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Abstract

We propose a method to construct the stochastic integral simultaneously under a
non-dominated family of probability measures. Path-by-path, and without referring
to a probability measure, we construct a sequence of Lebesgue-Stieltjes integrals
whose medial limit coincides with the usual stochastic integral under essentially any
probability measure such that the integrator is a semimartingale. This method ap-
plies to any predictable integrand.
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1 Introduction

The goal of this article is to construct the stochastic integral in a setting where a
large family P of probability measures is considered simultaneously. More precisely,
given a predictable integrand H and a process X which is a semimartingale under all
P ∈ P, we wish to construct a process which P -a.s. coincides with the P -Itô integral
(P )
∫
H dX for all P ∈ P; i.e., we seek to aggregate the family {(P )

∫
H dX}P∈P into a

single process. This work is motivated by recent developments in probability theory
and stochastic optimal control, where stochastic integrals under families of measures
have arisen in the context of Denis and Martini’s model of volatility uncertainty in fi-
nancial markets [2], Peng’s G-expectation [11] and in particular the representation of
G-martingales of Soner et al. [14], the second order backward stochastic differential
equations and target problems of Soner et al. [13, 12] and in the non-dominated op-
tional decomposition of Nutz and Soner [10]. In all these examples, one considers a
family P of (mutually singular) measures which cannot be dominated by a finite mea-
sure.

The key problem in stochastic integration is, of course, that the paths of the inte-
grator X are not of finite variation. The classical Hilbert space construction depends
strongly on the probability measure since it exploits the martingale properties of the in-
tegrator; in particular, it is far from being pathwise. A natural extension of the classical
construction to a family P, carried out in [2, 11, 8] under specific regularity assump-
tions, is to consider the upper expectation EP [ · ] = supP∈P E

P [ · ] instead of the usual
expectation and define the stochastic integral along the lines of the usual closure oper-
ation from simple integrands, but under a norm induced by EP . Since such a norm is
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Pathwise stochastic integrals

rather strong, this leads to a space of integrands which is smaller than in the classical
case.

A quite different approach is to construct the stochastic integral pathwise and with-
out direct reference to a probability measure; in this case, the integral will be well de-
fined under all P ∈ P. The strongest previous result about pathwise integration is due
to Bichteler [1]; it includes in particular the integrals which can be defined by Föllmer’s
approach [3]. A very readable account of that result and some applications also appear
in Karandikar [6]. Bichteler’s remarkable observation is that if H = G− is the left limit
of a càdlàg process G, then one can obtain a very favorable discretization of

∫
H dX by

sampling H at a specific sequence of stopping times, given by the level-crossing times
of H at a grid of mesh size 2−n. Namely, the corresponding Riemann sums

∫
Hn dX

converge pointwise in ω (uniformly in time, outside a set which is negligible for all P ),
and this limit yields a pathwise definition of the integral. To appreciate this fact, recall
that as soon as H is left-continuous, essentially any discretization will converge to the
stochastic integral, but only in measure, so that it is not immediate to construct a single
limiting process for all P : passing to a subsequence yields P -a.s. convergence for some
P , but not for all P at once.

Finally, let us mention that the “skeleton approach” of Willinger and Taqqu [16,
17] is yet another pathwise stochastic integration theory (related to the problem of
martingale representation); however, this construction cannot be used in our context
since it depends strongly on the equivalence class of the probability measure. The main
drawback of the previous results is that the restrictions on the admissible integrands
can be too strong for applications. In particular, the integrals appearing in the main
results of [13] and [10] could not be aggregated for that reason. In a specific setting
where X is continuous, one possible solution, proposed by Soner et al. [15], is to impose
a strong separability assumption on the set P, which allows to glue together directly
the processes {(P )

∫
H dX}P∈P .

In the present paper, we propose a surprisingly simple, pathwise construction of
the stochastic integral for arbitrary predictable integrands H (Theorem 2.2) and a very
general set P. In a first step, we average H in the time variable to obtain approxima-
tions Hn of finite variation, which allows to define the integral

∫
Hn dX pathwise. This

averaging requires a certain domination assumption; however, by imposing the latter
at the level of predictable characteristics, we achieve a condition which is satisfied in
all cases of practical interest (Assumption 2.1). The second step is the passage to the
limit, where we shall work with the (projective limit of the) convergence in measure and
use a beautiful construction due to G. Mokobodzki, known as medial limit (cf. Meyer [9]
and Section 2.2 below). As a Banach limit, this is not a limit in a proper sense, but it
will allow us to define path-by-path a measurable process

∫
H dX which coincides with

the usual stochastic integral under every P ; in fact, it seems that this technology may
be useful in other aggregation problems as well. To be precise, this requires a suitable
choice of the model of set theory: we shall work under the Zermelo–Fraenkel set theory
with axiom of choice (ZFC) plus the Continuum Hypothesis.

2 Main Result

Let (Ω,F) be a measurable space equipped with a right-continuous filtration F =

(Ft)t∈[0,1] and let P be a family of probability measures on (Ω,F). In the sequel, we
shall work in the P-universally augmented filtration

F∗ = (F∗t )t∈[0,1], F∗t :=
⋂
P∈P
Ft ∨NP ,
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whereNP is the collection of (F , P )-nullsets (but see also Remark 2.6(ii)). Moreover, let
X be an adapted process with càdlàg paths such that X is a semimartingale under each
P ∈ P, and let H be a predictable process which is X-integrable under each P ∈ P.

Since we shall average H in time, it is necessary to fix a measure on [0, 1], at least
path-by-path. We shall work under the following condition; see Jacod and Shiryaev [5,
Section II] for the notion of predictable characteristics.

Assumption 2.1. There exists a predictable càdlàg increasing process A such that

Var(BP ) + 〈Xc〉P + (x2 ∧ 1) ∗ νP � A P -a.s. for all P ∈ P;

where (BP , 〈Xc〉P , νP ) is the triplet of predictable characteristics of X under P and
Var(BP ) denotes the total variation of BP .

With (P )
∫
H dX denoting the Itô integral under P , our main result can be stated as

follows.

Theorem 2.2. Under Assumption 2.1, there exists an F∗-adapted càdlàg process, de-
noted by

∫
H dX, such that∫

H dX =
(P )∫

H dX P -a.s. for all P ∈ P.

Moreover, the construction of any path (
∫
H dX)(ω) involves only the paths H(ω) and

X(ω).

Assumption 2.1 is quite weak and should not be confused with a domination property
for P or the paths of X. In fact, most semimartingales of practical interest have char-
acteristics absolutely continuous with respect to At = t (diffusion processes, solutions
of Lévy driven stochastic differential equations, etc.). The following example covers the
applications from the introduction.

Example 2.3. Let X be a continuous local martingale under each P ∈ P, then Assump-
tion 2.1 is satisfied. Indeed, let

A := X2 −X2
0 − 2

∫
X dX;

here the stochastic integral can be defined pathwise by Bichteler’s construction [1,
Theorem 7.14]. Then A is a continuous process and A = [X] − X2

0 = 〈Xc〉P P -a.s. for
every P ∈ P by Itô’s formula. Therefore, Assumption 2.1 is satisfied with equality.

The previous example should illustrate that Assumption 2.1 is much weaker than it
may seem at first glance. For instance, letX be the canonical process on Ω = C([0, 1];R)

and let Λ be the set of all increasing continuous functions f : [0, 1]→ R+ with f(0) = 0.
Using time-changed Brownian motions, construct a situation where for any f ∈ Λ there
exists P ∈ P under which f is the quadratic variation of X, P -a.s. Then we observe
that, by the above, Assumption 2.1 is satisfied—even though it is clearly impossible to
dominate the set Λ. The crucial point here is the flexibility to assign different values to
A on the various supports of the measures P .

2.1 Approximating Sequence

Since our aim is to prove Theorem 2.2, we may assume without loss of generality
that X0 = 0. Moreover, we may assume that the jumps of X are bounded by one in
magnitude,

|∆X| ≤ 1.
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Indeed, the process X̌ :=
∑

s≤· 1{|∆Xs|>1}∆Xs is of finite variation and
∫
H dX̌ is easily

defined since it is simply a sum. Decomposing

X = (X − X̌) + X̌,

it suffices to construct the integral
∫
H d(X − X̌) whose integrator has jumps bounded

by one; moreover, X − X̌ satisfies Assumption 2.1 if X does. (Of course, we cannot
reduce further to the martingale case, since the semimartingale decomposition of X
depends on P !)

In this section, we construct an approximating sequence of integrands Hn such that
the integrals

∫
Hn dX can be defined pathwise and tend to the integral of H in measure.

To this end, we shall assume that H is uniformly bounded by a constant,

|H| ≤ c.

In fact, we can easily remove this condition later on, since

(P )∫
H1{|H|≤n} dX →

(P )∫
H dX in ucp(P ) for all P ∈ P (2.1)

by the definition of the usual stochastic integral. Here ucp(P ) stands for convergence in
probability P , uniformly (on compacts) in time. We recall the process A from Assump-
tion 2.1. We may assume that At − As ≥ t− s for all 0 ≤ s ≤ t ≤ 1 by replacing At with
At + t if necessary; moreover, to avoid complicated notation, we define Ht = At = 0 for
t < 0.

Lemma 2.4. For each n ≥ 1, define the Lebesgue-Stieltjes integral

Hn
t :=

1

At −At−1/n

∫ t

t−1/n

Hs dAs, t > 0 (2.2)

and Hn
0 := 0. Then

Y n := HnX −
∫
X− dH

n (2.3)

is well defined in the Lebesgue-Stieltjes sense and satisfies

Y n =
(P )∫

Hn dX →
(P )∫

H dX in ucp(P ) for all P ∈ P.

Proof. Recalling that |H| ≤ c and that A is a predictable increasing càdlàg process, we
see that Hn is a predictable process satisfying |Hn| ≤ c identically and having càdlàg
path of finite variation. In particular, we can use the Lebesgue-Stieltjes integral to
define the process Y n pathwise via (2.3). We deduce via integration by parts that Y n

coincides P -a.s. with the stochastic integral (P )
∫
Hn dX for each P ∈ P.

By the standard theorem on approximate identities, we have

Hn(ω)→ H(ω) in L1([0, 1], dA(ω)) for all ω ∈ Ω. (2.4)

For the remainder of the proof, we fix P ∈ P and show the convergence of Y n to
(P )
∫
H dX in ucp(P ). Since P is fixed, we may use the usual tools of stochastic analysis

under P and write, as usual, E for the expectation operator under P , etc. (One can
pass to the augmentation of F∗ under P to have the “usual assumptions”, although this
is not important here.)

Recall that the jumps of X are bounded, so that there is a canonical decomposition
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X = M+B, where M is a local martingale and B is predictable of finite variation. Since
the jumps of M and B are then also bounded, a standard localization argument allows
us to assume that Var(B) and the quadratic variation [M ] are uniformly bounded. We
have

E

[
sup
t≤1

∣∣∣∣ ∫ t

0

Hn dX −
∫ t

0

H dX

∣∣∣∣2]
≤ 2E

[
sup
t≤1

∣∣∣∣ ∫ t

0

(Hn −H) dM

∣∣∣∣2]+ 2E

[∣∣∣∣ ∫ 1

0

|Hn −H| dVar(B)

∣∣∣∣2].
The second expectation on the right hand side converges to zero; indeed, recalling that
|H|, |Hn| ≤ c, we see that

∫ 1

0
|Hn −H| dVar(B) is uniformly bounded and converges to

zero pointwise. The latter follows from (2.4) since Var(B)(ω)� A(ω) and{
|Hn(ω)−H(ω)|dVar(B)(ω)

dA(ω)

}
n≥1

⊆ L1([0, 1], dA(ω))

is uniformly integrable.

It remains to show that the first expectation converges to zero. Let 〈M〉 be the
predictable compensator of [M ], then the Burkholder-Davis-Gundy inequalities yield

E

[
sup
t≤1

∣∣∣∣ ∫ t

0

(Hn −H) dM

∣∣∣∣2] ≤ 4E

[ ∫ 1

0

|Hn −H|2 d[M ]

]
= 4E

[ ∫ 1

0

|Hn −H|2 d〈M〉
]
.

Recalling that |∆X| ≤ 1, we have that

〈M〉 = 〈Xc〉+ (x2 ∧ 1) ∗ ν −
∑
s≤·

(∆Bs)
2

and in particular that 〈M〉 � A. Since 〈M〉 is bounded like [M ], we conclude exactly as
above that E[

∫ 1

0
|Hn −H|2 d〈M〉] converges to zero.

2.2 Aggregation by Approximation in Measure

In this section, we shall find it very useful to employ Mokobodzki’s medial limit,
which yields a universal method (i.e., independent of the underlying probability) to iden-
tify the limit of a sequence which converges in probability. More precisely, “lim med”
is a mapping on the set of real sequences with the following property (cf. [9, Theo-
rems 3, 4]): If (Zn) is a sequence of random variables on a measurable space (Ω′,F ′),
then Z(ω) := lim medn Zn(ω) is universally measurable and if P is a probability measure
on (Ω′,F ′) such that Zn converges to some random variable ZP in probability P , then
Z = ZP P -a.s. Here uniform measurability refers to the universal completion of F ′
under all probability measures on (Ω′,F ′).

Although developed in a different context and apparently not used before in ours,
medial limits seem to be tailored to our task. Their construction is usually achieved
through a transfinite induction that uses the Continuum Hypothesis (cf. [9]); in fact,
it is known that medial limits exist under weaker hypotheses (Fremlin [4, 538S]), but
not under ZFC alone (Larson [7]). We shall adopt a sufficient set of axioms; since the
Continuum Hypothesis is independent of ZFC, we consider this a pragmatic choice of
the model of set theory for our purposes.

ECP 17 (2012), paper 24.
Page 5/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-2099
http://ecp.ejpecp.org/


Pathwise stochastic integrals

We have the following result for càdlàg processes.

Lemma 2.5. Let (Y n)n≥1 be a sequence of F∗-adapted càdlàg processes. Assume that
for each P ∈ P there exists a càdlàg process Y P such that Y n

t → Y P
t in measure P for

all t ∈ [0, 1]. Then there exists an F∗-adapted càdlàg process Y such that Y = Y P P -a.s.
for all P ∈ P.

Proof. Let r ∈ [0, 1] be a rational number and define Ỹr := lim medn Y
n
r . Then Ỹr is

measurable with respect to the universal completion of Fr, which is contained in F∗r .
Moreover,

Ỹr = Y P
r P -a.s. for all P ∈ P. (2.5)

Given arbitrary t ∈ [0, 1), we define Yt := lim supr↓t Ỹr, where r is rational (and Y1 := Ỹ1).
Fix P ∈ P. Since Y P is càdlàg, (2.5) entails that

Yt = lim sup
r↓t

Ỹr = lim sup
r↓t

Y P
r = Y P

t P -a.s.

and that the lim sup is actually a limit outside a P -nullset. As a consequence,

N = {ω ∈ Ω : Y·(ω) is not càdlàg}

is a P -nullset. Since P ∈ P was arbitrary, N is actually a nullset under every P ∈ P and
therefore contained in F∗0 . We redefine Y ≡ 0 on N , then Y is F∗-adapted and all paths
of Y are càdlàg. Since Y is also a P -modification of Y P , we have Y = Y P P -a.s.

Our main result can then be proved as follows.

Proof of Theorem 2.2. We first assume that H is uniformly bounded. Then Lemma 2.4
yields a sequence

∫
Hn dX of pathwise defined integrals which converge in ucp(P ) for

all P ∈ P. According to Lemma 2.5, there exists a process
∫
H dX with the desired

properties. For general H, we use the previous argument to define
∫
H1|H|≤n dX for

n ≥ 1. In view of (2.1), we may apply Lemma 2.5 once more to obtain
∫
H dX.

Remark 2.6. (i) If the integrand H has left-continuous paths, the assertion of The-
orem 2.2 holds true without Assumption 2.1. Indeed, set At := t and define Hn as
in (2.2). Then, by the left-continuity, we have Hn

t (ω) → Ht(ω) for all t and ω, without
exceptional set. The rest of the proof is as above. (Of course, there are other ways to
define Hn in this case, such as discretization.)

(ii) Theorem 2.2 can be obtained in a filtration slightly smaller than F∗. Indeed, the
same proofs apply if F∗ is replaced by the filtration obtained as follows: first, augment
F by the collection ∩P∈PNP of P-polar sets, then, take the universal augmentation with
respect to all probability measures (and not just those in P). Our proofs also show that
the random variable

∫ 1

0
H dX is measurable with respect to the universal completion of

F1, without adding the P-polar sets.
(iii) Needless to say, our “construction” of the stochastic integral is not “construc-

tive” in the proper sense; it merely yields an existence result.
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