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Abstract

Suppose that G and H are finite, connected graphs, G regular, X is a lazy random
walk on G and Z is a reversible ergodic Markov chain on H. The generalized lamp-
lighter chain X� associated with X and Z is the random walk on the wreath product
H o G, the graph whose vertices consist of pairs (f, x) where f = (fv)v∈V (G) is a
labeling of the vertices of G by elements of H and x is a vertex in G. In each step,
X� moves from a configuration (f, x) by updating x to y using the transition rule of
X and then independently updating both fx and fy according to the transition prob-
abilities on H; fz for z 6= x, y remains unchanged. We estimate the mixing time of X�

in terms of the parameters of H and G. Further, we show that the relaxation time of
X� is the same order as the maximal expected hitting time of G plus |G| times the
relaxation time of the chain on H.
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1 Introduction

Suppose that G and H are finite connected graphs with vertices V (G), V (H) and
edges E(G), E(H), respectively. We refer to G as the base and H as the lamp graph,
respectively. Let X (G) = {f : V (G) → H} be the set of markings of V (G) by elements
of H. The wreath product H o G is the graph whose vertices are pairs (f, x) where
f = (fv)v∈V (G) ∈ X (G) and x ∈ V (G). There is an edge between (f, x) and (g, y) if and
only if (x, y) ∈ E(G), (fx, gx) , (fy, gy) ∈ E(H) and fz = gz for all z /∈ {x, y}. Suppose that
P and Q are transition matrices for Markov chains on G and on H, respectively. The
generalized lamplighter walk X� (with respect to the transition matrices P and Q) is
the Markov chain on H oG which moves from a configuration (f, x) by

1. picking y adjacent to x in G according to P , then
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Mixing time for walks on wreath products

2. updating each of the values of fx and fy independently according to Q on H.

The state of lamps fz at all other vertices z ∈ G remain fixed. It is easy to see that if P
and Q are irreducible, aperiodic and reversible with stationary distribution πG and πH ,
respectively, then the unique stationary distribution of X� is the product measure

π�
(
(f, x)

)
= πG(x) ·

∏
v∈V (G)

πH (fv) ,

and X� is itself reversible. A typical configuration can be seen in Fig 1 for the case
where H is a cycle and G is a torus. In this article, we will be concerned with the
special case that P is the transition matrix for the lazy random walk on G. In particular,
P is given by

P (x, y) :=

{
1
2 if x = y,

1
2d(x) if {x, y} ∈ E(G),

(1.1)

for x, y ∈ V (G) and where d(x) is the degree of x. We further assume that the transition
matrix Q on H is irreducible and aperiodic. We further assume that the Markov chain
on H is lazy, i.e. Q(x, x) ≥ 1

2 ∀x ∈ H. These assumptions and the assumption (1.1)
guarantees that we avoid issues of periodicity and the eigenvalues of H o G are all
positive.

a

a

W

Figure 1: A typical state of the generalized lamplighter walk. Here H = Z4 and G = Z2
4,

the red bullets on each copy of H represents the state of the lamps over each vertex
v ∈ G and the walker is drawn as a red W bullet.

1.1 Main Results

In order to state our general result, we first need to review some basic terminology
from the theory of Markov chains. Let P be the transition kernel for a lazy random walk
on a finite, connected graph G with stationary distribution π.

The ε-mixing time of P on G in total variation distance is given by

tmix(G, ε) := min

{
t ≥ 0 : max

x∈V (G)

1

2

∑
y

∣∣P t(x, y)− π(y)
∣∣ ≤ ε} . (1.2)

Throughout, we set tmix(G) := tmix(G, 1
4 ).
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Mixing time for walks on wreath products

The relaxation time of a reversible Markov Chain with transition matrix P is

trel(G) :=
1

1− λ2
(1.3)

where λ2 is the second largest eigenvalue of P .
The maximal hitting time of P is

thit(G) := max
x,y∈V (G)

Ex[τy], (1.4)

where τy denotes the first time t that X(t) = y and Ex stands for the expectation under
the law in which X(0) = x. The random cover time τcov is the first time when all vertices
have been visited by the walker X, and the cover time tcov(G) is

tcov(G) := max
x∈V (G)

Ex[τcov]. (1.5)

The next needed concept is that of strong stationary times.

Definition 1.1. A randomized stopping time τ is called a strong stationary time for the
Markov chain Xt on G if

Px [Xτ = y, τ = t] = π(y)Px[τ = t],

that is, the position of the walk when it stops at τ is independent of the value of τ .

The adjective randomized means that the stopping time can depend on some extra
randomness, not just purely the trajectories of the Markov chain, for a precise definition
see [13, Section 6.2.2].

Definition 1.2. A state h(x) ∈ V (G) is called a halting state for a stopping time τ and
initial state x if {Xt = h(x)} implies {τ ≤ t}.

Our main results are summarized in the following theorems:

Theorem 1.3. Let us assume that G and H are connected graphs with G regular and
the Markov chain on H is lazy, ergodic and reversible. Then there exist universal con-
stants 0 < c1, C1 <∞ such that the relaxation time of the generalized lamplighter walk
on H oG satisfies

c1 ≤
trel(H oG)

thit(G) + |G|trel(H)
≤ C1, (1.6)

Theorem 1.4. Assume that the conditions of Theorem 1.3 hold. Then there exist uni-
versal constants 0 < c2, C2 <∞ such that the mixing time of the generalized lamplighter
walk on H oG satisfies

c2
(
tcov(G) + trel(H)|G| log |G|+ |G|tmix(H)

)
≤ tmix(H oG),

tmix(H oG) ≤ C2

(
tcov(G) + |G|tmix(H,

1

|G|
)

)
.

(1.7)

If further the Markov chain is such that

(A) There is a strong stationary time τH for the Markov chain on H which possesses a
halting state h(x) for every initial starting point x ∈ H,

then the upper bound of (1.7) is sharp.
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1.2 Previous Work

The mixing time of Z2 o G was first studied by Häggström and Jonasson in [10] in
the case of G being the complete graph Kn and the one-dimensional cycle Zn. Gener-
alizing their results, Peres and Revelle [17, Theorem 1.2, 1.3] proved that there exists
constants 0 < ci, Ci <∞ depending on ε such that for any transitive graph G,

c1thit(G) ≤ trel(Z2 oG) ≤ C1thit(G),

c2tcov(G) ≤ tmix(Z2 oG, ε) ≤ C2tcov(G).

The vertex transitivity condition was dropped in [13, Theorem 19.1, 19.2]. These bounds
match with Theorems 1.3 and 1.4 since Hn = Z2 implies that the terms not containing
Hn in the denominator of (1.6) and in the bounds in (1.7) dominate.

In [16], it is shown that tmix(Z2 o Gn) ∼ 1
2 tcov(Gn) whenever (Gn) is a sequence of

graphs satisfying some uniform local transience assumptions, including Gn = Zdn with
d ≥ 3 fixed.

Moving towards larger lamp spaces, if the base is the complete graph Kn and |Hn| =
o(n) one can determine the order of mixing time from [13, Theorem 20.7], since in
this case the lamplighter chain is a product chain on

∏n
i=1Hn. Levy [14] investigated

random walks on wreath products when H 6= Z2. In particular, he determined the order
of the mixing time of Knλ oKn, 0 ≤ λ ≤ 1, and he also had upper and lower bounds for
the case Hd oZn, i.e. H is the d-dimensional hypercube and the base is a cycle of length
n, however, the bounds failed to match for general d and n.

The mixing time of Hn = Z2 is closely related to the cover time of the base graph,
and thus it helps understanding the geometric structure of the last visited points by
random walk [6, 5, 4, 16]. Further, larger lamp graphs give more information on the
local time structure of the base graph G. This relates our work to the literature on
blanket time (when all the local times of vertices are within a constant factor of each
other) [3, 8, 19].

1.3 Outline

The remainder of this article is structured as follows. In Section 2 we state a few
necessary theorems and lemmas about the Dirichlet form, strong stationary times, dif-
ferent notions of distances and their relations. In Lemmas 2.3 and 2.5 we construct
a crucial stopping time τ� and a strong stationary time τ�2 on H o G which we will use
several times throughout the proofs later. Then we prove the main theorem about the
relaxation time in Section 3, and the mixing time bounds in Section 4.

1.4 Notations

Throughout the paper, objects related to the base or the lamp graph will be indexed
by G and H, respectively, and � always refers to an object related to the whole H o G.
Unless misleading, G and H refers also to the vertex set of the graphs, i.e. v ∈ G means
v ∈ V (G). Pµ,Eµ denotes probability and expectation under the conditional law where
the initial distribution of the Markov chain under investigation is µ. Similarly, Px is the
law under which the chain starts at x.

2 Preliminaries

In this section we collect the preliminary lemmas to be able to carry through the
proofs quickly afterwards. The reader familiar with notions of strong stationary times,
separation distance, and Dirichlet forms might want jump forward to Lemmas 2.3 and
2.5 immediately, and check the other lemmas here only when needed.
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The first lemma is a common useful tool to prove lower bounds for relaxation times,
by giving the variational characterization of the spectral gap. First we start with a
definition.

Let P be a reversible transition matrix with stationary distribution π on the state
space Ω and let Eπ[φ] :=

∑
y∈Ω φ(y)π(y). The Dirichlet form associated to the pair (P, π)

is defined for functions φ and η on Ω by

E(φ, η) := 〈(I − P )φ, η〉π =
∑
y∈Ω

(I − P )φ(y)η(y)π(y).

It is not hard to see [13, Lemma 13.11] that

E(φ) := E(φ, φ) =
1

2
Eπ
[
(φ(X1)− φ(X0))2

]
(2.1)

The next lemma relates the spectral gap of the chain to the Dirichlet form (for a short
proof see [2] or [13, Lemma 13.12]):

Lemma 2.1 (Variational characterization of the spectral gap). The spectral gap γ =

1− λ2 of a reversible Markov Chain satisfies

γ = min
φ:Varπφ6=0

E [φ]

Varπφ
, (2.2)

where Varπφ = Eπ[φ2]− (Eπ[φ])
2
.

A very useful object to prove the upper bound on trel and both bounds for tmix is the
concept of strong stationary times. Recall the definition from (1.1). It is not hard to see
([13, Lemma 6.9]) that this is equivalent to

Px [Xt = y, τ ≤ t] = π(y)Px[τ ≤ t]. (2.3)

To be able to relate the tail of the strong stationary times to the mixing time of the
graphs, we need another distance from stationary measure, called the separation dis-
tance:

sx(t) := max
y∈Ω

[
1− P t(x, y)

π(y)

]
. (2.4)

The relation between the separation distance and any strong stationary time τ is the
following inequality from [2] or [13, Lemma 6.11]:

∀x ∈ Ω : sx(t) ≤ Px(τ > t). (2.5)

Throughout the paper, we will need a slightly stronger result than (2.5), namely
from [7, Remark 2.39] and also from the proof of (2.5) [13, Lemma 6.11] it follows that
in (2.5) equality holds if τ has a halting state h(x) for x. Unfortunately, we just point
out that Remark 6.12 of [13] does not hold and the statement can not be reversed: the
state h(x, t) maximizing the separation distance at time t can also depend on t and thus
the existence of a halting state is not necessarily needed to get equality in (2.5).

On the other hand, one can always construct τ such that (2.5) holds with equality
for every x ∈ Ω. This is a key ingredient to our proofs, so we cite it as a Theorem (with
adjusted notation to the present paper).

Theorem 2.2. [Aldous, Diaconis] [1, Proposition 3.2] Let (Xt, t ≥ 0) be an irreducible
aperiodic Markov chain on a finite state space Ω with initial state x and stationary
distribution π, and let sx(t) be the separation distance defined as in (2.4). Then
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1. if τ is a strong stationary time for Xt, then sx(t) ≤ Px(τ > t) for all t ≥ 0.

2. Conversely, there exists a strong stationary time τ such that sx(t) = Px(τ > t)

holds with equality.

Combining these, we will call a strong stationary time τ separation optimal if it
achieves equality in (2.5). Mind that every stopping time possessing halting states is
separation optimal, but the reversed statement is not necessarily true. The next two
lemmas, which we will use several times, construct two stopping times for the graph
H oG. The first one will be used to lower bound the separation distance and the second
one upper bounds it.

We start with introducing the notation

Lv(t) = 2

t∑
i=0

1(Xi = v)− δX0,v − δXt,v (2.6)

for the number of moves on the lamp graphHv, v ∈ G by the walker up to time t. Slightly
abusing terminology, we call it the local time at vertex v ∈ G.

Let us further denote the random walk with transition matrix Q on H by Z. Since the
moves on the different lamp graphs Hv, v ∈ G are taken independently given Lv(t), v ∈
G, we can define for each v ∈ G an independent copy of the chain Z, denoted by Zv,
running on Hv. Thus, the position of the lamplighter chain at time t can be described as

(F t, Xt) =
(
(Zv(Lv(t)))v∈G , Xt

)
Below we will use copies of a strong stationary time τH for each v ∈ G, meaning that
τH(v) is defined in terms of Zv, and given the local times Lv(t), τH(v)-s are independent
of each other. The next lemma constructs a stopping time τ� at which the lamps are
already stationary (the walker’s position not yet).

Lemma 2.3. Let τH be any strong stationary time for the Markov chain on H. Take
the independent copies (τH(v))v∈G given the local times Lv(t), realized on the Markov
chains Zv(·) and define the stopping time τ� for X� by

τ� := inf {t : ∀v ∈ G : τH(v) ≤ Lv(t)} . (2.7)

Then, for any starting state (f
0
, x0) we have

P(f
0
,x0)

[
X�t = (f, x), τ� = t

]
=
∏
v∈G

πH(fv) · P(f
0
,x0) [Xt = x, τ� = t] . (2.8)

If further τH has halting states then the vectors (h(fv(0)), y) are halting state vectors
for τ� and initial state (f

0
, x0) for every y ∈ G.

We postpone the proof and continue with a corollary of the lemma:

Corollary 2.4. Let τH be a strong stationary time for the Markov chain on H which
has a halting state h(z) for any z ∈ H. Then define τ� as in Lemma 2.3. Then for the
separation distance on the lamplighter chain H oG the following lower bound holds:

s(f
0
,x0)(t) ≥ P(f

0
,x0) [τ� > t] .

Proof. Observe that reaching the halting state vector (h(fv(0)), x) implies the event
τ� ≤ t so we have

1−
P(f

0
,x0) [X�t = (h(fv(0)), x)]

πG(x)
∏
v∈G

πH (h(fv(0)))
= 1−

P(f
0
,x0) [X�t = (h(fv(0)), x), τ� ≤ t]
πG(x)

∏
v∈G

πH (h(fv(0)))
(2.9)
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Now pick a vertex xx0,t ∈ G which minimizes P [Xt = xx0,t|τ� ≤ t] /πG(xx0,t). Then, this
quotient is at most 1 since both the numerator and the denominator are probability
distributions on G. Then, using this and Lemma 2.3, the right hand side of (2.9) equals

1−
P(f

0
,x0) [Xt = xx0,t|τ� ≤ t]P(f

0
,x0)[τ

� ≤ t]
πG(xx0,t)

≥ 1− P(f
0
,x0) [τ� ≤ t] .

Clearly the separation distance is larger than the left hand side of (2.9), and the proof
of the claim follows. Note that the proof only works if τH has a halting state and thus it
is separation-optimal.

Proof of Lemma 2.3. First we show that (2.8) holds using the conditional independence
of τH(v)-s given the number of moves Lv(t) on the lamp graphs H(v), v ∈ G. Clearly,
conditioning on the trajectory of the walker {X1, . . . , Xt−1, Xt = x} =: X[1,t] contains
the knowledge of Lv(t)-s as well. We will omit to note the dependence of P on initial
state (f

0
, x0) for notational convenience. The left hand side of condition (2.3) equals

P
[
X�t = (f, x), τ� ≤ t

]
=
∑
X[1,t]

P
[
X�t = (f, x), τ� ≤ t

∣∣X[1,t]

]
P
[
X[1,t]

]
.

Recall that Zv stands for the Markov chain on the lamp graph Hv, and their conditional
independence given Lv(t)-s. Due to (2.3) and τH being strong stationary for H we have
for all v ∈ G that

P[Zv(Lv(t)) = fv, τH(v) ≤ Lv(t)|X[1,t]] = πH(fv) · P[τH(v) ≤ Lv(t)
∣∣X[1,t]].

Now we use that τH(v)-s are independent given the local times (Lv(t))v∈G to see that

P
[
X�t = (f, x), τ� ≤ t|X[1,t]

]
= P

[
∀v ∈ G : Zv(Lv(t)) = fv, τH(v) ≤ Lv(t), Xt = x|X[1,t]

]
=
∏
v∈G

πH(fv)
∏
v∈G

P
[
τH(v) ≤ Lv(t)|X[1,t]

]
Note that the second product gives exactly P

[
τ� ≤ t|X[1,t]

]
, yielding

P
[
X�t = (f, x), τ� ≤ t

]
=
∏
v∈G

πH(fv)·

∑
X[1,t]

P
[
τ� ≤ t|X[1,t]

]
P[X[1,t]]

 (2.10)

Note that the product before the sum means that the states of the lamps are already
stationary at this point. Further, Xt = x remains fixed over the summation over all
possible X[1, t] trajectories in the last display. Thus, carrying out the summation yields

P[X�t = (f, x), τ� ≤ t] =
∏
v∈G

πH(fv)P[Xt = x, τ� ≤ t]. (2.11)

This is almost the same as the statement in (2.8). To get the statement we write

P[X�t = (f, x), τ� = t] = P[X�t = (f, x), τ� ≤ t]− P[X�t = (f, x), τ� ≤ t− 1] (2.12)

We investigate the second term first. By the law of total probability we have

P[X�t = (f, x), τ� ≤ t− 1] =∑
(g,z)

P[X�t = (f, x)|X�t−1 = (g, z), τ� ≤ t− 1] · P[X�t−1 = (g, z), τ� ≤ t− 1] (2.13)
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Since τ� is a stopping time, {τ� ≤ t− 1} only depends on X�1 , . . . , X
�
t−1, thus we have

P[X�t = (f, x)|X�t−1 = (g, z), τ� ≤ t− 1] = P
(
(g, z), (f, x)

)
. (2.14)

Now by (2.11) applied at t− 1 we obtain

P[X�t−1 = (g, z), τ� ≤ t− 1] =
∏
v∈G

πH(gv)P[Xt−1 = z, τ� ≤ t− 1]. (2.15)

Now we combine (2.14) and (2.15) with (2.13) and use the structure of the transition
matrix of X� to establish the summation in (2.13)

P[X�t = (f, x), τ� ≤ t− 1] =
∏
v∈G

πH(fv)
∑
z∈G

P (z, x)P[Xt−1 = z, τ� ≤ t− 1]. (2.16)

Now we use the stopping time property again to rewrite P (z, x) in the other direction
to see ∑

z∈G
P (z, x)P[Xt−1 = z, τ� ≤ t− 1] =

∑
z∈G

P[Xt = x|Xt−1 = z, τ� ≤ t− 1]

· P[Xt−1 = z, τ� ≤ t− 1]

= P[Xt = z, τ� ≤ t− 1]

Combine this with (2.16) and use it in (2.12). For the first term in (2.12) use the in-
equality (2.11). Then we arrive at

P[X�t = (f, x), τ� = t] =
∏
v∈G

πH(fv)
(
P[Xt = z, τ� ≤ t]− P[Xt = z, τ� ≤ t− 1]

)
,

which finishes the proof of (2.8). Note that this lemma proves that the lamps at time τ�

are already stationary, but the walker not yet. The vector of halting states (h(fv(0)), y) is
a halting state for τ� for any y ∈ G, since reaching the halting state vector (h(fv)v∈G, y)

means that all the halting states h(fv), v ∈ G have been reached on all the lamp graphs
Hv, v ∈ G-s. Thus, by definition of the halting states, all the strong stationary times
τH(v) have happened. Then, by its definition, τ� has happened as well.

Recall the definition (2.7) of τ�, at which all the lamps are stationary. By waiting an
additional time for the walker to mix its position, we can construct a strong stationary
time for H oG, described in the next lemma.

Lemma 2.5. Let τ� be the stopping time defined as in Lemma 2.3, and let τG(x) be a
strong stationary time for G starting from x ∈ G and define τ�2 by

τ�2 := τ� + τG(Xτ�), (2.17)

where the chain is re-started at time τ� from (F τ� , Xτ�) independently of the past, and
τG is measured in this new walk. Then, τ�2 is a strong stationary time for H oG.

Proof of Lemma 2.5. The intuitive idea of the proof is based on the fact that τG is con-
ditionally independent of τH -s and thus the lamp graphs stay stationary after reaching
τ�, and stationarity on G is reached by adding the term τG(Xτ�). The proof is not very
difficult but it needs a delicate sequence of conditioning. To have shorter formulas, we
write shortly P for P(f

0
,x0). First we condition on the events {τ� = s,X�s = (g, y)} and

make use of (2.8) from Lemma 2.3.

P
[
X�t = (f, x), τ�2 = t

]
=

∑
s≤t;(g,y)

P
[
X�t = (f, x), τ�2 = t| τ� = s,X�s = (g, y)

]
·
∏
v∈G

πH(gv) · P [τ� = s,Xs = y] .
(2.18)
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Now for the conditional probability inside the sum on the right hand side we have

P
[
X�t = (f, x), τ�2 = t|τ� = s,X�s = (g, y)

]
= P

[
X�t = (f, x); τG(y) ◦ θs = t− s|τ� = s,X�s = (g, y)

]
where τG(y) ◦ θs means the time-shift of τG(y) by s, and we also used that τG is only
depending on y. We claim that

∑
g

(
P(g,y)

[
X�t−s = (f, x), τG(y) = t− s

] ∏
v∈G

πH(gv)

)

= Py[Xt−s = x, τG(y) = t− s]
∏
v∈G

πH(fv)

= πG(x)Py[τG = t− s]
∏
v∈G

πH(fv).

The first equality holds true since τG(y) is independent of the lampgraphs and the tran-
sition rules of X� on H o G tells us that the lamp-chains stay stationary. We omit the
details of the proof. The second equality is just the strong stationarity property of τG.
Thus, using this and rearranging the order of terms on the right hand side of (2.18) we
end up with ∑

s≤t,y∈G

Py[τG = t− s]P[τ� = s,Xs = y] · πG(x)
∏
v∈G

πH(fv).

Then, realizing that the sum is just P[τ� + τG(Xτ�) = t] finishes the proof.

We continue with a lemma which relates the separation distance to the total varia-
tion distance: Let us define first

dx(t) := ‖P t(x, ·)− π(·)‖TV =
1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ . (2.19)

The total variation distance of the chain from stationarity is defined as:

d(t) := max
x∈Ω

dx(t).

The next lemma relates the total variation and the separation distance:

Lemma 2.6. For any reversible Markov chain and any state x ∈ Ω, the separation
distance from initial vertex x satisfies:

dx(t) ≤ sx(t) (2.20)

sx(2t) ≤ 4d(t) (2.21)

Proof. For a short proof of (2.20) see [2] or [13, Lemma 6.13], and combine [13, Lemma
19.3] with a triangle inequality to conclude (2.21).

We will also make use of the following lemma: ([13, Corollary 12.6])

Lemma 2.7. For a reversible, irreducible and aperiodic Markov chain,

lim
t→∞

d(t)1/t = λ∗,

with λ∗ = max{|λ| : λ eigenvalue of P, λ 6= 1}.
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The two fundamental steps to prove Lemma 2.7 are the inequalities stating that for
all x ∈ Ω we have

dx(t) ≤ sx(t) ≤ λt∗
πmin

,

|λ2|t ≤ 2d(t)

(2.22)

with πmin = miny∈Ω π(y). This inequality follows from [13, Equation (12.11), (12.13)].
We note that Lemma 2.6 implies that the assertion of Lemma 2.7 stays valid if we

replace d(t)1/t by the separation distance s(t)1/t.

3 Relaxation time bounds

3.1 Proof of the lower bound of Theorem 1.3

We prove c1 = 1/(16 log 2) in the lower bound of the statement of Theorem 1.3. First
note that it is enough to prove that thit(G) and |G|trel(H) are both lower bounds, hence
their average is a lower bound as well. First we start showing the latter.

Let us denote the second largest eigenvalue of Q by λH and the corresponding
eigenfunction by ψ. It is clear that EπH (ψ) = 0 and we can normalize it such that
VarπH (ψ) = EπH (ψ2) = 1 holds. Let us define

φ : V (H oG)→ R, φ((f, x)) =
∑
w∈G

ψ(fw),

thus φ is actually not depending on the position of the walker, only on the configuration
of the lamps. Let X�t = (F t, Xt) be the lamplighter chain with stationary initial distri-
bution π�. In the sequel we will calculate the Dirichlet form (2.1) for φ at time t, first
conditioning on the path X[0, t] of the walker:

Et[φ] =
1

2
Eπ� [(φ(X�t )− φ(X�0 ))2]

=
1

2
Eπ�

(
Eπ� [(φ(X�t )− φ(X�0 ))2|X[0, t]]

) (3.1)

We remind the reader that in each step of the lamplighter walk, the state of the lamp
graph Hv is refreshed both at the departure and arrival site of the walker. Thus, know-
ing the trajectory of the walker implies that we also know Lv(t), the number of steps
made by the Markov chain Zv on Hv. Moreover, the collection of random walks (Zv)v∈G
on the lamp graphs are independent given Lv(t)-s.

We can calculate the conditional expectation on the right hand side of (3.1) by using
the argument above and the fact that EπH (ψ) = 0 as follows:

Eπ�
[
(φ(X�t )− φ(X�0 ))2|X[0, t]

]
=
∑
v∈G

Eπ�

[(
ψ(Zv(Lv(t))− ψ(Zv(0))

)2∣∣Lv(t)] (3.2)

Next, the product form of the stationary measure π� ensures that we can move to πH
inside the sum and condition on the starting state Zv(0):

Eπ�

[
(ψ (Zv(Lv(t)))− ψ (Zv(0)))

2 ∣∣Lv(t)]
=2EπHψ

2 − 2EπH
[
ψ (Zv(0))EZv(0)

[
ψ (Zv(Lv(t)))

∣∣Zv(0), Lv(t)
]]
,

Since ψ was chosen to be the second eigenfunction for Q, clearly
EZv(0)

[
ψ
(
Zv(Lv(t))

∣∣Lv(t)) ] = λ
Lv(t)
H ψ(Zv(0)). Using the normalization

EπH [ψ2] = 1, we arrive at

Eπ�

[
(φ(X�t )− φ(X�0 ))

2 |X[0, t]
]

= 2|G| − 2
∑
v∈G

λ
Lv(t)
H (3.3)
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Since
∑
v∈G Lv(t) = 2t and the function λxH is convex, Jensen’s inequality implies that∑

v∈G
λ
Lv(t)
H ≥ |G| · λ2t/|G|

H .

Combining this with (3.3) and (3.1) and setting t := t∗ = |G|trel(H) = |G|/(1 − λH) we
arrive at

Et(φ) ≤ |G|
(

1− e2
log λH
1−λH

)
≤ |G|

(
1− 2−4−1

)
,

where in the last step we assumed λH > 1/2, since in this case we have (1−λH)−1 log λH >

−2 log 2. On the other hand, if λH < 1/2, than trel(H) < 2 and we will use the other lower
bound thit(G) which is at least of order |G|. Dividing by Varπ�φ = |G|, and using the
variational characterization of the spectral gap in Lemma 2.1, we get that the spectral
gap γt∗ at time t∗ satisfies

γt∗ ≤ 1− 2−5.

Since γt is by definition the spectral gap of the chain at time t, we have

1− λ2(H oG)t
∗
≤ 1− 2−5. (3.4)

Thus
5 log 2 ≥ t∗ (1− λ2(H oG)) ,

so we get a lower bound trel(H oG) ≥ 1
5 log 2 |G|trel(H).

To get the lower bound thit(G)/4 we adjust the proof for 0 − 1 lamps (H = Z2) [13,
Theorem 19.1] to our setting. First pick a vertex w ∈ G which maximizes the expected
hitting time EπG(τw). As before, we will use the second eigenfunction ψ with eigenvalue
λH with EπH (ψ) = 0,EπH (ψ2) = 1 and define

φ
(
(f, x)

)
:= ψ(fw).

Easy to see with the same conditioning argument we used in (3.2) and (3.3) that the
Dirichlet form at time t equals

Et(φ) = 1− Eπ�

[
λ
Lw(t)
H

]
Now we will show that Eπ�

[
λ
Lw(t)
H

]
≥ 1/4. To see this we first note that for any t we

have for the hitting time τw of w ∈ G

Ev(τw) ≤ t+ thitPv[τw > t]

EπG(τw) ≤ t+ thitPπG [τw > t]

To see the first line: either the walk hits w before time t, or the expected additional time
it takes to arrive at w is bounded by thit regardless of where it is at time t. The second
line follows by averaging over πG.

Next, [13, Lemma 10.2] states that thit ≤ 2 maxv Eπ[τv] holds for every irreducible
Markov chain. We exactly picked w such that it maximizes EπG(τv), so we have thit ≤
2EπG [τw], so multiplying the previous displayed inequality by 2 gives

thit ≤ 2t+ 2thitPπG [τw > t]

Now substituting t = thit/4 and rearranging terms results in

PπG

[
τw >

thit

4

]
≥ 1

4
.
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Since {Lw(thit/4) = 0} = {τw > thit/4}, we can use this inequality to obtain the upper
bound

Ethit/4(φ) = 1− Eπ�

[
λ
Lw(thit/4)
H

]
≤ 1− PπG [τw > thit/4] ≤ 1− 1

4
=

3

4
.

Analogous to the last lines of the proof of the lower bound above, (see (3.4)) we obtain
the other desired lower bound:

trel(H) ≥ 1

2 log 2

1

4
thit(G).

Putting together the two bounds we get

trel(H oG) ≥ max

{
1

8 log 2
thit(G),

1

5 log 2
|G|trel(H)

}
≥ 1

16 log 2
(thit(G) + |G|trel(H)) .

3.2 Proof of the upper bound of Theorem (1.3)

To prove the upper bound, we will estimate the tail behavior of the strong stationary
time τ�2 in Lemma 2.5, relate it to s�(t), the separation distance on H oG, and then use
Lemmas 2.7 and 2.6 to see that s�(t)1/t → λ�. We will use separation-optimal τH and
τG in the construction of τ�2 . The existence is guaranteed by Theorem 2.2. We will use
P for P(f,x) for notational convenience. Combining (2.5) and the fact that τ� happens
when all the stopping times τH(v), v ∈ G have happened on the lamp graphs, by union
bound we have for any choice of 0 < α < 1

s�(f,x)(t) ≤ P(f,x) [τ�2 > t] ≤ P(f,x) [τ� > αt] + P(f,x) [τ�2 > t|τ� < αt]

≤ P[τcov > αt/2] (3.5)

+ P
[
∃w ∈ G : Lw(αt) < αt

2|G|
∣∣τcov ≤ αt/2

]
(3.6)

+ P

[
∃w ∈ G : τH(w) > Lw(αt)

∣∣∀v ∈ G : Lv(αt) ≥
αt

2|G|

]
(3.7)

+ max
(g,y)

P(g,y) [τG > (1− α)t] (3.8)

Namely, there are four possibilities: The first option is that there is a state w ∈ G which
is not hit yet, i.e. the cover time of the chain is greater than αt/2: giving the term
(3.5). The constant 1/2 could have been chosen differently, we picked αt/2 such that
the remaining αt/2 time still should be enough to gain large enough local time on the
vertices v ∈ G. Secondly, even though any state w on the graph G is reached before
time αt/2, the remaining time was not enough to have at least αt/2|G| many moves on
some lamp graph H(w), term (3.6). The third option is that even though there have
been many moves on all the lamp graphs, there is a vertex w ∈ G where τH(w) has
not happened yet, yielding the term (3.7). We will handle the three terms separately.
The fourth term handles the case where the strong stationary time τG is too large. (For
convenience, we will write t instead of αt in estimating the first three formulas.)

We can estimate the first term (3.5) by a union bound:

P[τcov > t/2] ≤ P[∃w : τw > t/2] ≤ |G|2e−
log 2

4
t
thit , (3.9)

where thit is the maximal hitting time of the graphG, see (1.4). To see this, use Markov’s
inequality on the hitting time of w ∈ G to obtain that for all starting states v ∈ G we
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have Pv[τw > 2thit] ≤ 1/2, and then run the chain in blocks of 2thit. In each block we hit
w with probability at least 1/2, so we have

Pv[τw > K(2thit)] ≤
1

2K
.

To get it for general t, we can move from bt/thitc to t/thit by adding an extra factor of 2,
and (3.9) immediately follows by a union bound.

For the third term (3.7) we prove the following upper bound:

P
[
∃w : τH(w) ≥ Lw(t)

∣∣∀v : Lv(t) >
t

2|G|

]
≤ |G| 1

πmin(H)
e
− t

2|G|trel(H) . (3.10)

To get this bound we estimate the probability P
[
τH(w) ≥ Lw(t)

∣∣Lw(t) ≥ t
2|G|

]
on a sin-

gle lamp graph and then use a union bound to lose a factor |G| and arrive at the right
hand side. First note that according to Lemma 2.7, the tail of the strong stationary time
τH is driven by λtH . More precisely, using the inequality (2.22) we have that for any
initial state h ∈ H:

Ph

[
τH(w) ≥ t

2|G|

]
≤ sH

(
t

2|G|

)
≤ 1

πmin(H)
λ
t/2|G|
H

≤ 1

πmin(H)
exp

{
− (1− λH)t

2|G|

}
.

Since we have made at least Lw(t) ≥ t
2|G| steps on each coordinate, the claim (3.10) fol-

lows. The fourth term (3.8) can be handled analogously and yields an error probability
exp{−ct/trel(G)} which then, taking the power of 1/t and limit as in Lemma 2.7, will lead
to a term of order trel(G). Then, taking into account that trel(G) ≤ ctmix(G) ≤ Cthit(G)

holds for any lazy reversible chain (see e.g. [13, Chapter 11.6,12.4]), we can ignore this
term.

The intuition behind the estimates below for the second term (3.6) is that since the
total time was at least t/2 after hitting, regularity of G implies that the average number
of moves on a lamp graph equals t/|G| by the double refreshment at any visit to the
vertex. Thus, the probability of having less than t/(2|G|) moves must be small.

More precisely, we introduce the excursion-lengths to a vertex w ∈ G: Let us denote
for all w ∈ G the first return time to state w as

Rw = inf{t > 0 : Xt = w|X0 = w}.

This is the same as τ+
w , the first non-negative hitting time of w, but to maintain clearer

notation we denote it by Rw if it refers to the return time. The strong Markov property
implies that the length of the i-th excursion R(i)

w , defined as the time spent between the
(i− 1)th and ith visit to w, are i.i.d random variables distributed as the first return time
Rw.

Thus, having not enough local time on some site w ∈ G can be expressed in terms of
the excursion lengths R(i)

w -s as follows:

P

[
∃w : Lw(t) ≤ t

2|G|
∣∣τcov ≤

t

2

]
≤ |G|max

w∈G
Pw

t/4|G|∑
i=1

R(i)
w ≥

t

2

 , (3.11)

since conditioning on hitting the vertex before t/2 ensures that we had at least t/2 steps
to gain the t/4|G| visits to w, and by the definition (2.6) of Lv(t), this guarantees that
Lw(t) < t/2|G|.
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We aim to estimate the right hand side of (3.11) using the moment generating func-
tion of the centered first return time R̃w := Rw − Ew[Rw]. Note that Ew[Rw] = |G| by
the regularity of G. Thus we can write

Pw

t/4|G|∑
i=1

R(i)
w ≥

t

2

 = Pw

t/4|G|∑
i=1

R̃(i)
w ≥

t

4

 .
Using a Markov inequality applied to the function eβx, β > 0 and the independence of
R̃

(i)
w -s we get that the probability in the previous display is less than

exp

{
− t

4
β + logM(β)

t

4|G|

}
, (3.12)

with M(β) = Ew[eβR̃w ]. Let us use the series expansion for the logarithm of the moment
generating function:

logM(β) =
β2

2
Varw[Rw] +O(β3),

and set β = 1/(2thit), which is sufficiently small, so we can neglect the higher powers of
β. Then, (3.12) turns into

Pw

t/4|G|∑
i=1

R(i)
w ≥

t

2

 ≤ exp

{
− t

8thit

(
1− Varw[Rw]

4thit|G|

)}
≤ exp

{
− t

16thit

}
. (3.13)

where for the last inequality we still need to show that

Lemma 3.1. Let Rw denote the first return time of simple random walk on a graph G

to the vertex w ∈ G. Then we have

Ew[R2
w] =

2Eπτ
+
w − 1

π(w)
. (3.14)

In particular, when G is regular, then we have

Varw[Rw] ≤ 2thit · |G|. (3.15)

Given this lemma, mind that all the estimates (3.9), (3.10) and (3.13) were inde-
pendent of the initial state (f, x) ∈ H o G, so using the second inequality in (2.22) and
maximizing over all possible initial states yields us

|λ2|t ≤ 2d�(t) ≤ 2s�(t) ≤ 4|G|
πmin(H)

exp

{
− t

2|G|trel(H)

}
+ |G| exp

{
− t

16thit

}
+ 4|G| exp

{
− log 2

4

t

thit

} (3.16)

In the final step we apply Lemma 2.7: we take the power 1/t and limit as t tends to
infinity with fixed graph sizes |G| and |H| on the right hand side of (3.2) to get an upper
bound on λ2. Then we use that (1− e−x) ≤ x+ o(x) for small x and obtain the bound on
trel finally:

trel(H oG) ≤ max {2|G|trel(H), 16thit} .

This finishes the proof of the upper bound on the relaxation time.
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Proof of Lemma 3.1. The proof follows the lines of the proof of [11, Corollary 2.4.1],
but we add it for the reader’s convenience. We write a recursion formula for the second
moment of the hitting times Swv := Ew[(τ+

v )2] considering the first step of the Markov
chain with transition matrix P :

Swv =
∑
u:u6=v

PwuEu[(τ+
v + 1)2] + Pwv · 1. (3.17)

Expanding the square in (3.17) gives

Swv = 1 +
∑
u:u 6=v

Pwu[Suv + 2Eu(τ+
v )]

Averaging this over w with weights π(w), we obtain∑
w

π(w)Swv = 1 +
∑
u:u6=v

π(u)[Suv + 2Eu(τ+
v )]

Adding 2 = 2π(v)Ev(τ
+
v ) to both sides yields

π(v)Svv + 2 = 1 + 2Eπ(τ+
v )]

which is equivalent to (3.14). This proves the first statement of the Lemma. For the
second statement note that if the graph G is regular, 1/π(w) = |G|. Further, clearly∑
v π(v)Ev[τ

+
w ] ≤ thit, thus (3.15) also follows.

4 Mixing time bounds

Based on the fact that H has a separation-optimal strong stationary time τH , the
idea of the proofs is to relate the separation distance to the tail behavior of the stopping
times τ� and τ�2 constructed in Lemmas 2.3 and 2.5, respectively. Then these estimates
are turned into bounds of the total variation distance using the relations in Lemma
2.6. This method gives us the upper bound in (1.7) and the corresponding lower bound
under the assumption (A). For the lower bound without the assumption, we will need
slightly different methods.

4.1 Proof of the upper bound of Theorem 1.4

The idea of the proof is to use appropriate top quantiles of the strong stationary time
τH on H, and give an upper bound on the tail of the strong stationary time τ�2 defined
in Lemma 2.5. Throughout, we (only) need that τH and τG in the construction of τ�2 are
separation-optimal. The existence is guaranteed by Theorem 2.2. (Thus, τH does not
necessarily possess halting states.)

Let us denote the worst-case initial state top ε-quantile of a stopping time τ as

tquant
ε (τ) := max

y∈Ω
inf{t : Py[τ > t] ≤ ε} (4.1)

We continue with the definition of the blanket time:

B2 := inf
t

{
∀v, w ∈ G :

Lw(t)

Lv(t)
≤ 2

}
. (4.2)

Let us further denote

B2 := max
v∈G

Ev(B2) (4.3)
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It is known from [8] that there exist universal constants C and C ′ such that C ′tcov ≤
B2 ≤ Ctcov. Let us define

tuH := tquant
1/16|G|(τH), tG := tquant

1/16 (τG).

Our first goal is to show that at time

8B2 + |G|tuH + tG =: t�

we have for any starting state (f, x) that

P(f,x)[τ
�
2 > t�] ≤ 1

4
. (4.4)

We remind the reader that τ�2 = τ�+ τG(Xτ�) and thus the following union bound holds:

P [τ�2 > t�] ≤ P [B2 > 8B2] + P [τ� > |G|tuH + 8B2|B2 ≤ 8B2]

+ max
v∈G

Pv [τG > tG|B2 ≤ 8B2, τ
� < 8B2 + |G|tuH ] ,

(4.5)

where in the third term we mean that we restart the chain after time 8B2 + |G|tuH , and
measure τG starting from there. The first term on the right hand side is less than 1/8

by Markov’s inequality, the third is less than 1/16 by the definition of the worst case
quantile. The second term can be handled by conditioning on the local time sequence
of vertices and on the blanket time: (for shorter notation we introduce t1 := |G|tuH+8B2)

P [τ� > |G|tuH + 8B2|B2 ≤ 8B2]

=
∑

s≤8B2,(Lv(t1))v

P
[
∃w : {τH(w) > Lw(t1)}

∣∣ (Lv(t1))v ,B2 = s
]
·P [(Lv(t1))v ,B2 = s] (4.6)

The fact that B2 ≤ 8B2 means that the number of visits to every vertex v ∈ G must be
greater than half of the average, which is at least 1

2 t
u
H . Since Lw(t) is twice the number

of visits by (2.6), {τH(w) > Lw(t1)} ⊆ {τH(w) > tuH}. By the definition of the quantiles,

Ph [τH(w) > tuH ] ≤ 1

16|G|

holds for every h ∈ H and w ∈ G. Applying a simple union bound on the conditional
probability on the right hand side of (4.6) yields

P(f,x) [τ� > t1|B2 ≤ 8B2] ≤
∑

s≤8B,(Lv(t1))v

(
|G| 1

16|G|

)
P [(Lv(t1))v ,B2 = s]

≤ 1

16
,

where we used that the sum of the probabilities on the right hand side is at most 1.
Combining these estimates with (4.5) yields (4.4). It remains to relate the worst-case
quantiles to the total variation mixing times. Here we will make use of the separation-
optimal property of τH and τG. Now just consider the walk on G. Let us start the walker
on G from an initial state x0 ∈ G for which the maximum is attained in the definition
(4.1) of the quantile tquant

1/16 (τG). Then, by (2.21) we have that one step before the quantile
we have

1

16
≤ Px0

[
τG > tquant

1/16 (τG)− 1
]

= sx0

(
tquant
1/16 (τG)− 1

)
≤ 4d

(
1

2
(tquant

1/16 (τG)− 1)

)
.
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This immediately implies that 1
2 (tquant

1/16 (τG) − 1) ≤ tmix

(
G, 1

64

)
. By the submultiplica-

tive property of the total variation distance d(kt) ≤ 2kd(t)k we have that tmix(G, 1
64 ) ≤

6tmix

(
G, 1

4

)
. So we arrive at

tquant
1/16 (τG)− 1 ≤ 12tmix (G) (4.7)

Similarly, starting all the lamps from the position h0 where the maximum is attained in
the definition of tuH = tquant

1/16|G|(τH), one step before the quantile we have

1

16|G|
≤ Ph0 [τH > tuH − 1] = sh0 (tuH − 1) ≤ 4d ((tuH − 1)/2)

So we have
1

2
(tquant

1/16|G|(τH)− 1) ≤ tmix

(
H, 1

64|G|

)
. (4.8)

On the other hand, on the whole lamplighter chain H oG we need the other direction:
For every starting state (f, x) (2.20) and (4.4) implies that

d(f,x)(t
�) ≤ s(f,x)(t

�) ≤ P(f,x) [τ�2 > t�] ≤ 1/4

Maximizing over all states (f, x) yields

tmix(H oG) ≤ t�. (4.9)

Putting the estimates in (4.7) and (4.8) to (4.9), we get that

tmix(H oG) ≤ t� ≤ 8B2(G) + 12tmix(G) + 1 + 2|G|
(
tmix

(
H,

1

64|G|

)
+

1

2

)
.

Since B2(G) ≤ Ctcov(G), and tmix(G) ≤ 2thit(G) ≤ 2tcov(G) for any G (see for instance
[13]), the assertion of Theorem 1.4 follows with C2 = 8(C + 3), where C is the universal
constant relating the blanket time B2 to the cover time tcov in [8].

We remark why we did not make the constant C2 explicit: If the blanket time B2 were
not used in our estimates, the error probability that some vertex w ∈ G does not have
enough local time would need to be added. This, similarly to the term (3.6) behaves

like |G|e−c(tcov+|G|tmix(H, 1
G ))/thit . If we do not assume anything about the relation of

thit(G) and tcov(G) and on tmix(H, 1
G ), then this error term will not necessarily be small.

For example, if Gn is a cycle of length n, Hn is a sequence of expander graphs, then
tcov(Gn) = thit(Gn) = Θ(n2), and tmix(H, 1

G ) = log |H| · log |G| = log |H| log n, and we see
that the term is not small if log |H| = o(n/ log n).

4.2 Proof of the lower bounds of Theorem 1.4

As we did with the relaxation time, it is enough to prove that all the bounds are
lower bounds separately, then take an average. First we start showing that the upper
bound is sharp in 1.7 under the assumption that there is a strong stationary time τH
with halting states.

4.2.1 Lower bound under Assumption (A)

We first aim to show that
c |G|tmix(H, 1

|G| ) ≤ tmix(H oG).
Consider the stopping time τ� constructed in Lemma 2.3. Corollary 2.4 tells us that

the tail of τ� lower bounds the separation distance at time t. We again emphasize that
this bound holds only if τH in the construction of τ� is not only separation optimal but
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it also has a halting state. Our first goal is to lower bound the tail of τ�, then relate it to
the total variation distance.

First set

t`H := tquant
|G|−1/2/2

(τH)− 1, t� :=
1

4
|G|t`H , (4.10)

clearly this time is nontrivial if tquant
|G|−1/2/2

(τH) 6= 1. We handle the case if it equals 1 later.
We can estimate the upper tail of τ� by conditioning on the number of moves on the
lamp graphs Hv, v ∈ G:

P [τ� > t�] ≥ P [∃w ∈ G : τH(w) > Lw(t�)]

≥
∑

(Lv(t�))v

P
[
∃w ∈ G : τH(w) > Lw(t�)

∣∣(Lv(t�))v]P [(Lv(t
�))v] (4.11)

For each sequence (Lv(t
�))v∈G we define the random set

S(Lv)v :=
{
w ∈ G : Lw(t�) ≤ t`H

}
Since

∑
v Lv(t

�) = 2t� = 1
2 |G|t

`
H , we have that for arbitrary local time configuration

(Lv(t
�))v,

|S(Lv)v | ≥ |G|/2. (4.12)

Thus we can lower bound (4.11) by restricting the event only to those w ∈ G coordinates
which belong to this set, i.e. whose local time is small:

P [τ� > t�] ≥
∑

(Lv(t�))v

P
[
∃w ∈ S(Lv)v : τH(w) > Lw(t�)

∣∣(Lv (t�))v
]
P [(Lv(t

�))v]

≥
∑

(Lv(t�))v

P
[
∃w ∈ S(Lv)v : τH(w) > t`H

∣∣ (Lv(t�))v]P [(Lv(t
�))v] ,

(4.13)

where in the second line we used that for w ∈ S(Lv)v we have {τH(w) > Lw(t�)} ⊇
{τH(w) > t`H}. Conditioned on the sequence (Lv(t

�))v, the times τH(w) for w ∈ S(Lv)v

are independent. On each lamp graph H(v) let us pick the starting state to be h0 ∈ H
where the maximum is attained in the definition of tquant

|G|−1/2/2
(τH). Since tH is one step

before the quantile, we have

Ph0

[
τH(w) > tquant

|G|−1/2(τH)− 1
]
≥ |G|−1/2/2. (4.14)

We need to start the lamp-chains from the worst-case scenario h0 ∈ H for two reasons:
First, we needed to define the quantile as in (4.1) to be able to relate it to the total
variation mixing time on H, see below. Then, the fact that tquant

ε was defined as the
worst-case starting state quantile means that for other starting states the quantile may
be smaller, and the lower bound can possibly fail.

Combining (4.14) with (4.12) and the conditional independence gives us the follow-
ing stochastic domination from below to the event in (4.13)

P
[
∃w ∈ S(Lv)v : τH(w) > t`H

∣∣(Lw(t�))w
]
≥ P[V > 0],

where V is a Binomial random variable with parameters
(
|G|/2, |G|−1/2/2

)
. Clearly, for

|G| > 8 > 16(log 2)2 we have

P [V > 0] = 1−
(

1− 1

2|G|1/2

)|G|/2
≥ 1− e−

|G|1/2
4 .
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Combining this with (4.13) and summing over all possible (Lv(t
�))v∈G sequences we

easily get that

P [τ� > t�] ≥ 1− e−
|G|1/2

4 .

Then, by Corollary 2.4 we have

s�(h0,x)(t
�) ≥ 1− e−

|G|1/2
4 .

In the next few steps we relate the tail of τ� and τH to the mixing time of the graphs.
First, combining the previous inequality with (2.21) implies that for the starting state
(h0, x) the following inequalities hold:

1− e−|G|
1/2/4 ≤ s�(h0,x)(t

�) ≤ 4d�(t�/2).

These immediately imply

tmix(H oG, 1

8
) ≥ 1

2
t� =

1

8
|G|t`H (4.15)

Now we will relate t`H = tquant
|G|−1/2/2

(τH)−1 to the mixing time on H. Since t`H investigates

the worst case initial-state scenario, by inequality (2.5) for any starting state h ∈ H we
have

sh(tH + 1) ≤ Ph
[
τH ≥ t`H + 1

]
≤ |G|−1/2/2

Using dh(t) ≤ sh(t) (see Lemma 2.6) and maximizing over all h ∈ H we get that

dH(t`H + 1) ≤ |G|−1/2/2. (4.16)

On the other hand, the total variation distance for any Markov chain has the following
sub-multiplicative property for any integer k, see [13, Section 4.5]:

d(kt) ≤ 2kd(t)k. (4.17)

Taking t = t`H + 1 and combining with (4.16) we have that

dH(2(t`H + 1)) ≤ 4dH(t`H + 1)2 ≤ 4
1

4|G|
,

which immediately implies

tmix(H, 1/|G|) ≤ 2(t`H + 1).

Combining this with (4.15) yields the desired lower bound:

1

16
|G|
(
tmix

(
H, 1
|G|

)
− 2
)
≤ tmix(H oG, 1

8
).

Mind that the term −2 in the brackets can be dropped when picking a possibly smaller
constant and take the graph large enough. The case when tquant

|G|−1/2/2
(τH) = 1 can be

handled the following way: first mind that we can exchange the quantile for arbitrary
0 < α < 1, and look at the proof with tquant

|G|−α/2(τH). If this is still = 1 for all α, that means
that τH = 1 a.s. In this case, it is enough to hit the vertices to mix immediately and thus
the mixing time |G|tmix(H) is of smaller order than the cover time tcov(G). The case
when |G| ≤ 8 but |H| → ∞ is easy to see since in this case tmix(H, 1

|G| ) ≤ 2tmix(H) and
one can argue that mixing on H o G requires mixing on a single lamp graph Hw for a
fixed w ∈ G. Thus the lower bound remains valid.
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The cover time of G is already a lower bound for the 0− 1 lamps case by [17], hence
also for general lamps, but, for completeness, we adjust the proof in [13, Theorem 19.2]
to our setting. By Lemma 2.3 we can estimate the separation distance on H oG as

s�(f,x)(t) ≥ P(f,x) [τ� > t]

≥ P(f,x) [∃w ∈ G : τH(w) > Lw(t)]

≥ P(f,x) [∃w ∈ G : Lw(t) = 0] = P(f,x) [τcov > t] .

(4.18)

Now, using the submultiplicativity of d(t) in (4.17) and the relation of the separation
distance and the total variation distance in (2.21), we have that at time 8tmix(H oG, 1/4):

s�(f,x)

(
8tmix(H oG, 1

4 )
)
≤ 4d�

(
4tmix(H oG, 1

4 )
)
≤ 4

24

44
≤ 1

4

Combining with (4.18) yields that for every starting state we have

P(f,x) [τcov > 8tmix(H oG, 1/4)] ≤ 1/4.

Thus, run the chain in blocks of 8tmix(H oG, 1/4) and conclude that in each block it covers
with probability at least 3/4. Thus, the cover time is dominated by 8tmix(H oG, 1/4) times
a geometric random variable with success probability 3/4, so we have

E(f,x) [τcov] ≤ 11tmix(H oG, 1/4).

Maximizing the left hand side over all possible starting states yields tcov(G) ≤ 11tmix(H o
G, 1/4), finishing the proof.

4.2.2 Proof of the lower bound of Theorem 1.4, without assumption (A)

Now we turn to the general case and first show that c trel(H)|G| log |G| is a lower bound.
No laziness assumption on the chain on H is needed to get this bound. We will use
a distinguishing function method. Namely, take an eigenfunction φ2 of the transition
matrix Q on H corresponding to the second eigenvalue λH . Then let us define ψ :

H oG→ C:
ψ((f, x)) :=

∑
v∈G

φ2(fv). (4.19)

One can always normalize such that

Eπ�(ψ) =
∑
v∈G

Eπ[φ2] = 0 Varπ�(ψ) =
∑
v∈G

Varπ(φ2) = |G| · 1

This normalization has two useful consequences: First, by Chebyshev’s inequality, the
set A = {ψ < 2|G|1/2} has measure at least 3/4 under stationarity. Second, φ2(g0) :=

maxg∈H φ2(g) > 1, otherwise the variance would be less than 1. We aim to show that
the set A has measure less then 1/2 at time ctrel(H)|G| log |G| and then we are done by
using the following characterization of the total variation distance, see [2, 13]:

‖ν − µ‖TV = sup
A⊂Ω
{ν(A)− µ(A)}.

Let us start all the lamp graphs from g0 ∈ H where the maximum is attained for φ2.
Then we can condition on the local time sequence and use the eigenvalue property of
φ2 to obtain

E(g
0
,x) [ψ((F t, Xt))] = E

[
E

[∑
w∈G

φ2(Fw(t))| (Lv(t))v

]]

= φ2(g0)Ex

[∑
w∈G

λ
Lw(t)
H

]
.

(4.20)
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Since
∑
v Lv(t) = 2t, we can apply Jensen’s inequality on the function y 7→ λyH to get a

lower bound on the expectation:

Ex

[∑
w∈G

λ
Lw(t)
H

]
≥ |G|λ

2t
|G|
H = |G|

(
1− 1

trel(H)

) 2t
|G|

. (4.21)

By giving a lower bound on the right hand side we must assume here that λH > 0, or
equivalently trel(H) > C > 1. Thus, first we handle the other case, i.e. when trel(H) < 2.
Then the lower bound we are about to show is of order |G| log |G| which is always at
most the order of tcov(G), due to a result by Feige [9] stating that for simple random
walk on any connected graph G, tcov(G) ≥ (1 + o(1))|G| log |G|.

When trel(H) > 2, we can use that 1 − x > e−1.5x when 0 < x < 0.5 to get a lower
bound on the right hand side of (4.21). Then set t = ctrel(H)|G| log |G| turning the
estimate in (4.20) into

E(g
0
,x) [ψ((F t, Xt))] ≥ |G|1−3cφ2(g0).

We can easily upper bound the conditional variance as follows:

Var [ψt|(Lv(t))v∈G] ≤
∑
w∈G

Eg0
[
φ2

2(Fw(t))|Lw(t)
]
≤ |G|φ2

2(g0).

Now, let us estimate the measure of set A at time t by using the lower bound on the
expectation:

P(g
0
,x)

[
ψt ≤ 2|G|1/2

]
≤ P(g

0
,x)

[
|ψt − E(ψt)| ≥ φ2(g0)|G|1−3c − 2|G|1/2

]
Now we use that φ2(g0) > 1 and if c < 1/6 then on the right hand side, the term
φ2(g0)|G|1−3c dominates, so for |G| large enough we can drop the negative term and
compensate it with a multiplicative factor of 1/2, say. Thus, condition on the local time
sequence first and see that for any sequence (Lv(t))v∈G Chebyshev’s inequality yields:

P(g
0
,x)

[
ψt ∈ A

∣∣ (Lv(t))v∈G] ≤ Var [ψt|(Lv(t))v∈G]

1/4φ2
2(g0)|G|2−6c

Combining this with the estimate on the conditional variance above yields that

P(g
0
,x) [ψt ∈ A| (Lv(t))v] ≤

4

|G|1−6c
.

This bound is independent of the local time sequence, so the law of total probability says
we have the same upper bound without conditioning on the local times. Now setting
c < 1/6 and |G| large enough we see that the right hand side can be made smaller than
1/2, finishing the proof.

To see that the cover time is a lower bound in the general case, couple the chain on
H o G to Z2 o G, i.e. jump to stationary distribution on Hv once the walker on the base
hits vertex v and use [17] or [13] to see that tcov(G) ≤ tmix(Z2 oG) ≤ tmix(H oG).

Next we show that c|G|tmix(H) is a lower bound if the chain on H is lazy.
Let us start with a definition for general Markov chain X on Ω

tstop(G) := max
x∈Ω

min {E[τ ]; τ stopping time s.t. Px[Xτ = y] = π(y) ∀y ∈ Ω} .

We call a stopping time mean-optimal if E[τ ] = tstop(G). Lovász and Winkler [15] show
that optimal stopping rules always exist for irreducible Markov chains. We aim to show
that

1

2
|G| · tstop(H) ≤ tstop(H oG).
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Take a mean optimal stopping time τ∗ on H o G reaching minimal expectation, i.e.
E(f∗,x∗)[τ

∗] = tstop(H o G) for some (f∗, x∗) ∈ H o G and E(f,x)[τ
∗] ≤ tstop(H o G) for

(f, x) 6= (f∗, x∗).

We use this τ∗ to define a stopping rule τH(v) on Hv, for every v ∈ G. Namely, do
the following: look at a coordinate v ∈ G and at the chain restricted to the lamp graph
Hv, i.e. only the moves which are done on the coordinate Hv. Then, stop the chain on
Hv when τ∗ stops on the whole H oG.

Start the chain from any (f
0
, x0). Since

∑
v∈G Lv(t) = 2t, we have

∑
v∈G

Efv(0)[τH(v)] = E(f
0
,x0)

[∑
v∈G

Lv(τ
∗)

]
= 2E(f

0
,x0)[τ

∗].

Take the vertex w ∈ G (which can depend on x0), which minimizes the expectation
Efv(0)[τH(w)]. Clearly for this vertex the expected value must be less than the average:

Ef0 [τH ] ≤ 2

|G|
E(f

0
,x0)[τ

∗]

The left hand side is at least as large as what a mean-optimal stopping rule on H can
achieve, and the right hand side is at most 2

|G| tstop(H oG). Thus we arrive at

1

2
|G|tstop(H) ≤ tstop(H oG).

In the last step we use the equivalence from the paper [18, Corollary 2.5] stating
that tstop and tmix are equivalent up to universal constants for lazy reversible chains and
get that

c1|G|tmix(H) ≤ tmix(H oG).

5 Further directions

The next step of understanding generalized lamplighters walks might be to inves-
tigate which properties on G and H are needed to exhibit cutoff (for a definition see
[2, 13]), or to determine the mixing time in the uniform metric.

For Z2 o G, already [10] implies a total variation cutoff with threshold 1
2 tcov(Kn) for

G being the complete graph and that there is no cutoff if G is a cycle of length n.
The results of [17] include a proof of total variation cutoff for Z2 o Z2

n with threshold
tcov(Z2

n). The results in [16] also includes cutoff at 1/2tcov(Gn), with some uniform local
transience assumptions on Gn. Further, Levy [14] proved that the wreath product of
two complete graphs Knλ oKn, 0 ≤ λ ≤ 1 exhibits a cutoff at (1 + λ)/2n log n.

For the mixing time in the uniform metric, we know [17, Theorem 1.4] that if G is a
regular graph such that thit(G) ≤ K|G|, then there exists constants c, C depending only
on K such that

c|G|(trel(G) + log |G|) ≤ tu(Z2 oG) ≤ C|G|(tmix(G) + log |G|). (5.1)

These bounds fail to match in general. For example, for the hypercube Zd2, trel(Z
d
2) =

Θ(d) [13, Example 12.15] while tmix(Zd2) = Θ(d log d) [13, Theorem 18.3]. Then [12]
showed that the lower bound is sharp in (5.1) under conditions which are satisfied by
the d(n) dimension tori Gn = Z

d(n)
n for arbitrary chosen n and d(n).
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