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Abstract

In this article we give a purely noncommutative criterion for the characterization of
free Meixner random variables. We prove that some families of free Meixner distribu-
tions can be described in terms of the conditional expectation, which has no classical
analogue. We also show a generalization of Speicher’s formula (relating moments
and free cumulants) and establish a new relation in free probability.
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1 Introduction

Classical Meixner distributions appeared in the work of Meixner [22] on the the-
ory of orthogonal polynomials. In free probability the Meixner systems of polynomials
were introduced by Anshelevich [2] and Saitoh and Yoshida [24]. The study of free
Meixner distributions has been an active field of research during the last decade - see
works [3, 4, 9, 10, 11, 14, 20]. It is common in free probability, that their properties,
to a large extent, are analogous to those of the classical Meixner distributions. This
especially regards their characterizations: in both cases it is achieved in terms of gen-
erating functions of the polynomials and the quadratic regression property. The main
aim of this paper is to produce a new characterization of the free Meixner laws which is
close to the quadratic regression property, but with no analog to classical Meixner dis-
tributions. The quadratic regression property for free Meixner distributions has been
established by Bożejko and Bryc [9] - see also Ejsmont [17] for the reverse part. Shortly
this says that the first conditional moment is a linear regression and conditional vari-
ance is quadratic if and only if corresponding variables have free Meixner distributions.
As an example we can give two random variables which have the same distribution (be-
cause the result is more transparent with this assumption). Suppose that X,Y are free,
self-adjoint, non-degenerate, centered and have the same distribution. Then the X and
Y have free Meixner laws (with respect to some state τ , which we will discuss later in
section 2) if and only if there exist constant a, b such that

τ
(
(X−Y)2|X+Y

)
=

1

b+ 1

(
I+ a(X+Y) + b(X+Y)2

)
.
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Noncommutative characterization of free Meixner processes

The key result of the present paper says that the above condition can be replaced by(
b

b+ 1
(X+Y) +

a

b+ 1
I

)
τ
(
(X−Y)2|X+Y

)
= τ

(
(X−Y)(X+Y)(X−Y)|X+Y

)
.

(1.1)

Loosely speaking, the formula (1.1) says that we can discard (X+Y) linearly from the
right side of equation (1.1) in the front of the conditional expectation if and only if X
andY have free Meixner distribution. This result is unexpected because in commutative
probability equation (1.1) takes the form

(X+Y)τ
(
(X−Y)2|X+Y

)
= τ

(
(X−Y)(X+Y)(X−Y)|X+Y

)
for any classical variables X and Y. In particular, we apply fact (1.1) to prove the main
result of this paper about characterization of free Lévy processes. It is worth mention-
ing here that a Laha-Lukacs type characterizations of random variables in free probabil-
ity are also studied by Szpojankowski, Wesołowski [27] and Bryc [13]. The first authors
give a characterization of noncommutative free-Poisson and free-Binomial variables by
properties of the first two conditional moments, which mimics Lukacs type assumptions
known from classical probability. Bryc in [13] proved that q-Gaussian processes have
linear regressions and quadratic conditional variances.

The paper is organized as follows. In section 2 we review basic free probability, free
Meixner laws and the statement of the main result. In the third section we look more
closely at non-crossing partitions with first two elements in the same block. In this
section we also give a new characterization of free Meixner systems and we generalize
the Speicher’s identity. Finally, in Section 4 we prove our main results.

2 Free Meixner laws and statement of the main result

2.1 Free probability and Meixner laws

We assume that our probability space is a von Neumann algebra A with a normal
faithful tracial state τ : A → C, i.e. τ(·) is linear, continuous in weak* topology, τ(XY) =

τ(YX), τ(I) = 1, τ(XX∗) ≥ 0 and τ(XX∗) = 0 implies X = 0 for all X,Y ∈ A. A
(noncommutative) bounded random variable X is a self-adjoint (i.e. X = X∗) element
of A. We are interested in the two-parameter family of compactly supported probability
measures (so that their moments do not grow faster than exponentially) {µa,b : a ∈
R, b ≥ −1} with the moment generating function given by the formula

M(z) =

∞∑
i=0

τ(Xi)zi =
1 + 2b+ az −

√
(1− za)2 − 4z2(1 + b)

2(z2 + az + b)
, (2.1)

for |z| small enough (the branch of the analytic square root should be determined by
the condition that =(z) > 0 ⇒ =(Gµ(z)) 6 0 (see [24]). Equation (2.1) describes the
distribution with mean zero and variance one (see [24]). For particular values a, b we
have six types of distribution: the Wigner semicircle, the free Poisson, the free Pascal
(free negative binomial), the free Gamma, a law that we will call pure free Meixner and
the free binomial law (see [9, 17] for more details).

Let C〈X1, . . . ,Xn〉 denote the non-commutative ring of polynomials in variablesX1, . . . ,Xn.
The free (non-crossing) cumulants are the k-linear maps Rk : C〈X1, . . . ,Xk〉 → C de-
fined by the recursive formula (connecting them with mixed moments)

τ(X1X2 . . .Xn) =
∑

ν∈NC(n)

Rν(X1,X2, . . . ,Xn), (2.2)
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where

Rν(X1,X2, . . . ,Xn) := ΠB∈νR|B|(Xi : i ∈ B) (2.3)

and NC(n) is the set of all non-crossing partitions of {1, 2, . . . , n} (see [23, 26]). Some-
times we will write Rk(X) = Rk(X, . . . ,X).

The R-transform of a random variable X is defined as RX(z) =
∑∞
i=0Ri+1(X)zi, where

Ri(X) is a sequences defined by (2.2) (see [7, 23] for more details). If X has the distri-
bution µ, then sometimes we will write Rµ for the R-transform of X.

Random variables X1, . . . ,Xn are freely independent (free) if, for every k ≥ 2 and every
non-constant choice of Yi ∈ {X1, . . . ,Xn}, where i ∈ {1, . . . , k} (for some positive inte-
ger k) we get Rk(Y1, . . . ,Yk) = 0.

The R-transform linearizes the free convolution, i.e. if µ and ν are (compactly sup-
ported) probability measures on R, then we have

Rµ�ν(z) = Rµ(z) +Rν(z), (2.4)

where � denotes the free convolution (the free convolution � of measures µ, ν is the
law of X+Y where X, Y are free and have laws µ, ν respectively).

If B ⊂ A is a von Neumann subalgebra and A has a trace τ , then there exists a unique
conditional expectation from A to B with respect to τ , which we denote by τ(·|B). This
map is a weakly continuous, completely positive, identity preserving, contraction and it
is characterized by the property that, for any X ∈ A and Y ∈ B, τ(XY) = τ(τ(X|B)Y )

(see [8, 28]). For a fixed X ∈ A by τ(·|X) we denote the conditional expectation corre-
sponding to the von Neumann algebra B generated by X. The conditional variance is
defined as usual

V ar(X|B) = τ((X− τ(X|B))2|B). (2.5)

A non-commutative stochastic process (Xt) is a free Lévy process if it has free addi-
tive and stationary increments. For a more detailed discussion of free and classical
Lévy processes with finite moments of all orders we refer to [6, 21]. Let us first recall
some properties of free Lévy processes which follow from [9]. If (Xt) is a free Lévy
process such as τ(Xt) = 0 and τ(X2

t ) = t for all t > 0 then

τ(Xs|Xu) =
s

u
Xu (2.6)

for all 0 < s < u. The conditional variance for free Lévy process is equal (for 0 < s < u)

V ar(Xs|Xu) = τ((Xs − τ(Xs|Xu))2|Xu) =
1

u2
τ((uXs − sXu)2|Xu). (2.7)

For more details about free convolutions and free probability theory, the reader can
consult [19, 23, 29].
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2.2 The main result

The main result of this paper is the following characterization of free Meixner pro-
cesses in terms of the conditional expectation. The proof of this theorem is given in
Section 4.

Theorem 2.1. Suppose that (Xt≥0) is a free Lévy process such that τ(Xt) = 0 and
τ(X2

t ) = t for all t > 0. Then the increment (Xt+s − Xt)/
√
s (t, s > 0) has the free

Meixner law µa/
√
s,b/s (for some b > 0) if and only if for all t < s

τ(XtXsXt|Xs) =

(
b

b+ s
Xs +

as

b+ s
I

)
V ar(Xt|Xs) +

t2

s2
X3
s. (2.8)

Remark 2.2. The existence of a free Lévy process was demonstrated by Biane [8] who
proved that from every infinitely divisible distribution we can construct a free Lévy
process. We assume that b > 0 in Theorem 2.1 because a free Meixner variable is
infinitely divisible if and only if b > 0 (see [5, 9]).

The proof of Theorem 2.1 is based on the following fact.

Theorem 2.3. Suppose thatX,Y are free, self-adjoint, non-degenerate, centered (τ(X) =

τ(Y) = 0) and τ(X2 + Y2) = 1. Then X/
√
α and Y/

√
β have the free Meixner laws

µa/
√
α,b/α and µa/

√
β,b/β , respectively, where a ∈ R, b ≥ −1 if and only if

τ(X|X+Y) = α(X+Y) (2.9)

and(
b(X+Y) + aI

)
V ar(X|X+Y) = (b+ 1)τ

(
(βX− αY)(X+Y)(βX− αY)|X+Y

)
(2.10)

for some α, β > 0 and α+ β = 1. Additionally, we assume that b ≥ max{−α,−β} if b < 0

(free binomial case).

Corollary 2.4. For particular values a and b we get that X and Y have (after simple
computations and under the assumption of Theorem 2.3)

• the free Poisson law if and only if (b = 0 and a 6= 0)

τ
(
(βX− αY)(X+Y)(βX− αY)|(X+Y)

)
= aτ

(
(βX− αY)2|(X+Y)

)
,

• the normalized Kesten law if and only if (b 6= 0 and a = 0)

τ
(
(βX− αY)(X+Y)(βX− αY)|(X+Y)

)
=

(
b(X+Y)

b+ 1

)
τ
(
(βX− αY)2|(X+Y)

)
.

2.3 Complementary facts and indications

We need the following lemmas on conditional expectations to prove the main result.
The lemmas 2.5 and 2.6 were proved in [9] and [18], respectively.

Lemma 2.5. If τ(U1V
n) = τ(U2V

n) for all n ≥ 1, then τ(U1|V) = τ(U2|V).

Lemma 2.6. If X andY are free independent and centered, then the condition βRk(X) =

αRk(Y) for β, α > 0 and all integers k is equivalent to

τ(X|X+Y) =
α

α+ β
(X+Y). (2.11)
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Let NCk(n + k) denote the set of all non-crossing partitions of {1, 2, . . . , n + k} (where
n ≥ 0) which have first k elements in the same block. For example for k = 3 and n = 2,
see Figure 1.

Figure 1: Non-crossing partitions of {1, 2, 3, 4, 5} with the first 3 elements in the same
block.

Definition 2.7. Let Z be a self-adjoint element of the von Neumann algebra A. We
define

c(k)n = c(k)n (Z) =
∑

ν∈NCk(n+k)

Rν(Z),

and the following functions (power series):

C(k)(z) =

∞∑
n=0

c(k)n zk+n where k ≥ 1 (2.12)

for sufficiently small |z| < ε and z ∈ C.

Remark 2.8. This series is convergent because we consider compactly supported prob-
ability measures, so moments and cumulants do not grow faster than exponentially (see
[7]). This implies that c(k)n also does not grow faster than exponentially.

Now we introduce a lemma which we will use in the proof of the theorems 3.2, 3.6 and
2.3 (for the proof see [18]).

Lemma 2.9. Let Z be a (self-adjoint) element of the von Neumann algebra A then

C(k)(z) = M(z)C(k+1)(z) +Rk(Z)zkM(z). (2.13)

Below we recall some results of [9], which we will apply in the proof of the main theorem
to calculate the moment generating function of free convolution.

Lemma 2.10. (A). Suppose that X, Y are free, self-adjoint and X/
√
α,Y/

√
β have the

free Meixner laws µa/√α,b/α and µa/
√
β,b/β respectively, where α, β > 0, α + β = 1 and

a ∈ R, b ≥ −1. Then X +Y has the law µa,b and the moment generating function M(z)

of X+Y satisfying quadratic equation

(z2 + az + b)M2(z)− (1 + az + 2b)M(z) + 1 + b = 0. (2.14)

(B). Suppose that X, Y are free, self-adjoint, non-degenerate, τ(X|X +Y) = α(X +Y)

and the moment generating function M(z) ofX+Y satisfying quadratic equation (2.14)
where α, β > 0, α+ β = 1 and a ∈ R, b ≥ −1. Then X and Y have the free Meixner laws
µa/
√
α,b/α and µa/

√
β,b/β , respectively.
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3 A new relation in free probability

3.1 A generalization of Speicher’s identity

By the main result of [25], we have the following relation

M(z)
(
1− zRX(zM(z))

)
= 1. (3.1)

The relation (3.1) can be generalized as following:

Proposition 3.1. Suppose that X is a self-adjoint element of the algebra A and denote
by µ the distribution of X, then

C(k)
µ (z) = R(k)

X (zM(z))zkM(z) (3.2)

where R(k)
X (z) =

∑∞
i=k Ri(X)zi−k.

Proof. We prove this by the induction on k. The case k = 1 is clear because C(1)
µ (z) =

M(z)− 1. The induction step k ⇒ k+ 1 (for k > 1) follows immediately by using Lemma
2.9 which gives

C(k+1)(z) =
C(k)(z)

M(z)
−Rk(X)zk = R(k)

X (zM(z))zk −Rk(X)zk = R(k+1)
X (zM(z))zk+1M(z).

3.2 A new relation between moments of free Meixner laws

Any probability measure µ on the real line, whose all moments are finite, has two
associated sequences of Jacobi parameters αi, βi for example, µ is the spectral measure
of the tridiagonal matrix (see [5, 16])



α0, β0, 0, 0,
. . .

1, α1, β1, 0,
. . .

0, 1, α2, β2,
. . .

0, 0, 1, α3,
. . .

. . .
. . .

. . .
. . .

. . .


. (3.3)

We will denote this fact by

J(µ) =

(
α0, α1, α2, . . .

β0, β1, β2, . . .

)
(3.4)

with αn(µ) := αn, βn(µ) := βn. If the measure µ has all finite moments, then by a theo-
rem of Stieltjes (see [1]), its Cauchy-Stieltjes transform can be expressed as a continued
fraction:

Gµ(z) =

∫
R

1

z − y
µ(dy) =

1

z − α0 −
β0

z − α1 −
β1

z − α2 −
β2

. . .

(3.5)
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If some βi = 0, the continued fraction terminates, in which case the subsequent α
and β coefficients can be defined arbitrarily. See [12, 16] for more details. The monic
orthogonal polynomials Pn for µ satisfy a recursion relation

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), (3.6)

with P−1(x) = 0.
Thus it is natural to ask about the relation between measures whose Jacobi parameters
are described by (3.4) and some other measures whose Jacobi parameter are equal(

α1, α2, α3, . . .

β1, β2, β3, . . .

)
. (3.7)

Theorem 3.2. Suppose that X is a self-adjoint element of the algebra A and denote
by µ the distribution of X. If the measure µ has Jacobi parameters described by (3.4)
where β1 > 0, then the relation between the measure ρ of the variable Y described by
parameter (3.7) is given by

c(2)n (µ) = β0mn(ρ), (3.8)

for all n > 0 .

Proof. From (3.5) we have

Gµ(z) =
1

z − α0 − β0Gρ(z)
. (3.9)

Using the relations Mµ(z) = 1
zGµ( 1

z ) and Mρ(z) = 1
zGρ(

1
z ) we see that

Mµ(z)(1− zα0 − β0z2Mρ(z)) = 1. (3.10)

Applying Lemma 2.9 to k = 1 we get

Mµ(z)− 1 = Mµ(z)C(2)
µ (z) + α0zMµ(z), (3.11)

where C(2)
µ (z) is function for X. Now we apply (3.11) to the equation (3.10) and after a

simple computation, we obtain

C(2)
µ (z) = β0z

2Mρ(z), (3.12)

which is equivalent to (3.8) and this completes the proof.

Corollary 3.3. If β0 = 1 then c(2)n (µ) is the moment of the variable described by Jacobi
parameters (3.7).

Remark 3.4. The normalized free Meixner distributions µa,b have Jacobi parameter

J(µa,b) =

(
0, a, a, a, . . .

1, b+ 1, b+ 1, b+ 1, . . .

)
, (3.13)

in other words their Jacobi parameters are independent of n for n ≥ 1 (see also [5]).

Proposition 3.5. Suppose that X is a self-adjoint element of the algebra A and have
the free normalized Meixner law µa,b where b > −1. Then

c(2)n (µa,b) =

∫
xndwa,b+1(dx), (3.14)

for all n > 0 and wa,b is the Wigner semicircle law with mean a and variance b.
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Proof. Under the assumption that X is a free Meixner random variable we have that
Jacobi parameter given in (3.13). By Theorem 3.2 we get that c(2)n (µ) is the moment of
the measure described by Jacobi parameters are(

a, a, a, a, . . .

b+ 1, b+ 1, b+ 1, b+ 1, . . .

)
, (3.15)

so c
(2)
n (µ) is the moment of the Wigner semicircle law with mean a and variance b + 1

(see also [5, 9]).

Theorem 3.6. Suppose that X is a self-adjoint, non-degenerate such that τ(X) = 0 and
τ(X2) = 1. Then X has the free Meixner laws µa,b where a ∈ R, b > −1 if and only if its
moments mn = τ(Xn) satisfy the recursion

(b+ 1)

∫
xndwa,b+1(dx) = bmn+2 + amn+1 +mn, (3.16)

for all integers n ≥ 0 and wa,b is the Wigner semicircle law with mean a and variance b.

Proof. ⇒: Suppose that X have the free Meixner laws µa,b. Then, from Lemma 2.10 the
moment generating functions satisfy equation (2.14). If in (2.14) we multiply the both
sides by (1− C(2)(z)) and use Lemma 2.9 with k = 1 (R1(X) = 0), we get

M(z)(b+ za+ z2)− (2b+ 1 + za) + (b+ 1)(1− C(2)(z)) = 0, (3.17)

where C(2)(z) is function for X. Expanding M(z) in a power series (M(z) = 1 +∑∞
i=1 z

imi), we get

bmn+2 + amn+1 +mn = (b+ 1)c(2)n . (3.18)

Now we apply Proposition 3.5 and get c(2)n equal to (3.14).
⇐: Let’s suppose, that equality (3.16) holds. Multiplying (3.16) by zn+2 for n > 0 we
obtain (m1 = 0 and m2 = 1)

M(z)(b+ za+ z2)− (2b+ 1 + za) + (b+ 1) = (b+ 1)z2M ′(z), (3.19)

where M ′(z) is the moment generation function for the Wigner semicircle law with
mean a and variance b+ 1. The above equation is equivalent to

M(z) =
(b+ 1)z2M ′(z) + b+ za

b+ za+ z2
. (3.20)

It is well known (see [9, 23]) that

M ′(z) =
1− az −

√
(1− za)2 − 4z2(1 + b)

2z2(1 + b)
. (3.21)

Thus after simple computation, we see that M(z) is equal to (2.1), which proves the
theorem.

4 Proof of the main theorem

Bellow we prove Theorem 2.3.
Proof of Theorem 2.3. ⇒: Suppose that X/

√
α and ,Y/

√
β have the free Meixner laws

µa/
√
α,b/α and µa/

√
β,b/β , respectively. The condition (2.9) holds because we can use

Theorem 3.1 from [17]. From this theorem we also have αRk(Y) = βRk(X). From
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Lemma 2.10 the moment generating functions M of X + Y satisfy equation (2.14). If
in (2.14) we multiply the both sides by (1 − C(2)(z)) and use Lemma 2.9 with k = 1

(R1(X+Y) = 0), we get

M(z)(b+ za+ z2)− (2b+ 1 + za) + (b+ 1)(1− C(2)(z)) = 0, (4.1)

where C(2)(z) is function for X + Y. Now we apply Lemma 2.9 with k = 2 to equation
(4.1) (using the assumption R2(X+Y) = 1) and after simple computations, we see that

M(z)(b+ za+ z2)− (b+ za) = (b+ 1)(M(z)C(3)(z) + z2M(z)) (4.2)

or equivalently

b+ za− z2b− (b+ za)

M(z)
= (b+ 1)C(3)(z) (4.3)

for |z| small enough. Then we again use Lemma 2.9 with k = 1 to get

−z2b+ (b+ za)C(2)(z) = (b+ 1)C(3)(z). (4.4)

Expanding the above equation in power series, we get

bc
(2)
n+1 + ac(2)n = c(3)n (b+ 1) for all n > 0. (4.5)

From the assumption of Theorem 2.3 and Lemma 2.6 we get

Rk(βX− αY,X+Y,X+Y, . . . ,X+Y) = βRk(X)− αRk(Y) = 0 (4.6)

and similarly for k > 3

Rk(βX− αY,X+Y, βX− αY,X+Y, . . . ,X+Y) = β2Rk(X) + α2Rk(Y)

= βαRk(X+Y). (4.7)

Now we use the moment-cumulant formula (2.2)

τ((βX− αY)(X+Y)(βX− αY)(X+Y)n)

=
∑

ν∈NC(n+3)

Rν(βX− αY,X+Y, βX− αY,X+Y,X+Y, . . . ,X+Y︸ ︷︷ ︸
n-times

)

=
∑

ν∈NC3(n+3)

Rν(βX− αY,X+Y, βX− αY,X+Y,X+Y, . . . ,X+Y)

+
∑

ν∈NC(n+3)�NC3(n+3)

Rν(βX− αY,X+Y, βX− αY,X+Y,X+Y, . . . ,X+Y).

Let us look more closely at the second summand from the last equation. We have that
either the first and the third elements are in different blocks, or they are in the same
block. In the first case, the second sum (from the last equation) vanishes by (4.6). On
the other hand, if they are in the same block, the sum disappears by τ(X+Y) = 0. So,
by (4.7) we have

τ((βX− αY)(X+Y)(βX− αY)(X+Y)n)

= αβ
∑

ν∈NC3(n+3)

Rν(X+Y,X+Y,X+Y,X+Y,X+Y, . . . ,X+Y︸ ︷︷ ︸
n-times

) = αβc(3)n (4.8)
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and by the same method

τ((βX− αY)2(X+Y)n)

= αβ
∑

ν∈NC2(n+2)

Rν(X+Y,X+Y,X+Y,X+Y, . . . ,X+Y︸ ︷︷ ︸
n-times

) = αβc(2)n . (4.9)

Therefore the equation (4.5) is equivalent to

bτ((βX− αY)2(X+Y)n+1) + aτ((βX− αY)2(X+Y)n)

= τ((βX− αY)(X+Y)(βX− αY)(X+Y)n)(b+ 1), (4.10)

for all n > 1 or equivalently

τ((b(X+Y) + aI)(βX− αY)2(X+Y)n)

= τ((βX− αY)(X+Y)(βX− αY)(X+Y)n)(b+ 1), (4.11)

for all n > 0. Now we use Lemma 2.5 which essentially shows

(b(X+Y) + aI)τ((βX− αY)2|X+Y)

= (b+ 1)τ((βX− αY)(X+Y)(βX− αY)|X+Y) (4.12)

because b(X+Y) + aI is in the algebra generated by X+Y.
⇐: Let’s suppose now, that equalities (2.9) and (2.10) hold. Then, in particular, we have
equation (4.12). Multiplying (4.12) by (X + Y)n for n > 0 and applying τ(·) we obtain
(4.10). As it can be seen in the above proof ”⇒”, each of the above steps are equivalent,
so from (4.10) we get equation (2.14). Lemma 2.10 (part B) says that X and Y have the
Meixner laws, which completes the proof of Theorem 2.3.

�

Now we are ready to a prove the main theorem.
Proof of Theorem 2.1. Let’s rewrite Theorem 2.3 for the variables (non-degenerate)
X and Y such that τ(X2) = α, τ(Y2) = β and τ(Y) = τ(X) = 0. After a sim-
ple parameter normalization (α by α

α+β , β by β
α+β , a by a√

α+β
, b by b

α+β ) we get that

X/
√
α = X√

α+β
/
√
α√

α+β
and Y/

√
β = Y√

α+β
/
√
β√

α+β
have the free Meixner laws µa/√α,b/α

and µa/
√
β,b/β , respectively, if and only if (after a simple computation)

(b+ α+ β)τ((βX− αY)(X+Y)(βX− αY)|X+Y)

= (b(X+Y) + a(α+ β)I)τ((βX− αY)2|X+Y), (4.13)

i.e. we apply Theorem 2.3 with X equal to X√
α+β

and Y equal to Y√
α+β

and the pa-

rameters mentioned above in the brackets. Now we consider two variables Xt/
√
t and

(Xs − Xt)/
√
s− t, which are free and centered. Thus, the formula (4.13) tells us that

Xt/
√
t and (Xs −Xt)/

√
s− t (X = Xt, Y = Yt, α = t, β = s− t), have the free Meixner

laws µa/
√
t,b/t and µa/

√
s−t,b/(s−t), respectively, if and only if

τ((tXs − sXt)Xs(tXs − sXt)|Xs)

(2.6)
= t2X3

s − t2X3
s + s2τ(XtXsXt|Xs)− t2X3

s

=
(bXs + asI)

(b+ s)
τ((tXs − sXt)

2|Xs). (4.14)

Thus Theorem 2.1 holds.
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�

Open problems and remarks. In Theorem 2.1 of this paper we assume that random
variables are bounded that is Xt ∈ A. It would be interesting to show if this assumption
can be replaced by Xt ∈ L2(A, τ). It would be also worth to investigate if Theorem 3.6
is related to the main result of [15].
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