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Abstract

We call a point process Z on R exp-1-stable if for every α, β ∈ R with eα + eβ = 1,
Z is equal in law to TαZ + TβZ

′, where Z′ is an independent copy of Z and Tx is
the translation by x. Such processes appear in the study of the extremal particles
of branching Brownian motion and branching random walk and several authors have
proven in that setting the existence of a point process D on R such that Z is equal
in law to

∑∞
i=1 TξiDi, where (ξi)i≥1 are the atoms of a Poisson process of intensity

e−x dx on R and (Di)i≥1 are independent copies of D and independent of (ξi)i≥1. In
this note, we show how this decomposition follows from the classic LePage decompo-
sition of a (union)-stable point process. Moreover, we give a short proof of it in the
general case of random measures on R.
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1 Introduction

Let D be a point process on R, (Di)i≥1 be independent copies of D and (ξi)i≥1 be
the atoms of a Poisson process of intensity e−x dx on R and independent of (Di)i≥1.
Suppose that the point process Z, defined as follows, exists.

Z =

∞∑
i=1

TξiDi (1.1)

It is then easy to see that for every α, β ∈ R with eα + eβ = 1, Z is equal in law
to TαZ + TβZ

′, where Z ′ is an independent copy of Z and Tx is the translation by x.
We call this property exp-1-stability or exponential 1-stability for a reason which will
become clear later.

Processes of the form (1.1) arose during the study of the extremal particles in
branching Brownian motion. Brunet and Derrida [7, p. 18] asked the following ques-
tion: Is it true that every exp-1-stable point process Z admits the decomposition (1.1)?
This question was answered in the affirmative by the author [19], and independently
in the special case appearing in branching Brownian motion by Arguin, Bovier, Kistler
[2, 3] and Aïdékon, Berestycki, Brunet, Shi [1]. The decomposition (1.1) was also shown
for the branching random walk by Madaule [18], relying on the author’s result. See also
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Stable point processes in branching Brownian motion

[13] for a related result concerning branching random walks. Note that the Poisson pro-
cess with intensity e−x dx is well-known in extreme value theory and describes the max-
ima of random variables which are independent and identically distributed according to
a law in the domain of attraction of the Gumbel distribution (see [21, Corollary 4.19]).
It therefore arises naturally here and in similar situations, for example in the theory of
max-stable processes [14].

Immediately after the article [19] was published on the arXiv, the author was in-
formed by Ilya Molchanov that the representation (1.1) could be obtained from a classic
result known as the LePage decomposition of a stable point process, which holds true
in much more general settings.

The purpose of this note is two-fold: First, we want to outline how the theory of
stability in convex cones as developped by Davydov, Molchanov and Zuyev [12] yields
the above-mentioned LePage decomposition of stable point processes and with it the
decomposition (1.1). This is the content of Section 2. Second, we give a succinct proof
of the decomposition (1.1) for easy reference, a proof which uses more elementary
methods than those of [12]. Furthermore, we give the extension of (1.1) to random
measures, which cannot be directly obtained through the results of [12] (see Section 2).
The statements of the results (Theorem 3.1 and Corollary 3.2) and their proofs are the
content of Section 3.

Branching Brownian motion

In the remainder of this introduction, we outline the way exp-1-stable processes
appear in branching Brownian motion (BBM). Define BBM as follows: Starting with one
initial particle at the point x of the real line, this particle performs Brownian motion
until an exponentially distributed time of parameter 1/2, at which it splits into two
particles. Starting from the position of the split, both particles then repeat this process
independently.

We are interested in the point process formed by the right-most particles (draw the
real line horizontally). It turns out that an important quantity is the so-called derivative
martingale Wt =

∑
i(t−Xi(t)) exp(Xi(t)− t), where we sum over all particles at time t

and denote the position of the i-th particle by Xi(t). This martingale has an almost sure
limitW = limtWt > 0 and it has been known since Bramson’s [6] and Lalley and Sellke’s
[17] work that the position of the right-most particle, centred around t − (3/2) log t +

logW , converges in law to a Gumbel distribution. By looking at a suitable Laplace
transform [18], one can strengthen this result to the whole point process Zt formed
by the particles at time t. One obtains the existence of a point process Z on R, such
that, starting from any configuration of finitely many particles, T−t+(3/2) log t−logWZt
converges in law to Z as t→∞.

Once the convergence of the point process is established, one now readily sees that
the limiting process is exp-1-stable [8, 18]: Take two BBMs and denote their derivative
martingale limits by W and W ′, respectively. The union of both processes is then again
a BBM with derivative martingale limit W ′′ = W + W ′. Applying the before-mentioned
convergence result to both BBMs as well as to their union, we get that for almost every
realisation of W and W ′, Tlog(W+W ′)Z is equal in law to TlogWZ + TlogW ′Z

′, where Z

and Z ′ are iid and independent of W and W ′. Since W and W ′ can take any positive
value (for example by varying the initial configurations), this yields the exp-1-stability
of Z.

We emphasise that with this approach, one does not need to characterise the point
process Z directly, as it has been done before [2, 3, 1]. This is helpful for models where
such a direct characterisation would be complicated, for example for branching random
walks [18].
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Stable point processes in branching Brownian motion

2 Stability in convex cones

Let Z be an exp-1-stable point process on R. Define Y to be the image (in the sense
of measures) of Z by the map x 7→ ex (this was suggested by Ilya Molchanov). Y is then
a 1-stable point process on (0,∞), i.e. Y is equal in law to aY + bY ′, where Y ′ is an
independent copy of Y , a, b ≥ 0 with a + b = 1 and aY is the image of Y by the map
x 7→ ax. Note that if Y is a simple point process (i.e. every atom has unit mass), then
the set of its points is a random closed subset of (0,∞) and the stability property is then
also known as the union-stability for random closed sets (see e.g. [20, Ch. 4.1]).

Davydov, Molchanov and Zuyev [12] have introduced a very general framework for
studying stable distributions in convex cones, where a convex cone K is a topological
space equipped with two continuous operations: addition (i.e. a commutative and asso-
ciative binary operation + with neutral element e) and multiplication by positive real
numbers, the operations satisfying some associativity and distributivity conditions1.
Furthermore, K\{e} must be a complete separable metric space. For example, the
space of compact subsets of Rd containing the origin is a convex cone, where the ad-
dition is the union of sets, the multiplication by a > 0 is the image of the set by the
map x 7→ ax and the topology is induced by the Hausdorff distance (see Example 8.11
in [12]). Furthermore, it is a pointed cone, in the sense that there exists a unique origin
0, such that for each compact set K ⊂ Rd, aK → 0 as a → 0 (the origin is of course
0 = {0}). The existence of the origin permits to define a norm by ‖K‖ = d(0,K), where
d is the Hausdorff distance. An example of a convex cone without origin (Example 8.23
in [12]) is the space of (positive) Radon measures on Rd\{0} equipped with the topology
of vague convergence, the usual addition of measures and multiplication by a > 0 being
defined as the image of the measure by the map x 7→ ax, as above.

A random variable Y with values in K is called α-stable, α > 0, if a1/αY + b1/αY ′

is equal in law to (a + b)1/αY for every a, b > 0, where Y ′ is an independent copy
of Y . With the theory of Laplace transforms and infinitely divisible distributions on
semigroups (the main reference to this subject is [4]), the authors of [12] show that to
every α-stable random variable Y there uniquely corresponds a Lévy measure Λ on a
certain second dual of K which is homogeneous of order α, i.e. Λ(aB) = aαΛ(B) for any
Borel set B. Since Λ is a priori only defined on this second dual of K, a considerable
part of the work in [12] is to give conditions under which Λ is supported by K itself.
Moreover, and this is their most important result, under some additional conditions,
Y can be represented by its LePage series, i.e. the sum over the atoms of a Poisson
process on K with intensity measure Λ.

Assuming that all the above conditions are verified, one can now disintegrate the
homogeneous Lévy measure Λ into a radial and an angular component, such that Λ =

cr−α−1dr × σ for c > 0 and some measure σ on the unit sphere S = {x ∈ K : ‖x‖ = 1}.
This is also called the spectral decomposition and σ is called the spectral measure. If σ
has unit mass, then the LePage series can be written as

Y =
∑
i

ξiXi, (2.1)

where ξ1, ξ2, . . . are the atoms of a Poisson process of intensity cr−α−1dr and X1, X2, . . .

are iid with law σ, independent of the ξi.
This allows us to prove the decomposition (1.1) for a simple exp-1-stable point pro-

cess Z: If Y is the point process obtained from Z through the exponential transforma-
tion from the beginning of this section then suppY ∪ {0} is a random compact subset

1One requires in particular that a(x+y) = ax+ay for every a > 0, x, y ∈ K, but not that (a+b)x = ax+bx
for every a, b > 0, x ∈ K.
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of R containing the origin, assuming the process Z almost surely has only finitely many
points in R+ (we will prove this simple fact in Lemma 3.6 below). Hence, it is a random
element of the cone from the first example given above. This cone satisfies the condi-
tions required in [12], such that the results there can be applied to yield the LePage
decomposition (2.1) of Y . This immediately implies the decomposition (1.1) for Z.

If Z is a general random measure on R, the same exponential transformation can be
applied, such that Y becomes a 1-stable random measure on (0,∞), i.e. an element of
the cone from the second example above. Unfortunately, this cone does not satisfy the
conditions in [12], such that their results cannot be used directly2, although their very
general methods could probably be applied in this setting as well.

3 A succinct proof of the decomposition (1.1)

As mentioned in the introduction, we will give here a short proof of the decomposi-
tion (1.1) and its extension to random measures, effectively yielding a LePage decompo-
sition for stable random measures on (0,∞). Instead of applying the general methods
of harmonic analysis on semigroups used in [12], we will rely on the much more ele-
mentary treatment of Kallenberg [15] on random measures. We hope that our proof will
be more accessible to probabilists who are not familiar with the methods used in [12].
Note that it can be easily generalised to give a LePage decomposition for stable random
measures on Rd\{0} or more general spaces. However, for simplicity and because of
its interest in applications, we will stick to the one-dimensional setting. For the same
reasons, we will also keep the notion of exp-stability instead of the usual stability.

3.1 Definitions and notation

We denote by M the space of (positive) Radon measures on R. Note that µ ∈ M if
and only if µ assigns finite mass to every bounded Borel set in R. We further denote
by N the subspace of counting (i.e. integer-valued) measures. It is known (see e.g.
[9], p. 403ff) that there exists a metric d on M which induces the vague topology and
under which (M, d) is complete and separable. We further set M∗ = M\{0} (where
0 denotes the null measure), which is an open subset and hence a complete separable
metric space when endowed with the metric d∗(µ, ν) = d(µ, ν) + |d(µ, 0)−1 − d(ν, 0)−1|,
equivalent to d on M∗ ([5], IX.6.1, Proposition 2). The spaces N and N ∗ = N\{0} are
closed subsets of M and M∗, and therefore complete separable metric spaces as well
([5], IX.6.1, Proposition 1).

For every x ∈ R, we define the translation operator Tx : M → M, by (Txµ)(A) =

µ(A − x) for every Borel set A ⊂ R. Furthermore, we define the measurable map
M :M→ R ∪ {+∞} by

M(µ) = inf{x ∈ R : µ((x,∞)) < 1 ∧ (µ(R)/2)},

where we use the notation x ∧ y = min(x, y) and define inf ∅ =∞ (in particular, M(0) =

+∞). Note that for µ ∈M∗, we haveM(µ) <∞ if and only if µ(R+) <∞. If furthermore
µ ∈ N ∗, then M(µ) is the position of the rightmost atom of µ, i.e. M(µ) = esssupµ. It is
easy to show that the maps (x, µ) 7→ Txµ and M are continuous, hence measurable.

A random measure Z onR is a random variable taking values inM. If Z takes values
in N , we also call Z a point process. Let F denote the set of non-negative measurable

2In particular, the theorems in [12] require that the cone be pointed and that the stable random elements
have no Gaussian component, both conditions being violated by the cone of random measures (see the remark
after Fact 3.3 for the second condition). Note however that although the cone does not have an origin, it is
still possible to define a “norm” on the subspace of random measures which assign finite mass to [1,∞), see
the definition of the map M in Section 3.1.
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functions f : R→ R+ = [0,∞). For every f ∈ F , we define the cumulant

K(f) = KZ(f) = − logE [exp(−〈Z, f〉)] ∈ [0,∞],

where 〈µ, f〉 =
∫
R
f(x)µ(dx). The cumulant uniquely characterises Z ([9], p. 161).

We say that Z is exp-1-stable or simply exp-stable if for every α, β ∈ R with eα+eβ =

1, Z is equal in law to TαZ + TβZ
′, where Z ′ is an independent copy of Z.

The following theorem and its corollary are precise statements of the decomposition
(1.1) and form the main results of this paper.

Theorem 3.1. A function K : F → R+ is the cumulant of an exp-stable random mea-
sure on R if and only if for every f ∈ F ,

K(f) = c

∫
R

e−xf(x) dx+

∫
R

e−x
∫
M∗

[1− exp(−〈µ, f〉)]Tx∆(dµ) dx, (3.1)

for some constant c ≥ 0 and some measure ∆ onM∗, such that for every bounded Borel
set A ⊂ R, ∫

R

ex
∫ ∞
0

(1 ∧ y)∆(µ(A+ x) ∈ dy) dx <∞. (3.2)

Moreover, ∆ can be chosen such that ∆(M(µ) 6= 0) = 0, and as such, it is unique.

Corollary 3.2. A point process Z on R is exp-stable if and only if it has the representa-
tion (1.1) for some point process D on R satisfying∫ ∞

0

P(D(A+ x) > 0)ex dx <∞. (3.3)

Moreover, if the above holds, then there exists a unique pair (m,D) with m ∈ R∪{+∞}
and D a point process on R such that P(M(D) = m) = 1 and (1.1) and (3.3) are
satisfied.

3.2 Infinitely divisible random measures

Our proof of Theorem 3.1 is based on the theory of infinitely divisible random mea-
sures as exposed in Kallenberg [15]. A random measure Z is said to be infinitely di-
visible if for every n ∈ N there exist iid random measures Z(1), . . . , Z(n) such that Z is
equal in law to Z(1) + · · · + Z(n). It is said to be infinitely divisible as a point process if
Z(1) can be chosen to be a point process. Note that a (deterministic) counting measure
is infinitely divisible as a random measure but not as a point process.

The main result about infinitely divisible random measures is the following (see [15],
Theorem 6.1 or [10], Proposition 10.2.IX, however, note the error in the theorem state-
ment of the latter reference: F1 may be infinite as it is defined).

Fact 3.3. A random measure Z with cumulant K(f) is infinitely divisible if and only if

K(f) = 〈λ, f〉+

∫
M∗

[1− exp(−〈µ, f〉)]Λ(dµ),

where λ ∈M and Λ is a measure onM∗ satisfying∫ ∞
0

(1 ∧ x)Λ(µ(A) ∈ dx) <∞, (3.4)

for every bounded Borel set A ⊂ R.
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The probabilistic interpretation ([15], Lemma 6.5) of this fact is that Z is the super-
position of the non-random measure λ and of the atoms of a Poisson process onM∗ with
intensity Λ. In the general framework of infinitely divisible distributions on semigroups
used in [12] the measures λ and Λ are called the Gaussian component and the Lévy
measure, respectively. Fact 3.4 has the following analogue in the case of point pro-
cesses ([10], Proposition 10.2.V), where the measure Λ is also called the KLM measure.
Note that the Gaussian component disappears.

Fact 3.4. A point process Z is infinitely divisible as a point process if and only if λ = 0

and Λ is concentrated on N ∗, where λ and Λ are the measures from Fact 3.3. Then,
(3.4) is equivalent to Λ(µ(A) > 0) <∞ for every bounded Borel set A ⊂ R.

In particular, the Lévy/KLM measure of a Poisson process on R with intensity mea-
sure ν(dx) is the image of ν by the map x 7→ δx.

3.3 Proof of Theorem 3.1

We can now prove Theorem 3.1 and Corollary 3.2. For the “if” part, we note that
(3.2) implies (3.4) for the measure Λ =

∫
e−xTx∆ dx, such that the process with cumu-

lant given by (3.1) exists. The exp-stability is readily verified. Further note that for
point processes the condition (3.3) is equivalent to (3.2).

It remains to prove the “only if” parts. Let Z be an exp-stable random measure.
Then, for α, β ∈ R, such that eα + eβ = 1, we have

K(f) = − logE[exp(−〈Z, f〉)] = − logE[exp(−〈TαZ, f〉)]− logE[exp(−〈TβZ, f〉)]
= K(f(·+ α)) +K(f(·+ β)).

Setting ϕ(x) = K(f(·+ log x)) for x ∈ R+ (with ϕ(0) = 0) and replacing f by f(·+ log x)

in the above equation, we get ϕ(x) = ϕ(xeα) + ϕ(xeβ) for all x ∈ R+, or ϕ(x) + ϕ(y) =

ϕ(x+ y) for all x, y ∈ R+. This is the famous Cauchy functional equation and since ϕ is
by definition non-negative on R+, it is known and easy to show [11] that ϕ(x) = ϕ(1)x

for all x ∈ R+. As a consequence, we obtain the following corollary:

Corollary 3.5. K(f(·+ x)) = exK(f) for all x ∈ R.

Furthermore, it is easy to show that exp-stability implies infinite divisibility. We then
have the following lemma.

Lemma 3.6. Let λ,Λ be the measures corresponding to Z by Fact 3.3.

1. There exists a constant c ≥ 0, such that λ = ce−x dx.

2. For every x ∈ R, we have TxΛ = exΛ.

3. For Λ-almost every µ, we have µ(R+) <∞.

Proof. The measures Txλ, TxΛ are the measures corresponding to the infinitely divisible
random measure TxZ by Fact 3.3. But by Corollary 3.5, the measures exλ and exΛ

correspond to TxZ, as well. Since these measures are unique, we have Txλ = exλ and
TxΛ = exΛ. The second statement follows immediately. For the first statement, note
that c1 = λ([0, 1)) <∞, since [0, 1) is a bounded set. It follows that

λ([0,∞)) =
∑
n≥0

λ([n, n+ 1)) =
∑
n≥0

c1e
−n =

c1e

e− 1
=: c,

hence λ([x,∞)) = ce−x for every x ∈ R. The first statement of the lemma follows. For
the third statement, let In = [n, n+ 1) and I = [0, 1). By (3.4), we have∫ 1

0

Λ(µ(I) > x) dx =

∫ 1

0

xΛ(µ(I) ∈ dx) <∞.
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By monotonicity, the first integral is greater than or equal to xΛ(µ(I) > x) for every
x ∈ [0, 1], hence Λ(µ(I) > x) ≤ C/x for some constant 0 ≤ C < ∞. By the second
statement, it follows that

Λ(µ(In) > e−n/2) = e−nΛ(µ(I) > e−n/2) ≤ Ce−n/2,

for every n ∈ N. Hence,
∑
n∈N Λ

(
µ(In) > e−n/2

)
<∞. By the Borel-Cantelli lemma,

Λ

(
lim sup
n→∞

{
µ(In) > e−n/2

})
= 0,

which implies the third statement.

Lemma 3.7. The measure Λ admits the decomposition Λ =
∫
e−xTx∆ dx, where ∆ is a

unique measure onM∗ with ∆(M(µ) 6= 0) = 0.

Proof. We follow the proof of Proposition 4.2 in [22]. SetM∗0 := {µ ∈ M∗ : M(µ) = 0}
and M∗R := {µ ∈ M∗ : M(µ) < ∞}, which are measurable subspaces of the complete
separable metric spaceM∗ and therefore Borel spaces [16, Theorem A1.6]. By the con-
tinuity of (x, µ) 7→ Txµ, the map φ :M∗R →M∗0×R defined by φ(µ) = (T−M(µ)µ,M(µ)) is
a Borel isomorphism, i.e. it is bijective and φ and φ−1 are measurable. The translation
operator Tx acts onM∗0 ×R by Tx(µ,m) = (µ,m+ x).

Now note that Λ is supported on M∗R by the third part of Lemma 3.6. Denote by
Λφ the image of Λ by the map φ and set An = {µ ∈ M∗0 : µ([−2n, 2n]) ≥ 1/n}. Then
Λφ(An × [−n, n]) < ∞ for every n ∈ N by (3.4). By the theorem on the existence of
conditional probability distributions (see e.g. [16], Theorems 5.3 and 5.4) there exists
then a measure ∆0 onM∗0 with ∆0(An) < ∞ for every n ∈ N and a measurable kernel
K(µ,dm), with K(µ, [−n, n]) <∞ for every n ∈ N, such that

Λφ(dµ,dm) =

∫
M∗0

∆0(dµ)K(µ,dm).

Moreover, we can assume in the above construction that K(µ, [0, 1]) = 1 for every µ ∈
M∗0 and n ∈ N, and with this normalization, ∆0 is unique. By Lemma 3.6, we now
have TxK(µ,dm) = exK(µ,dm) for every x ∈ R and µ ∈ M∗0. As in the proof of the
first statement of Lemma 3.6, we then conclude that K(µ,dm) = c(µ)e−m dm for some
constant c(µ) ≥ 0, and by the above normalization, c(µ) ≡ c := e/(e − 1). Setting
∆(dm) = c∆0(dm) then gives

Λφ(dµ,dm) =

∫
M∗0

∆(dµ)e−m dm.

Mapping Λφ back toM∗R by the map φ−1 finishes the proof.

The “only if” part of Theorem 3.1 now follows from the previous lemmas and Fact 3.3.
As for the proof of Corollary 3.2, if Z is a point process, then Fact 3.4 implies that λ = 0

and that Λ is concentrated on N ∗, hence ∆ as well. Equation (3.2) then implies that
∆(µ(A) > 0) <∞ for any bounded Borel set A ⊂ R. In particular, this holds for A = {0}.
But by Lemma 3.7, ∆ is concentrated on N ∗0 = {µ ∈ N ∗ : M(µ) = 0} and is therefore a
finite measure, since µ ∈ N ∗0 implies µ({0}) > 0.

Now, if P(Z 6= 0) > 0 (the other case is trivial), then ∆(N ∗0 ) > 0 and we set
m = log ∆(N ∗0 ). The measure ∆′ = e−mTm∆ is then a probability measure and Λ =∫
e−xTx∆′ dx. Furthermore, Z satisfies (1.1), where D follows the law ∆′. Uniqueness

of the pair (m,D) follows from Lemma 3.7. This finishes the proof of Corollary 3.2.
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3.4 Finiteness of the intensity

If Z is an exp-stable point process and has finite intensity (i.e. E[Z(A)] <∞ for every
bounded Borel set A ⊂ R), then it is easy to show that the intensity is proportional to
e−x dx. However, in the process which occurs in the extremal particles of branching
Brownian motion or branching random walk, the intensity of the point process D grows
with |x|e|x|, as x → −∞ ([8], Section 4.3). The following simple result shows that in
these cases, Z does not have finite intensity.

Proposition 3.8. Let Z be an exp-stable point process on R and let D be the point
process from Corollary 3.2. Then Z has finite intensity if and only if E[〈D, ex〉] <∞.

Proof. By the Fubini–Tonelli theorem,

E[Z(A)] = E

[∑
i∈N

E[TξiD(A) | ξ]

]
=

∫
R

E[D(A− y)e−y] dy = E

[∫
R

D(A− y)e−y dy

]
,

for every bounded Borel set A ⊂ R. Again by the Fubini–Tonelli theorem we have∫
R

D(A− y)e−y dy =

∫
R

∫
R

1A−y(x)e−y dy D(dx) = 〈D,
∫
R

1A−y(·)e−y dy〉.

For x ∈ R, x ∈ A − y implies y ∈ [minA − x,maxA − x]. Since e−y is decreasing, we
therefore have

|A|e−maxAex ≤
∫
R

1A−y(x)e−y dy ≤ |A|e−minAex,

where |A| denotes the Lebesgue measure of A. We conclude that E[Z(A)] < ∞ if and
only if E[〈D, ex〉] <∞.
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