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Abstract

We study a directed polymer model in a random environment on infinite binary trees.
The model is characterized by a phase transition depending on the inverse tempera-
ture. We concentrate on the asymptotics of the partition function in the near-critical
regime, where the inverse temperature is a small perturbation away from the critical
one with the perturbation converging to zero as the system size grows large. De-
pending on the speed of convergence we observe very different asymptotic behavior.
If the perturbation is small then we are inside the critical window and observe the
same decay of the partition function as at the critical temperature. If the pertur-
bation is slightly larger the near-critical scaling leads to a new range of asymptotic
behaviors, which at the extremes match up with the already known rates for the sub-
and super-critical regimes. We use our results to identify the size of the fluctuations
of the typical energies under the critical Gibbs measure.
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1 Introduction and main results

1.1 Introduction

Polymers in a random environment are classical examples of models driven by an
energy - entropy competition. In these models, the directed polymer corresponds to the
path of a random walk on a lattice while the environment is a field of i.i.d. random vari-
ables. The path’s interaction with the random environment is governed by an (inverse)
temperature parameter β. As the temperature is decreased, the behavior changes from
an entropy-dominated regime with a diffusively behaving polymer, to an energy domi-
nated regime in which the polymers prefer regions where the environment is especially
favorable. While the large temperature phase is fairly well understood, there are many
open problems in the energy dominated regime (especially for general environments).
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Near-critical scaling for polymers on disordered trees

Beginning with Derrida-Spohn [13] it was realized that changing the underlying
space and studying directed polymers on trees allows the use of different techniques.
Most notably, one can use the self-similarity of the graph to exactly compute several
quantities. The basic model is the following: let T be an infinite binary tree and to each
vertex v ∈ T attach a random variable ω(v). The collection {ω(v)}v∈T is assumed to be
i.i.d., and throughout we assume that

eλ(β) := E
[
eβω
]
<∞ for all β ∈ R.

Let o be the root of the tree and |v| denote the generation of each vertex. If |v| = n let
(o = v0, v1, . . . , vn) be the unique path of vertices from o to v. Since the path is unique
we can refer to each polymer of length n by the last vertex. The interaction with the
environment is described by introducing the Gibbs measure µ(β)

n which assigns to each
polymer v the probability

µ(β)

n (v) =
1

Zn(β)
exp {−βH(v)} , (1.1)

where the energyH(v) is defined byH(v) = −
∑n
j=1 ω(vj), and the normalizing partition

function at level n is given by

Zn(β) :=
∑
|v|=n

exp
{
− βH(v)

}
.

Note that by interpreting the energies as spatial positions, one actually obtains a branch-
ing random walk (in our case with dyadic branching) and many results were first de-
scribed in that language. Observe that E [Zn(β)] = enλ(β)+n log 2, and in fact it is easy to
see that

Wn(β) := Zn(β)/EZn(β)

is a positive martingale with respect to the filtration Wn := σ(ω(v) : |v| ≤ n). Applying
Kolmogorov’s 0-1 law gives the usual dichotomy that exactly one of the events

lim
n→∞

Wn(β) > 0, lim
n→∞

Wn(β) = 0

is of full probability. The β for which the limit is positive are said to be in the weak
disorder regime; the remaining β are said to be in strong disorder. One of the main
advantages of the tree is that there is a complete classification of weak and strong
disorder: there exists a βc ≥ 0 such that the range 0 ≤ β < βc is weak disorder and
β ≥ βc is strong disorder. Moreover, βc is the unique non-negative solution to the
equation

λ(βc) + log 2 = βcλ
′(βc). (1.2)

If no solution exists then βc = ∞. See [16, 9] for proofs of this fact. We will assume
throughout that βc < ∞. At the critical inverse temperature βc there is also a drastic
change in the behavior of the free energy, as was first proved in a continuous time
analogue in [13] and later in the tree case in [12]. The result is that

ϕ(β) := lim
n→∞

1

n
logZn(β) =

{
λ(β) + log 2, β ≤ βc,
β
βc

(λ(βc) + log 2) , β > βc.
(1.3)

Observe that the free energy varies continuously with β but starts growing linearly once
β > βc. Transferring this result to Wn(β) combined with the convexity of λ gives that
for β > βc, Wn(β) decays exponentially fast in n. Note that no statement is made about
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Near-critical scaling for polymers on disordered trees

the decay of the martingale in the critical β = βc case, and for a long period of time the
exact behavior was unknown. This problem was solved in the important work of Hu and
Shi [14] where, among many other results, they prove that

Wn(βc) = n−
1
2+o(1) a.s. (1.4)

In particular, this implies that even though β = βc is in the strong disorder regime, the
partition function decays only polynomially fast rather than exponentially as for β > βc.

1.2 Main results

The main goal of this paper is to probe the phase transition at βc and to see, roughly
speaking, “how far” it extends on either side of the critical temperature. More precisely,
we consider the system at a temperature βn depending on the system size (parametrized
by n) and apply a near-critical scaling of βn → βc as n→∞. Our main result determines
what types of asymptotics are exhibited for the different choices for scalings of βn. This
question was inspired by the recent work [4] on the lattice model in 1 + 1 dimensions.

To formulate our results we introduce, for a polymer v in the nth generation, the
normalized energy at criticality

V (v) = βc (H(v) + nλ′(βc)) = βcH(v) + n(λ(βc) + log 2), (1.5)

with the last equality coming from equation (1.2). Using this notation we have that

Wn :=Wn(βc) =
∑
|v|=n

e−V (v). (1.6)

For δ > 0 we introduce the perturbed partition functions

W+,δ
n =

∑
|v|=n

e−(1+n
−δ)V (v), and W−,δn =

∑
|v|=n

e−(1−n
−δ)V (v). (1.7)

This perturbation of the energies corresponds to studying the model near the critical in-
verse temperature and is more convenient than taking βn → βc directly. The difference
amounts to a deterministic factor which can be calculated explicitly.

The perturbed partition functions (1.7) will be our primary objects of study. We gen-
erally refer to W±,δn as a either positive or negative perturbations, depending on the
sign indicated. In our notation large (small) δ corresponds to small (large) perturba-
tions, and we frequently refer to a perturbation as being large or small. We consider
four different types of perturbations (small positive, small negative, large positive, and
large negative) and our main results are on the asymptotic behavior of the correspond-
ing partition functions. We show that the separation between small and large pertur-
bations occurs at δ = 1/2. If the perturbation is small, meaning that δ ≥ 1/2, then
the perturbed partition function decays at the same rate as the unperturbed partition
function Wn, see (1.4). This is true for both positive and negative perturbations, and
the rate of decay does not depend on δ. However, if the perturbation is large, meaning
0 < δ < 1/2, then the asymptotics are different in the positive and negative cases, and
the asymptotic rate has an explicit dependence on δ.

Theorem 1.1. 1. If δ ≥ 1/2, then in probability

W±,δn = n−1/2+o(1).

2. If 0 < δ < 1/2, then, almost surely,

W−,δn = exp

{
β2
cλ
′′(βc)

2
n1−2δ(1 + o(1))

}
.

EJP 18 (2013), paper 19.
Page 3/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2036
http://ejp.ejpecp.org/


Near-critical scaling for polymers on disordered trees

3. If 0 < δ < 1/2, then in probability

W+,δ
n = n2δ−

3
2+o(1).

There are two main features of the theorem that we call attention to. First, it clearly
shows the existence of a critical scaling window described in terms of the δ parameter.
The critical value of δ, by which we mean the point at which the perturbation switches
from being influential to having no influence, is δ = 1/2. The range δ ≥ 1/2 is what
we call the critical window since the asymptotic behavior is as if the temperature were
already at criticality. The range 0 < δ < 1/2 is what we call the near-critical window.
In the critical window we see Hu-Shi asymptotics, while in the near-critical window we
observe new behavior.

This new behavior inside the near-critical window is also of interest, in particular
the non-trivial dependence on δ. The exponents 1 − 2δ and 2δ − 3/2 in parts (ii) and
(iii), respectively, may appear arbitrary at first but in fact show that there is a “smooth”
crossover between what is already known for the sub- and super-critical regimes. To
describe this crossover we introduce the random variables

Wn,γ =
∑
|v|=n

e−γV (v). (1.8)

for γ > 0. Clearly Wn,1 =Wn. For γ < 1 the martingale convergence of Wn(β) for β < βc
implies that

Wn,γ ∼W∞(γ) exp{c(γ)n}

as n → ∞, for some positive constant c(γ) and W∞(γ) a positive random variable.
Hence as δ ↓ 0 we expect that W−,δn should exhibit linear exponential growth, and the
exponent 1− 2δ confirms this. Similarly, as δ ↑ 1/2 we should observe a transition from
the exponential growth to the Hu-Shi polynomial decay (1.4). Our proofs are not strong
enough to capture the transition to the polynomial behavior, but they do show that the
exponential growth disappears.

For γ > 1 it was shown in [14, Theorem 1.4] that

Wn,γ = n−
3
2γ+o(1)

in probability. As γ ↓ 1 there is a discontinuity in the decay exponent, with n−3/2 appear-
ing instead of the n−1/2 in (1.4). Part (iii) of our theorem shows that the discontinuity is
bridged by going through the near-critical window, and that there is a linear interpola-
tion between the previously known exponents at the extremes.

This crossover behavior of exponents is not merely coincidental, but reflects a change
in the underlying structure of the polymer measures. In the subcritical case β < βc, it
is known that the polymer measure µ(β)

n chooses paths v whose energy H(v) grows like
−λ′(β)n (up to first order). In particular, in the tree picture it means that exponentially
many polymers contribute to the free energy, see for example [20].

In the supercritical case, [19] proves that the partition functions Wn,γ in (1.8) with
γ > 1 converges in law if normalized by n−

3
2γ . In [8] the limiting law is identified and

used to show that the supercritical Gibbs measure converges to a purely atomic mea-
sure of Poisson-Dirichlet type. The convergence of the Gibbs measure for a continuous-
time analogue was already described in [11] for generalized random energy models.
However, more is known about the structure of the Gibbs measure. As pointed out in [6]
for the case corresponding to branching Brownian motion, in the supercritical case the
polymer measure is concentrated on those paths whose energy is within constant or-
der from the minimal energy. The latter process of extremal particles was explicitly
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Near-critical scaling for polymers on disordered trees

described in a recent break-through by [5] and [1] for branching Brownian motion and
after that in [19] for branching random walks.

In the critical regime, [15] observe that the critical polymer measure converges,
based on the result of [3] that identifies the limiting distribution of n

1
2Wn as (a constant

multiple of) the limit of the so-called derivative martingale. However, less is known
about the structure of the Gibbs measure.

Our result about the perturbed partition function also sheds some light on the crit-
ical Gibbs measure. The fact that perturbations start showing an effect at δ = 1/2

suggests that in the critical window the relevant energies are of order V (v) ≈ n1/2, and
that subexponentially many particles contribute to the partition functions. Using Theo-
rem 1.1 we easily obtain the following result on the order of the energy at criticality:

Theorem 1.2. For any ε, ε′ > 0, we have that in probability

µ(βc)

n

{
|v| = n : n

1
2−ε ≤ V (v) ≤ n 1

2+ε
′
}
→ 1 .

Proof of Theorem 1.2 assuming Theorem 1.1. Fix ε > 0 and observe that

µ(βc)

n

{
V (v) ≤ n 1

2−ε
}
=
∑
|v|=n

e−V (v)

Wn
1l
{V (v)≤n

1
2
−ε}

≤ e1
∑
|v|=n

e−(1+n
− 1

2
+ε)V (v)

Wn
= e1

W
+, 12−ε
n

Wn
.

By [14] we have Wn = n−1/2+o(1) almost surely, and by Theorem 1.1 part (iii) we have

that W
+, 12−ε
n = n−

1
2−2ε+o(1) in probability. Therefore the ratio above converges to zero

in probability.
For the remaining bound fix ε > 0 and for δ = 1

2 (1− ε) consider

µ(βc)

n

{
V (v) ≥ n 1

2+ε
}
=
∑
|v|=n

e−V (v)

Wn
1l
{V (v)≥n

1
2
+ε}

≤ e−n
−δn

1
2
+ε ∑
|v|=n

e−(1−n
−δ)V (v)

Wn
= e−n

−δn
1
2
+εW−,δn

Wn
.

Again, Wn = n−
1
2+o(1) almost surely and by Theorem 1.1 part (ii) we have that

W−,δn ≤ exp

{
β2
cλ
′′(βc)

2
n1−2δ(1 + o(1))

}
almost surely. Thus by our choice of δ the previous expression converges to zero in
probability.

The proofs also show that the typical behavior of a polymer is that the energy along
its paths (V (ξi))

n
i=1 performs a random walk which stays positive. In the case of a large

positive perturbation with δ < 1
2 , we have to add the additional requirement that at the

end V (ξn) gets pushed down to an unusually low nδ. In fact, this extends the intuition
behind the proofs of [14] that the main contributing random walk in the supercritical
case remains positive, but then has to take an unusually low value at the end.

Analogously to Theorem 1.2, we can describe the typical energy of a polymer in the
near-critical regime. More precisely, we introduce the Gibbs measure at near-critical
temperature by associating to each polymer v the probability

µ(βc,±,δ)
n =

1

W±,δn

exp{−(1± n−δ)V (v)}.
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Near-critical scaling for polymers on disordered trees

Theorem 1.3. Let ε, ε′ > 0.

(i) If δ ≥ 1
2 , we have that in probability

µ(βc,±,δ)
n

{
|v| = n : n

1
2−ε ≤ V (v) ≤ n 1

2+ε
′}
→ 1.

(ii) If 0 < δ < 1
2 , we have that in probability

µ(βc,−,δ)
n

{
|v| = n : n1−δ−ε ≤ V (v) ≤ n1−δ+ε

′}
→ 1.

(iii) If 0 < δ < 1
2 , we have that in probability

µ(βc,+,δ)

n

{
|v| = n : nδ−ε ≤ V (v) ≤ nδ+ε

′}
→ 1.

Proof. The proof follows as in the proof of Theorem 1.2 from the asymptotics of the
normalizing constants W±,δn in the Gibbs measure stated in Theorem 1.1.

(i) More precisely, along the lines of the proof of Theorem 1.2, one can show that if
δ ≥ 1

2 , and ε > 0,

µ(βc,±,δ){V (v) ≤ n 1
2−ε} ≤ e−(±n

−δ−n−( 1
2
−ε))n

1
2
−εW

+, 12−ε
n

W±,δn

,

which converges to 0 in probability by Theorem 1.1. Also,

µ(βc,±,δ){V (v) ≥ n 1
2+ε} ≤ e−(±n

−δ+n−
1
2
(1−ε))n

1
2
+εW

−, 12 (1−ε)
n

W±,δn

,

converges to 0 in probability.
(ii) For a negative perturbation with δ ∈ (0, 12 ), we find that for ε ∈ (0, 12 − δ),

µ(βc,−,δ){V (v) ≤ n1−δ−ε} ≤ e(n
−δ−n−(δ+ε))n1−δ−εW−,δ+εn

W−,δn

,

and moreover that for ε ∈ (0, 2δ),

µ(βc,−,δ){V (v) ≥ n1−δ+ε} ≤ e(n
−δ−n−(δ− 1

2
ε))n1−δ+εW

−,δ− 1
2 ε

n

W−,δn

.

Again the asymptotics in Theorem 1.1 (ii) show that the respective left-hand side con-
verge to 0.

The proof of (iii) is very similar to the proof of (i) and is therefore omitted.

To prove Theorem 1.1 we employ the standard technique of deriving the asymp-
totics of the partition functions from the asymptotics of its fractional moments. This
is the strategy used in [14], and in our situation it is akin to computing the following
asymptotics for the fractional moments of the perturbed partition functions:

Theorem 1.4. Let γ ∈ (0, 1). Then

1. for δ ≥ 1/2 we have E
[(
W±,δn

)γ]
= n−γ/2+o(1),

2. for 0 < δ < 1/2 we have E
[
(W−,δn )γ

]
= exp

{
γ
2n

1−2δβ2
cλ
′′(βc)(1 + o(1))

}
3. for 0 < δ < 1/2 we have E

[(
W+,δ
n

)γ]
= n(2δ−

3
2 )γ+o(1).

In Appendix A we employ standard arguments to show that Theorem 1.1 is a corol-
lary of Theorem 1.4, so the main focus of this paper is proving Theorem 1.4.
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Near-critical scaling for polymers on disordered trees

1.3 Organization and idea of the proofs

We give here a brief outline of our methods for proving Theorems 1.1 and 1.4. Before
we concentrate on our proofs, we will comment on which parts of the asymptotics can be
easily deduced from known results about the minimal energy (i.e. the minimal position
of a branching random walk). We first recall that it was shown in [14, Thm 1.2] that

lim sup
n→∞

1

log n
inf
|v|=n

V (v) =
3

2
, lim inf

n→∞

1

log n
inf
|v|=n

V (v) =
1

2
, (1.9)

both almost surely.

Corollary 1.5. For any negative perturbation, i.e. any δ > 0,

W−,δn ≥ n− 1
2+o(1), almost surely,

for any positive perturbation

W+,δ
n ≤ n− 1

2+o(1), almost surely,

and for any perturbation

lim sup
n→∞

logW±,δn

log n
≥ −1

2
, almost surely.

Remark 1.6. These bounds immediately prove that the lower bound for negative per-
turbations and the upper bound for positive perturbations in part (i) of Theorem 1.1
hold (and even in an almost sure sense). In fact our proofs will show that all lower
bounds in Theorem 1.1 hold almost surely.

Combining the second and third statement of Corollary 1.5 we also see that

lim sup
n→∞

logW+,δ
n

log n
= −1

2
, almost surely.

Finally, note that for 0 < δ < 1/2, we can deduce, from the fact that the lower bounds
in Theorem 1.1 hold almost surely and by extracting an almost surely convergent sub-
sequence from the convergence in probability of part (iii) of Theorem 1.1, that

lim inf
n→∞

logW+,δ
n

log n
= 2δ − 3

2
, almost surely.

Remark 1.7. For negative perturbations the first statement of Corollary 1.5 completes
the proof of the lower bound in part (i) of Theorem 1.1. Using this we do not need to
prove the lower bound for the fractional moment of W−,δn in the δ ≥ 1/2 case (i.e. part (i)
of Theorem 1.4). However, we point out that the fractional moment is an easy corollary
of the fractional moments of Wn [14, Thm. 1.5] and the asymptotics of inf |v|=n V (v).

Proof of Corollary 1.5. For any negative perturbation we have the lower bound

W−,δn =
∑
|v|=n

e−(1−n
−δ)V (v) ≥ en

−δ inf|u|=n V (u)
∑
|v|=n

e−V (v) ≥ e 1
2n
−δ logn(1+o(1))Wn ,

Since [14] implies Wn = n−
1
2+o(1) almost surely, we immediately obtain that W−,δn ≥

n−1/2+o(1) almost surely. Using the same idea we also obtain an upper bound for any
positive perturbation, namely

W+,δ
n =

∑
|v|=n

e−(1+n
−δ)V (v) ≤ e− 1

2n
−δ logn(1+o(1))Wn = n−1/2+o(1),
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Near-critical scaling for polymers on disordered trees

where the last equality is again a consequence of the Hu-Shi asymptotics (1.4) for Wn.
Finally, we can always obtain a lower bound by only keeping the minimizing particle

in the sum defining the partition function, so that

W±,δn ≥ e−(1−n
−δ) inf|v|=n V (v).

Now, the lim inf asymptotics (1.9) of inf |v|=n V (v) yield the lower bound on the lim sup

asymptotics for W±,δn .

The rest of the paper is focused on proving Theorem 1.4. In several papers on
branching processes the spine method is the main technique used to understand asymp-
totics of the process. The first step is to enlarge the probability space by identifying a
special ray, the “spine”, in the tree. The second step involves constructing a size-biased
probability measure that is tilted towards environments and rays for which the nor-
malized energy {V (ξi)}ni=1 is typical along the chosen ray ξ. Precise definitions and
properties of the construction are reviewed in Section 2.

The main purpose of this construction is that one can deduce the asymptotics of the
partition function from the behavior of the normalized energies on the spine {V (ξi)}ni=1.
Moreover, under this tilted measure these normalized energies are in distribution equal
to a mean zero random walk. The problem is thus broken into two smaller pieces: first
showing that the fractional moments can be estimated by some functional of a simple
random walk, and then using random walk methods to estimate the functional.

We explain this strategy in more detail in the case of small and large positive per-
turbations. Our aim is to show that, in a rough sense, the perturbed partition function
W ·,δn decays like the inverse of

g(n) =

{
n1/2 if δ ≥ 1

2 , any perturbation,

n
3
2−2δ if δ ∈ (0, 12 ), positive perturbation.

Following the philosophy of the spine method, we can reduce a fractional moment to a
functional of a random walk and we eventually show that for s ∈ (0, 1),

E[(g(n)W±,δn )1−s] ≈ E[(g(n) ? (S+
n )

α)e∓n
−δSn1l{minj Sj≥0}], (1.10)

where Sn is a mean zero random walk with exponential moments, ? is maximum ∨ or
minimum ∧ (depending on whether we consider an upper or lower bound), X+ denotes
max{X, 0} for a real-valued random variable X and α > 0 is a free parameter. If our
choice of parameters is correct, then the right hand side should be essentially constant
(and the dependency on s is hidden in constants).

At this point we can fully notice the effect of the perturbation. If δ ≥ 1
2 , i.e. if the

perturbation is small, the term e−n
−δSn is negligible. Hence, the dominating behavior is

that of a random walk conditioned to be positive so that the end point fluctuates around
n

1
2 . However, if we are in the case of a positive large perturbation the e−n

−δSn factor
starts to push the random walk down at the end, so that the dominating contributions
come from random walks that stay positive but end up at a scale nδ at time n. In
particular, we see that if we choose the parameter α as

α := α(δ) =

{
1 if δ ≥ 1

2 , any perturbation,
3
2δ − 2 if δ ∈ (0, 12 ), positive perturbation.

then, under the dominating behavior in (1.10), the random walk satisfies (S+
n )

α ≈ g(n).
We emphasize that the strategy behind our proofs is highly motivated by the use

of fractional moments and the spine methods in [14]. However, their proofs cannot be
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translated directly to deal with a perturbation of the partition function. Moreover, in
order to be able to concentrate on the new difficulties, we focus exclusively on the case
of a binary tree instead of general Galton-Watson trees. The binary tree model also
appears naturally as a toy model for polymers.

The organization of our paper is as follows: in Section 2 we give a brief review of
the spine method. In Section 3, we deal with the simplest case of a fractional moment
bound for a large negative perturbation, which is part (ii) of Theorem 1.4. Since we only
show less refined asymptotics, we can use simpler methods. In the remainder of the
paper, we carry out the above strategy for all small and large negative perturbations.
In Section 4, we show that we obtain an upper bound on the fractional moments in
terms of a random walk as in (1.10), while in Section 5 we show the corresponding
lower bound. To complete the proof of the fractional moment estimates, Theorem 1.4,
we analyze in Section 6 the random walk functional on the right hand side of (1.10)
using a coupling argument with a Brownian motion. Appendix A shows how to deduce
Theorem 1.1 from Theorem 1.4.

Notation: Throughout the paper, we will use generic constants c, C > 0, whose
values may change from line to line. If it is essential, we will indicate their dependence
on parameters.

2 Spine Method

Recall the weight function V : T → R defined by (1.5) and the expression (1.6) for
Wn. Let SpinedTrees = {(V, ξ) : V = (V (v) : v ∈ T ), ξ ∈ ∂T} be the space of weights
on the vertices of T with a marked spine ξ. Let Fn = σ(V (v), |v| ≤ n; ξi, i ≤ n) be the
filtration giving all the information on the weights and spine up to level n, and recall that
Wn = σ(ω(v) : |v| ≤ n). Extend P to a probability measure on SpinedTrees such that
the V (v) variables have the distribution defined by (1.5) with all of the ω being i.i.d. and
ξ chosen uniformly from ∂T . Let Q be the probability measure on SpinedTrees defined
by

dQ

dP

∣∣∣∣
Fn
(V, ξ) = e−V (ξn)+n log 2. (2.1)

It is easy to check that the latter expression is an Fn-martingale under P, and hence Q
extends to a measure on all of SpinedTrees. A straightforward computation shows that
conditional on the weights V up to level n (i.e. onWn), the distribution of ξn is given by

Q (ξn = v|Wn) =
e−V (v)

Wn
. (2.2)

Comparing (2.1) and (2.2) with (1.5) we see that the measure Q is tilted towards el-
ements of SpinedTrees, for which the Gibbs measure is large. Note also that Q re-
stricted to Wn has Radon-Nikodým derivative Wn. Moreover, under Q the sequence
V (ξn) turns out to be a random walk with mean zero increments. This is proved in a
number of different sources (see [20, 14], for example) but we recall the basic facts
here. For each n ≥ 1 let bn be the sibling vertex of ξn. Define the σ-algebras Gn,G∗n by

Gn := σ(V (ξi), ξi; i ≤ n) and G∗n := σ(V (ξi), V (bi), ξi; i ≤ n).

Further, let (Sn, n ≥ 0) be a random walk with S0 = 0 whose independent increments
have the Q-distribution of V (ξ1). Then there is the following well-known set of results:

Proposition 2.1. Under the measure Q,

1. the process (V (ξn))n≥0 has the same distribution as the random walk (Sn)n≥0,
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2. for any measurable function F : R→ R

EQ [F (S1)] = 2E
[
F (V0)e

−V0
]

where −V0 = βcω − λ(βc)− log 2,

3. the random variables (V (ξn)− V (ξn−1), V (bn)− V (ξn−1)) are i.i.d. and distributed
as (S1, V0),

4. conditionally on G∗n the weights V (v) − V (bk) on the subtree T (bk) rooted at bk
are independent of V (bk) (and independent for each subtree) and have the same
distribution as under the original measure P.

Choosing F (x) = x in (ii) and using the relation (1.2) gives that EQ[S1] = 0. Hence
Sn is a mean zero random walk by parts (i) and (iii).

3 Large negative perturbations

Using the spine method we prove part (ii) of Theorem 1.4, which is the fractional
moments for a large negative perturbation. Combined with the results of Appendix A
this completes the proof of part (ii) of Theorem 1.1.

Theorem 3.1 (Theorem 1.4, part (ii)). For any δ ∈ (0, 12 ) and s ∈ (0, 1), we have that

E[(W−,δn )1−s] = exp{ 12 (1− s)n
1−2δβ2

cλ
′′(βc)(1 + o(1))}.

Proof. We first record a standard computation, where we recall the definition of V
in (1.5) and compute for any 0 ≤ k ≤ n,

E
[ ∑
|v|=k

e−(1−n
−δ)V (v)

]
=
∑
|v|=k

E[e(1−n
−δ)(βc

∑k
j=1 ω(vj)−k(λ(βc)+log 2))]

= 2k E[e(1−n
−δ)βcω]ke−k(1−n

−δ)(λ(βc)+log 2)

= exp
{
k
(
λ((1− n−δ)βc)− λ(βc) + n−δβcλ

′(βc)
)}

= exp{k( 12n
−2δβ2

cλ
′′(βc) +O(n−3δ))},

(3.1)

where in the penultimate step we used the definition of βc in (1.2) and a Taylor expan-
sion.

In particular, taking k = n we immediately obtain the upper bound on the fractional
moments by using Jensen’s inequality to estimate that for any s ∈ (0, 1),

E
[
(W−,δn )1−s

]
≤ E[W−,δn ]1−s = exp{ 12 (1− s)n

1−2δβ2
cλ
′′(βc) +O(n1−3δ)} ,

the last equality following from the calculation in (3.1).
We now prove the lower bound. Fix s ∈ (0, 1) and observe that with the notation for

the spine technique as introduced in Section 2,

W−,δn

Wn
=
∑
|v|=n

en
−δV (v)Q (ξn = v|Wn) = EQ[e

n−δV (ξn)|Wn].

Then the fractional moment can be written as

E[(W−,δn )1−s] = EQ

[W−,δn

Wn
(W−,δn )−s

]
= EQ

[
en
−δV (ξn)(W−,δn )−s

]
,

By conditioning on the weights on the spine Gn and applying Jensen’s inequality we
obtain a lower bound of

E[(W−,δn )1−s] = EQ
[
en
−δV (ξn)E[(W−,δn )−s|Gn]

]
≥ EQ

[
en
−δV (ξn)E[(W−,δn )s|Gn]−1

]
.

(3.2)
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We now decompose the tree along its spine to write

W−,δn = e−(1−n
−δ)V (ξn)

+

n∑
i=1

e−(1−n
−δ)V (ξi−1)e−(1−n

−δ)(V (bi)−V (ξi−1))
∑

v∈Tn−i(bi)

e−(1−n
−δ)(V (v)−V (bi)),

where we recall that bi denotes the sibling of ξi in the tree and moreover Tk(bi) denotes
the vertices in the kth generation of the tree rooted at bi. Using Proposition 2.1 and the
subadditivity inequality (

∑
i ai)

s ≤
∑
asi for ai ≥ 0, we can show that

EQ[W
−,δ
n |Gn]s ≤ e−s(1−n

−δ)V (ξn)

+

n∑
i=1

e−s(1−n
−δ)V (ξi−1)E[e−(1−n

−δ)V0 ]sE
[ ∑
|v|=n−j

e−(1−n
−δ)V (v)

]s
≤ e 1

2 sn
1−2δβ2

cλ
′′(βc)+O(n1−3δ)

n∑
i=0

e−s(1−n
−δ)V (ξi). (3.3)

The last inequality uses that E[e−V0 ]s = 2−s (see Proposition 2.1, part (ii), for the defini-
tion of V0) and finally the calculation in (3.1). Combining these last two estimates (3.2)
and (3.3), we conclude that

E[(W−,δn )1−s] ≥ e− 1
2 sn

1−2δβ2
cλ
′′(βc)+O(n1−3δ)EQ

[ en
−δV (ξn)∑n

i=0 e
−s(1−n−δ)V (ξi)

]
. (3.4)

Denoting by (Si)i≥0 the random walk introduced in Proposition 2.1, we can rewrite the
expectation on the right hand side as

EQ

[ en
−δV (ξn)∑n

i=0 e
−s(1−n−δ)V (ξi)

]
= EQ

[ en
−δSn∑n

i=0 e
−s(1−n−δ)Si

]
≥ 1

n+ 1
EQ
[
en
−δSn1l{minni=1 Si≥0}

]
≥ 1

n+ 1
EQ
[
en
−δSn

]
Q
{

min
i=1,...,n

Si ≥ 0
}
,

where we used the FKG inequality noticing that (xi)
n
i=1 7→ 1l{mini=1,...,n

∑i
j=1 xi ≥ 0}

and (xi)
n
i=1 7→ en

−δ∑n
j=1 xj are both increasing functions. For more details of the FKG

inequality in a similar context see e.g. [7, Section 2.2]. To complete the proof, we note
that by (3.1) we can calculate the first moment as

EQ
[
en
−δSn

]
= EQ

[
en
−δV (ξn)

]
= EQ

[ ∑
|v|=n

en
−δV (v)Q{ξn = v|Wn}

]
= E[W−,δn ] = exp

{
1
2β

2
cλ
′′(βc)n

1−2δ +O(n1−3δ)
}
,

and for the second term we have that Q{mini=1,...,n Si ≥ 0} = n−
1
2+o(1) by a standard

random walk computation. Hence the latter is negligible compared to the first term and
from (3.4) we can deduce the required lower bound.

4 Upper bounds

In this section we find an upper bound on the fractional moments for all positive
perturbations and small negative perturbations. The method we use works for all three
types of perturbations simultaneously. To unify the argument we write Yn =W ·,δn , where
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· is either + or − depending on whether we are considering a positive or negative
perturbation. Define the growth function

g(n) =

{
n1/2 if Yn =W±,δn , δ ≥ 1

2 ,

n
3
2−2δ if Yn =W+,δ

n , δ ∈ (0, 12 ),
(4.1)

and also let γn = ±n−δ depending on which perturbation is under consideration.
We start by defining the auxiliary quantity Y n, which gives an upper bound as fol-

lows:
g(n)Yn ≤

∑
|v|=n

(g(n) ∨ V +(v)α)e−(1+γn)V (v) =: Y n.

Here α = α(δ) is chosen as

α(δ) =

{
1 if Yn =W±,δn , δ ≥ 1

2 ,
3
2δ − 2 if Yn =W+,δ

n , δ ∈ (0, 12 ).

This reasoning behind this particular choice of α is discussed in Section 1.3.

Proposition 4.1. For all s ∈ (0, 1) there exists a constant κ0 > 0 such that for all κ ≥ κ0

E[Y
1−s
n ] ≤ 1 + EQ[(g(n) ∨ Sαn )e−γnSn1lA] + o(1)

as n→∞, where A is the event

A =

{
min

0≤j≤n
Sj ≥ −κ log n, Sn ≥ 0

}
.

Proof. First note that it is sufficient to prove the proposition for s small, since if it holds
for small s then it also holds for all larger s ∈ (0, 1). Indeed, by Hölder’s inequality we
have that for s′ > s

E[Y
1−s′
n ] ≤ E[Y 1−s

n ]
1−s′
1−s ≤ 1 + E[Y

1−s
n ],

for n sufficiently large, where we used that 1−s′
1−s < 1.

Now observe that Y n can be rewritten as

Y n =WnEQ

[
(g(n) ∨ V +(ξn)

α)e−γnV (ξn)
∣∣Wn

]
,

and then using the spine techniques of Section 2 we obtain that

E
[
Y

1−s
n

]
= EQ

[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)
]
. (4.2)

As in the proof by [14], the main idea is to show that the relevant contributions to Y n
only come from the spine particle ξn.

We first notice that we can concentrate on the event Y n ≥ 1 (on the complement

Y
1−s
n is bounded by 1). Now define V (ξn) = infi=1,...,n V (ξi). Fix κ > 0 and let

E := {(V, ξ) ∈ SpinedTrees : V (ξn) ≥ −κ log n, V (ξn) ≥ 0},

and notice that we can write Ec = F1 ∪ F2 where

F1 = {(V, ξ) : V (ξn) < −κ log n} and F2 = {(V, ξ) : V (ξn) < 0, V (ξn) ≥ −κ log n} .

We will show that E[Y
1−s
n 1lY n≥11lFi ]→ 0 as n→∞, for i = 1, 2, so that by equation (4.2)

we will have

E
[
Y

1−s
n

]
≤ 1 + E[Y

1−s
n 1lY n≥1]

≤ 1 + EQ
[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lY n≥11lE
]
+ o(1).
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This will prove the lemma once we recall that, by Proposition 2.1, (Si)ni=1 is a random
walk which has the same Q-distribution as the weights (V (ξi))

n
i=1 along the spine.

Step 1. We will show that

E
[
Y

1−s
n 1lF1

]
= EQ

[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lF1

]
→ 0

as n → ∞. Let ξ
n

be the last element of ξ1, ξ2, . . . , ξn such that V (ξn) = V (ξ
n
). Let b be

the child of ξ
n

that is not on the spine if |ξ
n
| < n, otherwise set b = ξn = ξ

n
. On F1, we

can estimate Y n from below by

Y n ≥ g(n)e−(1+γn)V (b)e
−(1+γn) infv∈Tn−|b|(b) V (v)−V (b)

,

where we recall that, for k ∈ N, Tk(b) denotes the vertices in the kth generation of the
tree rooted at b. Thus,

EQ
[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lF1

]
≤ EQ

[
(g(n) ∨ V +(ξn)

α)g(n)−ses(1+γn)V (b)−γnV (ξn)e
s(1+γn) infv∈Tn−|b|(b) V (v)−V (b)

1lF1

]
≤ CEQ

[
(g(n) ∨ V +(ξn)

α)g(n)−ses(1+γn)V (ξ
n
)−γnV (ξn)

×max
{
1, sup
k=0,...,n

E[es(1+γn) infv∈Tn−k V (v)]
}
1lF1

]
,

where in the last step we took expectation conditionally on the weights on the spine,
and we twice used that the weights that are not on the spine are independent and their
distribution is not affected by the change of measure, see Proposition 2.1. Now, by [14,
Prop. 5.1], there is a s0 ∈ (0, 1) such that for all s ≤ s0 and any ε > 0, there exists
C = C(s) > 0 such that

E
[
exp{s inf

|v|=n
V (v)}

]
≤ Cn(3+ε)s/2 .

In fact, the result in [14] is stated for some fixed s0, but by Hölder’s inequality it imme-
diately translates to all smaller s ≤ s0. Substituting back into the above display (and
noting that we can absorb the (1 + γn) in front of the infimum into the ε), we obtain

EQ
[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lF1

]
≤ Cn(3+ε)s/2EQ

[
(g(n) ∨ V +(ξn)

α)g(n)−ses(1+γn)V (ξn)−γnV (ξn)1lF1

]
.

(4.3)

From (4.3), in the case that γn ≥ 0, we use that V (ξn) ≥ V (ξn) and that V (ξn) < −κ log n
on the event F1 to obtain

EQ
[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lF1

]
≤ Cn(3+ε)s/2g(n)−sn−κ(s(1+γn)−γn)EQ[(g(n) ∨ V +(ξn)

α)1lF1 ].
(4.4)

Since V (ξn) has the same distribution as Sn, the latter expectation can be bounded as

EQ[(g(n) ∨ (S+
n )

α)] ≤ (g(n) ∨ nα/2)EQ
[
max{1,

(
n−

1
2S+

n

)α}],
where by the central limit theorem the latter expectation converges to a constant
(where we note that the increments of Sn have exponential moments). Consequently,
by the choice of α, the right hand side of (4.4) is o(1), provided we choose κ ≥ κ0, where
κ0 has to be chosen large enough.

In the case that γn ≤ 0, we obtain an upper bound on (4.3) of

Cg(n)−sn(3+ε)s/2n−κs+o(1)EQ[(g(n) ∨ V +(ξn)
α)e−γnV (ξn)1lF1

] . (4.5)
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We can further bound the expectation using Cauchy-Schwarz to obtain

EQ[(g(n) ∨ V +(ξn)
α)e−γnV (ξn)1lF1 ] ≤ EQ[(g(n) ∨ V +(ξn)

α)2]1/2EQ[e
−2γnV (ξn)]1/2

≤ C(g(n) ∨ nα/2)EQ[e−2γnV (ξn)]1/2.

Since we are considering γn ≤ 0 we have that δ ≥ 1/2, and since V (ξn) has the distri-
bution of Sn (which is a mean zero random walk with exponential moments), it follows
that the expectation in the latter expression is of constant order. Hence (4.5) is of order
o(1), again if κ ≥ κ0 for some suitably chosen κ0.

Step 2. We now show that

E[Y
1−s
n 1lY n≥11lF2

] = EQ[Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lY n≥11lF2
]→ 0

as n→∞. We upper bound the latter expression by

EQ
[
Y
−s
n (g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lY n≥11lF2

]
≤ EQ

[
(g(n) ∨ V +(ξn)

α)e−γnV (ξn)1lF2

]
≤ g(n)eκn

−δ lognQ(F2) ,

where we used that if γn ≥ 0, then we can bound V (ξn) ≥ V (ξ
n
) ≥ −κ log n, and if

γn ≤ 0, then −γnV (ξn) ≤ 0. However, using that V (ξi) is a mean zero random walk we
may upper bound Q(F2) by Cn−3/2(log n)3 for some C = C(κ), which corresponds to the
probability that a random walk comes back to zero at time n on the event that it stays
positive, see e.g. [2, Lemma A.1]. Thus

g(n)Q(F2) ≤ Cn
3
2−2δn−

3
2 (log n)3 = o(1),

which completes the proof.

5 Lower Bounds

The goal of this section is to find a lower bound on the fractional momentE[(W±,δn )1−s]

in terms of an expression that only involves a (non-trivial) functional of a random walk.
By Remark 1.7 and Section 3 we already have the required bounds for negative pertur-
bations, hence it suffices to consider only positive perturbations.

Let g(n) be as in (4.1) and let γn = n−δ. We lower bound g(n)W+,δ
n by

g(n)W+,δ
n ≥

∑
|v|=n

(g(n) ∧ V +(v)α)e−(1+n
−δ)V (v) =: Y n,

where α = α(δ) is chosen as

α(δ) =

{
1 if δ ≥ 1

2 ,
3
2δ − 2 if δ ∈ (0, 12 ).

Proposition 5.1. For any s ∈ (0, 1), there exist constants κ∗ = κ∗(s) and γ(s) such that
for n0 = dκ∗(log n)2e,

E[Y 1−s
n ] ≥ 1

n
γ(s)
0

EQ[(g(n− n0) ∧ (S+
n−n0

)α)e−(n−n0)
−δSn−n01l{minj≤n−n0

Sj≥0}].

The proof of the proposition splits into two lemmas. We first estimate the fractional
moments of Y n with an expression that only involves the weights along the spine.

Lemma 5.2. Let κ > 0 and define n0 = d(κ log n)2e. For any s ∈ (0, 1) there exists a
constant c > 0 and γ(s) > 0 such that for all n sufficiently large,

E[Y 1−s
n ] ≥ cEQ

[ (g(n) ∧ V +(ξn)
α)e−n

−δV (ξn)

(log n)γ(s)
∑n0−1
j=0 e−s(1+n

−δ)V (ξj) + g(n)
∑n
j=n0

e−sV (ξj)

]
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Proof. Recall that Gn = σ(V (ξi), ξi, i ≤ n) is the filtration containing all the information
about the spine and its weights up to generation n. Then, we note that

E
[
Y 1−s
n

]
= E

[
(Y n)

−sWnEQ

[
(g(n) ∧ V +(ξn)

α)e−n
−δV (ξn)|Wn

]]
= EQ

[
(Y n)

−s(g(n) ∧ V +(ξn)
α)e−n

−δV (ξn)
]

= EQ

[
EQ
[
(Y n)

−s|Gn
]
(g(n) ∧ V +(ξn)

α)e−n
−δV (ξn)

]
. (5.1)

We first use Jensen’s inequality to estimate EQ[Y
−s
n |Gn] ≥ EQ[Y

s
n|Gn]−1, and then esti-

mate the latter by grouping the terms in Y n according to the generation at which they
first deviate from the spine. This gives us the expression

Y n =

n∑
j=1

e−(1+n
−δ)V (bj)

∑
v∈Tn−j(bj)

(g(n) ∧ V +(v)α)e−(1+n
−δ)(V (v)−V (bj))

+ (g(n) ∧ V +(ξn)
α)e−(1+n

−δ)V (ξn), (5.2)

where bj is the sibling of ξj in the tree and Tk(bj) denotes the vertices in the kth gener-
ation of the tree rooted at bj . Call the summands on the right hand side U jn:

U jn := e−(1+γn)V (bj)
∑

v∈Tn−j(bj)

(g(n) ∧ V +(v)α)e−(1+n
−δ)(V (v)−V (bj)). (5.3)

Then by the subadditivity inequality (
∑
i ai)

s ≤
∑
i a
s
i for ai ≥ 0, we have

EQ [Y sn|Gn] ≤
n∑
j=1

EQ
[
(U jn)

s|Gn
]
+ g(n)se−s(1+n

−δ)V (ξn).

We now proceed to upper bound the expectation terms. First observe that

U jn ≤
∑

v∈Tn−j(bj)

g(n)1l{V (v)>0}e
−(1+n−δ)V (v)

≤
∑

v∈Tn−j(bj)

g(n)e−V (v) = g(n)e−V (ξj−1)e−(V (bj)−V (ξj−1))
∑

v∈Tn−j(bj)

e−(V (v)−V (bj))

from which, using Proposition 2.1, we get the simple inequality

EQ
[
(U jn)

s|Gn
]
≤ EQ

[
U jn|Gn

]s
≤ Cg(n)se−sV (ξj−1)E

[ ∑
|v|=n−j

e−V (v)
]s
≤ Cg(n)e−sV (ξj−1).

The first and last inequalities both use that s ∈ (0, 1). We only use this bound for j > n0.
In the case j ≤ n0 we replace the minimum in (5.3) by g(n) and use parts (iii) and (iv)
of Proposition 2.1 to get the following upper bound:

EQ
[
(U jn)

s|Gn
]
≤ Cg(n)se−s(1+n

−δ)V (ξj−1)E
[( ∑
|v|=n−j

e−(1+n
−δ)V (v)

)s]
.

We claim the expectation term is further bounded above as follows:

E
[( ∑
|v|=n−j

e−(1+n
−δ)V (v)

)s]
≤ E

[
es((n−j)

−δ−n−δ) sup|v|=n−j V (v)
( ∑
|v|=n−j

e−(1+(n−j)−δ)V (v)
)s]

≤ (1 + o(1))E[
(
W+,δ
n−j
)s
]. (5.4)
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We temporarily delay the proof of (5.4). Assuming it is true and combining it with the
previous display we obtain that for j ≤ n0,

EQ[(U
j
n)
s|Gn] ≤ Ce−s(1+n

−δ)V (ξj−1)g(n)sE
[(
W+,δ
n−j
)s] ≤ Ce−s(1+n−δ)V (ξj−1) log n.

The logarithmic factor in the last inequality is from Propositions 4.1 and 6.1, which are
proved independently in Sections 4 and 6, respectively. The estimates on EQ[(U jn)

s|Gn]
(for j ≤ n0 and j > n0) combined with the spine decomposition (5.2) yield the statement
of the lemma.

Finally, it remains to prove the claim (5.4). First, note that by a standard application
of Chebychev, for any vertex v with |v| = n, and any ` ≥ 0,

P
{

sup
|v|=n

V (v) ≥ `n} ≤ 2nP{V (v) ≥ `n} ≤ 2ne−`nE[eV (v)]

= 2ne−`nE[eV (v1)]n ≤ e(`0−`)n,
(5.5)

where we define `0 = dlog 2 + logE[exp{V (v1)}]e. For j ≤ n0 = d(κ log n)2e, noting that
((n− j)−δ − n−δ) is of order n−1−δ(log n)2, we therefore obtain

E
[
es((n−j)

−δ−n−δ) sup|v|=n−j V (v)
( ∑
|v|=n−j

e−(1+(n−j)−δ)V (v)
)s]

≤ en
−δ+o(1)(`0+1)E[(W+,δ

n−j)
s1l{sup|v|=n−j V (v)≤(`0+1)(n−j)}] (5.6)

+ E
[
epn

−δ−1+o(1) sup|v|=n−j V (v)1l{sup|v|=n−j V (v)≥(`0+1)(n−j)}]
1/p E[(W+,δ

n−j)
sq]1/q,

where in the last step we used Hölder’s inequality with conjugates p, q ≥ 1 such that
sq < 1. Now, the first summand on the right hand side is of order (1 + o(1))E[(W+,δ

n )s],
so that it only remains to consider the second term, which we can bound using (5.5),

E
[
epn

−δ−1+o(1) sup|v|=n−j V (v)1l{sup|v|=n−j V (v)≥(`0+1)(n−j)}]
1/p

≤
∑
i≥1

en
−δ+o(1)(`0+i+1)P

{
sup
|v|=n−j

V (v) ≥ (`0 + i)(n− j)
}1/p

≤
∑
i≥1

en
−δ+o(1)(`0+i+1)e−

1
p i(n−j) ≤ Ce−n

1
p (1+o(1)).

Hence, we obtain from (5.6) that

E
[
es((n−j)

−δ−n−δ) sup|v|=n−j V (v)
( ∑
|v|=n−j

e−(1+(n−j)−δ)V (v)
)s]

≤ (1 + o(1))E[(W+,δ
n )s] + CE[(W+,δ

n )sq]1/qe−
1
pn(1+o(1)).

The second term is exponentially small by the upper bound in Theorem 1.4 (which is
proved independently in Sections 4 and 6). This proves (5.4).

In the next lemma, we simplify the lower bound in Lemma 5.2 by substituting in a
suitable strategy for the weights on the spine. Recall that these weights are in distribu-
tion equal to the random walk (Sn)n≥0, see Section 2. In particular, the next lemma is
simply a statement about functionals of a random walk.

Lemma 5.3. Let (Sn)n≥0 be a centered random walk started at 0. For any γ > 0,
s ∈ (0, 1), κ ≥ κ0 := 3

s and n0 = d(κ log n)2e, there exists a constant c = c(κ) > 0 such
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that

EQ

[ (g(n) ∧ (S+
n )

α)e−n
−δSn

(log n)γ
∑n0−1
j=0 e−s(1+n

−δ)Sj + g(n)
∑n
j=n0

e−sSj

]
(5.7)

≥ c

κ3(log n)3+γ
EQ
[
(g(n− n0) ∧ (S+

n−n0
)α)e−(n−n0)

−δSn−n01l{Sn−n0
≥−κ log(n−n0)}

]
,

where Sn = mini=1,...,n Si.

Proof. We formulate an event which gives a suitable strategy for the random walk to
achieve the lower bound. Namely, define the event

E =


Sj ≥ 0 for all j = 0, . . . , n0

2
√
n0 ≤ Sn0 ≤ n0

Sj ≥
√
n0 for all j = n0 + 1, . . . , n


where we recall that n0 = d(κ log n)2e. Note that on the event E, we can estimate the
denominator on the left hand side of (5.7) as follows: for any n0 = d(κ log n)2e with
κ ≥ κ0 := 3

s ,

(log n)γ
n0−1∑
j=0

e−s(1+n
−δ)Sj + g(n)

n∑
j=n0+1

e−sSj ≤ n0(log n)γ + g(n)

n∑
j=n0+1

e−s
√
n0

≤ d(κ log n)2e(log n)γ + ng(n)e−sκ logn

≤ d(κ log n)2e(log n)γ + n
5
2n−sκ0 ≤ κ2(log n)2+γ(1 + o(1))

where we used that g(n) ≤ n 3
2 for all δ > 0, and our choice of κ0 ensures that the second

term is of order o(1). Thus, by introducing the event E, we obtain the following lower
bound

EQ

[ (g(n) ∧ (S+
n )

α)e−n
−δSn

(log n)γ
∑n0−1
j=0 e−s(1+n

−δ)Sj + g(n)
∑n
j=n0

e−sSj

]
≥ 1 + o(1)

κ2(log n)2+γ
EQ

[
1lE (g(n) ∧ (S+

n )
α)e−n

−δSn
]
.

Using first that on the event E, Sn0 ≤ n0 = d(κ log n)2e and invoking the Markov prop-
erty at time n0, the expectation in the above right hand side can be bounded by

EQ

[
1lE (g(n) ∧ (S+

n )
α)e−n

−δSn
]

≥ EQ
[
1lE (g(n) ∧ ((Sn − Sn0

)+)α)e−n
−δ(Sn−Sn0

)−n−δd(κ logn)2e
]

≥ Q{Sn0
≥ 0;

√
2n0 ≤ Sn0 ≤ n0}

× EQ
[
(g(n− n0) ∧ (S+

n−n0
)α)e−(n−n0)

δSn−n0 1l{Sn−n0
≥−κ log(n−n0)}

]
.

To complete the proof we only need to show that the first term of the last line is bounded
below. We have

Q{Sn0
≥ 0;

√
2n0 ≤ Sn0 ≤ n0} = Q{

√
2n0 ≤ Sn0 ≤ n0 |Sn0

≥ 0}Q{Sn0
≥ 0}

= cQ{
√
2n0 ≤ Sn0

≤ n0 |Sn0
≥ 0}n−

1
2

0 (1 + o(1)),

where we used a standard random walk computation, see e.g. [18, Thm. A]. Moreover,
Q{
√
2n0 ≤ Sn0

≤ n0 |Sn0
≥ 0} converges to a constant not depending on κ, since

the (diffusively rescaled) random walk conditioned to stay positive converges to the
Brownian meander, see e.g. [10].

The proof of Proposition 5.1 follows by combining Lemmas 5.2 and 5.3.
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6 Evaluating the random walk expression

In this section, we evaluate the functionals of a simple random walk, which we have
encountered in the proofs of the upper and lower bounds respectively. These are suffi-
ciently similar to be treated by the same techniques.

Recall that

g(n) =

{
n

1
2 if γn = ±n−δ, δ ≥ 1

2 ,

n
3
2−2δ if γn = n−δ, δ ∈ (0, 12 ).

Moreover, α = α(δ) ≥ 1 is defined as

α(δ) =

{
1 if δ ≥ 1

2 ,
3
2δ − 2 if δ ∈ (0, 12 ).

Also, recall that (Sn)n≥0 is a centered random walk whose increments have all exponen-
tial moments. Denote by Sn = min1≤j≤n Sj .

Proposition 6.1. Suppose either δ > 0 and γn = n−δ or otherwise δ ≥ 1
2 and γn = −n−δ.

Then, there exists a constant κ0 depending only on α and the distribution of S1 such that
for any κ ≥ κ0, there exist constants c, C such that

c ≤ EQ
[
1l{Sn≥−κ logn;Sn≥0}(g(n) ? (S

+
n )

α)e−γnSn
]
≤ C log n,

where ? is either ∧ or ∨.

We will prove this proposition in two steps. First, in Lemma 6.2, we will show that we
can replace the functional of a random walk by an equivalent functional of a Brownian
motion. Here, we will use the coupling of a random walk with a Brownian motion
due to Komlós-Major-Tusnády. Finally, we can evaluate that expression which is only a
functional of the end point of the Brownian motion and its maximum using the explicit
formula of the their joint density, see Lemma 6.3.

In what follows we let (Bt)t≥0 denote a standard Brownian motion started at the
origin and E0 denote expectation with respect to this Brownian motion.

Lemma 6.2. Let σ2 = Var(S1). Under the assumptions of Proposition 6.1, there exists
κ0 > 0 such that for any κ ≥ κ0 there exist constants c, C > 0 (depending only on δ and
the distribution of S1) such that

cE0[(g(n) ? (B
+
n )

α)e−γnσBn1l{Bn≥−κ logn,Bn≥0}] +O(n−(1∧2δ)+o(1))

≤ EQ[(g(n) ? (S+
n )

α)e−γnSn1lSn≥−κ logn,Sn≥0]

≤ C E0[(g(n) ? (B
+
n )

α)e−γnσBn1l{Bn≥−κ logn,Bn≥0}] +O(n−(1∧2δ)+o(1)),

where κ, κ ≥ 0 are some suitable constants (depending on κ and the distribution of S1)
and Bn = min0≤t≤nBt.

Proof. Let (St)t≥0 denote the piecewise constant approximation of (Sn)n≥0, defined by
St = Sbtc. Since the increments of the random walk have exponential moments, the
Komlós-Major-Tusnády theory [17] provides a coupling of (St)t∈[0,n] and a standard
Brownian motion (Bt)t∈[0,n] such that for any ρ > 0, there exists a constant cρ > 0

(depending on ρ and the distribution of S1) satisfying

P
{

sup
s∈[0,n]

|Ss − σBs| ≥ cρ log n
}
≤ n−ρ.

This is an easy extension of the original result, see e.g. the proof of Thm. 2.6. in [7].
Denote by E = {sups∈[0,n] |Ss − σBs| ≤ cρ log n}. It will be convenient to choose ρ = 4α
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and especially for the lower bound set κ0 =
cρ
σ . From now on we will assume that

κ ≥ κ0.
Step 1. Upper bound on the event E. On the event E the coupling works well and

we can replace (St)t∈[0,n] by (Bt)t∈[0,n] in the following sense

(g(n) ? (S+
n )

α)e−γnSn1l{Sn≥−κ logn,Sn≥0}

≤ (g(n) ? (σB+
n + cρ log n)

α)e−γnσBn+cρ|γn| logn1l{Bn≥−κ logn,σBn≥−cρ logn},

where κ :=
κ+cρ
σ . Now, note that |γn| log n → 0 as n → ∞, so that we can bound

ecρ|γn| logn by a constant and further we can bound the sum (B+
n + cρ log n)

α ≤ 2α(B+
n ∨

cρ log n). Hence, we find that

E
[
(g(n) ? (S+

n )
α)e−γnSn1l{Sn≥−κ logn,Sn≥0}1lE

]
≤ C2αE

[
(g(n) ? ((σB+

n )
α ∨ (cρ log n)

α))e−γnσBn1l{Bn≥−κ logn,σBn≥−cρ logn}
] (6.1)

Now if ? = ∨, then g(n) ? ((σB+
n )

α ∨ (cρ log n)
α) = g(n) ? (σB+

n )
α and on the other hand

if ? = ∧, we have to estimate

E[(g(n) ∧ ((σB+
n )

α ∨ (cρ log n)
α))e−γnBn1l{Bn≥−κ logn, σBn≥−cρ logn}]

≤ E[(g(n) ∧ (σB+
n )

α)e−γnσBn1l{Bn≥−κ logn, σBn≥cρ logn}]

+ E[(cρ log n)
αe−γnσBn1l{Bn≥−κ logn,−cρ logn≤σBn≤cρ logn}]

We now claim that the second summand in the previous display is of order o(n−1).
Indeed,

E[(cρ log n)
αe−γnσBn1l{Bn≥−κ logn,−cρ logn≤σBn≤cρ logn}]

≤ (cρ log n)
αe|γn|cρ lognP{Bn ≥ −κ log n,−cρ log n ≤ σBn ≤ cρ log n}

≤ Cn− 3
2+o(1)

where the last bound follows from a standard Brownian calculation using for example
the explicit density of maximum and final position (see e.g. the proof of Lemma 6.3).

Hence, we can summarize the two possible choices for ? and conclude from (6.1)
that

E
[
(g(n) ? (S+

n )
α)e−γnSn1l{Sn≥−κ logn,Sn≥0}1lE

]
≤ C E[(g(n) ? (σB+

n )
α)e−γnσBn1l{Bn≥−κ logn, σBn≥−cρ logn}] +O(n−

3
2+o(1)).

This is almost of the right form for the main term in the statement of the lemma (where
the σ in front of B+

n can be absorbed into the constants). Thus it remains to show that
we can replace the indicator σBn ≥ −cρ log n by that of Bn ≥ 0 to obtain the correct
upper bound on the event E.

Here, it suffices to show that the following expression is of order O(n−2(
1
2∧δ)+o(1)),

E[(g(n) ? (σB+
n )

α)e−γnσBn1l{Bn≥−logn,−cρ logn≤σBn≤0}
]

≤ E[g(n)e|γn|cρ logn1l{Bn≥−κ logn,−cρ logn≤σBn≤0}]

≤ Cg(n)P{Bn ≥ −κ log n, −cρ log n ≤ σBn ≤ 0}

≤ Cg(n)n− 3
2+o(1),

where the last step follows from a standard Brownian calculation. However, if |δ| ≥ 1
2 ,

then g(n) = n
1
2 , so that the latter expression is of order n−1+o(1), whereas if δ ∈ (0, 12 ),

EJP 18 (2013), paper 19.
Page 19/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2036
http://ejp.ejpecp.org/


Near-critical scaling for polymers on disordered trees

then g(n) = n
3
2−2δ, so that the expression is of order n−2δ+o(1) as claimed. This last step

completes the proof of the upper bound on the event E.
Step 2. Upper bound on the event Ec. In this scenario, we can estimate using

Cauchy-Schwarz

E
[
(g(n) ? (S+

n )
α)e−γnSn1l{Sn≥−κ logn,Sn≥0}1lEc

]
≤ E

[
(g(n) ∨ (S+

n )
α)2e2n

− 1
2 Sn ]

1
2P(Ec)

1
2 ,

where we also used in the last step that if γn = −nδ, we only consider the case δ ≥ 1
2 so

that −γnSn ≤ n−
1
2Sn, while if γn ≥ 0 this bound holds trivially since Sn ≥ 0. Using that

g(n) ≤ nα2 , we have that this expression can be bounded from above by

nα E[
[
(1 ∨ (n−

1
2S+

n )
α)2e2n

− 1
2 Sn ]

1
2P(Ec)

1
2 (6.2)

Now, we combine the weak convergence of n−
1
2Sn to σB1 with a standard uniform

integrability bound that follows easily from S1 having exponential moments to deduce
that

E[
[
(1 ∨ (n−

1
2S+

n )
α)2e2n

− 1
2 Sn ]→ E

[
(1 ∨ (σB+

1 )α)2e2σB1

]
.

Hence, if we combine this observation with the estimate P(Ec) ≤ n−ρ we have the
following bound on (6.2):

nαE[
[
(1 ∨ (n−

1
2S+

n )
α)2e2n

− 1
2 Sn ]

1
2P(Ec)

1
2 ≤ Cnα− 1

2ρ.

Since we chose ρ = 4α the latter expression is of order n−α ≤ n−1 (since α ≥ 1) as
claimed.

A lower bound simply follows by interchanging the roles of random walk and Brow-
nian motion and replacing standard Brownian calculations by standard random walk
calculations, see e.g. [2, Lemma A.1]. Moreover, we then need to replace the role of κ
by κ and that of κ by a suitable κ. In particular, we will choose κ := σκ − cρ, which is
non-negative if κ ≥ κ0 := cρ/σ.

Lemma 6.3. Under the assumptions of Proposition 6.1, for any κ ≥ 0, and all n suffi-
ciently large,

c ≤ E0

[
(g(n) ? Bαn )e

−γnσBn1l{Bn≥−κ logn,Bn≥0}

]
≤ C log n.

Proof. We use the explicit formula for the joint density of Bt and its running maximum
Bt = sup0≤s≤tBs, see e.g. [21, Thm. 3.7.3], which states that (Bt, Bt) has for fixed t > 0

a joint density with respect to 2-dimensional Lebesgue measure given by

f(x,m) =
2(2m− x)
t
√
2πt

e−
(2m−x)2

2t , for x ≤ m,m > 0.

Thus, we can explicitly calculate the functional of the Brownian motion and its minimum
by first reflecting the Brownian motion as

E0

[
(g(t) ? Bαt )e

−γtσBt1l{Bt≥−κ log t,Bt≥0}

]
= E0[(g(t) ? (−Bt)α)eγtσBt1l{Bt≤κ log t,Bt≤0}]

=
2√
2π
t−

3
2

∫ κ log t

0

∫ 0

−∞
(g(t) ? (−x)α)eγtσx(2m− x)e−

(2m−x)2
2t dx dm .

(6.3)
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We will show lower and upper bound separately and also distinguish the case of a
large or a small perturbation.

Upper bound in the case |γt| ≤ t
1
2 . In this case, g(t) = t

1
2 and α = 1, so we can bound

the expression in (6.3) by

Ct−
3
2 (κ log t)

∫ ∞
0

(t
1
2 ∨ x)et

1
2 σx(2κ log t+ x)e−

x2

2t dx

≤ C(log t)
(
1 + 2κ log t

t
1
2

) ∫ ∞
0

(1 ∨ x)2eσx− x
2

2 dx ,

which is bounded by C log t for some (different to above) constant C.
Upper bound in the case γt = t−δ for δ ∈ (0, 12 ). Note that here we have defined

g(t) = t
3
2−2δ and that α is chosen so that tδα = g(t), therefore we can bound (6.3) by

Ct−
3
2 (κ log t)

∫ ∞
0

(g(t) ∨ xα)(2κ log t+ x)e−t
−δxdx

≤ Ct− 3
2+2δg(t)(log t)

(
1 + 2κ log t

tδ

) ∫ ∞
0

(1 ∨ xα)2e−xdx ,

so that by our choice of g(t), the latter is bounded by C log t.
Lower bound in the case |γt| ≤ t

1
2 . Here, we have chosen g(t) = t

1
2 and α = 1. We

can lower bound the expression in (6.3) by

ct−
3
2

∫ ∞
0

(g(t) ∧ x)xe−σt
− 1

2 xe−
1
2 t
− 1

2 (2κ log t+x)2dx

≥ c
∫ ∞
0

(1 ∧ x)xe−σxe−2κt
− 1

2 log t−x2

dx,

where we used the inequality (x+ y)2 ≤ 2(x2 + y2). This is expression is bounded from
below by an absolute constant.

Lower bound in the case γt = t−δ, δ ∈ (0, 12 ). Here, we have defined g(t) = t
3
2−2δ and

α is chosen so that tδα = g(t). Then, we can similarly to above find a lower bound on
the integral in (6.3)

ct−
3
2

∫ ∞
0

(g(t) ∧ xα)xe−σt
−δxe−

1
2 t
− 1

2 (2κ log t+x)2dx

≥ c
∫ ∞
0

(1 ∧ xα)xe−σxe−t
δ− 1

2 (2κ log t)2−tδ−
1
2 xdx,

which, by dominated convergence, is bounded below by an absolute constant.

Proof of Proposition 6.1. The proof now follows by combining the previous two Lem-
mas 6.2 and 6.3.

A Fractional Moment Bounds to Asymptotics

In this appendix we show how the fractional moment bounds obtained in Theo-
rem 1.4 imply the asymptotics in the main Theorem 1.1. The arguments are fairly
standard and in a variation are also used in [14].

Lemma A.1 (Upper bounds). Write W ·,δn = W±,δn . Let (an)n∈N be a sequence of real
numbers such that |an| → ∞ as n→∞, and suppose that for every γ ∈ (0, 1) we have

E[(W ·,δn )γ ] = eγan(1+o(1)).

ThenW ·,δn ≤ ean(1+o(1)) in probability, as n→∞. Moreover, if for any ε > 0,
∑
n≥1 e

−ε|an| <

∞, then W ·,δn ≤ ean(1+o(1)) almost surely.
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Remark A.2. This lemma shows how to deduce the upper bounds in Theorem 1.1 from
Theorem 1.4. We take

an =


− 1

2 log n for δ ≥ 1/2,
1
2n

1−2δβ2
cλ
′′(βc) for W ·,δn =W−,δn , 0 < δ < 1/2,

(2δ − 3
2 ) log n for W ·,δn =W+,δ

n , 0 < δ < 1/2.

In particular, the lemma shows that in the case of large, negative perturbations the
upper bound holds almost surely.

Proof. Fix ε > 0 and let γ ∈ (0, 1). Then by assumption E[(W ·,δn )γ ] ≤ eγan+εγ|an|/2 for all
n sufficiently large. Then by Chebyshev’s inequality

P(W ·,δn > ean+ε|an|) ≤ e−γan−εγ|an|E[(W ·,δn )γ ]

≤ e−εγ|an|/2

Thus by the assumption on the |an| we have W ·,δn ≤ ean(1+o(1)) in probability. The second
part of the statement follows from Borel-Cantelli.

Lemma A.3 (Lower bounds). Let W ·,δn = W±,δn . Let (an)n∈N be a sequence with
(log n)

1
2 � |an| � n such that n 7→ |an| is increasing and an−kn = an(1 + o(1)) for

any sequence 0 ≤ kn � n. Assume that for all γ ∈ (0, 1) we have

E[(W ·,δn )γ ] = eγan(1+o(1)).

Then almost surely

W ·,δn ≥ ean(1+o(1)).

The lower bounds of Theorem 1.1 are therefore derived from this lemma and Theo-
rem 1.4 using the same sequence an as in the last remark. Note, however, that in this
case the lower bounds are almost sure rather than in probability.

Proof. Let ε > 0. By assumption, for any γ ∈ (0, 12 ) we have that E[(W ·,δn )γ ] ≥ eγan− ε4γ|an|
and E[(W ·,δn )2γ ] ≤ e2γan+ ε

4 |an|, for all n sufficiently large. By the Paley-Zygmund inequal-
ity, we have that

P
(
W ·,δn > ean−ε|an|

)
≥
(
1− eγ(an−ε|an|)

E[(W ·,δn )γ ]

)2E[(W ·,δn )γ ]2

E[(W ·,δn )2γ ]

≥
(
1− e−3εγ|an|/4

)2
e−

3ε
4 |an| ≥ e−ε|an| , (A.1)

for all n sufficiently large. Now define τn = d 2ε|an|log 2 e so that τn < n for all n sufficiently
large. Then

W ·,δn =
∑
|w|=τn

e−(1±n
−δ)V (w)

∑
v∈T (w)
|v|=n−τn

e−(1±n
−δ)(V (v)−V (w))

≥ exp
{
− (1± n−δ) max

|w|=τn
V (w)

} ∑
|w|=τn

∑
v∈T (w)
|v|=n−τn

e−(1±n
−δ)(V (v)−V (w)).
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Call the rightmost sum Yn−τn(w). Then the above implies the estimate

P
(
W ·,δn ≤ ean−τn−ε|an−τn | exp{−(1± n−δ) max

|w|=τn
V (w)}

)
≤ P

( ∑
|w|=τn

Yn−τn(w) ≤ ean−τn−ε|an−τn |
)

≤ P
(
W ·,δn−τn ≤ e

an−τn−ε|an−τn |
)2τn

≤
(
1− e−ε|an−τn |

)2τn ≤ exp{−eε|an|},

where we used first Equation (A.1) and finally that n 7→ |an| is increasing. Therefore, by
the assumption that |an| � (log n)1/2 the probabilities are summable and so by Borel-
Cantelli we have that with probability one

W ·,δn ≥ ean−τn−ε|an−τn | exp
{
− (1± n−δ) max

|w|=τn
V (w)

}
, (A.2)

for n sufficiently large. However it is well known that there is an explicit constant
C > 0 such that 1

τn
max|v|=τn V (v) → C with probability one (the max is the position of

the rightmost particle in the system of branching random walks), so that

exp
{
− (1± n−δ) max

|w|=τn
V (w)

}
= eC

∗ε|an|(1+o(1))

for some C∗ > 0 (not depending on ε). Hence, also using that an−τn = an(1 + o(1)) by
assumption, we have with probability one W ·,δn ≥ ean(1+o(1)).
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