
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 17 (2012), no. 56, 1–24.
ISSN: 1083-6489 DOI: 10.1214/EJP.v17-2186
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dependent on p and q?∗
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Abstract

In this paper we study well-posedness of a second order SPDE with multiplicative
noise on the torus T = [0, 2π]. The equation is considered in Lp((0, T )×Ω;Lq(T)) for
p, q ∈ (1,∞). It is well-known that if the noise is of gradient type, one needs a stochas-
tic parabolicity condition on the coefficients for well-posedness with p = q = 2. In
this paper we investigate whether the well-posedness depends on p and q. It turns
out that this condition does depend on p, but not on q. Moreover, we show that if
1 < p < 2 the classical stochastic parabolicity condition can be weakened.
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1 Introduction

1.1 Setting

Let X be a separable Hilbert space with the scalar product and norm denoted re-
spectively by (·, ·) and ‖ · ‖. Consider the following stochastic evolution equation on
X: {

dU(t) +AU(t) dt = 2BU(t) dW (t), t ∈ R+,

U(0) = u0.
(1.1)

Here A is a linear positive self-adjoint operator with dense domain D(A) ⊆ X, B :

D(A) → D(A1/2) is a linear operator and W (t), t ≥ 0 is a real valued standard Wiener
process (defined on some filtered probability space).

In [14, 25], see also the monograph [28] and the lecture notes [26], the well-posedness
of a large class of stochastic equations on X has been considered, which includes equa-
tions of the form (1.1). In these papers the main assumption for the well-posedness in
L2(Ω;X) is:
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Stochastic parabolicity condition

• There exist c > 0 and K > 0 such that

2‖Bx‖+ c‖A1/2x‖2 ≤ (Ax, x) +K‖x‖, x ∈ D(A). (1.2)

This condition will be called the classical stochastic parabolicity condition. Under con-
dition (1.2) (and several others), for every u0 ∈ X, there exists a unique solution
U ∈ L2((0, T ) × Ω;D(A1/2)) to (1.1). From [14] it is known that the condition (1.2)
is also necessary for well-posedness, and the simple example which illustrates this, is
recalled below for convenience of the reader, see (1.3).

For Banach spaces X, (1.2) has no meaning and it has to be reformulated. One
way to do this is to assume that A − 2B2 is a “good” operator in X. There are several
positive results where this assumption is used. For instance in [2, 5] (in a Hilbert space
setting) and [3] (in a UMD Banach space setting), well-posedness for (1.1) was proved.
In particular, it is assumed that B is a group generator in these papers. Using Itô’s
formula this allows to reformulate (1.1) as a deterministic problem which can be solved
pathwise in many cases, cf. (1.3) and (1.4).

A widely used method to study equations of the form (1.1) is the Banach fixed point
theorem together with the mild formulation of (1.1), see [6]. In order to apply this with
an operator B which is of half of the order of A one requires maximal regularity of the
stochastic convolution. To be more precise, the fixed point map L of the form

LU(t) =

∫ t

0

e−(t−s)ABU(s) dW (s)

has to map the adapted subspace of Lp((0, T )×Ω;D(A)) into itself. If one knows this, it
can still be difficult to prove that L is a contraction, and usually one needs that ‖B‖ is
small. Some exceptions where one can avoid this assumption are:

(1) The case where B generates a group, see the previous paragraph.

(2) Krylov’s Lp-theory for second order scalar SPDEs on Rd (where B is of group-type
as well).

(3) The Hilbert space situation with p = 2, see [14, 25, 28] and [4].

Recently, in [22, 21] a maximal regularity result for equations such as (1.1) has been
obtained. With these results one can prove the well-posedness results in the case ‖B‖ is
small, X = Lq and A has a so-called bounded H∞-calculus. A natural question is what
the role of the smallness assumptions on ‖B‖ is. In this paper we provide a complete
answer to this question in the case of problem (1.5) below.

1.2 Known results for the second order stochastic parabolic equations

In [12], second order equations with gradient noise have been studied. We empha-
size that the equation in [12] is much more involved than the equation below, and we
only consider a very special case here. Consider (1.1) with A = −∆ and B = αD, where
D = ∂

∂x and α is a real constant.{
du(t) = ∆u(t, x) dt+ 2αDu(t, x) dW (t), t ∈ R+, x ∈ R,
u(0, x) = u0(x), x ∈ R. (1.3)

In this case the classical stochastic parabolicity condition (1.2) is 1
2 (2α)2 = 2α2 < 1.

Krylov proved in [12] and [13] that problem (1.3) is well-posed in Lp(Ω;Lp(R)) with
p ∈ [2,∞) and in Lp(Ω;Lq(R)) with p ≥ q ≥ 2, under the same assumption 2α2 < 1. In
[14, Final example] he showed that if 2α2 ≥ 1, then no regular solution exists. This can
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Stochastic parabolicity condition

also be proved with the methods in [2, 3, 5]. Indeed, if u : [0, T ]×Ω→ Lq(R) is a solution
to (1.3), then one can introduce a new process v defined by v(t) = e−BW (t)u(t), t ∈ R+,
where we used our assumption that B generates a group. Note that u(t) = eBW (t)v(t),
t ∈ R+. Applying the Itô formula one sees that v satisfies the PDE:{

dv(t) = (1− 2α2)∆v(t, x) dt, t ∈ R+, x ∈ R,
v(0, x) = u0(x), x ∈ R. (1.4)

Now, it is well-known from the theory of the deterministic parabolic equations that the
above problem is well-posed if and only if 2α2 ≤ 1. Moreover, there is a regularizing
effect if and only if 2α2 < 1, see [14, Final example] for a different argument.

1.3 New considerations for second order equations

Knowing the above results it is natural to ask whether a stochastic parabolicity con-
dition is needed for the well-posedness in Lp(Ω;Lq) is dependent on p and q or not. The
aim of this paper is to give an example of an SPDE, with which one can explain the
behavior of the stochastic parabolicity condition with p and q as parameters. In fact we
consider problem (1.1) with

A = −∆ and B = αD + β|D| on the torus T = [0, 2π].

Here |D| = (−∆)1/2 and α and β are real constants. This gives the following SPDE.
du(t) = ∆u(t, x) dt + 2αDu(t, x) dW (t)

+ 2β|D|u(t, x) dW (t), t ∈ R+, x ∈ T,
u(0, x) = u0(x), x ∈ T.

(1.5)

The classical stochastic parabolicity condition for (1.5) one gets from (1.2) is

1
2 |2αi+ 2β|2 = 2α2 + 2β2 < 1. (1.6)

To explain our main result let p, q ∈ (1,∞). In Sections 4 and 5 we will show that

• problem (1.5) is well-posed in Lp(Ω;Lq(T)) if

2α2 + 2β2(p− 1) < 1. (1.7)

• problem (1.5) is not well-posed in Lp(Ω;Lq(T)) if

2α2 + 2β2(p− 1) > 1.

The well-posedness in Lp(Ω;Lq(T)) means that a solution in the sense of distributions
uniquely exists and defines an adapted element of Lp((0, T ) × Ω;Lq(T)) for each finite
T . The precise concept of a solution and other definitions can be found in Sections 4
and 5.

Note that 2αD generates a group on Lq(T), whereas 2β|D| does not. This seems to
be the reason the condition becomes p-dependent through the parameter β, whereas
this does not occur for the parameter α. Let us briefly explain the technical reason for
the p-dependent condition. For details we refer to the proofs of the main results. The
condition (1.7) holds if and only if the following conditions both hold

2α2 − 2β2 < 1, (1.8)

and

E exp
( β2p|W (1)|2

1 + 2β2 − 2α2

)
<∞. (1.9)
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Stochastic parabolicity condition

As it will be clear from the our proofs, condition (1.8) can be interpreted as a stochastic
parabolicity condition, and (1.9) is an integrability condition for the solution of problem
(1.5). Therefore, from now on we refer to (1.8) and (1.9) as the conditions for the
well-posedness in Lp(Ω;Lq) of problem (1.5).

Note that by taking p ∈ (1,∞) close to 1, one can take β2 arbitrary large. Surpris-
ingly enough, such cases are not covered by the classical theory with condition (1.6).

1.4 Additional remarks

We believe that similar results hold for equations on R instead of T. However, we
prefer to present the results for T, because some arguments are slightly less technical
in this case. Our methods can also be used to study higher order equations. Here
similar phenomena occur. In fact, Krylov informed the authors that with A = ∆2 and
B = −2β∆, there exist β ∈ R which satisfy 2β2 < 1 such that the problem (1.1) is not
well-posed in L4(Ω;L4(R)) (personal communication).

Our point of view is that the ill-posedness occurs, because −2β∆ does not generate a
group on L4(R), and therefore, integrability issues occur. With a slight variation of our
methods one can check that for the latter choice of A and B one has the well-posedness
in Lp(Ω;Lq(R)) for all p ∈ (1,∞) which satisfy 2β2(p − 1) < 1 and all q ∈ (1,∞). In
particular if β ∈ R is arbitrary, one can take p ∈ (1,∞) small enough to obtain the
well-posedness in Lp(Ω;Lq(R)) for all q ∈ (1,∞). Moreover, if β and p > 1 are such that
2β2(p− 1) > 1, then one does not have the well-posedness in Lp(Ω;Lq(R)). More details
on this example (for the torus) are given below in Example 3.10.

We do not present general theory in this paper, but we believe our results provides
a guideline which new theory for equations such as (1.1), might be developed.

1.5 Organization

This paper is organized as follows.

• In Section 2 some preliminaries on harmonic analysis on T are given.

• In Section 3 a p-dependent well-posedness result in Lp(Ω;X) is proved for Hilbert
spaces X.

• In Section 4 we consider the well-posedness of problem (1.5) in Lp(Ω;L2(T)).

• In Section 5 the well-posedness of problem (1.5) is studied in Lp(Ω;Lq(T)).

2 Preliminaries

2.1 Fourier multipliers

Recall the following spaces of generalized periodic functions, see [29, Chapter 3] for
details.

Let T = [0, 2π] where we identify the endpoints. Let D(T) be the space of periodic
infinitely differentiable functions f : T → C. On D(T) one can define the seminorms
‖ · ‖s, s ∈ N, by

‖f‖s = sup
x∈T
|Dsf(x)|, f ∈ D(T), s ∈ N.

In this way D(T) becomes a locally convex space. Its dual space D ′(T) is called the
space of periodic distributions. A linear functional g : D(T)→ C belongs to D ′(T) if and
only if there is a N ∈ N and a c > 0 such that

|〈f, g〉| ≤ c
∑

0≤s≤N

‖f‖s.
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Stochastic parabolicity condition

For f ∈ D ′(T), we let f̂(n) = F(f)(n) = 〈f, en〉, n ∈ Z, where en(x) = e−inx, x ∈ T. If
f ∈ L2(T) this coincides with

f̂(n) = F(f)(n) =
1

2π

∫
T

f(x)e−ixn dx, n ∈ Z.

Let P(T) ⊆ D(T) be the space of all trigonometric polynomials. Recall that P(T) is
dense in Lp(T) for all p ∈ [1,∞), see [10, Proposition 3.1.10].

For a bounded sequence m := (mn)n∈Z of complex numbers define a mapping Tm :

P(T)→ P(T) by

Tmf(x) =
∑
n∈Z

mnf̂(n)einx.

Let q ∈ [1,∞]. A bounded sequence m is called an Lq-multiplier if Tm extends to a
bounded linear operator on Lq(T) if 1 ≤ q < ∞ and C(T) if q = ∞). The space of all
Lq-multipliers is denoted byMq(Z). Moreover, we define a norm onMq(Z) by

‖m‖Mq(Z) = ‖Tm‖L (Lq(T)).

For more details on multipliers on T we refer to [8] and [10].
The following facts will be needed.

Facts 2.1.

(i) For all q ∈ [1,∞], translations are isometric inMq(Z), i.e. if k ∈ Z, then

‖n 7→ mn+k‖Mq(Z) = ‖n 7→ mn‖Mq(Z).

(ii) Mq(Z) is a multiplicative algebra and for all q ∈ [1,∞]:

‖m(1)m(2)‖Mq(Z) ≤ ‖m(1)‖Mq(Z)‖m(2)‖Mq(Z).

(iii) For all q ∈ (1,∞), ‖1[0,∞)‖Mq(Z) <∞.

(iv) For all q ∈ [1,∞], k ∈ Z and m ∈Mq(Z), ‖1{k}m‖Mq(Z) ≤ ‖m‖Mq(Z).

Recall the classical Marcinkiewicz multiplier theorem [19], see also [8, Theorem
8.2.1].

Theorem 2.2. Let m = (mn)n∈Z be a sequence of complex numbers and K be a con-
stant such that

(i) for all n ∈ Z one has |mn| ≤ K

(ii) for all n ≥ 1 one has

2n−1∑
j=2n−1

|mj+1 −mj | ≤ K, and
−2n−1∑
j=−2n

|mj+1 −mj | ≤ K.

Then for every q ∈ (1,∞), m ∈Mq(Z) and

‖m‖Mq(Z) ≤ cqK.

Here cq is a constant only depending on q.

In particular if m : R→ C is a continuously differentiable function, and

K = max
{

sup
ξ∈R
|m(ξ)|, sup

n≥1

∫ 2n

2n−1

|m′(ξ)| dξ, sup
n≥1

∫ −2n−1

−2n
|m′(ξ)| dξ

}
(2.1)

then the sequence m = (mn)n∈Z, where mn = m(n) for n ∈ Z, satisfies the conditions
of Theorem 2.2.
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Stochastic parabolicity condition

2.2 Function spaces and interpolation

For details on periodic Bessel potential spaces Hs,q(T) and Besov spaces Bsq,p(T)

we refer to [29, Section 3.5]. We briefly recall the definitions. For q ∈ (1,∞) and
s ∈ (−∞,∞), let Hs,q(T) be the space of all f ∈ D′(T) such that

‖f‖Hs,q(T) :=
∥∥∥∑
k∈Z

(1 + |k|2)s/2f̂(k)eikx
∥∥∥
Lq(T)

<∞.

Let Kj = {k ∈ Z : 2j−1 ≤ |k| < 2j}. For p, q ∈ [1,∞] and s ∈ (−∞,∞), let Bsq,p(T) be the
space of all f ∈ D′(T) such that

‖f‖Bsq,p(T) =
(∑
j≥0

∥∥∥2sj
∑
k∈Kj

f̂(k)eikx
∥∥∥p
Lq(T)

)1/p

,

with the obvious modifications for p = ∞. For all q ∈ (1,∞), s0 6= s1 and θ ∈ (0, 1)

one has the following identification of the real interpolation spaces of Hs,q(T), see [29,
Theorems 3.5.4 and 3.6.1.1],

(Hs0,q(T), Hs1,q(T))θ,p = Bsq,p(T), p ∈ [1,∞), q ∈ (1,∞), (2.2)

where s = (1 − θ)s0 + θs1. Also recall that for all q ∈ (1,∞) one has the following
continuous embeddings

Bsq,1(T) ⊆ Hs,q(T) ⊆ Bsq,∞(T),

and for all s > r and q, p ∈ [1,∞] one has the following continuous embeddings

Bsq,p ⊆ Bsq,∞(T) ⊆ Brq,1(T) ⊆ Brq,p(T).

Let X be a Banach space. Assume the operator −A is the a generator of an analytic
semigroup S(t) = e−tA, t ≥ 0, on X. Let us make the convention that for θ ∈ (0, 1) and
p ∈ [1,∞] the space DA(θ, p) is given by all x ∈ X for which

‖x‖DA(θ,p) := ‖x‖+
(∫ 1

0

‖t1−θAe−tAx‖pX
dt

t

)1/p

(2.3)

is finite. Recall that DA(θ, p) coincides with the real interpolation space (X,D(A))θ,p,
see [32, Theorem 1.14.5]. Here one needs a modification if p =∞.

Now let X be a Hilbert space endowed with a scalar product (·, ·). Recall that if
A is a selfadjoint operator which satisfies (Ax, x) ≥ 0, then −A generates a strongly
continuous contractive analytic semigroup (e−tA)t≥0, see [9, II.3.27]. Moreover, one
can define the fractional powers A

1
2 , see [18, Section 4.1.1], and one has

DA( 1
2 , 2) = D(A

1
2 ). (2.4)

This can be found in [32, Section 1.18.10], but for convenience we include a short proof.
If there exists a number w > 0 such that for all t ≥ 0 one has ‖e−tA‖ ≤ e−wt, then by
(2.3) one obtains

‖x‖DA(θ,2) = ‖x‖+
(∫ 1

0

(Ae−2tAy, y) dt
)1/2

= ‖x‖+
(
‖y‖2 − ‖e−Ay‖2

)1/2

where y = A1/2x. Since ‖e−Ay‖ ≤ ‖e−wy‖, one has

Cw‖A1/2x‖ ≤
(
‖y‖2 − ‖e−Ay‖2

)1/2

≤ ‖A1/2x‖.
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Stochastic parabolicity condition

We conclude DA( 1
2 , 2) = D(A

1
2 ) with the additional assumption on the growth of ‖etA‖.

The general case follows from DA( 1
2 , 2) = DA+1( 1

2 , 2) = D((A + 1)
1
2 ) = D(A

1
2 ), see [18,

Lemma 4.1.11].
Finally we recall that for a Banach space X and a measure space (S,Σ, µ), L0(S;X)

denotes the vector space of strongly measurable functions f : S → X. Here we identify
functions which are equal almost everywhere.

3 Well-posedness in Hilbert spaces

3.1 Solution concepts

Let (Ω,A,P) be a probability space with a filtration F = (Ft)t≥0. Let W : R+ × Ω →
R be a standard R-valued F-Brownian motion. Let X be a separable Hilbert space.
Consider the following abstract stochastic evolution equation:{

dU(t) +AU(t) dt = 2BU(t) dW (t), t ∈ R+,

U(0) = u0.
(3.1)

Here we assume the operator −A is the a generator of an analytic strongly continuous
semigroup S(t) = e−tA on X, see [9] for details, B : D(A) → D(A1/2) is bounded and
linear and u0 : Ω→ X is F0-measurable.

The following definitions are standard, see e.g. [6] or [21].

Definition 3.1. Let T ∈ (0,∞). A process U : [0, T ]× Ω→ X is called a strong solution
of (3.1) on [0, T ] if and only if

(i) U is strongly measurable and adapted.

(ii) one has that U ∈ L0(Ω;L1(0, T ;D(A))) and B(U) ∈ L0(Ω;L2(0, T ;X)),

(iii) P-almost surely, the following identity holds in X:

U(t)− u0 =

∫ t

0

AU(s) ds+

∫ t

0

2BU(s) dW (s), t ∈ [0, T ].

Let t0 ∈ (0,∞]. A process U : [0, t0)×Ω→ X is called a strong solution of (3.1) on [0, t0)

if for all 0 < T < t0 it is a strong solution of (3.1) on [0, T ].

From the definition it follows that if a process U : [0, t0)×Ω→ X is a strong solution
of (3.1) on [0, t0), then

U ∈ L0(Ω;C([0, T ];X)), T < t0.

Definition 3.2. Let T ∈ (0,∞). A process U : [0, T ]×Ω→ X is called a mild solution of
(3.1) on [0, T ] if and only if

(i) U is strongly measurable and adapted,

(ii) one has BU ∈ L0(Ω;L2(0, T ;X)),

(iii) for all t ∈ [0, T ], the following identity holds in X:

U(t) = etAu0 +

∫ t

0

e(t−s)A2BU(s) dW (s), almost surely.

Let t0 ∈ (0,∞]. A process U : [0, t0)×Ω→ X is called a mild solution of (3.1) on [0, t0) if
for all 0 < T < t0 it is a mild solution of (3.1) on [0, T ].
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The following result is well-known, see [6].

Proposition 3.3. Let T ∈ (0,∞). Assume u0 ∈ L0(Ω,F0;X). For a process U : [0, T ] ×
Ω→ X the following statements are equivalent:

(1) U is a strong solution of (3.1) on [0, T ].

(2) U is a mild solution of (3.1) on [0, T ] and

U ∈ L0(Ω;C([0, T ];X)) ∩ L0(Ω;L1(0, T ;D(A))).

Definition 3.4. Let p ∈ (1,∞).

(1) Let T ∈ (0,∞). A process U : [0, T ] × Ω → X is called an Lp(X)-solution of (3.1) on
[0, T ] if it is a strong solution on [0, T ] and U ∈ Lp((0, T )× Ω;D(A)).

(2) Let t0 ∈ (0,∞). A process U : [0, t0)× Ω→ X is called an Lp(X)-solution of (3.1) on
[0, t0) if for all 0 < T < t0 it is an an Lp(X)-solution of (3.1) on [0, T ].

To finish this section we give a definition of the well-posedness for (3.1).

Definition 3.5. Let p ∈ [0,∞).

(1) Let T ∈ (0,∞). The problem (3.1) is called well-posed in Lp(Ω;X) on [0, T ] if for each
u0 ∈ Lp(Ω;D(A)) which is F0-measurable, there exists a unique Lp(X)-solution of
(3.1) on [0, T ].

(2) Let t0 ∈ (0,∞]. The problem (3.1) is called well-posed in Lp(Ω;X) on [0, t0) if for
each u0 ∈ Lp(Ω;D(A)) which is F0-measurable and there exists a unique Lp(X)-
solution of (3.1) on [0, t0). If t0 = ∞, we will also call the latter well-posed in
Lp(Ω;X).

3.2 Well-posedness results

For the problem (3.1) we assume the following.

(S) The operator C : D(C) ⊂ X → X is skew-adjoint, i.e. C∗ = −C, and that

A = C∗C, and B = αC + β|C|, for some α, β ∈ R.

To avoid trivialities assume that C is not the zero operator.

Using the spectral theorem, see [27, Theorem VIII.4, p. 260], one can see that |C| =

A1/2 and D(B) = D(|C|) = D(C).
Under the assumption (S), the operator −A is the generator of an analytic contrac-

tion semigroup S(t) = e−tA, t ≥ 0, on X. Moreover, (etC)t∈R is a unitary group. In this
situation we can prove the first p-dependent the well-posedness result.

Theorem 3.6. Assume the above condition (S). Let p ∈ [2,∞). If α, β ∈ R from (3.1)
satisfy

2α2 + 2β2(p− 1) < 1, (3.2)

then for every u0 ∈ Lp(Ω,F0;DA(1 − 1
p , p)), there exists a unique Lp(X)-solution U of

(3.1) on [0,∞). Moreover, for every T < ∞ there is a constant CT independent of u0

such that

‖U‖Lp((0,T )×Ω;D(A)) ≤ CT ‖u0‖Lp(Ω;DA(1− 1
p ,p))

, (3.3)

‖U‖Lp(Ω;C([0,T ];DA(1− 1
p ,p)))

≤ CT ‖u0‖Lp(Ω;DA(1− 1
p ,p))

. (3.4)
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Stochastic parabolicity condition

Remark 3.7. The classical parabolicity condition for (3.1) is 1
2 ((2α)2 + (2β)2) = 2α2 +

2β2 < 1. This condition is recovered if one takes p = 2 in (3.2). Recall from (2.4) that
DA( 1

2 , 2) = D(A
1
2 ) for p = 2. Surprisingly, Theorem 3.6 is optimal in the sense that

for every p ≥ 2 the condition (3.2) cannot be improved in general. This will be proved
in Theorem 4.1. Note that if β = 0, then the condition (3.2) does not depend on p.
This explains why in many papers the p-dependence in the well-posedness of SPDEs
in Lp(Ω;X) is not visible, see [3, 5, 12, 13]. Note that if β = 0, then B generates a
group. This is the main structural assumption which seems to be needed to obtain a
p-independent theory.

Proof of Theorem 3.6. If necessary, we consider the complexification ofX below. By the
spectral theorem (applied to −iC), see [27, Theorem VIII.4, p. 260], there exists a σ-
finite measure space (O,Σ, µ), a measurable function c : O → R and a unitary operator
Q : X → L2(O) such that QCQ−1 = ic. Define the measurable functions a : O → [0,∞)

and b : O → C by a = c2 and b = β|c| + iαc. In this case one has QetCQ−1 = eitc,
QS(t)Q−1 = e−ta and QBQ−1 = b. The domains of the multiplication operators are as
usual, see [9].

Formally, applying Q on both sides of (3.1) and denoting V = QU yields the following
family of stochastic equations for V :{

dV (t) + aV (t) dt = 2bV (t) dW (t), t ∈ R+,

V (0) = v0,
(3.5)

where v0 = Qu0. It is well-known from the theory of SDE that for fixed ξ ∈ O, (3.5) has
a unique solution vξ : R+ × Ω→ R given by

vξ(t) = e−ta(ξ)−2tb2(ξ)e2b(ξ)W (t)v0(ξ).

Indeed, this follows from the (complex version of) Itô’s formula, see [11, Chapter 17].
Clearly, (t, ω, ξ) 7→ vξ(t, ω) defines a jointly measurable mapping. Let V : R+ × Ω →
L0(O) be defined by V (t, ω)(ξ) = vξ(t, ω). We check below that actually V : R+ × Ω →
L2(O) and

‖V ‖Lp((0,T )×Ω;D(a)) ≤ CT ‖u0‖Lp(Ω;DA(1− 1
p ,p))

. (3.6)

Let us assume for the time being (3.6) has been proved. Then the adaptedness of pro-
cess V : [0, T ]×Ω→ L2(O) follows from its definition. In particular, aV, bV ∈ Lp((0, T )×
Ω;L2(O)) and since p ≥ 2 we get aV ∈ L1(0, T ;L2(O)) a.s. and bV ∈ L2((0, T )×Ω;L2(O)).
Using the facts that for all t ∈ [0, T ] and P-almost surely∫ t

0

a(ξ)vξ(s) ds =
(∫ t

0

aV (s) ds
)

(ξ), for almost all ξ ∈ O,

∫ t

0

b(ξ)vξ(s) dW (s) =
(∫ t

0

bV (s) dW (s)
)

(ξ), for almost all ξ ∈ O,

one sees that V is an Lp(L2(O))-solution of (3.5). These facts can be rigorously justi-
fied by a standard approximation argument. Using the above facts one also sees that
uniqueness of V follows from the uniqueness of vξ for each ξ ∈ O. Moreover, it follows
that the process U = Q−1V is an Lp(X)-solution of (3.1) and inequality (3.3) follows
from inequality (3.6). Moreover, U is the unique Lp(X)-solution of (3.1), because any
other Lp(X)-solution Ũ of (3.1) would give an Lp(L2(O))-solution Ṽ = QŨ of (3.5) and
by uniqueness of the solution of (3.5) this yields V = Ṽ and therefore, U = Ũ .

Hence to finish the proof of the Theorem we have to prove inequalities (3.6) and
(3.4).
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Stochastic parabolicity condition

Step 1 - Proof of (3.6).
Fix t ∈ R+ and ω ∈ Ω. Then using |eix| = 1, one gets

‖(1 + a)V (t, ω)‖2L2(O) =

∫
O

(1 + a)2|V (t, ω)|2 dµ

=

∫
O

(1 + a)2e−2(1+2β2−2α2)tae4β|c|W (t,ω)|v0|2 dµ.

Put θ := β2 − α2. Let ε ∈ (0, 1) be such that 2β2(p− 1) + 2α2 < 1− ε. Put r = 1− ε. Then
r + 2θ > 2β2p and one can write

‖(1 + a)V (t, ω)‖2L2(O) =

∫
O

(1 + a)2e−2(r+2θ)tae4β|c|W (t,ω)e−2εta|v0|2 dµ.

Now using c2 = a one gets

−2(r + 2θ)ta+ 4β|c|W (t, ω) = −2(r + 2θ)t
[
|c| − βW (t, ω)

(r + 2θ)t

]2
+

2β2|W (t, ω)|2

(r + 2θ)t

= −f(t)[|c| − g(t, ω)]2 + 2h(t, ω),

where

f(t) = 2(r + 2θ)t, g(t, ω) =
βW (t, ω)

(r + 2θ)t
, h(t, ω) =

β2|W (t, ω)|2

(r + 2θ)t
.

It follows that

‖(1 + a)V (t, ω)‖2L2(O) =

∫
O
e−f(t)(|c|−g(t,ω))2e2h(t,ω)e−2εta(1 + a)2|v0|2 dµ. (3.7)

Since e−f(t)(|c|−g(t,ω))2 ≤ 1, this implies that

‖(1 + a)V (t, ω)‖2L2(O) ≤ e
2h(t,ω)

∫
O

(1 + a)2e−2εta|v0|2 dµ.

Using the independence of v0 and (W (t))t≥0 it follows that that

E‖(1 + a)V (t, ω)‖pL2(O) ≤ E
(
eph(t,ω)

(∫
O

(1 + a)2e−2εta|v0|2 dµ
)p/2

= Eeph(1,ω)‖(1 + a)e−εtav0‖pLp(Ω;L2(O)),

(3.8)

where we used Eeph(t) = Eeph(1). Integrating over the interval [0, T ], it follows from
(3.8) and (2.3) that there exists a constant C is independent of u0 such that(∫ T

0

E‖(1 + a)V (t)‖pL2(O) dt
)1/p

≤
(
Eeph(1,ω)

)1/p(∫ T

0

‖(1 + a)e−εtav0‖pLp(Ω;L2(O)) dt
)1/p

=
(
E[eph(1)]

)1/p(
E

∫ T

0

‖(1 +A)e−εtAu0‖pX dt
)1/p

≤ C
(
E[eph(1)]

)1/p‖u0‖Lp(Ω;DA(1− 1
p ,p))

.

One has Eeph(1) < ∞ if and only if pβ2

(r+2θ) < 1
2 . The last inequality is satisfied by

assumptions since it is equivalent to 2β2(p − 1) + 2α2 < r = 1 − ε. It follows that
V ∈ Lp((0, T ) × Ω;D(a)) for any T ∈ (0,∞), and hence (3.6) holds. From this we can
conclude that V is an Lp(L2(O))-solution on R+.
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Stochastic parabolicity condition

Step 2 - Proof of (3.4). By Step 1 and the preparatory observation the process U is a
strong Lp(X) solution of (3.1). By Proposition 3.3, U is a mild solution of (3.1) as well
and hence

U(t) = etAv0 +

∫ t

0

e(t−s)A2BU(s) dW (s), t ∈ [0, T ].

Since u0 ∈ Lp(Ω;DA(1− 1
p , p)), it follows from the strong continuity of etA onDA(1− 1

p , p),
see [17, Proposition 2.2.8], that

‖t 7→ etAu0‖Lp(Ω;C([0,T ];DA(1− 1
p ,p)))

≤ C‖u0‖Lp(Ω;DA(1− 1
p ,p))

.

Since by (3.6), BU ∈ Lp((0, T )× Ω;D(a1/2)), it follows with [22, Theorem 1.2] that∥∥∥t 7→ ∫ t

0

e(t−s)A2BU(s) dW (s)
∥∥∥
Lp(Ω;C([0,T ];DA(1− 1

p ,p)))

≤ C1‖BV ‖Lp((0,T )×Ω;D(A1/2)) ≤ C2‖u0‖Lp(Ω;DA(1− 1
p ,p))

.

Hence (3.4) holds, and this completes the proof. Note that the assumptions in [22,
Theorem 1.2] are satisfied since A is positive and self-adjoint.

Remark 3.8. If one considers A = ∆ on L2(T) or L2(R), then for the unitary operator
Q in the above proof one can take the discrete or continuous Fourier transform.

The above proof one has a surprising consequence. Namely, the proof of (3.6) also
holds if the number p satisfies 1 < p < 2. With some additional argument we can show
that in this situation there exists a unique Lp(X)-solution U of (3.1). This also implies
that we need less than the classical stochastic parabolicity condition one would get from
(1.2). Indeed, (1.2) gives 2α2 + 2β2 < 1. For the well-posedness in Lp(Ω;X), we only
require (3.2) which, if 1 < p < 2, is less restrictive than 2α2 + 2β2 < 1. In particular,
note that if 2α2 < 1, and β ∈ R is arbitrary, then (3.2) holds if we take p small enough.

Theorem 3.9. Let p ∈ (1,∞). If the numbers α, β ∈ R from (3.1) satisfy (3.2), then for
every u0 ∈ Lp(Ω,F0;DA(1 − 1

p , p)), there exists a unique Lp(X)-solution U of (3.1) on
[0,∞). Moreover, for every T <∞ there is a constant CT independent of u0 such that

‖U‖Lp((0,T )×Ω;D(A)) ≤ CT ‖u0‖Lp(Ω;DA(1− 1
p ,p))

(3.9)

We do not know whether (3.4) holds for p ∈ (1, 2). However, since U is a strong
solution one still has that U ∈ Lp(Ω;C([0, T ];X)).

Proof. The previous proof of (3.6) still holds for p ∈ (1, 2), and hence if we again
define U = Q−1V , the estimate (3.9) holds as well. To show that U is an Lp(X)-
solution, we need to check that it is a strong solution. For this it suffices to show
that BU ∈ Lp(Ω;L2(0, T ;X)). Since ‖bV ‖L2(O) = ‖BU‖X , it is equivalent to show that
bV ∈ Lp(Ω;L2(0, T ;L2(O))), where we used the notation of the proof of Theorem 3.6.
Now after this has been shown, as in the proof of Theorem 3.6 one gets that U is a
strong solution of (3.1).

By (3.8), for all t ∈ (0, T ] one has V (t) ∈ Lp(Ω;D(a)) and

‖(1 + a)V (t)‖Lp(Ω;L2(O)) ≤ Ct‖v0‖Lp(Ω;L2(O)). (3.10)

Applying (3.5) for each t ∈ (0, T ] and ξ ∈ O yields that∫ t

0

2b(ξ)vξ(s) dW (s) = vξ(t)− vξ(0) +

∫ t

0

a(ξ)vξ(s) ds := ηt(ξ). (3.11)
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We claim that bV ∈ Lp(Ω;L2(0, T ;L2(O))), and for all t ∈ [0, T ],∫ t

0

2bV (s) dW (s) = ηt,

where the stochastic integral is defined as an L2(O)-valued random variable, see Ap-
pendix A.

To prove the claim note that ηt ∈ Lp(Ω;L2(O)) for each t ∈ (0, T ]. Indeed, by (3.10)
and (3.6)

‖ηt‖Lp(Ω;L2(O)) ≤ ‖V (t)‖Lp(Ω;L2(O)) + ‖V (0)‖Lp(Ω;L2(O))

+

∫ t

0

‖aV (s)‖Lp(Ω;L2(O)) ds

≤ (Ct + 1)‖v0‖Lp(Ω;L2(O)) + t1−
1
p ‖aV ‖Lp((0,T )×Ω;L2(O))

≤ Ct,T ‖v0‖Lp(Ω;Da(1− 1
p ,p))

<∞.

Therefore, by (3.11) and Lemma A.4 (with φ = 2bV and ψ = 2bv), the claim follows, and
from (A.1) we obtain

‖2bV ‖Lp(Ω;L2(0,T ;L2(O))) ≤ cp,2‖ηT ‖Lp(Ω;L2(O)) ≤ cp,2CT,T ‖v0‖Lp(Ω;Da(1− 1
p ,p))

An application of Theorems 3.6 and 3.9 is given in Section 4, where it is also be
shown that the condition (3.2) is sharp.

Next we present an application to a fourth order problem.

Example 3.10. Let s ∈ R. Let β ∈ R. Consider the following SPDE on T.
du(t, x) + ∆2u(t, x) dt = −2β∆u(t, x) dW (t), t ∈ R+, x ∈ T,

Dku(t, 0) = Dku(t, 2π), t ∈ R+, k ∈ {0, 1, 2, 3}
u(0, x) = u0(x), x ∈ T.

(3.12)

Let U : R+ × Ω → Hs,2(T) be the function given by U(t)(x) = u(t, x). Then (3.12) can
be formulated as (3.1) with C = i∆ and X = Hs,2(T). If we take p ∈ (1,∞), such that

2β2(p− 1) < 1, then for all u0 ∈ Lp(Ω,F0;B
s+4− 4

p

2,p (T)), (3.12) has an Lp-solution, and

‖U‖Lp((0,T )×Ω;Hs+4,2(T)) ≤ CT ‖u0‖
Lp(Ω;B

s+4− 4
p

2,p (T))
,

where CT is a constant independent of u0.

It should be possible to prove existence, uniqueness and regularity for (3.12) in the
Lp((0, T ) × Ω;Hs,q(T))-setting with q ∈ (1,∞) under the same conditions on p and β,
but this is more technical. Details in the Lq-case are presented for another equation in
Section 5. Note that with similar arguments one can also consider (3.12) on R.

Remark 3.11. The argument in Step 1 of the proof of Theorem 3.6 also makes sense
if the number p satisfies 0 < p ≤ 1. However, one needs further study to see whether
bV or BU are stochastically integrable in this case. The definitions of Da(1 − 1

p , p) and

DA(1− 1
p , p) could be extended by just allowing p ∈ (0, 1) in (2.3). It is interesting to see

that if p ↓ 0, the condition (3.2) becomes 2α2 − 2β2 < 1.
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4 Sharpness of the condition in the Lp(L2)-setting

Below we consider the case when the operator A from Theorem 3.6 and (3.1) is the
periodic Laplacian, i.e. the Laplacian with periodic boundary conditions. We will show
below that in this case condition (3.2) is optimal. Consider the following SPDE on the
torus T = [0, 2π].

du(t) = ∆u(t, x) dt + 2αDu(t, x) dW (t)

+ 2β|D|u(t, x) dW (t), t ∈ R+, x ∈ T,
Dku(t, 0) = Dku(t, 2π), t ∈ R+, k ∈ {0, 1}
u(0, x) = u0(x), x ∈ T.

(4.1)

Here D denotes the derivative with respect to x, |D| = (−∆)1/2, the initial value u0 :

Ω→ D′(T) is F0-measurable and α, β ∈ R are constants not both equal to zero.
LetX = Hs,2(T) and s ∈ R. Then problem (4.1) in the functional analytic formulation

becomes {
dU(t) +AU(t) dt = 2BU(t) dW (t), t ∈ R+,

U(0) = u0.
(4.2)

Here A = −∆ with domain D(A) = Hs+2,2(T) and B : Hs+2,2(T) → Hs+1,2(T) is given
by B = αD + β|D| with D(B) = D(D) = Hs+1,2(T). The connection between u and U

is given by u(t, ω, x) = U(t, ω)(x). A process u is called an Lp(Hs,2)-solution to (4.1) on
[0, τ) if U is an Lp(Hs,2)-solution of (4.2) on [0, τ).

Theorem 4.1. Let p ∈ (1,∞) and let s ∈ R.

(i) If 2α2 + 2β2(p − 1) < 1, then for every u0 ∈ Lp(Ω,F0;B
s+2− 2

p

2,p (T)) there exists a
unique Lp(Hs,2)-solution U of (4.2) on [0,∞). Moreover, for every T < ∞ there is
a constant CT independent of u0 such that

‖U‖Lp((0,T )×Ω;Hs+2,2(T)) ≤ CT ‖u0‖
Lp(Ω;B

s+2− 2
p

2,p (T))
. (4.3)

If, additionally, p ∈ [2,∞), then for every T <∞ there is a constant CT independent
of u0 such that

‖U‖
Lp(Ω;C([0,T ];B

s+2− 2
p
,2

2,p (T)))
≤ CT ‖u0‖

Lp(Ω;B
s+2− 2

p
2,p (T))

. (4.4)

(ii) If 2α2 + 2β2(p− 1) > 1, and

u0(x) =
∑

n∈Z\{0}

e−n
2

einx, x ∈ T, (4.5)

then there exists a unique Lp(Hs,2)-solution of (4.2) on [0, τ), where τ =
(
2α2 +

2β2(p− 1)− 1
)−1

. Moreover, u0 ∈
⋂
γ∈RB

γ
2,p(T) = C∞(T) and

lim sup
t↑τ

‖U(t)‖Lp(Ω;Hs,2(T)) =∞. (4.6)

If, additionally, p ∈ [2,∞), then also

‖U‖Lp((0,τ)×Ω;Hs+2,2(T)) =∞ (4.7)

Remark 4.2. Setting
u0(x) =

∑
n∈Z\{0}

e−δn
2

einx,

EJP 17 (2012), paper 56.
Page 13/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2186
http://ejp.ejpecp.org/


Stochastic parabolicity condition

where δ > 0 is a parameter, one can check that the assertion in (ii) holds if one takes

τ = δ/(2α2 + 2(p− 1)β2 − 1).

This shows how the nonrandom explosion time varies for some class of initial conditions.

Proof. (i): This follows from Theorems 3.6 and 3.9, (2.2) and the text below (2.3).
(ii): Taking the Fourier transforms on T in (4.2) one obtains the following family of

scalar-valued SDEs with n ∈ Z:{
dvn(t) = −n2vn(t) dt+ (2iαn+ 2β|n|)vn(t) dW (t), t ∈ R+,

vn(0) = an,
(4.8)

where vn(t) = F(U(t))(n) and an = e−n
2

. Fix n ∈ Z. It is well-known from the theory of
SDEs that (4.8) has a unique solution vn : R+ × Ω→ R given by

vn(t) = e−t(n
2+2b2n)e2β|n|W (t)e2αinW (t)an, (4.9)

where bn = β|n|+ iαn. Now let U : R+ × Ω→ L0(T) be defined by

U(t, ω)(x) =
∑
n∈Z

vn(t, ω)einx. (4.10)

Clearly, if an Lp(Hs,2)-solution exists, it has to be of the form (4.10). Hence uniqueness
is obvious.

Let T < τ and let t ∈ [0, T ]. As in (3.7) in the proof of Theorem 3.6 (with ε = 0), one
has

‖U(t, ω)‖2Hs+2,2(T) = e2h(t,ω)
∑

n∈Z\{0}

(n2 + 1)s+2e−f(t)(|n|−g(t,ω))2e−2n2

= 2e2h̃(t,ω)
∑
n≥1

(n2 + 1)s+2e−f̃(t)(n−g̃(t,ω))2 ,
(4.11)

where in the last step we used the symmetry in n and where for the term û0(n) = e−2n2

we have introduced the following functions f̃ , g̃ and h̃:

f̃(t) = 2(t+ 2θt+ 1), g̃(t, ω) =
βW (t, ω)

t+ 2θt+ 1
, h̃(t, ω) =

β2|W (t, ω)|2

t+ 2θt+ 1
,

where θ = β2 − α2. Note that for t < τ we have t+ 2θt+ 1 ≥ γ, where

γ =

{
1 if 2α2 − 2β2 ≤ 1,
T + 2θT + 1 if 2α2 − 2β2 > 1.

The proof will be split in two parts. We prove the existence and regularity in (ii) for all
s ≥ −2 and t < τ . The blow-up of (ii) will be proved for all s < −2. Since Hs,2(T) ↪→
Hr,2(T) if s > r, this is sufficient.

Assume first that s ≥ −2. Let W (t, ω) ≥ 0 and let m ∈ N be the unique integer such
that m− 1 < g̃(t, ω) ≤ m. Then one has∑

n≥1

(n2 + 1)s+2e−f̃(t)(n−g̃(t,ω))2 ≤
∑
n≥1

(n2 + 1)s+2e−γ(n−m)2

=
∑

k≥−m+1

((k +m)2 + 1)s+2e−γk
2

≤
∑

k≥−m+1

((k + g̃(t, ω) + 1)2 + 1)s+2e−γk
2
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≤
∑
k∈Z

((|k|+ g̃(t, ω) + 1)2 + 1)s+2e−γk
2

≤ Csg̃(t, ω)2s+4
∑
k∈Z

e−γk
2

+ Cs
∑
k∈Z

(|k|+ 1)2s+4e−γk
2

= C ′s,γ(g̃(t, ω)2s+4 + 1).

Similarly, if W (t, ω) < 0 one has∑
n≥1

(n2 + 1)s+2e−f̃(t)(n−g̃(t,ω))2 ≤
∑
n≥1

(n2 + 1)s+2e−γk
2

Hence by (4.11) and the previous estimate we infer that

E‖U(t)‖pHs+2,2(T) ≤ C
′
s,γE

[
(|g̃(t)|2s+4 + 1)eph̃(t)

]
. (4.12)

By the definition of the function h̃, the the RHS of (4.12) is finite if and only if pβ2t
t+2θt+1 <

1
2 . This is equivalent with

[
2(p− 1)β2 + 2α2 − 1

]
t < 1. Since by assumption 2(p− 1)β2 +

2α2 − 1 > 0, the latter is satisfied, because t < τ .
Finally, we claim that U ∈ Lp((0, T )×Ω;Hs+2,2(T)). Indeed, for all 0 < t ≤ T one has

E
[
(|g̃(t)2s+4|+ 1)eph̃(t)

]
= E

[([ β|W (1)|√
t+ 2θ

√
t+ t−1/2

]2s+4

+ 1
)
e
p
β2|W (1)|2

1+2θ+t−1

]
≤ E

[([β|W (1)|
γt−1/2

]2s+4

+ 1
)
e
p
β2|W (1)|2

1+2θ+T−1

]
≤ E

[(
T s+2(β/γ)2s+4|W (1)|2s+4 + 1

)
e
p
β2|W (1)|2

1+2θ+T−1

]
= (∗)

Since (∗) is independent of t and finite by the assumption on T , the claim follows. Now
the fact that U is a strong solution on [0, T ] can be checked as in Theorems 3.6 and 3.9.

We will show that for all s < −2 one has

lim sup
t↑τ

E‖U(t)‖pHs+2,2(T) =∞. (4.13)

As observed earlier the blow-up in (4.6) follows from the above. Indeed, this is clear
from the fact that the space Hδ,2(T) becomes smaller as δ increases. To prove (4.13),
fix t ∈ [0, τ) and assume W (t, ω) > 0. Let m ≥ 1 be the unique integer such that
m− 1 < g̃(t, ω) ≤ m. Then one has

‖U(t, ω)‖2Hs+2,2(T) = 2e2h̃(t,ω)
∑
n≥1

(n2 + 1)s+2e−f̃(t)(n−g̃(t,ω))2

≥ 2(m2 + 1)s+2e−f̃(t) ≥ ((g̃(t, ω) + 1)2 + 1)s+2e−f̃(t).

Hence we obtain

E‖U(t)‖pHs+2,2(T)

≥ 2e−f̃(t)p/2

∫
{W (t)>0}

((g̃(t, ω) + 1)2 + 1)
s
2p+peph̃(t) dP

= 2e−f̃(t)

∫
{W (1)>0}

( βW (1)(√
t+ 2θ

√
t+ t−1/2

+ 1
)2

+ 1
) sp

2 +p

e
pβ2|W (1)|2

1+2θ+t−1 dP

≥ 2e−f̃(t)

∫
{W (1)>0}

((βW (1)

γt−1/2
+ 1
)2

+ 1
) sp

2 +p

e
p
β2|W (1)|2

1+2θ+t−1 dP
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Stochastic parabolicity condition

≥ 2e−f̃(t)

∫
{W (1)>0}

(( βW (1)

γT−1/2
+ 1
)2

+ 1
) sp

2 +p

e
p
β2|W (1)|2

1+2θ+t−1 dP

The latter integral is infinite if t = τ . Now (4.13) follows from the monotone conver-
gence theorem and the last lower estimate for E‖U(t)‖pHs+2,2(T).

Finally, we prove (4.7) for p ∈ [2,∞). Note that if U ∈ Lp((0, τ) × Ω;Hr+2,2(T)) for
some r > s+ 2

p , then by using the mild formulation as in Step 2 of the proof of Theorem
3.6 one obtains that

U ∈ Lp(Ω;C([0, τ ];B
r+2− 2

p

2,p (T))) ↪→ Lp(Ω;C([0, τ ];Hs+2,2(T))),

where the embedding follows from Section 2.2. This would contradict (4.13).

Remark 4.3. From the above proof one also sees that if 2α2−2β2 > 1, then ‖U(t, ω)‖Hs,2(T) =

∞ for t > (2α2 − 2β2 − 1)−1. Indeed, this easily follows from (4.11) and the fact
that f̃(t) < 0. Apparently, for such t, parabolicity is violated. On the other hand, if
2α2 − 2β2 < 1, but 2α2 + 2β2(p− 1) < 1, the above proof shows that the ill-posedness is
due to lack of Lp(Ω)-integrability.

Remark 4.4. The above theorem has an interesting consequence. Let 2α2 < 1 and let
β be arbitrary. If p ∈ (1,∞) is so small that 2α2 +2β2(p−1) < 1, then (4.1) is well-posed.

5 Well-posedness and sharpness in the Lp(Lq)-setting

In this section we show that the problem (4.2) can also be considered in an Lq(T)-
setting. The results are quite similar, but the proofs are more involved, due to lack of
orthogonality in Lq(T). Instead of using orthogonality, we will rely on the Marcinkiewicz
multiplier theorem, see Theorem 2.2.

Let q ∈ (1,∞) and s ∈ R and let X = Hs,q(T). Using Proposition A.1 and Remark
A.5 one can extend Definitions 3.1, 3.2, 3.4 and Proposition 3.3. Here instead of B(U) ∈
L0(Ω;L2(0, T ;X)) (with X = Hs,2(T)) in Definitions 3.1 and 3.2 (ii) one should assume
B(U) ∈ L0(Ω;Hs,q(T;L2(0, T ))). In that way the stochastic integrability is defined as
below Proposition A.1. This will used in the next theorem.

Concerning Lp(Hs,q)-solutions one has the following.

Theorem 5.1. Let p, q ∈ (1,∞) and s ∈ R be arbitrary.

(i) If 2α2 + 2β2(p − 1) < 1, then for every u0 ∈ Lp(Ω,F0;B
s+2− 2

p
q,p (T)) there exists a

unique Lp(Hs,q)-solution U of (4.2) on [0,∞). Moreover, for every T < ∞ there is
a constant CT independent of u0 such that

‖U‖Lp((0,T )×Ω;Hs+2,q(T)) ≤ CT ‖u0‖
Lp(Ω;B

s+2− 2
p

q,p (T))
. (5.1)

If, additionally, q ≥ 2 and p > 2, or p = q = 2, then for every T < ∞ there is a
constant CT independent of u0 such that

‖U‖
Lp(Ω;C([0,T ];B

s+2− 2
p
,q

q,p (T)))
≤ CT ‖u0‖

Lp(Ω;B
s+2− 2

p
2,p (T))

. (5.2)

(ii) If 2α2 + 2β2(p− 1) > 1, and

u0(x) =
∑

n∈Z\{0}

e−n
2

e−inx, (5.3)
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then there exists a unique Lp(Hs,q)-solution of (4.2) on [0, τ), where τ = (2α2 +

2(p− 1)β2 − 1)−1. Moreover, u0 ∈
⋂
δ∈RB

δ
q,p(T) = C∞(T) and one has

lim sup
t↑τ

‖U(t)‖Lp(Ω;Hs,q(T)) =∞. (5.4)

If, additionally, q ≥ 2 and p > 2, or p = q = 2, then also

‖U‖Lp((0,τ)×Ω;Hs+2,q(T)) =∞.

Proof.
(ii): Since T is a bounded domain this is a consequence of Theorem 4.1 (ii) (with

different choices of s), and the embeddings Hs,q(T) ↪→ Hs,2(T) and, see [29, Theorems
3.5.4 and 3.5.5],

Hs,2(T) ↪→ Hs− 1
2 + 1

q ,q(T).

(i): The solution U is again of the form (4.10). To prove the estimates in (i) we apply
Theorem 2.2. Let ε ∈ (0, 1

2 ) be such that 2α2 + 2β2(p− 1) < 1− 2ε. Let r = 1− 2ε. With
similar notation as in the proof of Theorem 4.1 and with an = F(u0)(n), let

vn(t) = e−t(n
2+2b2n)e2β|n|W (t)e2αinW (t)an = eh(t,ω)mn(t, ω)e−

εn2

2 tãn(t), (5.5)

where bn = β|n|+ iαn, ãn(t) = e2αinW (t)an and m = m(1)m(2) with

m(1)
n (t, ω) = e−

1
2 f(t)[|n|−g(t,ω)]2 , m(2)

n (t, ω) = ekn(t,ω).

Here f, g, h are given by

f(t) = 2(r + 2θ)t, g(t, ω) =
βW (t, ω)

(r + 2θ)t
, h(t, ω) =

β2|W (t, ω)|2

(r + 2θ)t
,

where θ = β2 − α2 and

kn(t, ω) = −εn
2

2
t+ 4iβαtn2.

By Facts 2.1 (ii) one has

‖m(t, ω)‖Mq(Z) ≤ ‖m(1)(t, ω)‖Mq(Z)‖m(2)(t, ω)‖Mq(Z). (5.6)

Let A = {0, 1, 2, . . .} and B = Z \A. For the first term we have

‖m(1)(t, ω)‖Mq(Z) ≤ ‖1Am(1)(t, ω)‖Mq(Z) + ‖1Bm(1)(t, ω)‖Mq(Z)

= ‖1Am(1)(t, ω)‖Mq(Z) + ‖1A\{0}m(1)(t, ω)‖Mq(Z)

≤ 2‖1Am(1)(t, ω)‖Mq(Z) + ‖1{0}m(1)(t, ω)‖Mq(Z)

≤ 3‖1Am(1)(t, ω)‖Mq(Z),

where we used Facts 2.1 (iv) in the last step.
Let r(t, ω) = g(t, ω)−g0(t, ω) with g0(t, ω) = bg(t, ω)c, and letm(3)

n (t, ω) = e−
1
2 f(t)(n−r(t,ω))2 .

Let Ag(t,ω) = {n ∈ Z : n ≥ −g0(t, ω)}. By Facts 2.1 (i) and (iii) one sees that

‖1Am(1)(t, ω)‖Mq(Z) = ‖1Ag(t,ω)
m(3)(t, ω)‖Mq(Z)

≤ ‖1Ag(t,ω)
‖Mq(Z)‖m(3)(t, ω)‖Mq(Z)

= ‖1A‖Mq(Z)‖m(3)(t, ω)‖Mq(Z)

≤ C1,qC2,q,
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where we used Theorem 2.2 and (2.1) applied to m(3) (note that r(t, ω) ∈ [0, 1]).
Therefore, we find that with Kq = 3C1,qC2,q one has

‖m(1)(t, ω)‖Mq(Z) ≤ Kq. (5.7)

To estimate ‖m(2)(t, ω)‖Mq(Z), let ζ(ξ) = e−
εξ2

2 t+i4βαtξ2 , ξ ∈ R. To check that (2.1) is
finite, first note that ζ is uniformly bounded. Moreover, one has

|ζ ′(ξ)| = Cε|ξ|te−
εξ2

2 t, ξ ∈ R \ {0},

where C =
(

1+ 64β2α2

ε2

)1/2

. To estimate
∫ 2n

2n−1 |ζ ′(ξ)| dξ and
∫ −2n−1

−2n
|ζ ′(ξ)| dξ, by symmetry

it suffices to consider the first one. We obtain∫ 2n

2n−1

|ζ ′(ξ)| dξ ≤ C
∫ 2n

2n−1

εξte−
εξ2

2 t dξ = C
[
e−ε2

2n−3t − e−ε2
2n−1t

]
≤ C.

Hence, Theorem 2.2 and (2.1) yield that ‖m(2)(t, ω)‖Mq(Z) ≤ cqC. Therefore, from (5.6)
and (5.7) we can conclude that with Cq = KqcqC, one has

‖m(t, ω)‖Mq(Z) ≤ Cq. (5.8)

Let cn(t, ω) = (1 + n2)(s+2)/2e−
εn2

2 tãn(t, ω), where we recall ãn(t) = e2αinW (t)an. Let
en(x) = einx. Combining the definition of U , (5.5) and (5.8) we obtain that

‖U(t, ω)‖Hs+2,q(T) =
∥∥∥∑
n∈Z

(1 + n2)(s+2)/2eh(t,ω)mn(t, ω)e−
εn2

2 tãn(t, ω)en

∥∥∥
Lq(T)

= eh(t,ω)
∥∥∥∑
n∈Z

mn(t, ω)cn(t, ω)en

∥∥∥
Lq(T)

≤ Cqeh(t,ω)
∥∥∥∑
n∈Z

cn(t, ω)en

∥∥∥
Lq(T)

= Cqe
h(t,ω)

∥∥∥∑
n∈Z

(1 + n2)(s+2)/2e−
εn2

2 tanen(·+ αW (t, ω))
∥∥∥
Lq(T)

= Cqe
h(t,ω)

∥∥∥∑
n∈Z

(1 + n2)(s+2)/2e−
εn2

2 tanen

∥∥∥
Lq(T)

= Cqe
h(t,ω)

∥∥∥(1−∆)(2+s)/2e−
tε
2 ∆u0

∥∥∥
Lq(T)

.

By independence it follows that

E‖U(t)‖qHs+2,q(T) ≤ C
p
qE(eph(t,·))E

∥∥∥(1−∆
)(2+s)/2

e−
tε
2 ∆u0

∥∥∥p
Lq(T)

. (5.9)

Recall that as before since 2α2 +2β2(p−1) < 1 one has Mp := E(eph(t,ω)) = E(eph(1,ω)) <

∞. Integrating with respect to t ∈ [0, T ], yields that∫ T

0

E‖U(t)‖pHs+2,q(T) dt ≤ C
p
qM

pE

∫ T

0

∥∥∥(1−∆
)(2+s)/2

e−
tε
2 ∆u0

∥∥∥p
Lq(T)

dt

≤ CCpqMpE‖u0‖p
B
s+2− 2

p
q,p (T)

,

where the last estimate follows from (2.2) and (2.3). This proves (5.1). The fact that U
is an Lp-solution of (4.2) can be seen as in Theorems 3.6 and 3.9, but for convenience
we present a detailed argument.
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We check the conditions of Definitions 3.1 and 3.4. Recall that the second part of
Definition 3.1 (ii) should be replaced by B(U) ∈ L0(Ω;Hs,q(T;L2(0, T ))) as explained at
the beginning of Section 5 (also see Remark A.5).

The strong measurability and adaptedness of U : [0, T ] × Ω → Hs,q(T) follows from
the corresponding properties of vn defined in (4.9) and the convergence of the series
(4.10) in Lp(Ω × (0, T );Hs,q(T)) (which follows from (5.1)). Since, D(A) = Hs+2,q(T),
the fact that U ∈ Lp(Ω× (0, T );D(A)) is immediate from (5.1).

Next we show that B(U) ∈ Lp(Ω;Hs,q(T;L2(0, T ))). By (5.9) one has that for all
t ∈ (0, T ],

(1−∆)(s+2)/2U(t) =
∑
n∈Z

(1 + n2)(s+2)/2vn(t)ein· converges in Lp(Ω;Lq(T))

‖U(t)‖Lp(Ω;Hs+2,q(T)) ≤ C
∥∥∥(1−∆

)(2+s)/2
e−

tε
2 ∆u0

∥∥∥
Lp(Ω;Lq(T))

≤ Ct‖u0‖Lp(Ω;Hs,q(T)).
(5.10)

Applying (4.8) yields that for each t ∈ [0, T ] and n ∈ Z,∫ T

0

(1 + n2)s/2(2bnvn(s) dW (s) = (1 + n2)s/2vn(T )− (1 + n2)s/2vn(0)

+

∫ T

0

(1 + n2)s/2n2vn(s) ds := ηn(t).

(5.11)

Let for each t ∈ [0, T ], η(t) ∈ Lp(Ω;Lq(T)) be defined by η(t)(x) =
∑
n∈Z ηn(t)einx. Then

by (5.10) and (5.11) for every t ∈ [0, T ],

η(t) = (1−∆)s/2U(t)− (1−∆)s/2u0 +

∫ t

0

(1−∆)s/2AU(s) ds,

is in Lp(Ω;Lq(T)). Using (5.10) and (5.1) it follows that for all t ∈ (0, T ],

‖η(t)‖Lp(Ω;Lq(T)) ≤ ‖U(t)‖Lp(Ω;Hs,q(T)) + ‖u0‖Lp(Ω;Hs,q(T))

+

∫ t

0

‖AU(s)‖Lp(Ω;Hs,q(T)) ds

≤ Ct‖u0‖Lp(Ω;Hs,q(T)) + t1−
1
p ‖AU‖Lp((0,T )×Ω;Hs,q(T))

≤ Ct,T ‖u0‖
Lp(Ω;B

s+2− 2
p

2,p (T))
.

We claim that B(U) ∈ Lp(Ω;Hs,q(T;L2(0, T ))), and for all t ∈ [0, T ],∫ t

0

(1−∆)s/22B(U) dW (s) = η(t)

where the stochastic integral exists in Lp(Ω;Lq(T)), see Appendix A. By (5.11) and
Lemma A.4 (with φ = (1−∆)s/22B(U), (ψn)n∈Z = ((1+n2)s/22bnvn)n∈Z and O = N), the
claim follows, and from (A.1) we obtain

‖(1−∆)s/22B(U)‖Lp(Ω;Lq(T;L2(0,T ))) ≤ cp,q‖ηT ‖Lp(Ω;Lq(T))

≤ cp,qCT,T ‖u0‖
Lp(Ω;B

s+2− 2
p

2,p (T))
.

Finally, assume q ≥ 2 and p > 2 or p = q = 2. To prove (5.2) one can proceed as in
Step 2 of the proof of Theorem 3.6. Indeed, since U is a mild solution as well, one has

U(t) = etAu0 +

∫ t

0

e(t−s)ABU(s) dW (s).
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Now (5.2) follows from [22, Theorem 1.2]. Note that the assumptions of that theorem
can be checked with Theorem 2.2 (cf. [15, Example 10.2b]).

Remark 5.2. Note that the proof that B(U) is stochastically integrable can be sim-
plified if p, q ≥ 2. Indeed, the fact that U is an Lp-solution, already implies that
B(U) ∈ Lp(Ω;L2(0, T ;Hs,q(T)) and therefore, stochastic integrability can be deduced
from Corollary A.3.

A Stochastic integrals in Lq-spaces

Recall that if X is a Hilbert space and φ : [0, T ]× Ω→ X is an adapted and strongly
measurable process with φ ∈ L0(Ω;L2(0, T ;X)), then φ is stochastically integrable. Be-
low we explain stochastic integration theory of [20] in the cases X = Lq with q ∈ (1,∞)

and also recall a weak sufficient condition for stochastic integrability. The stochastic in-
tegration theory from [20] holds for the larger class of UMD Banach spaces, but we only
consider Lq-spaces below. Even for the classical Hilbert space case q = 2, the second
equivalent condition below is a useful characterization of stochastic integrability.

Proposition A.1. Let (O,Σ, µ) be a σ-finite measure space. Let p, q ∈ (1,∞). Let T > 0.
For an adapted and strongly measurable process φ : [0, T ] × Ω → Lq(O) the following
three assertions are equivalent.

(1) There exists a sequence of adapted step processes (φn)n≥1 such that

(i) lim
n→∞

‖φ− φn‖Lp(Ω;Lq(O;L2(0,T ))) = 0,

(ii) (
∫ T

0
φn(t) dW (t))n≥1 is Cauchy sequence in Lp(Ω;Lq(O)).

(2) There exists a random variable η ∈ Lp(Ω;Lq(O)) such that for all sets A ∈ Σ with
finite measure one has (t, ω) 7→

∫
A
φ(t, ω) dµ ∈ Lp(Ω;L2(0, T )), and∫

A

η dµ =

∫ T

0

∫
A

φ(t) dµ dW (t) in Lp(Ω).

(3) ‖φ‖Lp(Ω;Lq(O;L2(0,T ))) <∞.

Moreover, in this situation one has lim
n→∞

∫ T

0

φn(t) dW (t) = η, and

c−1
p,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))) ≤ ‖η‖Lp(Ω;Lq(O)) ≤ Cp,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))). (A.1)

Remark A.2. Note that the identity in (2) holds in Lp(Ω) by the Burkholder-Davis-
Gundy inequalities. In order to check (3) one needs to take a version of φ which is
scalar valued and depends on [0, T ]× Ω×O. Such a version can be obtained by strong
measurability.

A process φwhich satisfies any of these equivalent conditions is called Lp-stochastically
integrable on [0, T ], and we will write∫ T

0

φ(t) dW (t) = η.

It follows from (3) that φ is Lp-stochastically integrable on [0, t] as well. By the Doob
maximal inequality, see [11, Proposition 7.16], one additionally gets

c−1
p,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))) ≤

∥∥∥t 7→ ∫ t

0

φ(s) dW (s)
∥∥∥
F
≤ Cp,q‖φ‖Lp(Ω;Lq(O;L2(0,T ))),
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where F = Lp(Ω;C([0, T ];Lq(O))). Moreover, in [20, Theorem 5.9] it has been shown
that Proposition A.1 can be localized and it is enough to assume φ ∈ L0(Ω;Lq(O;L2(0, T )))

in order to have stochastic integrability.

Proof. The result follows from [20, Theorem 3.6 and Corollary 3.11] with H = R. For
this let us note that (2) implies that for all g ∈ Lq(O) which are finite linear combinations
of 1A with µ(A) <∞, one has

〈η, g〉 =

∫ T

0

〈φ(t), g〉 dW (t) in Lp(Ω), (A.2)

where we use the notation 〈·, ·〉 for the duality of Lq(O) and Lq
′
(O). By a limiting argu-

ment one can see that for all g ∈ Lq′(O) one has 〈φ, g〉 ∈ Lp(Ω;L2(0, T )), and (A.2) holds.
This is the equivalent condition in [20, Theorem 3.6]. Moreover, it is well-known that
either (1) or (3) imply that for all g ∈ Lq′(O) one has 〈φ, g〉 ∈ Lp(Ω;L2(0, T )). See [20,
Corollary 3.11] and reference given there.

If q ∈ [2,∞) there is an easy sufficient condition for Lp-stochastic integrability.

Corollary A.3. Let (O,Σ, µ) be a σ-finite measure space. Let p ∈ (1,∞) and q ∈ [2,∞).
Let T > 0. Let φ : [0, T ] × Ω → Lq(O) be an adapted and strongly measurable process.
If ‖φ‖Lp(Ω;L2(0,T ;Lq(O))) <∞, then φ is Lp-stochastically integrable on [0, T ] and∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥
Lp(Ω;Lq(O))

≤ Cp,q‖φ‖Lp(Ω;L2(0,T ;Lq(O))).

This result can be localized, and it is sufficient to have φ ∈ L0(Ω;L2(0, T ;Lq(O))) in
order to a stochastic integral. In Corollary A.3 one can replace Lq(O) by any space X
which has martingale type 2, see [1, 7, 23, 24, 30].

Proof. By Minkowski’s integral inequality, see [16, Lemma 3.3.1], one has

Lp(Ω;L2(0, T ;Lq(O))) ↪→ ‖φ‖Lp(Ω;Lq(O;L2(0,T ))).

Therefore, the result follows from Proposition A.1.

The following lemma is used in Sections 4 and 5.

Lemma A.4. Let (O,Σ, µ) be a σ-finite measure space. Let p ∈ (1,∞) and q ∈ (1,∞).
Let T > 0. Let φ : [0, T ] × Ω → Lq(O) be an adapted and strongly measurable process.
Assume the following conditions:

(1) Assume that there exist a measurable function ψ : [0, T ] × Ω × O → R such that
φ(t, ω)(x) = ψ(t, ω, x) for almost all t ∈ [0, T ], ω ∈ Ω and x ∈ O, and for all x ∈ O,
ψ(·, x) is adapted.

(2) For almost all x ∈ O, ψ(·, x) ∈ Lp(Ω;L2(0, T )).

(3) Assume that there is a η ∈ Lp(Ω;Lq(O)) such that

η(ω)(x) =
(∫ T

0

ψ(t, x) dW (t)
)

(ω) for almost all ω ∈ Ω, and x ∈ O.

Then φ is Lp-stochastically integrable on [0, T ] and∫ T

0

φ(t) dW (t) = η.
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Proof. Note that the stochastic integral in (3) is well-defined. Indeed, by the adapt-
edness of φ and (1), one has for almost all x ∈ O, ψ(·, x) is adapted. Therefore, (2)

shows that for almost all x ∈ O,
∫ T

0
ψ(t, x) dW (t) exists in Lp(Ω), and by Doob’s maximal

inequality and the Bukrholder–Davis–Gundy inequality, see [11, Theorem 17.7], one has

c−1
p ‖ψ(·, x)‖E ≤

∥∥∥∫ T

0

ψ(t, x) dW (t)
∥∥∥
Lp(Ω)

≤ Cp‖ψ(·, x)‖E , (A.3)

where E = Lp(Ω;L2(0, T ))

First assume p ≤ q. FixA ∈ Σ with finite measure. We claim that φ ∈ Lp(Ω;L2(0, T ;L1(A))).
Indeed, one has∥∥∥∫

A

|φ| dµ
∥∥∥
E

=
∥∥∥∫

A

|ψ(·, x)| dµ(x)
∥∥∥
E

≤
∫
A

‖ψ(·, x)‖E dµ(x) (Minkowski’s inequality)

≤cp
∫
A

∥∥∥∫ T

0

ψ(t, x) dW (t)
∥∥∥
Lp(Ω)

dµ(x) (by (A.3))

≤cpµ(A)
1
q′
(∫

A

∥∥∥∫ T

0

ψ(t, x) dW (t)
∥∥∥q
Lp(Ω)

dµ(x)
)1/q

(Hölder’s inequality)

≤cpµ(A)1/q′‖η‖Lp(Ω;Lq(O)) (Minkowski’s inequality)

This proofs the claim. In particular, one has
∫
A
φdµ ∈ E.

Note that by the stochastic Fubini theorem one has∫
A

η(ω) dµ =
(∫ T

0

∫
A

ψ(t, x) dµ(x) dW (t)
)

(ω) =
(∫ T

0

∫
A

φ(t) dµ dW (t)
)

(ω).

Hence, Proposition A.1 (2) implies the result.
Now assume p > q. Then by the above case on obtains that φ is Lq-stochastically

integrable on [0, T ]. Moreover,∥∥∥∫
A

φ(t) dµ
∥∥∥
Lp(Ω;L2(0,T )

≤ cp
∥∥∥ ∫ T

0

∫
A

φ(t) dµ dW (t)
∥∥∥
Lp(Ω)

=
∥∥∥∫

A

η dµ
∥∥∥
Lp(Ω)

≤ µ(A)
1
q′ ‖η‖Lp(Ω;Lq(O)).

Therefore, another application of Proposition A.1 (2) shows that φ is actually Lp-stochastically
integrable on [0, T ].

Remark A.5. Let us explain how the above result can also be applied to Hs,q(T) which
is isomorphic to a Lq(T). Let J : Hs,q(T) → Lq(T) be an isomorphism. Then for a
process φ : [0, T ] × Ω → Hs,q(T) let φ̃ = Jφ. The above results can be applied to φ̃.

Conversely, if η̃ =
∫ T

0
φ̃(t) dW (t), then we define

η = J−1η̃.

Moreover, ‖φ‖Lp(Ω;Hs,q(T;L2(0,T ))) <∞ is equivalent to stochastic integrability of φ. It is
well-known, see [31, 8.24], that J extends to a isomorphism from Hs,q(T;L2(0, T ))) into
Lq(T;L2(0, T )).

In a similar way, the results extend to arbitrary X which are isomorphic to a closed
subspace of any Lq(O).
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