from (4.8) and estimated the summation
over Pp with a constant Cp (which is bounded by (Cp2)p). Summarizing, we have proved
that

E

∣∣∣∣∑
k

tikXk

∣∣∣∣p ≺ Ψ2p
o (B.18)

for any p ∈ 2N.
We conclude the proof of Theorem 4.7 with a simple application of Chebyshev’s

inequality. Fix ε > 0 and D > 0. Using (B.18) and Chebyshev’s inequality we find

P

(∣∣∣∣∑
k

tikXk

∣∣∣∣ > NεΨ2
o

)
6 N N−εp

for large enough N > N0(ε, p). Choosing p > ε−1(1+D) concludes the proof of Theorem
4.7.

Remark B.3. The identity (4.6) is the only identity about the entries of G that is needed
in the proof of Theorem 4.7. In particular, (4.7) is never used, and the actual entries of
H never appear in the argument.

Proof of Theorem 4.6. The first estimate of (4.11) follows from Theorem 4.7 and the
simple bound Λo 6 Λ ≺ Ψ. The second estimate of (4.11) may be proved by following
the proof of Theorem 4.7 verbatim; the only modification is the bound∣∣QkG(T)

kk

∣∣ =
∣∣Qk(G(T)

kk −m
)∣∣ ≺ Ψ ,

which replaces (B.5). Here we again use the same upper bound Ψo = Ψ for Λ and Λo.
In order to prove (4.12), we write Schur’s complement formula (5.6) using (2.8) as

1

Gii
=

1

m
+ hii −

( (i)∑
k,l

hikG
(i)
kl hli −m

)
. (B.19)

Since |hii| ≺ M−1/2 6 Ψ and |1/Gii − 1/m| ≺ Ψ, we find that the term in parentheses
is stochastically dominated by Ψ. Therefore we get, inverting (B.19) and expanding the
right-hand side, that

vi = Gii −m = m2

(
−hii +

(i)∑
k,l

hikG
(i)
kl hli −m

)
+O≺(Ψ2) .
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Taking the partial expectation Pi yields

Pivi = m2

( (i)∑
k

sikG
(i)
kk −m

)
+O≺(Ψ2) = m2

∑
k

sikvk +O≺(Ψ2) ,

where in the second step we used (4.6), (2.2), and (B.3). Therefore we get, using (4.11)
and QiGii = Qi(Gii −m) = Qivi,

wa
..=

∑
i

taivi =
∑
i

taiPivi +
∑
i

taiQivi = m2
∑
i,k

taisikvk +O≺(Ψ2)

= m2
∑
i,k

saitikvk +O≺(Ψ2) ,

where in the last step we used that the matrices T and S commute by assumption.
Introducing the vector w = (wa)Na=1 we therefore have the equation

w = m2Sw +O≺(Ψ2) , (B.20)

where the error term is in the sense of the `∞-norm (uniform in the components of the
vector w). Inverting the matrix 1−m2S and recalling the definition (2.10) yields (4.12).

The proof of (4.14) is similar, except that we have to treat the subspace e⊥ sepa-
rately. Using (4.13) we write∑

i

tai(vi − [v]) =
∑
i

taivi −
∑
i

1

N
vi ,

and apply the above argument to each term separately. This yields∑
i

tai(vi − [v]) = m2
∑
i

tai
∑
k

sikvk −m2
∑
i

1

N

∑
k

tikvk +O≺(Ψ2)

= m2
∑
i,k

saitik(vk − [v]) +O≺(Ψ2) ,

where we used (2.3) in the second step. Note that the error term on the right-hand side
is perpendicular to e when regarded as a vector indexed by a, since all other terms in
the equation are. Hence we may invert the matrix (1 − m2S) on the subspace e⊥, as
above, to get (4.14).

We conclude this section with an alternative proof of Theorem 4.7. While the un-
derlying argument remains similar, the following proof makes use of an additional de-
composition of the space of random variables, which avoids the use of the stopping rule
from Step (1) in the above proof of Theorem 4.7. This decomposition may be regarded
as an abstract reformulation of the stopping rule.

Alternative proof of Theorem 4.7. As before, we set Xk
..= Qk(Gkk)−1. For simplicity

of presentation, we set tik = N−1. The decomposition is defined using the operations
Pi and Qi, introduced in Definition 4.2. It is immediate that Pi and Qi are projections,
that Pi + Qi = 1, and that all of these projections commute with each other. For a set
A ⊂ {1, . . . , N} we use the notations PA ..=

∏
i∈A Pi and QA ..=

∏
i∈AQi.

Let p be even and introduce the shorthand X̃ks
..= Xks for s 6 p/2 and X̃ks

..= Xks

for s > p/2. Then we get

E

∣∣∣∣ 1

N

∑
k

Xk

∣∣∣∣p =
1

Np

∑
k1,...,kp

E

p∏
s=1

X̃ks =
1

Np

∑
k1,...,kp

E

p∏
s=1

(
p∏
r=1

(Pkr +Qkr )X̃ks

)
.
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Introducing the notations k = (k1, . . . , kp) and [k] = {k1, . . . , kp}, we therefore get by
multiplying out the parentheses

E

∣∣∣∣ 1

N

∑
k

Xk

∣∣∣∣p =
1

Np

∑
k

∑
A1,...,Ap⊂[k]

E

p∏
s=1

(
PAcsQAsX̃ks

)
. (B.21)

Next, by definition of X̃ks , we have that X̃ks = QksX̃ks , which implies that PAcsX̃ks =

0 if ks /∈ As. Hence may restrict the summation to As satisfying

ks ∈ As (B.22)

for all s. Moreover, we claim that the right-hand side of (B.21) vanishes unless

ks ∈
⋃
q 6=s

Aq (B.23)

for all s. Indeed, suppose that ks ∈
⋂
q 6=sA

c
q for some s, say s = 1. In this case, for each

s = 2, . . . , p, the factor PAcsQAsX̃ks is independent of k1 (see Definition 4.2). Thus we get

E

p∏
s=1

(
PAcsQAsX̃ks

)
= E

(
PAc1QA1

Qk1X̃k1

) p∏
s=2

(
PAcsQAsX̃ks

)
= EQk1

((
PAc1QA1X̃k1

) p∏
s=2

(
PAcsQAsX̃ks

))
= 0 ,

where in the last step we used that EQi(X) = 0 for any i and random variable X.
We conclude that the summation on the right-hand side of (B.21) is restricted to

indices satisfying (B.22) and (B.23). Under these two conditions we have

p∑
s=1

|As| > 2 |[k]| , (B.24)

since each index ks must belong to at least two different sets Aq: to As (by (B.22)) as
well as to some Aq with q 6= s (by (B.23)).

Next, we claim that for k ∈ A we have

|QAXk| ≺ Ψ|A|o . (B.25)

(Note that if we were doing the case Xk = QkGkk instead of Xk = Qk(Gkk)−1, then
(B.25) would have to be weakened to |QAXk| ≺ Ψ|A|, in accordance with (4.11). Indeed,
in that case and for A = {k}, we only have the bound |QkGkk| ≺ Ψ and not |QkGkk| ≺
Ψo.)

Before proving (B.25), we show it may be used to complete the proof. Using (B.21),
(B.25), and Lemma B.1, we find

E

∣∣∣∣ 1

N

∑
k

Xk

∣∣∣∣p ≺ Cp
1

Np

∑
k

Ψ2|[k]|
o = Cp

p∑
u=1

Ψ2u
o

1

Np

∑
k

1(|[k]| = u)

6 Cp

p∑
u=1

Ψ2u
o N

u−p 6 Cp(Ψo +N−1/2)2p 6 CpΨ
2p
o ,

where in the first step we estimated the summation over the sets A1, . . . , Ap by a com-
binatorial factor Cp depending on p, in the forth step we used the elementary inequality
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anbm 6 (a + b)n+m for positive a, b, and in the last step we used (4.8) and the bound
M 6 N . Thus we have proved (B.18), from which the claim follows exactly as in the
first proof of Theorem 4.7.

What remains is the proof of (B.25). The case |A| = 1 (corresponding to A = {k})
follows from (B.5), exactly as in the first proof of Theorem 4.7. To simplify notation, for
the case |A| > 2 we assume that k = 1 and A = {1, 2, . . . , t} with t > 2. It suffices to
prove that ∣∣∣∣Qt · · ·Q2

1

G11

∣∣∣∣ ≺ Ψt
o . (B.26)

We start by writing, using (4.6),

Q2
1

G11
= Q2

1

G
(2)
11

+Q2
G12G21

G11G
(2)
11 G22

= Q2
G12G21

G11G
(2)
11 G22

,

where the first term vanishes since G
(2)
11 is independent of 2 (see Definition 4.2). We

now consider

Q3Q2
1

G11
= Q2Q3

G12G21

G11G
(2)
11 G22

,

and apply (4.6) with k = 3 to each resolvent entry on the right-hand side, and multiply
everything out. The result is a sum of fractions of entries of G, whereby all entries in the
numerator are diagonal and all entries in the denominator are diagonal. The leading
order term vanishes,

Q2Q3
G

(3)
12 G

(3)
21

G
(3)
11 G

(23)
11 G

(3)
22

= 0 ,

so that the surviving terms have at least three (off-diagonal) resolvent entries in the
numerator. We may now continue in this manner; at each step the number of (off-
diagonal) resolvent entries in the numerator increases by at least one.

More formally, we obtain a sequence A2, A3, . . . , At, where A2
..= Q2

G12G21

G11G
(2)
11 G22

and

Ai is obtained by applying (4.6) with k = i to each entry of QiAi−1, and keeping only
the nonvanishing terms. The following properties are easy to check by induction.

(i) Ai = QiAi−1.

(ii) Ai consists of the projection Q2 · · ·Qi applied to a sum of fractions such that all
entries in the numerator are diagonal and all entries in the denominator are diag-
onal.

(iii) The number of (off-diagonal) entries in the numerator of each term of Ai is at least
i.

By Lemma B.1 combined with (ii) and (iii) we conclude that |Ai| ≺ Ψi
o. From (i) we

therefore get

Qt · · ·Q2
1

G11
= At = O≺(Ψt

o) .

This is (B.26). Hence the proof is complete.

C Large deviation bounds

We consider random variables X satisfying

EX = 0 , E|X|2 = 1 , (E|X|p)1/p 6 µp (C.1)

for all p ∈ N and some constants µp.
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Theorem C.1 (Large deviation bounds). Let
(
X

(N)
i

)
and

(
Y

(N)
i

)
be independent fam-

ilies of random variables and
(
a

(N)
ij

)
and

(
b
(N)
i

)
be deterministic; here N ∈ N and

i, j = 1, . . . , N . Suppose that all entries X(N)
i and Y

(N)
i are independent and satisfy

(C.1). Then we have the bounds

∑
i

biXi ≺
(∑

i

|bi|2
)1/2

, (C.2)

∑
i,j

aijXiYj ≺
(∑
i,j

|aij |2
)1/2

, (C.3)

∑
i 6=j

aijXiXj ≺
(∑
i 6=j

|aij |2
)1/2

. (C.4)

If the coefficients a(N)
ij and b

(N)
i depend on an additional parameter u, then all of these

estimates are uniform in u (see Definition 2.1), i.e. the threshold N0 = N0(ε,D) in the
definition of ≺ depends only on the family µp from (C.1) and δ from (2.4); in particular,
N0 does not depend on u.

Proof. The estimates (C.2), (C.3), and (C.4) follow from Lemmas B.2, B.3, and B.4 of [8],
combined with Chebyshev’s inequality.
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