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Abstract

The location of the unique supremum of a stationary process on an interval does
not need to be uniformly distributed over that interval. We describe all possible
distributions of the supremum location for a broad class of such stationary processes.
We show that, in the strongly mixing case, this distribution does tend to the uniform
in a certain sense as the length of the interval increases to infinity.
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1 Introduction

Let X = (X(t), t ∈ R) be a sample continuous stationary process. Even if, on an
event of probability 1, the supremum of the process over a compact interval [0, T ] is
attained at a unique point, this point does not have to be uniformly distributed over
that interval, as is known since [5]. However, its distribution still has to be absolutely
continuous in the interior of the interval, and the density has to satisfy very specific
general constraints, as was shown in a recent paper [7].

In this paper we give a complete description of the family of possible densities of
the supremum location for a large class of sample continuous stationary processes. The
necessary conditions on these densities follow by combining certain general results
cited above, and for every function satisfying these necessary conditions we construct
a stationary process of the required type for which this function is the density of the
supremum location. This is done in Section 3, which is preceded by Section 2 in which
we describe the class of stationary processes we are considering and quote the results
from [7] we need in the present paper. Next, we show that for a large class of stationary
processes, under a certain strong mixing assumption, the distribution of the supremum
location does converge to the uniformity for very long intervals, and it does it in a strong
sense. This is shown in Section 4.
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Location of the supremum

2 Preliminaries

For most of this paper X = (X(t), t ∈ R) is a stationary process with continuous
sample paths, defined on a probability space

(
Ω,F , P

)
, but in Section 4 we will allow

upper semi-continuous sample paths. In most of the paper (but not in Section 4) we will
also impose two assumptions on the process, which we now state.

For T > 0 we denote by X∗(T ) = sup0≤t≤T X(t), the largest value of the process in
the interval [0, T ].

Assumption UT :

P
(
X(ti) = X∗(T ), i = 1, 2, for two different t1, t2 ∈ [0, T ]

)
= 0.

Many processes satisfy Assumption UT . In particular, a beautiful proof in [3] shows
that any continuous Gaussian process, such that X(s) 6= X(t) a.s. for any two points
s 6= t, satisfies this assumption.

The second assumption on a stationary process deals with the fluctuations of its
sample paths.

Assumption L:

K := lim
ε↓0

P
(
X has a local maximum in (0, ε)

)
ε

<∞ ,

with the limit easily shown to exist. Under Assumption L the process X has sample
paths of locally bounded variation; see Lemma 2.2 in [7].

For a compact interval [a, b], we will denote by

τX,[a,b] = inf
{
t ∈ [a, b] : X(t) = max

a≤s≤b
X(s)

}
the leftmost location of the supremum in the interval; it is a well defined random vari-
able. If the supremum is unique, the adjective “leftmost” is, clearly, redundant. For
a = 0, we will abbreviate τX,[0,b] to τX,b, and use the same abbreviation in similar situa-
tions in the sequel.

We denote by FX,[a,b] the law of τX,[a,b]; it is a probability measure on the interval
[a, b]. It was proved in [7] that for any T > 0 the probability measure FX,T is absolutely
continuous in the interior of the interval [0, T ], and density can be chosen to be right
continuous and have left limits; we call this version of the density fX,[a,b]. This version
of the density satisfies a universal upper bound

fX,T (t) ≤ max

(
1

t
,

1

T − t

)
, 0 < t < T . (2.1)

We will also use the following result from the above reference.

Lemma 2.1. Let 0 ≤ ∆ < T . Then for every 0 ≤ δ ≤ ∆, fX,T−∆(t) ≥ fX,T (t+ δ) almost
everywhere in (0, T −∆). Furthermore, for every such δ and every ε1, ε2 ≥ 0, such that
ε1 + ε2 < T −∆, ∫ T−∆−ε2

ε1

(
fX,T−∆(t)− fX,T (t+ δ)

)
dt (2.2)

≤
∫ ε1+δ

ε1

fX,T (t) dt+

∫ T−ε2

T−∆−ε2+δ

fX,T (t) dt .
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3 Processes satisfying Assumption L

In this section we prove our main theorem, giving a full description of possible
càdlàg densities fX,T for continuous stationary processes satisfying Assumption UT and
Assumption L.

For a function f of a real argument whose domain contains an interval (t1, t2), its
total variation over the interval is defined by

TV(t1,t2)(f) := sup

n−1∑
i=1

∣∣f(si+1)− f(si)
∣∣ ,

where the supremum is taken over all choices of t1 < s1 < . . . < sn < t2.

Theorem 3.1. Let X = (X(t), t ∈ R) be a stationary sample continuous process, sat-
isfying Assumption UT and Assumption L. Then the restriction of the law FX,T of the
unique location of the supremum of the process in [0, T ] to the interior (0, T ) of the in-
terval is absolutely continuous. The density fX,T has a càdlàg version with the following
properties:

(a) The density has a bounded variation on (0, T ), hence the limits

fX,T (0+) = lim
t→0

fX,T (t) and fX,T (T−) = lim
t→T

fX,T (t)

exist and are finite. Furthermore,

TV(0,T )(fX,T ) ≤ fX,T (0+) + fX,T (T−) . (3.1)

(b) The density is bounded away from zero. That is,

inf
0<t<T

fX,T (t) > 0 . (3.2)

(c) Either fX,T (t) = 1/T for all 0 < t < T , or
∫ T

0
fX,T (t) dt < 1.

Moreover, if f is a nonnegative càdlàg function satisfying (a)-(c) above, then there is
a stationary sample continuous process X, satisfying Assumption UT and Assumption
L, such that f is the density in the interior (0, T ) of the unique location of the supremum
of the process in [0, T ].

Proof. The existence of a càdlàg density with properties (a)-(c) in the statement of the
theorem is an immediate consequence of the statements of Theorems 3.1 and 3.3 in
[7]. We proceed to show the converse part of the theorem. If fX,T (t) = 1/T for all
0 < t < T , then a required example is provided by a single wave periodic stationary
Gaussian process with period T , so we need only to consider the second possibility
in property (c). We start with the case where the candidate density f is a piecewise
constant function of a special form.

We call a finite collection (ui, vi), i = 1, . . . ,m of nonempty open subintervals of (0, T )

a proper collection of blocks if for any i, j = 1, . . . ,m there are only 3 possibilities: either
(ui, vi) ⊆ (uj , vj), or (uj , vj) ⊆ (ui, vi), or [ui, vi] ∩ [uj , vj ] = ∅. If ui = 0, vi = T , we call
(ui, vi) a base block. If ui = 0, vi < T , we call (ui, vi) a left block. If ui > 0, vi = T ,
we call (ui, vi) a right block. If ui > 0, vi < T , we call (ui, vi) a central block. We start
with constructing a stationary process as required in the theorem when the candidate
density f satisfies requirements (a)-(c) of the theorem and has the form

f(t) =
1

HT

m∑
i=1

1[ui,vi)(t), 0 < t < T (3.3)
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for some proper collection of blocks, with the obvious convention at the endpoints 0 and
T , for some H > 1. Observe that for functions of the type (3.3), requirement (b) of the
theorem is equivalent to requiring that there is at least one base block, and requirement
(a) is equivalent to requiring that the number of the central blocks does not exceed the
number of the base blocks. Finally, (the second case of) property (c) is equivalent to
requiring that

d =
1

m

(
HT −

m∑
i=1

(vi − ui)

)
> 0 . (3.4)

We will construct a stationary process by a uniform shift of a periodic deterministic
function over its period. Now, however, the period will be equal to HT > T . We
start, therefore, by defining a deterministic continuous function (x(t), 0 ≤ t ≤ HT ) with
x(0) = x(HT ), which we then extend by periodicity to the entire R. Let B ≥ 1 be the
number of the base blocks in the collection. We partition the entire collection of blocks
into B subcollection which we call components by assigning each base block to one
component, assigning to each component at most one central block, and assigning the
left and right blocks to components in an arbitrary way. For j = 1, . . . , B we denote by

Lj = d
(
the number of blocks in the jth component

)
(3.5)

+ the total length of the blocks in the jth component .

We set x(0) = 2. Using the blocks of the first component we will define the function x

on the interval (0, L1] in such a way that x(L1) = 2. Next, using the blocks of the second
component we will define the function x on the interval (L1, L1 +L2] in such a way that
x(L1 + L2) = 2, etc. Since

B∑
j=1

Lj = dm+

m∑
i=1

(vi − ui) = HT ,

this construction will terminate with a function x constructed on the entire interval
[0, HT ] with x(HT ) = 2 = x(0), as desired.

We proceed, therefore, with defining the function x on an interval of length Lj using
the blocks of the jth component. For notational simplicity we will take j = 1 and
define x on the interval [0, L1] using the blocks of the first component. The construction
is slightly different depending on whether or not the component has a central block,
whether or not it has any left blocks, and whether or not it has any right blocks. If
the component has l ≥ 1 left blocks, we will denote them by (0, vj), j = 1, . . . , l. If the
component has r ≥ 1 right blocks, we will denote them by (uj , T ), j = 1, . . . , r. If the
component has a central block, we will denote it by (u, v). We will construct the function
x by defining it first on a finite number of special points and then filling in the gaps in a
piecewise linear manner.

Suppose first that the component has a central block, some left blocks and some
right blocks. In this case we proceed as follows.

Step 1 Recall that x(0) = 2 and set

x

(
jd+

j−1∑
i=1

vi

)
= x

(
jd+

j∑
i=1

vi

)
= 2− 2j−l, j = 1, . . . , l .

Note that the last point obtained in this step is x
(
ld+

∑l
i=1 vi

)
= 1.

Step 2 Set

x

(
(l + 1)d+

l∑
i=1

vi

)
= x

(
(l + 1)d+

l∑
i=1

vi + v

)
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= x

(
(l + 1)d+

l∑
i=1

vi + v + T − u

)
=

1

2
.

Step 3 Set

x

(
(l + j + 1)d+

l∑
i=1

vi + v + T − u+

j−1∑
i=1

(T − uj)

)

= x

(
(l + j + 1)d+

l∑
i=1

vi + v + T − u+

j∑
i=1

(T − uj)

)

= 2− 2−(j−1), j = 1, . . . , r .

Note that the last point obtained in this step is

x

(
(l + r + 1)d+

l∑
i=1

vi + v + T − u+

r∑
i=1

(T − uj)

)
= 2− 2−(r−1) .

Step 4 We add just one more point at distance d from the last point of the previous
step by setting

x

(
(l + r + 2)d+

l∑
i=1

vi + v + T − u+

r∑
i=1

(T − uj)

)
= 2 .

Note that this point coincides with L1 as defined in (3.5).

If the component has no left blocks, then Step 1 above is skipped, and Step 2 be-
comes the initial step with

x(d) = x(d+ v) = x(d+ v + T − u) =
1

2
.

If the component has no right blocks, then Step 3 above is skipped, and at Step 4 we
add the distance d to the final point of Step 2, that is we set

x

(
(l + 2)d+

l∑
i=1

vi + v + T − u

)
= 2 .

If the component has no central block, then Step 2 is skipped, but we do add the
distance T to the last point of Step 1. That is, the first point obtained at Step 3 becomes

x

(
(l + 1)d+

l∑
i=1

vi + T

)
= 1 ,

if there are any left blocks, with the obvious change if l = 0. Finally, if there is neither
central block, nor any right blocks, then both Step 2 and Step 3 are skipped, and Step
4 just adds d+ T to the last point of Step 1, i.e. it becomes

x

(
(l + 1)d+

l∑
i=1

vi + T

)
= 2 ,

once again with the obvious change if l = 0. It is easy to check that in any case Step 4
sets x(L1) = 2, with L1 as defined in (3.5). In particular, L1 > T .
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Finally, we specify the piecewise linear rule by which we complete the construction
of the function x on the interval [0, L1]. The function has been defined on a finite set of
points and we proceed from left to right, starting with x(0) = 2, to fill the gap between
one point in the finite set and the adjacent point from the right, until we reach x(L1) = 2.
By the construction, there are pairs of adjacent points in which the values of x coincide,
and pairs of adjacent points in which the values of x are different. In most cases only
adjacent points at the distance d have equal values of x, but if, e.g. a central block
is missing, then at a pair of adjacent points at a distance T , or d + T , the values of x
coincide as well.

In any case, if the values of x at two adjacent points are different, we define the
values of x between these two points by linear interpolation. If the values of x at two
adjacent points, say, a and b with a < b, are equal to, say, y we define the function x

between these two points by

x(t) = max
(
y − (t− a)/d, y − (b− t)/d

)
provided the value at the midpoint, y − (b − a)/2d ≥ −1. If this lower bound fails, we
define the values of x between the points a+ dy and b− dy by

x(t) = max
(
−τ(t− (a+ dy)), −τ((b− dy)− t)

)
,

for an arbitrary τ > 0 such that both τ ≤ 1/d and the value at the midpoint, −τ
(
(b −

a)/2 − dy
)
≥ −1. The reason for this slightly cumbersome definition is the need to

ensure that x is nowhere constant, while keeping the lower bound of x and its Lipschitz
constant under control. We note, at this point, that, since in all cases b− a ≤ T + d, we
can choose, for a fixed T , the value of τ so that τ ≥ τd > 0, where the constant τd stays
bounded away from zero for d in a compact interval.

Now that we have defined a periodic function (x(t), t ∈ R) with periodHT , we define
a stationary process X by X(t) = x(t − U), t ∈ R, where U is uniformly distributed
between 0 and HT . The process is, clearly, sample continuous and satisfies Assumption
L. We observe, further, that, if the supremum in the interval [0, T ] is achieved in the
interior of the interval, then it is achieved at a local maximum of the function x. If the
value at the local maximum is equal to 2, then it is due to an endpoint of a component,
and, since the contribution of any component has length exceeding T , this supremum
is unique. If the value at the local maximum is smaller than 2, then that local maximum
is separated from the nearest local maximum with the same value of x by at least the
distance induced by Step 2, which T . Consequently, in this case the supremum over
[0, T ] is unique as well. Similarly, if the supremum is achieved at one of the endpoints of
the interval, it has to be unique as well, on a set of probability 1. Therefore, the process
X satisfies Assumption UT .

Example We interrupt the exposition for a moment to demonstrate a simple special
case of the construction of the process X to help the reader to visualize the procedure.
Consider a candidate density function

f(t) =

{
2
HT if t ∈ (0, v1) ∪ [u, v),
1
HT if t ∈ [v1, u) ∪ [v, T )

for 0 < v1 < u < v < T , with H > 1 + v1+v−u
T . This corresponds to a proper collection

of three blocks: a base block (0, T ), a central block (u, v), and a left block (0, v1). Hence
the total number of blocks m = 3, and d = 1

3 (HT − T − v1 − (v − u)) > 0. Since there is
only one base block, we use one component, of the length L1 = HT .

The construction of the deterministic function x(t) on [0, HT ] is as follows. The
starting point is x(0) = 2. Then step 1, dealing with the left block (0, v1), assigns value
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2− 21−1 = 1 to points d and d+ v1. Step 2 continues to set

x(2d+ v1) = x(2d+ v1 + v) = x(2d+ v1 + v + T − u) =
1

2
.

Step 3 is skipped since there is no right block. Finally, the end point of this component,
x(3d+ v1 + v+ T − u) = 2 is added in step 4. Since 3d+ v1 + v+ T − u = HT , this is the
end of the cycle.

To demonstrate the the piecewise linear interpolation rule between these special
points, we choose specific values T = 6, H = 2, v1 = 1, u = 3 and v = 5. This implies
d = 1. Firstly, between the pairs of points with the t coordinates 0 and d = 1, d+ v1 = 2

and 2d + v1 = 3, 2d + v1 + v + T − u = 11 and HT = 12 we use linear interpolation.
Consider the segment between the points d = 1 and d + v1 = 2, at which x has the
common value y = 1. The general rule checks the value of the interpolation at the
midpoint of the segment, which is 1− v1

2d = 1/2. It is greater than −1, so no modification
is necessary. Same procedure applies to the segments between the points 2d + v1 = 3

and 2d + v1 + v = 8, and the points 2d + v1 + v = 8 and 2d + v1 + v + T − u = 11. Only
on the interval (3, 8) the interpolation procedure has to be modified. We set τ = 1/2 (so
that the value of the lowest point is exactly −1) and obtain

x(t) =


3.5− t if 3 ≤ t ≤ 3.5

(3.5− t)/2 if 3.5 ≤ t ≤ 5.5

(7.5− t)/2 if 5.5 ≤ t ≤ 7.5

7.5− t if 7.5 ≤ t ≤ 8

.

The figure below shows the density f and the function x(t) within one cycle.

0 1 2 3 4 5 6

1 / 1 2

1 / 6

f(t)

t

0 2 4 6 8 1 0 1 2

- 1

0

1

2

x(t
)

t

( 0 ,  2 )

( 1 ,  1 ) ( 2 ,  1 )

( 1 . 5 ,  0 . 5 )
( 3 ,  0 . 5 )

( 3 . 5 ,  0 )

( 5 . 5 ,  - 1 )

( 7 . 5 ,  0 )
( 8 ,  0 . 5 )

( 9 . 5 ,  - 1 )

( 1 1 ,  0 . 5 )

( 1 2 ,  2 )

Fig 1. The functions f and x in the special case.

Finally, we extend the function x(t) periodically with period HT to the whole real
line. The process X is then defined by X(t) = x(t−U), where U is uniformly distributed
between 0 and HT .

We now return to the general case considered in the theorem. We first show that for
the process X constructed above, the density fX,T coincides with the function f given
in (3.3), with which the construction was performed. According to the above analysis,
we need to account for the contribution of each local maximum of the function x over its
period to the density fX,T . The local maxima may appear in Step 1 of the construction,
and then they are due to left blocks. They may apear in Step 3 of the construction,
and then they are due to right blocks. They may appear Step 2 of the construction,
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and then they are due to central blocks. Finally, the points where x has value 2 are
always local maxima. We will see that they are due to base blocks. We start with the
latter local maxima. Clearly, each such local maximum is, by periodicity, equal to one
of the B values,

∑i
j=1 Lj −HT, i = 1, . . . , B. The ith of these points becomes the global

maximum of X over [0, T ] if and only if

U ∈

HT − i∑
j=1

Lj , (H + 1)T −
i∑

j=1

Lj

 ,

and the global maximum is then located at the point
∑i
j=1 Lj −HT +U . Therefore, the

contribution of each such local maximum to the density is 1/HT at each 0 < t < T , and
overall the points where x has value 2 contribute to fX,T

fbase(t) =
B

HT
, 0 < t < T . (3.6)

Next, we consider the contribution to fX,T of the local maxima due to left blocks. For
simplicity of notation we consider only the left blocks in the first component. Then the
local maximum due to the jth left block is at the point jd+

∑j
i=1 vi. As before, we need

to check over what interval of the values of U this local maximum becomes the global
maximum of X over [0, T ]. The relevant values of U must be such that the time interval(
jd +

∑j−1
i=1 vi, jd +

∑j
i=1 vi

)
is shifted to cover the origin, and this corresponds to an

interval of length vj of the values of U . The shifted local maximum itself will then be
located within the interval (0, vj), which contributes 1/HT at each 0 < t < vj . Overall,
the local maxima due to left blocks contribute to fX,T

fleft(t) =
1

HT

∑
left blocks

1(0,vi)(t), 0 < t < T . (3.7)

Similarly, the local maxima due to right blocks contribute to fX,T

fright(t) =
1

HT

∑
right blocks

1(ui,T )(t), 0 < t < T . (3.8)

Finally, we consider the central blocks. If the first component has a central block,
then the local maximum due to the central block is at the point (l + 1)d +

∑l
i=1 vi + v.

Any value of U that makes this local maximum the global maximum over [0, T ] must
be such that the time interval

(
(l + 1)d +

∑l
i=1 vi, (l + 1)d +

∑l
i=1 vi + v

)
is shifted to

cover the origin. Furthermore, that value of U must also be such that the time interval(
(l+1)d+

∑l
i=1 vi+v, (l+1)d+

∑l
i=1 vi+v+T−u

)
is shifted to cover the right endpoint T .

If we think of shifting the origin instead of shifting x, the origin will have to be located
in the interval

(
(l+ 1)d+

∑l
i=1 vi, (l+ 1)d+

∑l
i=1 vi+v−u

)
. This corresponds to a set of

values of U of measure v−u, and the shifted local maximum will then be located within
the interval (u, v), which contributes 1/HT at each u < t < v to the density. Overall, the
local maxima due to central blocks contribute to fX,T

fcentral(t) =
1

HT

∑
central blocks

1(u,v)(t), 0 < t < T . (3.9)

Since
fX,T (t) = fbase(t) + fleft(t) + fright(t) + fcentral(t), 0 < t < T ,

we conclude by (3.6) - (3.9) that fX,T indeed coincides with the function f given in
(3.3). Therefore, we have proved the converse part of the theorem in the case when the
candidate density f is of the form (3.3).
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We now prove the converse part of the theorem for a general f with properties (a)-(c)
in the statement of the theorem. Recall that we need only to treat the second possibility
in property (c). In order to construct a stationary process X for which fX,T = f , we will
approximate the candidate density f by functions of the form (3.3). Since we will need
to deal with convergence of a sequence of continuous stationary processes we have just
constructed in the case when the candidate density is of the form (3.3), we record, at
this point, several properties of the stationary periodic process X(t) = x(t − U), t ∈ R
constructed above.

Property 1 The process X is uniformly bounded: −1 ≤ X(t) ≤ 2 for all t ∈ R.

Property 2 The process X is Lipschitz continuous, and its Lipschitz constant does
not exceed 3/2d.

Property 3 The process X is differentiable except at countably many points, at
which X has left and right derivatives. On the set D0 = {t : X(t) > 0} the derivatives
satisfy

|X ′(t)| ≥ 1

2Nd

(where the bound applies to both left and right derivatives if t is not a differentiability
point). Here N is the bigger of the largest number of left blocks any component has,
and the largest number of the right blocks any component has. Similarly, on the set
D1 = {t : X(t) ≤ 0} the derivatives satisfy

|X ′(t)| ≥ τd ,

where τd > 0 stays bounded away from zero for d in a compact interval.

Property 4 The distance between any two local maxima of X cannot be smaller
than d. At its local maxima, X takes values in a finite set of at most N + 3 elements.
Moreover, the absolute difference in the values of the process X in two local maxima in
the interval (0, T ) is at least 2−N , where N is as above.

All these properties follow from the corresponding properties of the function x by
considering the possible configuration of the blocks in a component.

We will now construct a sequence of approximations to a candidate density f as
above. Let n = 1, 2, . . .. It follows from the general properties of càdlàg functions (see
e.g. [1]) that there is a finite partition 0 = t0 < t1 < . . . < tk = T of the interval [0, T ]

such that

|f(s)− f(t)| ≤ 1

nT
for all ti ≤ s, t < ti+1, i = 0, . . . , k − 1. (3.10)

We define a piecewise constant function f̃n on (0, T ) by setting, for each i = 1, . . . , k, the
value of f̃n for ti−1 ≤ t < ti to be

f̃n(t) =
1

knT
max

{
j = 0, 1, . . . : f(s) ≥ j

knT
for all ti−1 ≤ s < ti

}
.

By definition and (3.10) we see that

f(t)− 2

nT
≤ f̃n(t) ≤ f(t), 0 < t < T . (3.11)

Next, we notice that for every i = 1, . . . , k − 1 there are points si ∈ (ti−1, ti) and si+1 ∈
(ti, ti+1) such that

∣∣f(si)− f(si+1)
∣∣ ≥ ∣∣f̃n(ti−)− f̃n(ti)

∣∣− 1

knT
.
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Therefore,

TV(0,T )(f̃n) ≤ TV(0,T )(f) +
1

nT
. (3.12)

We now define

fn(t) = f̃n(t) +
1

nT
0 < t < T .

Clearly, the function fn is càdlàg, has bounded variation on (0, T ) and is bounded away

from zero. By (3.12), fn also satisfies (3.1) since f does. Finally, since
∫ T

0
fX,T (t) dt < 1,

we see by (3.11) that, for all n large enough,
∫ T

0
fX,T (t) dt < 1 as well. Therefore, for

such n the function fn has properties (a)-(c) in the statement of the theorem, and in the
sequel we will only consider n large as above. We finally notice that fn takes finitely
many different values, all of which are in the set {j/knT, j = 1, 2, . . .}. Therefore, fn can
be written in the form (3.3), with H = kn. Indeed, the blocks can be built by combining
into a block all neighboring intervals where the value of fn is the smallest, subtracting
1/knT from the value of fn in the constructed block and iterating the procedure.

We have already proved that for any function of the type (3.3) there is a stationary
process required in the statement of the theorem. Recall that a construction of this sta-
tionary process depends on assignment of blocks in a proper collection to components,
and we would like to make sure that no component has “too many” left or right blocks.
To achieve this, we need to distribute the left and right blocks as evenly as possible
between the components. Two observations are useful here. First of all, it follows from
the definition of fn and (3.3) that

1

knnT
(Ln +Bn) = fn(0+) ≤ f(0+) +

1

knnT
≤ f(0+) + 1

for n large enough (we are writing kn instead of k to emphasize the dependence of k
on n), where Ln and Bn are the numbers of the the left and base blocks in the nth
collection. On the other hand, similar considerations tell us that

1

knnT
Bn = inf

0<t<T
fn(t) ≥ inf

0<t<T
f(t)− 2

nT
≥ 1

2
inf

0<t<T
f(t) ,

once again for n large enough, where we have used property (b) of f . Therefore, for
such n,

Ln
Bn
≤ 2

f(0+) + 1

inf0<t<T f(t)
, (3.13)

and the right hand side is a finite quantity depending on f , but not on n. Performing
a similar analysis for the right blocks, and recalling that we are distributing the left
and right blocks as evenly as possible between the components, we see that there is a
number ∆f ∈ (0,∞) such that for all n large enough, no component in the nth collection
has more than ∆f left blocks or ∆f right blocks.

We will also need bounds on the important parameter d = dn appearing in the con-
struction of a stationary process corresponding to functions of the type (3.3); these
bounds do not depend on a particular way we assigns blocks to different components.
Recall that

dn =
knnT

mn

(
1−

∫ T

0

fn(t) dt

)
, (3.14)

where mn = Bn + Ln + Rn + Cn (in the obvious notation) is the total number of blocks
in the nth collection. Since

1

knnT

(
Bn + max(Ln, Rn, Cn)

)
= sup

0<t<T
fn(t),

1

knnT
Bn = inf

0<t<T
fn(t) ,
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we see that

inf
0<t<T

fn(t) ≤ 1

knnT
mn ≤ 3 sup

0<t<T
fn(t) . (3.15)

We also know by the uniform convergence that
∫ T

0
fn →

∫ T
0
f . Therefore, by (3.14) and

(3.15) we obtain that, for all n large enough,

1−
∫ T

0
f(t) dt

4 sup0<t<T f(t)
≤ dn ≤

2

inf0<t<T f(t)
. (3.16)

An immediate conclusion is the following fact. By construction, the distribution of
Xn(0) is absolutely continuous; let gn denote the right continuous version of its density.
Since Xn is obtained by uniform shifting of a piecewise linear periodic function with
period HnT , the value of the density gn(v) at each point v times the length of the period
does not exceed the total number of the linear pieces in a period divided by the smallest
absolute slope of any linear piece. The former does not exceed 2mn, and by Property
3 and the above, the latter cannot be smaller than

min

(
1

2∆f dn
, τdn

)
.

Since, by (3.16), dn is uniformly bounded from above, we conclude, for some finite
positive constant c = c(f), gn(v) ≤ c(f)mn/Hn. Further, by the definition of dn,

mndn = HnTP
(
τXn,T ∈ {0, T}

)
≤ HnT .

Once again, since by (3.16), dn is uniformly bounded from below, we conclude that

gn(v) is uniformly bounded in v and n. (3.17)

Let Xn be the stationary process corresponding to fn constructed above. We view
Xn as a random element of the space C(R) of continuous functions on R which we
endow with the metric

ρ(x,y) =

∞∑
m=1

2−m
(

sup
|t|≤m

|x(t)− y(t)|
)
.

Let µn be the law of Xn on C(R), n = 1, 2, . . . (but large enough, as needed). By Prop-
erty 1 and Property 2 of the processes Xn and the lower bound in (3.16), these pro-
cesses are uniformly bounded and equicontinuous. Therefore, by Theorem 7.3 in [1], for
every fixed m = 1, 2, . . . the restrictions of the measures µn to the interval [−m,m] form
a tight family of probability measures. Let n1j → ∞ be a sequence positive integers
such that the restrictions of µn1j

to [−1, 1] converge weakly to a probability measure
ν1 on C([−1, 1]). Inductively define for m = 2, 3, . . . nmj → ∞ to be a subsequence
of the sequence nm−1,j → ∞ such that the restrictions of µnmj to [−m,m] converge
weakly to a probability measure νm on C([−m,m]). Then the “diagonal” sequence of
measures

(
µnjj , j = 1, 2, . . .

)
is such that the restrictions of these measures to each

interval [−m,m] converge weakly to νm on C([−m,m]). By the Kolmogorov existence
theorem, there is a (cylindrical) probability measure ν on functions on R whose re-
strictions to each interval [−m,m] coincide with νm (considered now as a cylindrical
measure). Since each probability measure νm is supported by C([−m,m]), the mea-
sure ν itself is supported by functions in C(R). By construction, the measure ν is shift
invariant. If X is the canonical stochastic process defined on

(
C(R), ν

)
, then X is a

sample continuous stationary process. In the remainder of the proof we will show that
X satisfies Assumption L and Assumption UT , and that fX,T = f .
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We start with proving that Assumption L holds for X. It is, clearly, enough to prove
that, on a set of probability 1,

any two local maxima of X are at least θ :=
1−

∫ T
0
f(t) dt

5 sup0<t<T f(t)
apart. (3.18)

Suppose that (3.18) fails. Then there is m sucht that, on an event of positive probabil-
ity, two local maxima of X closer than θ exist in the time interval [−m,m]. Recall that
a subsequence of the sequence of the (laws of) Xn converges weakly in the uniform
topology on C([−m,m]) to the (law of) X. For notational simplicity we will identify that
subsequence with the entire sequence (Xn). By the Skorohod representation theorem
(Theorem 6.7 in [1]), we may define the processes (Xn) on some probability space so
that Xn → X a.s. in C([−m,m]). Fix ω for which this convergence holds, and for which
X has two local maxima closer than θ exist in the time interval [−m,m]. It straightfor-
ward to check that the uniform convergence and Property 3 above imply that for all n
large enough, the processes Xn will have two local maxima closer than 5θ/4. This is, of
course, impossible, due to Property 4 and (3.16). The resulting contradiction proves
that X satisfies Assumption L.

Next, we prove that Assumption UT holds for X. Since the process X satisfies
Assumption L, by Lemma 2.2 in [7], it has finitely many local maxima in the interval
(0, T ) (in fact, by (3.18), it cannot have more than dT/θe local maxima). Clearly, the
values of X at the largest local maximum and the second largest local maximum (if any)
are well defined random variables. We denote by (M1,M2) the largest and the second
largest among X(0), X(T ) and the values of X at the largest local maximum and the
second largest local maximum (if any). The fact that Assumption UT holds for X will
follow once we prove that

P
(
M1 = M2

)
= 0 . (3.19)

We proceed similarly to the argument in the proof of Assumption L. We may assume
that Xn → X a.s. in C[0, T ]. Fix ω for which this convergence holds. The uniform
convergence and Property 3 of the processes (Xn), together with the uniform upper
bound on dn in (3.16), show that, for every local maximum tω of X in the interval (0, T )

and any δ > 0, there is n(ω, δ) such that for all n > n(ω, δ), the process Xn has a local
maximum in the interval (tω − δ, tω + δ). This immediately implies that

M1 −M2 ≥ lim sup
n→∞

(
M

(n)
1 −M (n)

2

)
a.s., where the random vector (M

(n)
1 ,M

(n)
2 ) is defined for the process Xn in the same

way as the random vector (M1,M2) is defined for the process X, n = 1, 2, . . .. In partic-
ular, for any ε > 0,

P
(
M1 −M2 < ε

)
≤ lim sup

n→∞
P
(
M

(n)
1 −M (n)

2 < ε
)
. (3.20)

As a first step, notice that, by Property 4 of the processes (Xn), for any ε < ∆f ,

P
(
M

(n)
1 −M (n)

2 < ε, (3.21)

both M (n)
1 and M (n)

2 achieved at local maxima
)

= 0

for each n. Next, since by Property 4, at its local maxima the process Xn can take at
most ∆f + 3 possible values, we conclude by (3.17) that for all ε > 0,

P
(
M

(n)
1 −M (n)

2 < ε, one of M (n)
1 (3.22)
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and M (n)
2 is achieved at a local maximum, and one at an endpoint

)
≤ cfε ,

for some cf ∈ (0,∞). Finally, we consider the case when both M
(n)
1 and M

(n)
2 are

achieved at the endpoints of the interval [0, T ]. In that case, it is impossible that Xn

has a local maximum in (0, T ), since that would force time 0 to belong to one of the
decreasing linear pieces of the process due to left blocks, and time T to belong one
of the increasing linear pieces of the process due to right blocks. By construction, the
distance between any two points belonging to such intervals is larger than T . That
forces Xn(t), 0 ≤ t ≤ T to consist of at most two linear pieces. By Property 3 of the
process Xn, in order to achieve |Xn(0)−Xn(T )| ≤ ε, each block of the proper collection
generating Xn contributes at most an interval of length ε/min(1/(2∆dn), τdn) to the set
of possible shifts U . Recall that there are mn blocks in the collection. By the uniform
bounds (3.16) we conclude that for all ε > 0,

P
(
M

(n)
1 −M (n)

2 < ε, (3.23)

M
(n)
1 and M (n)

2 achieved at the endpoints
)

≤ ε mn

HnT

1

min(1/(2∆dn), τdn)
≤ ε 1

dn min(1/(2∆dn), τdn)
≤ c̃fε ,

for some c̃f ∈ (0,∞).
Combining (3.20), (3.21), (3.22) and (3.23) we see that for all ε > 0 small enough,

P
(
M1 −M2 < ε

)
≤ (cf + c̃f )ε .

Letting ε ↓ 0 we obtain (3.19), so that the process X satisfies Assumption UT .
It is now a simple manner to finish the proof of the theorem. Assume, once again,

that Xn → X a.s. in C[0, T ]. Fix ω for which this convergence holds, and both X and
each Xn have a unique supremum in the interval [0, T ]. It follows from the uniform
convergence that τXn,T → τX,T as n → ∞. Therefore, we also have that τXn,T ⇒ τX,T
(weakly). However, by construction, fn(t) → f(t) for every 0 < t < T . This implies that
f is the density of τX,T , and the proof of the theorem is complete.

Remark 3.2. Recall that most of the work in the construction of the process in Theo-
rem 3.1 was done for the second case of condition (c). Under assumptions UT and L

this is the only alternative to the uniform distribution of the location of the supremum,
and it guarantees that the probability that the supremum is located at an endpoint of
the interval is positive. The separation of the local maxima property (3.18) of the con-
structed process, for example, shows that that process satisfies assumption L. Under
assumptions UT and L, the only scenario leading to the uniform distribution is to have
the global suprema of the process appear periodically with a period of T :

P
(
X(τX,[T,2T ]) = X(τX,T ), τX,[T,2T ] − τX,T = T

)
= 1;

see [7]. It is an open problem to describe all possible scenarios leading to the uniform
distribution when Assumption L no longer holds, but the dichotomy of condition (c)
in Theorem 3.1 no longer needs to hold in this case, as the example of the stationary
Ornstein-Uhlenbeck process considered in [7] shows.

4 Long intervals

In spite of the broad range of possibilities for the distribution of the supremum
location shown in the previous section, it turns out that, when the length of an interval
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becomes large, and the process satisfies a certain strong mixing assumption, uniformity
of the distribution of the supremum location becomes visible at certain scales. We make
this statement precise in this section.

In this section we allow a stationary process X to have upper semi-continuous, not
necessarily continuous, sample paths. Moreover, we will not generally impose either
Assumption UT , or Assumption L. Without Assumption UT , the supremum may not be
reached at a unique point, so we will work with the leftmost supremum location defined
in Section 2.

Recall that a stationary stochastic process X = (X(t), t ∈ R) is called strongly
mixing (or α-mixing) if

sup
{∣∣P (A ∩B)− P (A)P (B)

∣∣ : A ∈ σ
(
X(s), s ≤ 0

)
, B ∈ σ

(
X(s), s ≥ t

)}
→ 0 as t→∞;

see e.g. [6], p. 195. Sufficient conditions on the spectral density of a stationary Gaus-
sian process that guarantee strong mixing were established in [4].

Let X be an upper semi-continuous stationary process. We introduce a “tail version”
of the strong mixing assumption, defined as follows.

Assumption TailSM: there is a function ϕ : (0,∞)→ R such that

lim
t→∞

P
(

sup
0≤s≤t

X(s) ≥ ϕ(t)
)

= 1

and

sup
{∣∣P (A ∩B)− P (A)P (B)

∣∣ : A ∈ σ
(
X(s)1(X(s) ≥ ϕ(t)),

s ≤ 0
)
, B ∈ σ

(
X(s)1(X(s) ≥ ϕ(t)), s ≥ t

)}
→ 0 as t→∞.

It is clear that if a process is strongly mixing, then it also satisfies Assumption
TailSM. The point of the latter assumption is that we are only interested in mixing
properties of the part of the process “responsible” for its large values. For example, the
process

X(t) =

{
Y (t) if Y (t) > 1

Z(t) if Y (t) ≤ 1
, t ∈ R ,

where Y is a strongly mixing process such that P (Y (0) > 1) > 0, and Z an arbitrary
stationary process such that P (Z(0) < 1) = 1, does not have to be strongly mixing, but
it clearly satisfies Assumption TailSM with ϕ ≡ 1.

We will impose one more assumption on the stationary processes we consider in this
section. It deals with the size of the largest atom the distribution of the supremum of
the process may have.

Assumption A:

lim
T→∞

sup
x∈R

P
(

sup
t∈[0,T ]

X(t) = x
)

= 0 .

In Theorem 4.1 below Assumption A could be replaced by requiring Assumption UT

for all T large enough. We have chosen Assumption A instead since for many impor-
tant stationary stochastic processes the supremum distribution is known to be atomless
anyway; see e.g. [8] for continuous Gaussian processes and [2] for certain stable pro-
cesses. The following sufficient condition for Assumption A is also elementary: suppose
that the process X is ergodic. If for some a ∈ R, P

(
supt∈[0,1]X(t) = x

)
= 0 for all x > a

and P (X(0) > a) > 0, then Assumption A is satisfied.
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Theorem 4.1. Let X = (X(t), t ∈ R) be a stationary sample upper semi-continous pro-
cess, satisfying Assumption TailSM and Assumption A. The density fX,T of the supre-
mum location satisfies

lim
T→∞

sup
ε≤t≤1−ε

∣∣∣TfX,T (tT )− 1
∣∣∣ = 0 (4.1)

for every 0 < ε < 1/2. In particular, the law of τX,T /T converges weakly to the uniform
distribution on (0, 1).

Proof. It is obvious that (4.1) implies weak convergence of the law of τX,T /T to the
uniform distribution. We will, however, prove the weak convergence first, and then use
it to derive (4.1).

We start with a useful claim that, while having nothing to do with any mixing by itself,
will be useful for us in a subsequent application of Assumption TailSM. Let Tn, dn ↑ ∞,
dn/Tn → 0 as n→∞. We claim that for any δ ∈ (0, 1),

P
(
δTn − dn ≤ τX,Tn

≤ δTn + dn

)
= 0 . (4.2)

To see this, simply note that by (2.1), the probability in (4.2) is bounded from above by

2dn sup
δTn−dn≤t≤δTn+dn

fX,Tn
(t) ≤ 2dn max

(
1

δTn − dn
,

1

(1− δ)Tn − dn

)
→ 0

as n→∞.
The weak convergence stated in the theorem will follow once we prove that for any

rational number r ∈ (0, 1), we have P
(
τX,T ≤ rT

)
→ r as T → ∞. Let r = m/k,

m, k ∈ N, m < k be such a rational number. Consider T large enough so that T > k2,
and partition the interval [0, T ] into subintervals

Ci =

[
(T +

√
T )

i

k
, (T +

√
T )
i+ 1

k
−
√
T

]
, i = 0, 1, . . . , k − 1 ,

Di =

[
(T +

√
T )

i

k
−
√
T , (T +

√
T )

i

k

]
, i = 1, . . . , k − 1 ,

and observe that by (4.2),

P
(
τX,T ∈

k−1⋃
i=1

Di

)
→ 0 as T →∞.

Therefore,

P
(
τX,T ≤ rT

)
= P

(
max

0≤i≤m−1
Mi,T ≥ max

m≤i≤k−1
Mi,T

)
+ o(1) (4.3)

as T →∞, where Mi,T = supt∈Ci
X(t), i = 0, 1, . . . .k − 1.

Let ϕ be the function given in Assumption TailSM. Then

P
(

max
0≤i≤m−1

Mi,T ≥ max
m≤i≤k−1

Mi,T

)
(4.4)

= P
(

max
0≤i≤m−1

Vi,T ≥ max
m≤i≤k−1

Vi,T

)
+ o(1) ,

where Vi,T = supt∈Ci
X(t)1

(
X(t) > ϕ(

√
T )
)
, i = 0, 1, . . . .k − 1.

Denote by GT the distribution function of each one of the random variables Vi,T , and
let Wi,T = GT (Vi,T ), i = 0, 1, . . . , k − 1. It is clear that

P
(

max
0≤i≤m−1

Vi,T ≥ max
m≤i≤k−1

Vi,T

)
(4.5)
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= P
(

max
0≤i≤m−1

Wi,T ≥ max
m≤i≤k−1

Wi,T

)
.

Notice, further, that by Assumption TailSM, for every 0 < wi < 1, i = 0, 1, . . . , k − 1,

lim
T→∞

∣∣∣P(Wi,T ≤ wi, i = 0, 1, . . . , k − 1
)
−
k−1∏
i=0

P
(
Wi,T ≤ wi

)∣∣∣ = 0 . (4.6)

Let
D(T ) = sup

x∈R
P
(

sup
t∈C0

X(t) = x
)

+ P
(

sup
t∈C0

X(t) ≤ ϕ(
√
T )
)
.

By Assumption A, D(T )→ 0 as T →∞. Since for every 0 < w < 1,

w −D(T ) ≤ P
(
W0,T ≤ w

)
≤ w ,

we conclude by (4.6) that the law of the random vector
(
W0,T , . . . ,Wk−1,T

)
converges

weakly, as T → ∞, to the law of a random vector (U0, . . . , Uk−1) with independent
standard uniform components. Since this limiting law does not charge the boundary
of the set {(w0, w1, . . . , wk−1) : max0≤i≤m−1 wi ≤ maxm≤i≤k−1 wi}, we conclude by (4.3),
(4.4) and (4.5) that

P
(
τX,T ≤ rT

)
→ P

(
max

0≤i≤m−1
Ui ≥ max

m≤i≤k−1
Ui
)

= m/k = r ,

and so we have established the weak convergence claim of the theorem.
We now prove the uniform convergence of the densities in (4.1). Suppose that the

latter fails for some 0 < ε < 1/2. There are two possibilities. Suppose first that there
is θ > 0, a sequence Tn → ∞ and a sequence tn ∈ [ε, 1 − ε] such that for every n,
TnfX,Tn

(tnTn) ≥ 1 + θ. By compactness we may assume that tn → t∗ ∈ [ε, 1 − ε] as
n → ∞. By Lemma 2.1 and the regularity properties of the density, for every n and
every 0 < τ, δ < 1 such that(

1− (1− τ)/tn
)

+
< δ < min

(
τ/tn, 1

)
(4.7)

we have
TnfX,(1−τ)Tn

(tn(1− δ)Tn) ≥ TnfX,Tn(tnTn) ≥ 1 + θ .

Since tn → t∗, there is a choice of 0 < τ < 1 such that

1 + θ >
1

1− τ
(4.8)

and, moreover, the range in (4.7) is nonempty for all n large enough. Furthermore, we
can find 0 < a < b < 1 such that(

1− (1− τ)/tn
)

+
< a < b < min

(
τ/tn, 1

)
for all n large enough. Therefore, for such n

(1 + θ)(b− a) ≤
∫ b

a

TnfX,(1−τ)Tn
(tn(1− δ)Tn) dδ

=
1

tn
P
(
τX,(1−τ)Tn

∈
(
(1− b)tnTn, (1− a)tnTn

))
→ 1

1− τ
(b− a)

as n → ∞ by the already established weak convergence. This contradicts the choice
(4.8) of τ .

The second way (4.1) can fail is that there is 0 < θ < 1, a sequence Tn → ∞ and a
sequence tn ∈ [ε, 1 − ε] such that for every n, TnfX,Tn(tnTn) ≤ 1 − θ. We can show that
this option is impossible as well by appealing, once again, to Lemma 2.1 and using an
argument nearly identical to the one described above. Therefore, (4.1) holds, and the
proof of the theorem is complete.
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Location of the supremum

The following corollary is an immediate conclusion of Theorem 4.1. It shows the
uniformity of the limiting conditional distribution of the location of the supremum given
that it belongs to a suitable subinterval of [0, T ].

Corollary 4.2. Let X = (X(t), t ∈ R) be a stationary sample upper semi-continous
process, satisfying Assumption TailSM and Assumption A. Let 0 < aT ≤ a′T < b′T ≤ bT <
T be such that

lim inf
T→∞

aT
T

> 0, lim sup
T→∞

bT
T
< 1, lim

T→∞

b′T − a′T
bT − aT

= θ.

Then
lim
T→∞

P
(
τX,T ∈

(
a′T , b

′
T

)∣∣∣τX,T ∈ (aT , bT )) = θ .
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