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Abstract

We study the optional projection of a standard Brownian motion on the natural filtra-
tion of certain kinds of observation processes. The observation process, Y , is defined
as a solution of a stochastic differential equation such that it reveals some (possibly
noisy) information about the signs of the Brownian motion when Y hits 0. As such,
the associated optional projections are related to Azéma’s martingales which are ob-
tained by projecting the Brownian motion onto the filtration generated by observing
its signs.

Keywords: Azéma’s martingale; excursions of Brownian motion; skew Brownian motion; op-
tional projection; local times.
AMS MSC 2010: 60G35; 60J55; 60H10.
Submitted to ECP on September 14, 2012, final version accepted on December 16, 2012.
Supersedes arXiv:1209.3180.

1 Introduction

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual conditions
and W be a standard Brownian motion with W0 = 0 and adapted to (Ft)t≥0. Define
G0t := σ(sgn(Ws); s ≤ t), where

sgn(x) =

{
1, if x > 0;

−1, if x ≤ 0,

and let (Gt)t≥0 be the augmentation of G0t with the P-null sets. Azéma’s martingale is
obtained by projecting W onto G. We will denote the (G,P)-optional projection of W
with µ. This martingale first appeared in [1] and was further studied in a series of
papers such as [2], [6] and [12]. Our presentation follows [13].

By construction Azéma’s martingale is closely related to the excursions of Brownian
motion away from 0. In fact, if we set

γt := sup{s ≤ t : Ws = 0}, (1.1)

then (see, e.g. [13])

µt = E[Wt|Gt] = sgn(Wt)
π

2

√
t− γt. (1.2)

Thus, Azéma’s martingale is the best estimate, in a mean-square sense, for the value of
a Brownian motion when one only observes its zeroes and the signs of its excursions.
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Filtered Azéma martingales

The above interpretation of µ was used by [4] to model the default probabilities of a
firm under incomplete information. Assuming cash balances follow a Brownian motion,
[4] defines the default time for the firm as the first time that its cash balances have
remained negative for a certain amount of time and doubled in absolute value. On the
other hand, the market’s only information regarding the cash balances is whether the
firm is in financial distress, i.e. the cash balance is negative, or not. This informa-
tion set thus corresponds to G in above notation. Using certain properties of Azéma’s
martingale and some results from excursion theory the authors explicitly compute the
G-predictable compensator of the default indicator process. The use of Azéma’s mar-
tingale in Mathematical Finance Theory is not limited to default risk. It is also the key
process in models for Parisian barrier options (see [5]).

Motivation of this paper comes from the following question: What happens to the
optional projection of Brownian motion when we observe its signs, possibly with some
noise, at the zeroes of another process which we can observe continuously? Clearly, the
answer to this question depends on how one defines the observation process. The most
common approach in applications is to model the observation process as a solution of
a stochastic differential equation. In this paper we will look at two different types of
stochastic differential equations for the observation process.

The first formulation that we will consider corresponds to the case when one imper-
fectly observes the signs of Brownian motion at the zeroes of an observation process.
Here imperfection corresponds to the case when the true signal is contaminated with
some noise. In view of the standard nonlinear filtering theory one can model the ob-
servation process as a (weak) solution to the following stochastic differential equation
(SDE):

Yt = Bt + α

∫ t

0

sgn(Wgs(Y )) ds (1.3)

where α ∈ R, B is a standard Brownian motion independent of W , and

gt(Y ) := sup{s ≤ t : Ys = 0}. (1.4)

In Section 2 we study the existence and uniqueness of (weak) solutions of (1.3) and the
projection of W onto the natural filtration of the solution. The methods employed are
standard techniques from nonlinear filtering theory. On the other hand, the existence
of a strong solution to (1.3) remains as an interesting open problem.

Another possibility for modeling the observation process is to introduce the knowl-
edge on the sign of W through the local times of Y whose support is contained in the
zero set of Y . In this case the corresponding SDE is the following:

Yt = Bt + α

∫ t

0

sgn(Ws)dLs, (1.5)

where L is the symmetric local time (see Exercise VI.1.25 in [14] for a definition) of Y
at 0. We will see in Section 3 that the solution to the above equation is closely related
to the skew Brownian motion which we recall next.

Theorem 1.1. (Harrison and Shepp [8]) There is a unique strong solution, called skew
Brownian motion, to

Xt = Bt + αLt(X), (1.6)

where L(X) is the symmetric local time of X at the level 0 if and only if |α| ≤ 1.

First appearances of skew Brownian motion in the literature goes back to as early
as [9] and [15]. Formally it is obtained by changing the sign of a Brownian motion in
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Filtered Azéma martingales

every excursion depending on the value of an independent Bernoulli random variable.
A related SDE introduced by Sophie Weinryb is

Xt = Bt +

∫ t

0

α(s)dLs(X),

whose pathwise uniqueness is established in [16] when α is a deterministic function
taking values in [−1, 1] (see [7] for a recent work on the existence of solutions and
related issues) .

The reader is referred to the recent survey in [10] where one can find a discussion
of different constructions of skew Brownian motion and its properties. In Section 3 we
will prove that there exists a unique strong solution to (1.5) and see how it is connected
to the solutions of (1.6). This connection will be helpful in the characterisaton of the
natural filtration of the solution of (1.5) and the associated projection of W , which is
our main concern. We will see that this projection changes only by jumps which may
only occur at the end of an excursion interval of a skew Brownian motion.

2 Filtered Azéma martingale of the first kind

Observe that the drift coefficient of the SDE in (1.3) is path dependent and, thus,
the classical results on the existence and uniqueness of strong solutions of SDEs do
not apply. However, since sgn function is bounded, one can easily construct a weak
solution to this equation on any interval [0, T ]. Indeed, if β and W are two independent
Brownian motions in some probability space, one can define a change of measure via
the martingale

exp

(
α

∫ t

0

sgn(Wgs(β))dβs −
1

2
α2t

)
and under the new measure β solves (1.3) while W stays a Brownian motion. The same
Girsanov transform also implies that the law of any weak solution (W,Y ) of (1.3) is the
same. Let FY be the smallest filtration satisfying the usual conditions and containing
the filtration generated by Y . In the remainder of this section we will fix a weak so-
lution to (1.3) and compute the corresponding conditional probabilities for this pair.
However, the weak uniqueness of the solutions imply that the conditional laws of W on
FY computed in this section1 do not depend on the choice of the weak solution.

In the computations performed in this and the subsequent section we will often make
use of the balayage formula as given in the next lemma.

Lemma 2.1. (Theorem VI.4.2 in [14]) If K is a locally bounded F -predictable process,
(Kgt(Y )Yt)t≥0 is a continuous semimartingale and satisfies

Kgt(Y )Yt =

∫ t

0

Kgs(Y )dYs.

As a first application of the balayage formula, we will now see that sgn(Wg(B(α)))B
(α)

is a weak solution of (1.3) where B(α) is defined by B(α)
t = Bt + αt. Indeed, if we set

Yt = sgn(Wgt(B(α)))B
(α)
t , then balayage formula implies

dYt = sgn(Wgt(B(α)))dBt + α sgn(Wgt(B(α)))dt.

Moreover,
∫ ·
0

sgn(Wgt(B(α)))dBt is a standard Brownian motion independent of W . The

claim follows since by construction g(Y ) = g(B(α)). Thus, by the uniqueness of weak

1One should be careful in computing the conditional laws of random variables measurable with respect to
F∞ since the martingale used for the change of measure is not uniformly integrable.
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solutions, we obtain

Y
d
= sgn(Wg(B(α)))B

(α). (2.1)

In other words, Y is obtained by changing the sign of a Brownian motion with drift via
the sign of an independent Brownian motion sampled at the beginning of the current
excursion (away from 0) of the drifting Brownian motion. As such, the resulting process
in a sense is in the same spirit of a skew Brownian motion described in (1.6), which will
be relevant to the filtered Azéma martingale of the second kind discussed in the next
section.

An immediate consequence of the aforementioned equality in law is the following

Proposition 2.2. Let (Y,W ) be the unique weak solution of (1.3). Then,

i) limt→∞ |Yt| =∞ and P(Y∞ =∞) = P(Y∞ = −∞) = 1
2 .

ii) P(sup{t : Yt = 0} <∞) = 1.

Proof. i) follows from the fact that |B(α)
t | → ∞ as t → ∞ and that W is independent of

B(α). Similarly, since B(α) transient, there is a last time that it hits 0. Since the zeroes
of Y are the same as those of B(α), the result follows.

The above result is another manifestation of that the law of Y is equivalent to the law
of a Brownian motion only if they are stopped at a finite stopping time. Indeed, if the
law of Y were equivalent to the Wiener measure, the zero set of Y would be unbounded
with probability 1. This discrepancy also confirms that the martingale used to obtain
the measure change is not uniformly integrable.

Remark 2.3. If we set Zt = sgn(Wgt(Y ))Yt and thereby note that g(Z) = g(Y ), we
obtain via balayage formula

Zt =

∫ t

0

sgn(Wgs(Z))dBs + αt. (2.2)

Let’s consider the analogous SDE without drift, i.e.

Zt =

∫ t

0

sgn(Wgs(Z))dBs. (2.3)

Then, there is a unique strong solution to this equation. Indeed, in view of the balayage
formula, sgn(Wgt(Z))Zt = Bt. Thus, the zeroes of Z are the zeroes of B and we have
Zt = sgn(Wgt(B))Bt.

On the other hand, similar arguments do not seem to work for (2.2). It is an open
question whether this equation admits a strong solution.

We next obtain the semimartingale decomposition of Y with respect to its own filtra-
tion.

Proposition 2.4. Let (Y,W ) be the unique weak solution of (1.3). Then,

i) E[sgn(Wgt(Y ))|FYt ] = tanh(αYt);

ii) Y has the following decomposition in its own filtration:

Yt = BYt + α

∫ t

0

tanh(αYs) ds,

where BY is an FY -Brownian motion.
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Proof. Note that ii) follows immediately from i) in view of the standard results on fil-
tering, see, e.g. Theorem 8.1 in [11]. To see why i) holds take a constant T > t and
consider the measure Q ∼ PT under which (Ys)s∈[0,T ] is a Brownian motion independent
of (Ws)s∈[0,T ] where PT is the restriction of P to FT . Then, it follows from Girsanov’s
theorem that

E[sgn(Wgt(Y ))|FYt ] =

EQ
[
sgn(Wgt(Y )) exp

(
α
∫ t
0

sgn(Wgs(Y ))dYs − 1
2α

2t
) ∣∣∣∣FYt ]

EQ
[
exp

(
α
∫ t
0

sgn(Wgs(Y ))dYs − 1
2α

2t
) ∣∣∣∣FYt ]

=
EQ
[
sgn(Wgt(Y )) exp

(
α sgn(Wgt(Y ))Yt

) ∣∣FYt ]
EQ
[
exp

(
α sgn(Wgt(Y ))Yt

) ∣∣FYt ]
=

sinh(αYt)

cosh(αYt)
,

where the second equality follows from Lemma 2.1 and the last equality is due to the
independence of W and Y (up to time T ) under Q along with the facts that gt(Y ) is
FYt -measurable and the probability that Ws > 0 is 1/2 for any s.

Using the same technique as in the proof of the above proposition, we can obtain
the conditional law of W .

Theorem 2.5. Let p(t, y − x) be the transition density of a standard Brownian motion
and set

Φ(x) :=

∫ x

−∞
p(1, y) dy. (2.4)

i) The FYt -conditional law of Wt has a density, which is given by

P(Wt ∈ dx|FYt ] = p(t, x)
Φ
(√

gt(Y )
t(t−gt(Y ))x

)
eαYt + Φ

(
−
√

gt(Y )
t(t−gt(Y ))x

)
e−αYt

cosh(αYt)
dx.

ii) The conditional moments of W are given by

E[Wn
t |FYt ] =

 (2k)!√
πk!

(
gt(Y )

2

)k
, if n = 2k,

k!√
π

(2gt(Y ))
k+ 1

2 tanh(αYt), if n = 2k + 1.

In particular,

E[Wt|FYt ] =

√
2gt(Y )

π
tanh(αYt).

Proof. Let f : R 7→ R be a bounded measurable function. Then,

E[f(Wt)|FYt ] =
EQ
[
f(Wt) exp

(
α sgn(Wgt(Y ))Yt

) ∣∣FYt ]
cosh(αYt)

where Q is the measure defined in the proof of Proposition 2.4. Moreover, the numera-
tor in the above fraction equals∫ ∞

−∞
dxf(x)p(t, x)EQ

[
exp

(
α sgn(Wgt(Y ))Yt

) ∣∣FYt ,Wt = x
]

(2.5)

due to the independence of W and Y under Q. On the other hand, for any s ≤ t the
distribution of Ws conditional on Wt = x is Gaussian with mean s

tx and variance s(t−s)
t .

Thus,

P(Ws > 0|Wt = x) = P

(√
s(t− s)

t
W1 +

s

t
x ≥ 0

)
= Φ

(√
s

t(t− s)
x

)
.
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Utilising once more the independence of Y and W , we see that (2.5) equals∫ ∞
−∞

dxf(x)p(t, x)

{
Φ

(√
gt(Y )

t(t− gt(Y ))
x

)
eαYt + Φ

(
−

√
gt(Y )

t(t− gt(Y ))
x

)
e−αYt

}
.

This completes the proof of the density.
The conditional moments can be calculated by integrating this density, which is a

lengthy task. However, since for any λ ∈ R exp(λWt− 1
2λ

2t) is a martingale independent
of Y , and in particular of gt(Y ), one has

u(λ) := EQ
[
exp(λWt) exp

(
α sgn(Wgt(Y ))Yt

) ∣∣FYt ]
= EQ

[
exp

(
λWgt(Y ) +

1

2
λ2(t− gt(Y ))

)
exp

(
α sgn(Wgt(Y ))Yt

) ∣∣∣∣FYt ]
= exp

(
1

2
λ2(t− gt(Y ))

){
eαYt

∫ ∞
0

eλxp(gt(Y ), x) dx+ e−αYt
∫ 0

−∞
eλxp(gt(Y ), x) dx

}
.

Since we can differentiate with respect to λ under the integral sign, we have

dnu

dλn

∣∣∣∣
λ=0

= eαYt
∫ ∞
0

xnp(gt(Y ), x) dx+ e−αYt
∫ 0

−∞
xnp(gt(Y ), x) dx.

Moreover, one has∫ ∞
0

xn
1√
2πa

e−
x2

2a dx =
(2a)n/2

2
√
π

Γ(
n+ 1

2
) =

{
(2k)!√
πk!2k+1 (a)k, if n = 2k,
k!√
2π

2kak+
1
2 , if n = 2k + 1.

Thus, due to the symmetry of p, we obtain

dnu

dλn

∣∣∣∣
λ=0

=

{
2 cosh(αYt)

(2k)!√
πk!2k+1 (gt(Y ))k, if n = 2k,

2 sinh(αYt)
k!√
2π

2kgt(Y )k+
1
2 , if n = 2k + 1.

In view of the above theorem we may define the filtered Azéma martingale of the

first kind by µ̂t =
√

2gt(Y )
π tanh(αYt). Observe that, since tanh(0) = 0 and gt(Y ) changes

value only when Y hits 0, µ̂ is a continuous martingale in contrast to the discontinuous
Azéma martingale, µ.

Although the Brownian motion W is clearly not independent of Y , observing Y does
not tell us anything new regarding the process (γt). We will only prove γ1 is independent
of Y . The analogous statement can be proven for any γt along the same lines.

Proposition 2.6. γ1 is independent of FY .

Proof. Let t ≤ 1 and consider

EQ
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ]
for some bounded measurable real function f , where Q is as constructed in the proof of
Proposition 2.4 for some T > 1. Observe that

1[gt(Y )<γ1]E
Q
[
exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt , γ1] = 1[gt(Y )<γ1] cosh(αYt)

since conditional on γ1, (Wt)t∈[0,γ1] is a Brownian bridge (see Exercise XII.3.8 in [14])
and therefore Q(Wgt(Y ) > 0|gt(Y ), γ1) = 1

2 on the set [gt(Y ) < γ1]. Moreover,

1[gt(Y )>γ1]E
Q
[
exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt , γ1] = 1[gt(Y )>γ1] cosh(αYt),
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as well since gt(Y ) ≤ 1 and therefore sgn(Wgt(Y )) is independent of γ1 (see, e.g. Lemme
1 in [2]). Since [gt(Y ) = γ1] is a Q-null set due to their independence and the continuity
of the distribution of γ1, we deduce that

EQ
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ] = cosh(αYt)E
Q[f(γ1)] = cosh(αYt)E[f(γ1)],

which in turn implies E[f(γ1)|FYt ] = E[f(γ1)] for any f .
To show the independence for t > 1, note that it suffices to consider

1[gt(Y )>1]E
Q
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ]
since when 1[gt(Y )<1] the problem is reduced to the previous case. Notice by the Markov
property of W that, given W1, γ1 and sgn(Wu) are independent for any u > 1. Thus, on
[gt(Y ) > 1]

EQ
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ,W1

]
= EQ[f(γ1)|W1]EQ

[
exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ,W1

]
= EQ[f(γ1)|W1] exp(αYt)Φ

(
W1√

gt(Y )− 1

)

+EQ[f(γ1)|W1] exp(−αYt)Φ

(
− W1√

gt(Y )− 1

)
,

where Φ is the function defined in (2.4). Therefore, on [gt(Y ) > 1]

EQ
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ] = EQ

[
f(γ1) exp(αYt)Φ

(
W1√

gt(Y )− 1

)∣∣∣∣FYt
]

+EQ

[
f(γ1) exp(−αYt)Φ

(
− W1√

gt(Y )− 1

)∣∣∣∣FYt
]
.

On the other hand, the conditional law of W1 given γ1 = s is (see Exercise XII.3.8 in
[14])

|x|
2(1− s)

exp

(
− x2

2(1− s)

)
dx.

Using this density, one can directly show that

EQ

[
Φ

(
W1√

gt(Y )− 1

)∣∣∣∣γ1, gt(Y )

]
= EQ

[
Φ

(
− W1√

gt(Y )− 1

)∣∣∣∣γ1, gt(Y )

]
=

1

2
.

Hence, we arrive at

1[gt(Y )>1]E
Q
[
f(γ1) exp

(
αsgn(Wgt(Y ))Yt

) ∣∣FYt ] = 1[gt(Y )>1] cosh(αYt)E
Q[f(γ1)],

which yields the claimed independence.

Since µ̂ is adapted to FY by definition, we deduce that the filtered Azéma martingale
of the first kind is independent of γ. This is in stark contrast to Azéma’s martingale, µ,
which is a function of the process γ.

3 Filtered Azéma martingale of the second kind

We now return to study the solutions of equation (1.5) and the associated projection
of W . Recall that the equation (1.5) is the following SDE:

Yt = Bt + α

∫ t

0

sgn(Ws)dLs(Y ), (3.1)
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where L(Y ) is the symmetric local time of Y at 0. The right local time of Y at 0 will be
denoted with `(Y ). We will write L and ` instead of L(Y ) and `(Y ), respectively, when
no confusion arises.

Proposition 3.1. Suppose that |α| ≤ 1.

i) There is a unique weak solution to (3.1). Moreover, Y sgn(Wg(Y ))
d
= X, where X is

a skew Brownian motion which solves (1.6).

ii) |Y | is a reflecting Brownian motion. The symmetric and nonsymmetric local times,
` and L, respectively, of Y at 0 are related by

`t =

∫ t

0

(1 + αsgn(Ws)) dLs.

Proof. Suppose X is the skew Brownian motion that solves (1.6). As observed in Intro-
duction, this SDE has a unique solution. Next let Yt = sgn(Wgt(X))Xt. Observe that Y is
a continuous semimartingale in view of Lemma 2.1 and [X,X]t = [Y, Y ]t = t. Moreover,
L(X) = L(Y ). Indeed, (see Exercise VI.1.25 in [14])

Lt(X) = lim
ε→0

1

2ε

∫ t

0

1[|Xt|<ε](s)ds = lim
ε→0

1

2ε

∫ t

0

1[|Yt|<ε](s)ds = Lt(Y ).

Thus, Y satisfies

Yt =

∫ t

0

sgn(Wgs(X))dBs + α

∫ t

0

sgn(Wgs(X))dLs(X)

= βt + α

∫ t

0

sgn(Ws)dLs(X)

= βt + α

∫ t

0

sgn(Ws)dLs(Y ),

where β :=
∫ ·
0

sgn(Wgs(X))dBs, the first equality is due to Lemma 2.1 and the second
is due to the fact that support of the measure dL(X) is contained in the zero set of X.
This shows that sgn(Wgt(X))Xt is a weak solution to (3.1). By working backwards one
can also see that sgn(Wg(Y ))Y is a weak solution to (1.6). Since there is a one-to-one
correspondence between Y and sgn(Wg(Y ))Y , we obtain the uniqueness in law of the
solutions to (3.1) from the analogous property of the solutions to (1.6). Again, since

the solutions to (1.6) are unique in law, we also have sgn(Wg(Y ))Y
d
= X. Therefore,

|Y | = |X|. Since |X| is a reflecting Brownian motion (see, e.g., Lemma 2.1 in [3]), so is
|Y |.

To find the relationship between ` and L, first observe that

`t − `0−t = 2α

∫ t

0

sgn(Ws)dLs

by Theorem VI.1.7 in [14]. Moreover, Exercise VI.1.25 in [14] yields

Lt =
`t + `0−t

2
.

Thus,

`t =

∫ t

0

(1 + α sgn(Ws)) dLs.
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The equation (3.1) in fact has a unique strong solution. We need the following lemma
for the proof.

Lemma 3.2. Suppose Xi = M + Ai for i = 1, 2 where Xi
0 = 0, M is a continuous local

martingale and Ai is continuous and of finite variation for each i.

i) If Xi ≥ 0, then L(Xi) =
∫ ·
0
1[Xis=0]dX

i
s and L(Xi) = 1

2`(X
i).

ii) 2L(Xi+) = L(Xi) +
∫ ·
0
1[Xis=0]dX

i
s.

iii) L(X1 ∨X2) =
∫ ·
0
1[X2

s≤0]dLs(X
1) +

∫ ·
0
1[X1

s<0]dLs(X
2).

Proof. i) By Tanaka’s formula for the symmetric local times (see Exercise VI.1.25 in
[14]), we obtain

dXi+

t =
1

2

{
21[Xit>0] + 1[Xit=0]

}
dXi

t +
1

2
dLt(X

i). (3.2)

However, since Xi+ = Xi, we immediately deduce from the above that

L(Xi)t =

∫ t

0

1[Xis=0]dX
i
s.

The second assertion follows from Exercise VI.1.16 in [14].

ii) In view of the results from part i) and (3.2)

dL(Xi+) =
1

2
1[Xi+s =0]

({
21[Xit>0] + 1[Xit=0]

}
dXi

t +
1

2
dLt(X

i)

)
=

1

2
1[Xit=0]dX

i
t +

1

2
dL(Xi)t

since
∫ t
0
1[Xis 6=0]dLs(X

i) = 0.

iii) Let S = X1 ∨X2 and observe that since S = X1 + (X2 −X1)+, by Tanaka formula

dSt = dMt + 1[X2
t>X

1
t ]
dA2

t + 1[X2
t≤X1

t ]
dA1

t ,

since `(X2 − X1) ≡ 0 due to the fact that X2 − X1 is continuous and of finite
variation. Thus, S = M + C where C is continuous and of finite variation. By part
ii)

Lt(S) = 2Lt(S
+)−

∫ t

0

1[Ss=0]dSs.

Then, by part i) and Exercise VI.1.21 in [14], we obtain

dLt(S) = 1[X2
t≤0]d`t(X

1) + 1[X1
t<0]d`t(X

2)−
(
1[X1

t=0,X2
t≤0] + 1[X2

t=0,X1
t<0]

)
dSt

= 1[X2
t≤0]d`t(X

1) + 1[X1
t<0]d`t(X

2)−
(
1[X1

t=0,X2
t≤0] + 1[X2

t=0,X1
t<0]

)
dCt

= 1[X2
t≤0]

{
d`t(X

1)− 1[X1
t=0]dA

1
t

}
+ 1[X1

t<0]

{
d`t(X

2)− 1[X2
t=0]dA

2
t

}
= 1[X2

t≤0]dLt(X1) + 1[X1
t<0]dLt(X

2),

where the second line is due to Theorem VI.1.7 from [14] and the last line follows
from the same theorem and Exercise VI.1.25 in [14].

Theorem 3.3. Pathwise uniqueness holds for (3.1). Consequently, there is a unique
strong solution. Moreover, sgn(Wg(Y ))Y is a skew Brownian motion independent of W .
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Proof. Suppose there are two solutions, Y 1 and Y 2. Then,

d(Y 1 ∨ Y 2)t = dBt + αsgn(Wt)dLt(Y
1) + 1[Y 2

t >Y
1
t ]d(Y 2 − Y 1)t

= dBt + αsgn(Wt)dLt(Y
1) + α1[Y 2

t >Y
1
t ]sgn(Wt)

{
dLt(Y

2)− dLt(Y 1)
}

+ dBt + αsgn(Wt)dLt(Y
1) + α1[Y 1

t <0]sgn(Wt)dLt(Y
2)− α1[Y 2

t >0]sgn(Wt)dLt(Y
1)

= dBt + α1[Y 2
t ≤0]sgn(Wt)dLt(Y

1) + α1[Y 1
t <0]sgn(Wt)dLt(Y

2)

= dBt + αsgn(Wt)dLt(Y
1 ∨ Y 2).

Thus, Y 1∨Y 2 is also a solution to (3.1). However, since weak uniqueness holds for (3.1),
we conclude that Y 1 = Y 2. Since weak existence and pathwise uniqueness implies the
existence and uniqueness of the strong solutions by the celebrated Yamada-Watanabe
theorem, the second claim follows.

In order to see the claimed independence, letX = sgn(Wg(Y ))Y . As observed earlier,
due to the balayage formula,

Xt = βt + αLt(X)

where β is a Brownian motion defined by
∫ ·
0

sgn(Wgs(Y )) dBs. By Theorem 1.1, X is
adapted to the natural filtration of β. However, β is independent of W since [W,β] =

0.

The theorem above tells us in particular that the zero set of Y is that of a skew Brow-
nian motion which is independent of W . This will greatly simplify our computations
when we consider the FY -optional projection of W , where FY is the usual augmenta-
tion of the natural filtration of Y and Y is the unique strong solution of (3.1).

For any t ≥ 0 define the stopping time

dt(Y ) = inf{u > t : Yu = 0}.

Then, we have the following

Proposition 3.4. For any t ≥ 0, sgn(Wgt(Y )) is FYt -measurable. Similarly, sgn(Wdt(Y ))

is FYdt -measurable.

Proof. We will first show that sgn(Wgt(Y )) is FYt -measurable. Since ` is FY -adapted, we
have that ∫ t

0

(1 + αsgn(Ws)) dLs ∈ FYt

by Proposition 3.1. Moreover, since ` is FY -optional and L is FY -adapted and increas-
ing, the FY -optional projection of

∫ ·
0
ηsd`s, for any bounded FY -optional η, is given by∫ ·

0

ηs (1 + αosgn(W )s) dLs,

where osgn(W ) stands for the FY -optional projection of sgn(W ). Thus, we have∫ ∞
0

ηs(
osgn(W )s − sgn(Ws))dLs = 0

for any bounded FY -optional η. Thus, osgn(W )s = sgn(Ws) if s belongs to the support
of dL. On the other hand, by Proposition 3.1, |Y | is a reflecting Brownian motion.
Therefore, the support of dL is ‘exactly’ the zero set of Y (see Proposition VI.2.5 in [14]).
Since Ygt(Y ) = 0 we deduce that sgn(Wgt(Y )) ∈ Fgt(Y ) since osgn(W )gt(Y ) ∈ Fgt(Y ). This
also implies that

1[Yt 6=0]sgn(Wgt(Y )) = 1[Yt 6=0]
Yt
Xt

(3.3)
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where X is a skew Brownian motion adapted to FY in view of Theorem 3.3.
Next, consider the sequence of following stopping times:

Tnt = inf{u ≥ dt : |Yu| =
1

n
}.

Clearly, Tnt is decreasing in n and limn→∞ Tnt = dt. Then, by (3.3)

lim inf
n→∞

sgn(WgTnt
(Y )) = lim inf

n→∞

YTnt
XTnt

.

Next, we will show that lim infn→∞ sgn(WgTnt
(Y )) = sgn(Wdt), P−a.s.. To this end, first

observe that if un ↓ u then sgn(Wun) → sgn(Wu) unless Wu = 0 by the continuity of u
and the shape of the sgn function. Also note that since the mapping t 7→ gt(Y ) is right
continuous, lim→∞ gTnt (Y ) = gdt(Y ) = dt. However, dt is independent of W since it is an
FX -stopping time in view of Theorem 3.3. Thus, P(Wdt = 0) = 0, which in turn yields
that

sgn(Wdt) = lim inf
n→∞

sgn(WgTnt
(Y )) = lim inf

n→∞

YTnt
XTnt

∈ FYdt

by the right-continuity of the filtration FY and the fact that X is FY -adapted. Since the
filtration is completed by the P-null sets, we therefore conclude sgn(Wdt) ∈ FYdt .

The above result shows that by observing Y we learn the sign of W at the end
of every excursion interval of Y (or alternatively of X). Let’s denote the FY -optional
projection of W by ν̂. We call this martingale the filtered Azéma martingale of the
second kind.

Corollary 3.5. ν̂t = sgn(Wgt(Y ))
√
gt(Y ).

Proof. Let X = sgn(Wg(Y ))Y and recall that G is the usual augmentation of the natural
filtration of sgn(W ). Then, in view of Proposition 3.4 and Theorem 3.3, we obtain FYt ⊂
FXt ∨ Ggt(Y ). To ease the exposition let’s denote gt(Y ) with gt. Since X is independent
of the filtration G and gt(Y ) = gt(X),

E[Wt|FYt ] = E[µgt |FYt ] = sgn(Wgt)

√
π

2
E
[√

gt − γgt
∣∣FYt ] , (3.4)

where γ is as in (1.1). On the other hand, Exercise XII.3.8 in [14] and the scaling
properties of standard Brownian motions together imply that, for any u, the process(
Wsγu√
γu

)
s∈[0,1]

is a Brownian bridge independent of γu. Since sgn(Wsγu) = sgn(
Wsγu√
γu

),

this yields that γu is independent of sgn(Wr) whenever r ≤ γu. Moreover, Lemme 1 in
[2] further implies that sgn(Wu) is independent of γu. Combining these two observa-
tions allows us to deduce that γgt is independent of σ(sgn(Wgs), gs; s ≤ t) since (gs)s≥0
is independent of W by Theorem 3.3. (Recall once again that that P(γgt = gt) = 0 in
view of the independence of W and g.) Therefore, (3.4) can be rewritten as

E[Wt|FYt ] = sgn(Wgt)

√
π

2
E[
√
gt − γgt ] = sgn(Wgt)

√
gt

since gt has the arcsine law.

The result above means that ν̂ is a pure jump martingale which is constant on [gt, t].
Therefore, it is a martingale which can jump only at the end of the excursion interval
(gt(Y ), dt(Y )]! Also observe that it is equally likely that this martingale will jump or
stay constant when the excursion of Y away from 0 comes to an end. The presence
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of a martingale with jumps in particular implies that the optional and predictable σ-
algebras associated to FY are different. Recall, however, that the martingales adapted
to the filtration of the filtered Azéma martingale of the first kind is continuous implying
the equivalence of the associated predictable and optional σ-algebras (see Corollary
IV.5.7 in [14]).

We can also find the FYt -conditional law of Wt as a straightforward corollary to
Proposition 4 in [2] and the independence of γgt(Y ) from FYt as observed in the proof
above.

Corollary 3.6. Let F : R 7→ R be a bounded measurable function. Fix a t > 0 and
define f : [0, t] × R 7→ R by f(s, x) =

∫
R
F (y)p(t − s, y − x) dy where p is the transition

density of standard Brownian motion. Let

h(s, x) =

∫ s

0

f(s, x
√
s− r) 1√

π

1√
s− r

√
r
dr.

Then,

E[F (Wt)|FYt ] =

∫ ∞
0

h
(
gt(Y ), sgn(Wgt(Y ))

π

2
y
)
ye−

y2

2 dy.
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