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Large deviation principle for
invariant distributions of memory gradient diffusions
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Abstract

In this paper, we consider a class of diffusions based on a memory gradient descent,
i.e. whose drift term is built as the average all along the past of the trajectory of
the gradient of a coercive function U . Under some classical assumptions on U , this
type of diffusion is ergodic and admits a unique invariant distribution. With the view
to optimization applications, we want to understand the behaviour of the invariant
distribution when the diffusion coefficient goes to 0. In the non-memory case, the
invariant distribution is explicit and the so-called Laplace method shows that a Large
Deviation Principle (LDP) holds with an explicit rate function. In particular, such a
result leads to a concentration of the invariant distribution around the global minima
of U . Here, except in the linear case, we have no closed formula for the invariant dis-
tribution but we prove that a LDP can still be obtained. Then, in the one-dimensional
case and under some assumptions on the second derivative of U , we get some bounds
for the rate function that lead to the concentration around the global minima.
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1 Introduction

The aim of this paper is to study some small noise asymptotic properties of a diffu-
sive stochastic model with memory gradient. The evolution is given by the following
stochastic differential equation (SDE) on Rd:

dXε
t = εdBt −

(
1

k(t)

∫ t

0

k′(s)∇U(Xε
s )ds

)
dt, (1.1)

where ε > 0 and (Bt) is a standard d-dimensional Brownian motion. A special feature
of such an equation is the integration over the past of the trajectory depending on a
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LDP for invariant distributions of memory gradient diffusions

function k which quantifies the amount of memory. Our work is mainly motivated by
optimization applications. Indeed, in a recent work [8] have shown that the solution of
the deterministic dynamical system (ε = 0) converges to the minima of the potential U .
Without memory, that is without integration over the past of the trajectory, the model
(1.1) reduces to the classical gradient descent model and such convergence results are
well-known. Even in the deterministic framework, a potential interest of the gradient
with memory is the capacity of the solution to avoid some local traps of U . Indeed,
the solution of (1.1) (when ε = 0) may keep some inertia even when it reaches a local
minimum of U . This implies a larger exploration of the space than a classical gradient
descent which cannot escape from local minima (see [1] and [7]). Usually such a prop-
erty is obtained by introducing a small noise term. In the classical case, this leads to
the usual following SDE

dXε
t = εdBt −∇U(Xε

t )dt. (1.2)

As mentioned above, the behaviour of the invariant distribution of this model when ε

goes to 0 is well-known. Using the so-called Laplace method, it can be proved that a
Large Deviation Principle (LDP) holds and that the invariant distribution of (1.2) con-
centrates on the global minima of U when the parameter ε→ 0 (see e.g. [14]).

It is then natural to investigate the study of the stochastic memory gradient (1.1)
in order to obtain similar results. A major difference with the usual gradient diffusion
is that the integration over the past of the trajectory makes the process (Xε

t )t≥0 non
Markov. This can be overcome with the introduction of an auxiliary process (Y εt ) defined
by

Y εt =

(
1

k(t)

∫ t

0

k′(s)∇U(Xε
s )ds

)
. (1.3)

In general, the couple Zεt = (Xε
t , Y

ε
t ) gives rise to a non-homogeneous Markov process

(see [15]). In order to consider the notion of invariant measure, we concentrate on the
case where k(t) = eλt which turns (Zεt ) into a homogeneous Markov process. In this
context, [15] have shown the existence and uniqueness of the invariant measure νε for
(Zεt ).

In the present work, our objective is to obtain some sharp estimations of the asymp-
totic behaviour of (νε) as ε→ 0. More precisely, we shall first show that (νε)ε>0 satisfies
a Large Deviation Principle. Then, we shall try to obtain some sharp bounds for the
associated rate function in order to understand how the invariant probability is dis-
tributed as ε → 0. In particular, we shall establish the concentration around the global
minima of U up to technical hypotheses. In the classical setting of (1.2), this is an es-
sential step towards the implementation of the so-called simulated annealing strategy.
The development of such an optimization procedure for the memory gradient diffusion
is certainly a motivation of the study of (1.1). This will be addressed in a forthcoming
work.

The paper is also motivated by extending some results of Large Deviations for in-
variant distributions to a difficult context where the process is not elliptic and the drift
vector field is not the gradient of a potential. These two points and especially the sec-
ond one strongly complicate the problem since explicit computations of the invariant
measure are generally impossible. This implies that the works on elliptic Kolmogorov
equations by [10], [21] or [18] for instance, cannot be extended to our context. For
similar considerations in other non-Markov models, one should also mention the recent
works on Mac-Kean Vlasov diffusions by [17] and on self-interacting diffusions with
attractive potential by [25].

Here, in order to obtain a LDP for (νε)ε≥0 we adapt the strategy of [23] and [14]
to our degenerated context. We shall first show a finite-time LDP for the underlying
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stochastic process. Second, we prove the exponential tightness of (νε)ε≥0 by using Lya-
punov type arguments. Finally, we show that the associated rate function, denoted as
W in the paper, can be expressed as the solution of a control problem (in an equivalent
way to the solution of a Hamilton-Jacobi equation). However, at first sight the solution
of the control problem is not unique. This uniqueness property follows from an adapta-
tion of the results of [14] to our framework. In particular, we obtain a formulation of the
rate function in terms of the costs to join stable critical points of our dynamical system.
Next, the second step of the paper (sharp estimates of W ) is investigated by the study
of the cost to join stable critical points.

The paper is organized as follows. In Section 2, we recall some results about the
long-time behaviour of the diffusion when ε is fixed. Moreover, we provide the main
assumptions needed for obtaining the LDP for (νε). In Section 3, we prove the exponen-
tial tightness of (νε) and show that any rate function W associated with a convergent
subsequence is a solution of a finite or infinite time control problem. In Section 4, we
prove the uniqueness of W by adapting the Freidlin and Wentzell approach to our con-
text (see also the works of [6] and [9] for other adaptations of this theory). Since the
study of the cost function is quite hard in a general setting, we focus in Section 5 on
the case of a double-well potential U . In this context, we obtain some upper and lower
bounds for the associated quasi-potential function. Then, we provide some conditions
on U and on the memory parameter λ which allow us to prove the concentration of the
invariant distribution around the global minima. Note that, even if our assumptions in
this part seem a little restrictive, the proofs of the bounds (especially the lower bound)
are obtained by an original (and almost optimal) use of some Lyapunov functions asso-
ciated with the dynamical system.

Acknowledgments: The authors would like to thank Guy Barles for his hospitality, and
are grateful to Guy Barles, Laurent Miclo and Christophe Prieur for helpful discussions
and comments. We also thank an anonymous referee for his careful reading and con-
structive suggestions. Authors wish to thank Marine Feron and Mathilde Rogez for
helpful corrections of the text.

2 Setting and Main Results

2.1 Notations and background on Large Deviation theory

We respectively denote the scalar product and the Euclidean norm on Rd by 〈 , 〉 and
| . |. The space of d×d real-valued matrices is referred asMd(R) and we use the notation
‖ . ‖ for the Frobenius norm on Md(R).

We denote H(R+,R
d) the Cameron-Martin space, i.e. the set of absolutely continu-

ous functions ϕ : R+ → Rd such that ϕ(0) = 0 and ϕ̇ ∈ L2,loc(R+,R
d).

For a C2-function f : Rd → R, ∇f and D2f stand respectively for the gradient
of f and the Hessian matrix of f . For a function f ∈ C2(Rd × Rd,R), we denote
∇xf : Rd × Rd → Rd and D2

xf : Rd × Rd → Md(R) the functions respectively de-
fined by (∇xf(x, y))i = ∂xif(x, y) and (D2

xf(x, y))i,j = ∂xi∂xjf(x, y). These notations are
naturally extended to ∇yf , D2

x,yf and D2
yf . Finally, for any vector v ∈ Rd, vt will refer

to the transpose of v.

For a measure µ and a µ-measurable function f , we set µ(f) =
∫
fdµ.

Let us now recall some basic definitions Large Deviation Theory (see [12] for further
references). Let (E, d) denote a metric space. A family of probability measures (νε)ε>0

on E satisfies a Large Deviation Principle (shortened as LDP) with speed rε and rate
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function I if for any open set O and any closed set F ,

lim inf
ε→0

rε log(νε(O)) ≥ − inf
x∈O

I(x) and lim sup
ε→0

rε log(νε(F )) ≤ − inf
x∈F

I(x).

The function I is referred to be good if for any c ∈ R, {x ∈ E, I(x) ≤ c} is compact. In
this paper, we will use classical compactness results of Large Deviation theory. A family
of probability measures (νε)ε>0 is said to be exponentially tight of order rε if for any
a > 0, there exists a compact subset Ka of E such that

lim sup
ε→0

rε log(νε(K
c
a)) ≤ −a.

We recall the following consequence of exponential tightness (see [13]).

Proposition 2.1. Let (S, d) be a Polish space. Suppose that (νε)ε≥0 is a sequence of
exponentially tight probability measures on the Borel σ-algebra of S with speed rε. Then
there exists a subsequence (εk)k≥0 such that εk → 0 and (νεk)k≥0 satisfies a LDP with
good rate function I and speed rεk .

Definition 2.2. Such a subsequence (νεk)k≥1 will be called a (LD)-convergent subse-
quence.

2.2 Averaged gradient diffusions

As announced in Introduction with k(t) = eλt, we are interested in the stochastic
evolution of

dXε
t = εdBt −

(
λe−λt

∫ t

0

eλs∇U(Xε
s )ds

)
dt,

where λ > 0, (Bt)t≥0 is a standard d-dimensional Brownian motion and U : Rd → R is a
smooth, positive and coercive function (see Subsection 2.3 for detailed assumptions).

As announced in the Introduction, since (Xε
t )t≥0 is not Markov, we introduce the

auxiliary process (Y εt )t≥0

Y εt = λe−λt
∫ t

0

eλs∇U(Xε
s )ds.

Then, the process (Zεt )t≥0 := ((Xε
t , Y

ε
t ))t≥0 is Markov and satisfies:{

dXε
t = εdBt − Y εt dt,

dY εt = λ(∇U(Xε
t )− Y εt )dt.

(2.1)

When necessary, we will denote by (Zε,zt )t≥0 the solution starting from z ∈ Rd and by
Pεz the distribution of this process on C(R+,R

d). In the sequel, we will also intensively
use the deterministic system obtained when ε = 0 in (2.1). This deterministic system
(z(t))t≥0 := (x(t), y(t))t≥0 is described as follows

ż(t) = b(z(t)) with b(x, y) =

(
0 −y

λ∇U(x) −λy

)
. (2.2)

2.3 Assumptions

Throughout this paper, we assume that U : Rd 7→ R is a smooth (at least C2)-function
on Rd such that

inf
x∈R

U(x) > 0, lim
|x|→+∞

U(x) = +∞ and lim inf
|x|→+∞

〈x,∇U(x)〉 > 0. (2.3)

Note that we do not suppose that ∇U is a sublinear function. In particular, D2U is not
necessarily bounded. However, in order to ensure the non-explosion (in finite horizon)
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of (Zεt )t≥0 (see Proposition 2.1 of [15]), we assume that there exists C > 0 such that
for all x ∈ Rd, ‖D2U(x)‖ ≤ CU(x). Then, since the function ∇U is locally Lipschitz
continuous, strong existence and uniqueness hold for the solution of (2.1). In this case,
(Zεt )t≥0 is a Markov process and we denote (P εt )t≥0 its semi-group. Its infinitesimal
generator Aε is defined by

Aεf(x, y) = −〈y, ∂xf〉+ λ〈∇U(x)− y, ∂yf〉+
ε2

2
Tr
(
D2
xf
)
, f ∈ C2(Rd ×Rd). (2.4)

We first recall some results obtained by [15] on the existence and uniqueness of
the invariant distribution of (2.1). To this end, we need to introduce a mean-reverting
assumption denoted by (Hmr) and a hypoellipticity assumption (HHypo). The mean re-
verting assumption is expressed as follows:

(Hmr) : lim|x|→+∞〈x,∇U(x)〉 = +∞ and lim|x|→+∞
‖D2U(x)‖
〈x,∇U(x)〉 = 0.

Regarding the second assumption, let us define EU by

EU =
{
x ∈ Rd, det

(
D2U(x)

)
6= 0
}
, (2.5)

and denoteMU := Rd \ EU . Assumption (HHypo) is expressed as follows:

(HHypo) : U ∈ C∞(Rd,R), lim|x|→+∞
U(x)
|x| = +∞ and dim(MU ) ≤ d− 1.

In particular, the smoothness of U and the fact that dim(MU ) ≤ d − 1 ensure that
the Hörmander condition is satisfied on a sufficiently large subspace of R2d. The fact
that lim |x|−1U(x) = +∞ as |x| → +∞ is needed for the topological irreducibility of
the semi-group (see [15] for details). These assumptions imply the uniqueness of the
invariant distribution. We deduce the following proposition from Theorems 2.3 and 3.2
of [15]:

Proposition 2.3. If U satisfies (Hmr), then for any ε > 0, the solution of (2.1) admits
an invariant distribution. Furthermore, if (HHypo) holds, the invariant distribution is
unique and admits a λ2d-a.s. positive density. We denote by νε this invariant distribution.

Note that (Hmr) implies Assumption (H1) of [15] in the particular case σ = Id and
r∞ = λ.

Our goal is now to obtain a Large Deviation Principle for (νε)ε>0 when ε→ 0. To this
end, we need a more constraining mean-reverting assumption:

(HQ+) : There exists ρ ∈ (0, 1), C > 0, β ∈ R and α > 0 such that

(i) −〈x,∇U(x)〉 ≤ β − αU(x),∀x ∈ Rd

(ii) |∇U |2 ≤ C(1 + U2(1−ρ)) and lim
|x|→+∞

‖D2U(x)‖
U(x)

= 0.

(HQ−) : There exists a ∈ (1/2, 1], C > 0, β ∈ R and α > 0 such that

(i) −〈x,∇U(x)〉 ≤ β − α|x|2a,∀x ∈ Rd

(ii) |∇U |2 ≤ C(1 + U) and sup
x∈Rd

‖D2U(x)‖ < +∞.

Remark 1. Assumptions (HQ+) and (HQ−) correspond respectively to super-quadratic
and subquadratic potentials. For instance, suppose that U(x) = (1 + |x|2)p. In the case
p ≥ 1, a moment’s thought shows that (HQ+) holds with ρ ∈ (0, 1

2p ). If p ∈ (1/2, 1],
(HQ−) holds with a = p. These assumptions are adapted to a large class of potentials
U with polynomial growth (more than linear). However, they do not cover the case of
potentials with exponential growth ((HQ+)(ii) is no longer fulfilled).
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2.4 Main results

2.4.1 Exponential tightness and Hamilton Jacobi equation

In this section, we provide our first Large Deviation results for (νε)ε>0: the exponential
tightness and a first characterization of the rate functions related to the LD-convergent
subsequences (that we will sometimes call LD-limits in the sequel). To this end, we need
to introduce some notations for the controlled trajectories related to the dynamical
system (and to their time-reversed counterparts): for any function ϕ ∈ H, we denote by
zϕ := (zϕ(t))t≥0 and by z̃ϕ := (z̃ϕ(t))t≥0, the solutions of

żϕ = b(zϕ) +

(
ϕ̇

0

)
and ˙̃zϕ = −b(z̃ϕ) +

(
ϕ̇

0

)
. (2.6)

For each z ∈ R2, we denote by zϕ(z, .) and z̃ϕ(z, .) the solutions starting from z. Note
that (HQ+) and (HQ−) ensure the finite-time non-explosion of zϕ and z̃ϕ for all ϕ ∈ H
(see e.g. Equation (3.4)). Hence, since ∇U is locally Lipschitz continuous, these solu-
tions exist and are uniquely determined.
Finally, with the view to the characterization of the LD-limits, we introduce the follow-
ing assumption:

(HD) : The set of critical points (x?i )i=1...` of U is finite and each D2U(x?i ) is invertible.

We can now state our first main result.

Theorem 1. Suppose that (HHypo) holds and that either (HQ+) or (HQ−) is satisfied.
Then,

(i)The family (νε)ε∈(0,1] is exponentially tight on R2d with speed ε−2.

(ii) Let (νεn)n≥1 be a (LD)-convergent subsequence and denote by W the associated
(good) rate function. Then, W satisfies for any z ∈ Rd ×Rd:

∀t ≥ 0, W (z) = inf
ϕ∈H

[
1

2

∫ t

0

|ϕ̇(s)|2ds+W (z̃ϕ(z, t))

]
. (2.7)

(iii) Furthermore, assume that (HD) is fulfilled. Then,

W (z) = min
1≤i≤`

infϕ ∈ Hz̃ϕ(z,+∞) = z?i

[
1

2

∫ ∞
0

|ϕ̇(s)|2ds+W (z?i )

]
. (2.8)

where z̃ϕ(z,+∞) := limt→+∞ z̃ϕ(z, t) (when exists) and z?i = (x?i , 0) for all i = 1, . . . , l.

Equation (2.7) satisfied by W may be seen as an Hamilton-Jacobi equation (see e.g.
[3] for further details on such equations).

2.4.2 Freidlin and Wentzell estimates

Let us stress that the main problem in the expression (2.8) is that the uniqueness of W
is only available conditionally to the values of W (z?i ), i = 1, . . . `. Thus, in order to obtain
a LDP, we must establish that the values of W (z?i ) are in fact uniquely determined. Such
a result is obtained following the [14] approach. We first give some useful elements of
Freidlin and Wentzell theory.
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{i}-Graphs Following the notations of Theorem 1, we denote the finite set of equilibria
by {z?1 , . . . , z?` }. We recall that for any i ∈ {1, . . . , `}, an oriented graph on {z?1 , . . . , z?` } is
called an {i}-Graph if it satisfies the three following properties.

(i) Each state z?j 6= z?i is the initial point of exactly one oriented edge in the graph.

(ii) The graph does not have any cycle.

(iii) For any z?j 6= z?i , there exists a (unique) path composed of oriented edges starting
at state z?j and leading to the state z?i .

L2 control cost between equilibria For any (ξ1, ξ2) ∈ (Rd × Rd)2, the minimal L2

cost to join ξ2 from ξ1 in a finite time t is

It(ξ1, ξ2) = infϕ ∈ Hzϕ(ξ1, t) = ξ2

1

2

∫ t

0

|ϕ̇(s)|2ds.

Then, we denote by I the function given by:

I(ξ1, ξ2) = inf
t≥0

It(ξ1, ξ2).

The function I is usually called the quasipotential and yields the following representa-
tion of W (z?i ), i = 1, . . . , `:

Theorem 2. Assume that (HHypo) and (HD) hold, and that either (HQ+) or (HQ−) is
satisfied. For any (LD)-convergent subsequence (νεn)n≥1, the associated rate function
W satisfies:

∀i ∈ {1 . . . `} W (z?i ) =W(z?i )− min
j∈{1,...,`}

W(z?j )

where
∀i ∈ {1 . . . `} W(z?i ) := min

IG∈G(i)

∑
(z?m→z?n)∈IG

I(z?m, z
?
n). (2.9)

The next corollary follows immediately from Theorem 1 and Theorem 2.

Corollary 1. Assume that (HHypo) and (HD) hold and that either (HQ+) or (HQ−) is
satisfied. Then, (νε) satisfies a large deviation principle with speed ε−2 and good rate
function W such that

W (z) = min
1≤i≤`

infϕ ∈ Hz̃ϕ(z,+∞) = z?i

[
1

2

∫ ∞
0

|ϕ̇(s)|2ds+W(z?i )

]
− min
j∈{1,...,`}

W(z?j ),

whereW(z?i ) is given by (2.9).

Case of a double-well potential In the sequel, we are interested by the location of
the global minima of W . More precisely, we expect the first coordinate of this minimum
to be located on the set of global minima of U . Using Equation (2.8), this point is clear
when U is a strictly convex potential. Regarding now the non-convex case, the situation
is more involved. Thus, we only focus on the double-well one-dimensional case. Without
loss of generality, we assume that U has two local minima denoted by x?1 and x?2 with

x?1 < x? < x?2 and U(x?1) < U(x?2), (2.10)

where x? is the unique local maximum between x?1 and x?2. We obtain the following
result:
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Theorem 3. Suppose the hypothesis of Corollary 1 hold and that U satisfies (2.10),
then,
(i)W satisfies

W(z?1) = I(z?2 , z
?
1) ≤ 2[U(x?)− U(x?2)].

(ii) For any α ∈ [0, 2], there exists an explicit constant mλ(α) such that

‖U ′′‖∞ ≤ mλ(α) =⇒W(z?2) = I(z?1 , z
?
2) ≥ α[U(x?)− U(x?1)].

(iii) As a consequence, if U satisfies ‖U ′′‖∞ < mλ

(
2
U(x?)−U(x?2)
U(x?)−U(x?1)

)
, then

W(z?1) <W(z?2).

In particular, (νε)ε≥0 weakly converges towards δz?1 as ε→ 0.

In the next sections, we prove the above statements. Note that throughout the rest
of the paper, C will stand for any non-explicit constant. Note also that except in Section
5, we will prove these results with λ = 1 for sake of convenience (one can deduce similar
convergences with small modifications for any λ > 0).

3 Large Deviation Principle for invariant measures (νε)ε∈(0,1]

This section is devoted to the proof of Theorem 1. In Subsection (3.2), we focus on
the exponential tightness of the invariant measures (νε)ε∈(0,1]. The proof of this prop-
erty is based on two main ingredients: the finite-time LDP for (Zε)ε>0 stated below and
a uniform control of the return times to compact sets obtained with some Lyapunov-type
arguments. Then, in Subsections (3.3) and (3.4), we obtain successively the represen-

tations of the LD-limits of (νε)ε∈(0,1] given by (2.7) and (2.8).

3.1 Large Deviation Principle for (Zε)ε>0

In the next lemma, we provide a LDP for ((Zεt )t≥0)ε>0 on C(R+,R
2d) (space of con-

tinuous functions from R+ to R2d). In the sequel, when we refer to this property, we
will call it the "finite-time interval LDP for (Zε)ε>0".

Lemma 3.1. Assume that (HQ+) or (HQ−) is satisfied. Let z ∈ R2d and (zε)ε>0 be a

net of R2d such that zε
ε→0−−−→ z. Then, (Zε,zε)ε>0 satisfies a LDP on C(R+,R

2d) (endowed
with the topology of uniform convergence on compact sets) with speed ε−2. The cor-
responding (good) rate function Iz is defined for all absolutely continuous (z(t))t≥0 =

(x(t),y(t))t≥0 by

Iz((z(t))t≥0) = inf
ϕ∈H,zϕ(z,.)=z(.)

1

2

∫ ∞
0

| ·ϕ(s)|2ds =
1

2

∫ ∞
0

|ẋ(s) + y(s)|2 ds,

where zϕ(z, .) = z(.) means that zϕ(z, t) = z(t), for all t ≥ 0,. In particular, for all t ≥ 0,
(P εt (zε, .))ε>0 satisfies a LDP with speed ε−2. The corresponding rate function It(z, .) is
defined for all z, z′ ∈ R2d by:

It(z, z
′) = inf

z(.)∈Zt(z,z′)
Iz(z(.)), (3.1)

where Zt(z, z′) denotes the set of absolutely continuous functions z(.) such that z(0) = z,
z(t) = z′. Consequently, the function It can be written as

It(z, z
′) = inf

ϕ∈H,zϕ(z,t)=z′

1

2

∫ t

0

| ·ϕ(s)|2ds.
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Remark 2. Note that such a result is quite classical when zε = z and when the coeffi-
cients are Lipschitz continuous functions (see e.g. [2] for instance). Here, we have to
handle the possibly super-linear growth of the drift vector field b (and also the degen-
eracy of the diffusion).

Proof. We wish to apply Theorem 5.2.12 of [22]. For this purpose, we need to prove the
following four points:

• Uniqueness for the maxingale problem: This step is an identification of the (potential)
LD-limits of (Zε)ε>0. More precisely, we need to prove that the idempotent probability
πz(.) := exp(−Iz(.)) is the unique solution to the maxingale problem (z,G) where G :

R2d × C(R+,R
2d)→ C(R+,R

2d) is given by:

∀λ = (λ1, λ2) ∈ Rd ×Rd, ∀z ∈ C(R+,R
2d), ∀t ≥ 0, Gt(λ, z) =

∫ t

0

b(z(s))ds+
1

2
λ2

1.

The fact that πz solves the maxingale problem follows from Theorem 3.1 and Lemma

3.2 of [24]. Setting E(x, y) = U(x) +
|y|2

2
, note that Lemma 3.2 can be applied since

〈∇E(x, y), b(x, y)〉 ≤ 0 (see condition (3.6a) of [24]). Furthermore, since b is locally
Lipschitz continuous, for any ϕ ∈ H, the ordinary differential equation

ż = b(z) +

(
ϕ̇

0

)
,

has a unique solution. Thus, uniqueness for the maxingale problem is a consequence of
the second point of Lemma 2.6.17 of [22] and of Theorem 3.1 of [24].

• Continuity condition for the characteristics of the diffusion: Since the diffusive com-
ponent is constant, we only have to focus on the drift component. We need to show that
for all t ≥ 0 the function φt from C(R+,R

2d) to R2d defined by φt(z) =
∫ t

0
b(z(s))ds is a

continuous function of z. Since b is Lipschitz continuous on every compact set of R2d,
this point is obvious.

• Local majoration condition: In this step, we have to check that for all M > 0, there
exists an increasing continuous map F̄M : R+ → R such that

∀s ∈ [0, t] sup
z∈C(R+,R2d),‖z‖∞≤M

(φt(z)− φs(z)) ≤ F̄M (t)− F̄M (s),

with ‖z‖∞ = supt≥0 |z(t)|. Since b is locally bounded, the previous inequality holds with

F̄M (t) := sup
z∈R2d,|z|≤M

|b(z)|t.

• Non-Explosion condition (NE): The Non-Explosion condition holds if the following two
points are satisfied

(i) The function πz defined by πz : z 7−→ exp(−Iz(z)) is upper-compact,

(ii) For all t ≥ 0 and for all a ∈ (0, 1], the set
⋃
s≤t

{
sup
u≤s
|z(u)|, πz,s(z) ≥ a

}
is bounded

where

∀ z ∈ R2d, ∀ t ≥ 0, πz,t(z) = exp

(
− inf
ϕ∈H,zϕ(z,.)=z(.)

1

2

∫ t

0

|ϕ̇(s)|2ds
)
.
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Point (i): The property that πz is upper-compact means that for all a ∈ (0, 1], the set
Ka := {z, πz(z) ≥ a} is a compact set (for the topology of uniform convergence on
compact sets). In order to show that, we use the Ascoli Theorem. We first show the
boundedness property for the paths of Ka. From the definition of πz, we observe that
for any z of Ka, there exists a control ϕ ∈ H such that z = zϕ and∫ ∞

0

| ·ϕ(s)|2ds ≤ −2 log a+ 1 . (3.2)

Using the previously defined function E , one checks that for every p > 0,

d

dt
(Ep(z(t))) = pE(z(t))p−1

(
|y(t)|2 + 〈∇U(x(t)),

·
ϕ(t)〉

)
≤ C

(
E(z(t))p + E(z(t))2p−2|∇U(x)|2 + | ·ϕ(t)|2

)
.

Under (HQ+) or (HQ−), we have respectively |∇U |2 ≤ C(1+U2−2ρ) or |∇U |2 ≤ C(1+U).
Thus, applying the inequalities with p̄ = ρ (resp. p̄ = 1) under (HQ+) (resp. (HQ−))
yields:

d

dt

(
E p̄(z(t))

)
≤ C

(
E p̄(z(t)) + |ϕ̇(t)|2

)
. (3.3)

By the Gronwall Lemma, it follows that

∀ t > 0, ∃Ct > 0, ∀s ∈ [0, t], E p̄(z(s)) ≤ Ct
(
E p̄(z) + C

∫ s

0

|ϕ̇(u)|2du
)
. (3.4)

Finally, Equation (3.2) combined with (3.4) and the fact that lim|z|→+∞ E(z) = +∞ yields

sup
z∈Ka

sup
s∈[0,t]

|z(s)| < +∞. (3.5)

Now, let us prove that Ka is equicontinuous: for all t > 0, u, v ∈ [0, t] with u ≤ v and
z ∈ Ka, we know that for a suitable constant C̃t,a,z, the controlled trajectories of Ka are
a priori bounded: sups∈[0,t] |z(s)| ≤ C̃t,a,z. Since b is continuous, the Cauchy-Schwarz
Inequality yields:

|z(v)− z(u)| ≤
∫ v

u

|b(z(s))|ds+

∫ v

u

|ϕ̇(s)|ds ≤ sup
|z|≤C̃t,a,z

|b(z)|(v − u) +
√

1− 2 log a
√
v − u.

The two conditions of the Ascoli Theorem being satisfied, the compactness of Ka fol-
lows.

Point (ii): We do not detail this item which easily follows from the controls established
in the proof of (i) (see (3.4)). Finally, the other conditions of Theorem 5.2.12 of [22]
being trivially satisfied, the lemma follows.

3.2 Exponential tightness (Proof of i) of Theorem 1)

In the next proposition, we investigate the exponential tightness of (νε)ε∈(0,1]. Our
approach consists in providing sufficiently sharp estimates for hitting times of the pro-
cess (Zεt )t≥0.

Proposition 3.2. Suppose that (HQ+) or (HQ−) holds. Then, there exists a compact
set B of R2d, such that the first hitting time τε of B τε = inf{t > 0, Zεt ∈ B} satisfies the
three properties:
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(i) For any compact set K of R2d,

lim sup
ε→0

sup
z∈K

Ez[(τε)
2] <∞. (3.6)

(ii) There exists δ > 0 such that for any compact set K of R2d,

lim sup
ε→0

sup
z∈K

sup
t≥0

Ez

[
|Zεt∧τε |

δ
ε2

]ε2
< +∞. (3.7)

(iii) For any compact set K of R2d such that K ∩B = ∅,

lim inf
ε→0

inf
z∈K

Ez[τε] > 0. (3.8)

Proposition 3.2 and Lemma 7 of [23] then imply the following corollary.

Corollary 2. The family of invariant distributions (νε)ε∈(0,1] is exponentially tight.

A fundamental step of the proof of Proposition 3.2 is the next lemma in which we
establish some mean-reverting properties for the process (with some constants that do
not depend on ε). Its technical proof is postponed in the appendix. Note that such a
lemma uses a key Lyapunov function V which is rather not standard due to the kinetic
form of the coupled process.

Lemma 3.3. Assume that (HQ+) or (HQ−) is satisfied and let V : R2d → R be defined
by

V (x, y) = U(x) +
|y|2

2
+m

(
|x|2

2
− 〈x, y〉

)
,

with m ∈ (0, 1). For any p > 0, δ > 0 and ε > 0, we set

ψε(x, y) = exp

(
δV p(x, y)

ε2

)
, (x, y) ∈ R2d.

If p ∈ (0, 1) (resp. p ∈ (1−a, a)) under (HQ+) (resp. (HQ−)) and δ a positive real number,
there exist α, β, α′, β′ positive such that for all (x, y) ∈ R2d and ε ∈ (0, 1]

AεV p(x, y) ≤ β − αV p̄(x, y) and, (3.9)

Aεψε(x, y) ≤ δ

ε2
ψε(x, y)(β′ − α′V p̄(x, y)), (3.10)

where Aε is the infinitesimal generator of (Xε
t , Y

ε
t ) defined in (2.4) and where

p̄ =

{
p under (HQ+)

p+ a− 1 under (HQ−).

Proof of Proposition 3.2. For sake of simplicity, we omit the ε-dependence and write
(Xt, Yt) instead of (Xε

t , Y
ε
t ).

• Proof of (i): We use a Lyapunov method to bound the second moment of the hitting
time τε. Let p ∈ (0, 1). By the Itô formula, we have

V p(Xt, Yt)

1 + t
= V p(x, y) +

∫ t

0

−V
p(x, y)

(1 + s)2
+
AεV p(x, y)

1 + s
ds+ εMt, (3.11)

where (Mt) is the local martingale defined by

Mt =

∫ t

0

p
V p−1(Xs, Ys)

1 + s
〈∇U(Xs) +m(Xs − Ys), dBs〉. (3.12)
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Since V is a positive function, we have

1

ε2

∫ t

0

−A
εV p(Xs, Ys)

1 + s
ds− 1

2

〈
Mt

ε
,
Mt

ε

〉
≤ 1

ε2
V p(x, y) +

Mt

ε
− 1

2

〈
Mt

ε
,
Mt

ε

〉
. (3.13)

Note that in the previous expression, the martingale (Mt

ε )t≥0 has been compensated by
its stochastic bracket in order to use further exponential martingale properties. The
l.h.s. of (3.13) satisfies

1

ε2

∫ t

0

−A
εV p(Xs, Ys)

1 + s
ds− 1

2
〈Mt

ε
,
Mt

ε
〉

=
1

ε2

∫ t

0

1

1 + s

(
−AεV p(Xs, Ys)−

p2V 2p−2(Xs, Ys)

1 + s
|∇U(Xs) +m(Xs − Ys)|2

)
ds

≥ 1

ε2

∫ t

0

Hp,ε(Xs, Ys)

1 + s
ds.

with Hp,ε(x, y) = −AεV p(x, y) − p2V 2p−2(x, y)|∇U(x) + m(x − y)|2. Then, a localization
of (Mt) combined with the Fatou Lemma yields for all stopping time τ ,

E

[
exp

(
1

ε2

∫ t∧τ

0

Hp,ε(Xs, Ys)

1 + s
ds

)]
≤ exp

(
1

ε2
V p(x, y)

)
.

The final step relies on the fact that there exists p ∈ (0, 1) and M1 > 0 such that:

∀(x, y) ∈ B̄(0,M1)c and ∀ε ∈ (0, 1], Hp,ε(x, y) ≥ 2. (3.14)

Let us prove the above inequality under condition (HQ+) or (HQ−). First, since m ∈
(0, 1), one can check that there exists C > 0 such that

∀(x, y) ∈ R2d, |x|2 + |y|2 ≤ CV (x, y). (3.15)

As a consequence, we have
lim

|(x,y)|→+∞
V (x, y) = +∞. (3.16)

Now, owing to the assumptions on ∇U , it follows that,

V 2p−2(x, y)|∇U(x) +m(x− y)|2 =

{
O(V 2(p−ρ)(x, y)) +O(V 2p−1(x, y)) under (HQ+)

O(V 2p−1(x, y)) under (HQ−).

From now on, assume that {
0 < p < 2ρ ∧ 1 under (HQ+)

1− a < p < a under (HQ−).
(3.17)

By Lemma 3.3, we then obtain that for all (x, y) ∈ R2d and ε ∈ (0, 1]

Hp,ε(x, y) ≥ −β + αV p̄(x, y)−O(V 2p−1),

where p̄ is defined in Lemma 3.3. Under (3.17), one checks that 2p − 1 < p̄. Thus,
uniformly in ε,

lim
|(x,y)|→+∞

Hp,ε(x, y) = +∞,

and (3.14) follows.
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Now, let M1 be such that (3.14) holds and define τε by τε = inf{t ≥ 0, Zεt ∈ B̄(0,M1)}.
We then have:

E

[
exp

(
1

ε2

∫ t∧τε

0

2

1 + s
ds

)]
≤ E

[
exp

(
1

ε2

∫ t∧τε

0

Hp,ε(Xs, Ys)

1 + s

)
ds

]
≤ exp

(
V p(x, y)

ε2

)
.

Computing the integral and using the Fatou Lemma, we get

E(x,y)

[
(1 + τε)

2
ε2

]
≤ exp

(
1

ε2
V p(x, y)

)
.

The Jensen Inequality applied to x→ x
1
ε2 yields that

∀(x, y) ∈ R2d,∀ε ∈ (0, 1], E(x,y)[(1 + τε)
2] ≤ exp (V p(x, y)) .

The first statement follows using that V p is locally bounded.

• Proof of (ii): Thanks to (3.15), we have for all p > 0 and for large enough |(x, y)|,

ln(|(x, y)|) ≤ 1

2
ln(CV (x, y)) ≤ V p(x, y). (3.18)

Multiplying by δ/ε2, this inequality suggests the computation of

E

[
exp

(
δ

ε2
V p(Xt∧τ , Yt∧τ )

)]
,

for appropriate p and τ . Applying the Itô formula to ψε(x, y) := exp(δV p(x, y)/ε2), we
get:

∀t ≥ 0, ψε(Xt, Yt) = ψε(x, y) +

∫ t

0

Aψε(Xs, Ys)ds+Mt, (3.19)

where (Mt)t≥0 is a local martingale that we do not need to make explicit. Let us choose
p ∈ (0, 1) such that inequality (3.10) of Lemma 3.3 holds. Since V (x, y) → +∞ as
|(x, y)| → +∞ and since p̄ > 0, we deduce that

β′ − α′V p̄(x, y)
|(x,y)|→+∞−−−−−−−−→ −∞.

As a consequence, for any real positive number δ, there exists M2 > 0 such that

∀ε ∈ (0, 1], ∀(x, y) ∈ B̄(0,M2)c, Aψε ≤ 0.

Let τε = inf{t ≥ 0, (Xt, Yt) ∈ B̄(0,M2)}. A standard localization argument in (3.19)
yields

∀ (x, y) ∈ R2d, E(x,y)[ψε(Xt∧τε , Yt∧τε)] ≤ ψε(x, y).

Without loss of generality, we can assume that M2 is such that (3.18) is valid for all
(x, y) ∈ B̄(0,M2)c. It follows that for all ε ∈ (0, 1], t ≥ 0 and (x, y) ∈ B̄(0,M2)c,(

E(x,y)

[
|Xt∧τε , Yt∧τε |

δ
ε2

])ε2
≤ eδV

p(x,y).

From the above inequality, we finally deduce (3.7).

• Proof of (iii): With the notations of the two previous parts of the proof, the properties
(3.6) and (3.7) hold with τε := inf{t ≥ 0, (Xt, Yt) ∈ B} for each compact set B such
that B̄(0,M1 ∨M2) ⊂ B. In this last part of the proof, we then set B = B̄(0,M) where
M ≥M1 ∨M2.
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Second, remark that it is enough to show that the result holds with τε ∧ 1 instead
of τε. Now, let K be a compact set of R2d such that B ∩K = ∅ and let (εn, zn)n≥1 be a
sequence such that εn → 0, zn ∈ K for all n ≥ 1 and

Ezn [τεn ∧ 1]
n→+∞−−−−−→ lim inf

ε→0
inf
z∈K

Ez[τε ∧ 1].

Up to an extraction, we can assume that (zn)n≥1 is a convergent sequence. Let z̃ de-
note its limit. Lemma 3.1 implies that (L((Zεn,zn)t∈[0,1])n≥1 is exponentially tight, and
then tight on C([0, 1],Rd). Using a second extraction, we can assume that (Zεn,zn)n≥1

converges in distribution to Z(∞). Furthermore, since εn → 0, the limit process Z(∞)

is a.s. a solution of the o.d.e. ż = b(z) starting at z̃. Since the function b is locally
Lipschitz continuous, the uniqueness holds for the solutions of this o.d.e. and we can
conclude that (Zεn,zn)n≥1 converges in distribution to z(z̃, .) (here z(z̃, .) denotes the
unique solution of ż = b(z) starting from z̃). Since the function z(z̃, .) is deterministic,
the convergence holds in fact in probability and at the price of a last extraction, we can
assume without loss of generality that (Zεn,zn)n≥1 converges a.s. to z(z̃, .). In particular,
setting δ := d(K,B) (δ > 0), there exists n0 ∈ N such that for every n ≥ n0,

sup
t∈[0,1]

|Zεn,znt − z(z̃, t)| ≤ δ

4
a.s.

Setting now,

τz̃, δ2
:= inf{t ≥ 0, d(z(z̃, t), B) ≤ δ

2
} ∧ 1,

we deduce that for every n ≥ n0,

inf
t∈[0,τ

z̃, δ
2

]
d(Zεn,znt , B) ≥ δ

4
=⇒ τεn ≥ τz̃, δ2 a.s.

Using the Fatou Lemma, we can conclude that

lim
n→+∞

Ezn [τεn ∧ 1] ≥ Ezn [lim inf
n→+∞

τεn ∧ 1] ≥ τz̃, δ2 .

Finally, since t 7→ z(z̃, t) is a continuous function and since d(K, B̄(0,M + δ
2 )) > 0, the

stopping time τz̃, δ2 is clearly positive. The result follows.

3.3 Hamilton-Jacobi equation (Proof of ii) of Theorem 1)

This point is a consequence of the finite time large deviation principle for (Zε)ε≥0

(Lemma 3.1) and of the exponential tightness of (νε)ε≥0 (Proposition 3.2). This is the
purpose of the next proposition which is an adaptation of Corollary 1 of [23].

Proposition 3.4. For all ε > 0, let (P εt (z, .))t≥0,z∈R2d be the semi-group associated to
(2.1) whose unique invariant distribution is denoted by νε. Suppose that the following
assumptions hold:

(i) (νε)ε>0 is exponentially tight of order ε−2 on R2d.

(ii) For all t ≥ 0 and z ∈ R2d, there exists a function It(z, .) : R2d → R, such that for
all (zε)ε>0 zε → z as ε → 0 and P εt (zε, .) satisfy a LDP with speed ε−2 and rate function
It(z, .).

Then, (νε)ε>0 admits a (LD)-convergent subsequence. For such a subsequence (νεk)k≥0

(with εk → 0 as k → +∞), the associated rate function W satisfies for all z0 ∈ R2d,

∀t ≥ 0, W (z0) = inf
z∈R2d

(It(z, z0) +W (z)) . (3.20)
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With the terminology of [23], Equation (3.20) means that W̃ defined for all Γ ∈
B(R2d) by W̃ (Γ) = supy∈Γ exp(−W (y)) is an invariant deviability for (P εt (z, .))t≥0,z∈R2d .
In Corollary 1 of [23], this result is stated with a uniqueness assumption on the invari-
ant deviabilities. The above proposition is in fact an extension of this corollary to the
case where uniqueness is not fulfilled. We refer to Appendix A for details.

Owing to Proposition 3.2 and to Lemma 3.1, Proposition 3.4 can be applied with It(z, .)
defined by (3.1). Thus, in order to prove ii) of Theorem 1, it remains to check that a
solution W of (3.20) (with It(z, .) defined by (3.1)) also satisfies Equation (2.7). This is
the purpose of the next proposition.

Proposition 3.5. Assume that either (HQ+) or (HQ−) is fulfilled. Then, for any (LD)-
convergent subsequence (εn)n≥1 and (good) rate function W :

∀t ≥ 0, ∀z0 ∈ R2d, W (z0) = infϕ ∈ Hz̃ϕ(0) = z0

[
1

2

∫ t

0

|ϕ̇(s)|2ds+W (z̃ϕ(t))

]
.

Proof. We know that W satisfies (3.20). Thus, for any z0 ∈ R2d

W (z0) = inf
v∈R2d

(It(v, z0) +W (v)) = infv ∈ R
2d, ϕ ∈ H

zϕ(0) = v, zϕ(t) = z0

[
1

2

∫ t

0

|ϕ̇(s)|2ds+W (zϕ(0))

]
.

Using that g : [0, t]→ R2d defined by g(s) = zϕ(t−s) is a controlled trajectory associated
to −b and −ϕ, we deduce that for all t ≥ 0

W (z0) = infv ∈ R
2d, ϕ ∈ H

z̃−ϕ(0) = z0, z̃−ϕ(t) = v

[
1

2

∫ t

0

|ϕ̇(s)|2ds+W (z̃−ϕ(t))

]
.

The result follows from the change of variable ϕ̃ = −ϕ.

3.4 Infinite horizon Hamilton-Jacobi equation

The aim of this part is to show that when there is a finite number of critical points,
we can "replace t by +∞" in (2.7). This proof is an adaptation of Theorem 4 of [5]. The
main novelty of our proof is the second step. Indeed, using arguments based on asymp-
totic pseudo-trajectories and Lyapunov functions, we prove that the optimal controlled
trajectory is attracted by a critical point of the drift vector field.

Proof of (iii) of Theorem 1. The proof is divided in three parts. We first build an optimal
path t 7→ z̃ψ(z, t) for the Hamilton Jacobi equation of interest. Then, we focus in the
second step on its long time behaviour and obtain that z̃ψ(z, t) converges to z? which
belongs to {z, b(z) = 0}. In order to conclude, we need to prove the continuity of W at
each point of {z, b(z) = 0}. This is the purpose of the third step.
• Step 1: We show that we can build a function ψ ∈ H such that for all z ∈ R2d the

couple (z̃ψ(z, t), ψ̇(t))t≥0 on C(R+,R
2d)× L2,loc(R+,R

d) satisfies for all t > 0,

W (z) =
1

2

∫ t

0

|ψ̇(s)|2ds+W (z̃ψ(z, t)). (3.21)
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First, let T > 0 and let (z̃
(n)

ϕ(n) , ϕ
(n))n≥1 be a minimizing sequence of C([0, T ],R2d) × H

such that

1

2

∫ T

0

|ϕ̇(n)(s)|2ds+W (z̃
(n)

ϕ(n)(z, T ))
n→+∞−−−−−→ inf

ϕ∈H

1

2

∫ T

0

|ϕ̇(s)|2ds+W (z̃ϕ(z, T )).

Since W is non negative, it is clear that (
∫ T

0
|ϕ̇(n)(s)|2ds)n≥0 is bounded. It follows

that (ϕ̇(n))n≥1 is relatively compact on L2
w([0, T ],R2d) which denotes the set of square-

integrable functions on [0, T ] endowed with the weak topology. This also implies that

M := sup
n≥1

sup
t∈[0,T ]

|z̃(n)

ϕ(n)(t)| < +∞. (3.22)

Actually, under (HQ−), b is Lipschitz continuous and this point is classical. Now, under

(HQ+), we have |∇U | = O(U1−ρ) with ρ ∈ (0, 1). Since supn≥1

∫ T
0
|ϕ̇(n)(s)|2ds < +∞,

Inequality (3.4) implies that

sup
n≥1

sup
t∈[0,T ]

Eρ
(
z̃

(n)

ϕ(n)(t)
)
< +∞.

Since lim|z|→+∞ E(z) = +∞, Equation (3.22) also follows in this case.
Now, since b is locally Lipschitz, b is then Lipschitz continuous on B(0,M) and a clas-

sical argument based on the Ascoli Theorem shows that (z̃
(n)

ϕ(n))n≥1 is relatively compact

on C([0, T ],R2d). It follows that (z̃
(n)

ϕ(n) , ϕ̇
(n))n≥1 is relatively compact on C([0, T ],R2d) ×

L2
w([0, T ],R2d) and then there exists a convergent subsequence to (ẑT , ψ̇

T
) which be-

longs to C([0, T ],R2d)×L2
w([0, T ],R2d). Using that b is a continuous function, one checks

that ẑT (t) = z̃ψ
T

(z, t), for all t ∈ [0, T ] and (ẑT , ψ̇
T

) satisfies (3.21) (for a fixed T ). Fur-
thermore, for all t ∈ [0, T ], we have

W (z̃ψ
T

(z, t)) =
1

2

∫ T

t

|ψ̇
T

(s)|2ds+W (z̃ψ
T

(z, T )), (3.23)

so that (3.21) holds for all t ∈ [0, T ]. As a consequence, we can build (z̃ψ(z, .), ψ̇) ∈
C(R+,R

2d)× L2,loc(R+,R
2d) (by concatenation) which satisfies (3.21) (for all t ≥ 0).

• Step 2: Dropping the initial condition z, we show that (z̃ψ(t + .))t≥0 converges as
t→ +∞ to a stationary solution of ż = −b(z). First, as in (3.23),

W (z̃ψ(t+ s))−W (z̃ψ(t)) = −1

2

∫ t+s

t

|ψ̇(u)|2du. (3.24)

It follows that (W (z̃ψ(t)))t≥0 is a non-increasing and thus bounded function. Since W is
a good rate function, the quantity W−1([0,M ]) is a compact subset of R2d, for all M > 0.

This means that (z̃ψ(t))t≥0 is bounded. From (3.24), we deduce that (
∫ t+T
t
|ψ̇(s)|2ds)t≥0

is also bounded. The argument described in Step 1 can be used again since b is locally
Lipschitz continuous. We deduce from the Ascoli Theorem that (z̃ψ(t + .)) is relatively
compact (for the topology of uniform convergence on compact sets).

We denote now by z̃∞ψ (.) the limit of a convergent subsequence. Let us show that
(z̃∞ψ (t))t≥0 is a solution of ż = −b(z). First, since (W (z̃ψ(t)))t≥0 is non-increasing (and

non negative as a rate function), we deduce from (3.24) that
∫ t+T
t
|ψ̇(u)|2du t→+∞−−−−→ 0.

As a consequence, using that for any s ≥ 0, the map z 7→ z(s)− z(0) +
∫ s

0
b(z(u))du (from

C(R+,R
2d) to R2d) is continuous and that for all t ≥ 0, T ≥ 0 and s ∈ [0, T ],∣∣∣∣z̃ψ(t+ s)− z̃ψ(t) +

∫ s

0

b(z̃ψ(t+ u))du

∣∣∣∣ ≤ CT
(∫ t+T

t

|ψ̇(u)|2du

) 1
2

,
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LDP for invariant distributions of memory gradient diffusions

we obtain that (z̃∞ψ (t))t≥0 is a solution of ż = −b(z). It remains to show that (z̃∞ψ (t))t≥0 is

stationary, i.e. that every limit point of (z̃ψ(t))t≥0 belongs to {z ∈ R2d, b(z) = 0}. Denote
by (Φt(z))t,z the flow associated to the o.d.e. ż = −b(z). Again, owing to the fact that

for all T > 0,
∫ t+T
t
|ψ̇(u)|2du t→+∞−−−−→ 0, we can deduce that for all T > 0,

sup
s∈[0,T ]

|z̃ψ(t+ s)− Φs(z̃ψ(t))| t→+∞−−−−→ 0.

This means that (z̃ψ(t))t≥0 is an asymptotic pseudo-trajectory for Φ (see [4]). As a
consequence, by Proposition 5.3 and Theorem 5.7 of [4], the set K of limit points of
(z̃ψ(t))t≥0 is a (compact) invariant set for Φ such that Φ K has no proper attractor.
This means that there is no strict invariant subset A of K such that for all z ∈ K,
d(Φt(z), A)

t→+∞−−−−→ 0.
Thus, in order to conclude that K is included in {z, b(z) = 0}, it is now enough to show
that A = {z, b(z) = 0} ∩ K is an attractor for Φ K̄ . For that, let ρ be a positive real
number and consider L : R2d 7→ R defined by

L(z) = U(x) + (1− ρ)
|y|2

2
− ρ〈∇U(x), y〉 with z = (x, y).

If z is solution of ż = −b(z), we have :

d

dt
L(z(t)) = y(t)t

(
(1− ρ)Id − ρD2U(x(t))

)
y(t) + ρ|∇U(x(t))|2.

Since K is a bounded invariant set and D2U is locally bounded, we can find a small
enough ρ and a positive αρ such that for all (z(t)) solution of ż = −b(z) with z(0) ∈ K,

d

dt
L(z(t)) ≥ αρ|y(t)|2 + ρ|∇U(x(t))|2. (3.25)

For all starting point z ∈ K, the function t 7→ L(z(t)) is then non-decreasing and thus
convergent to `∞ ∈ R. Since (z(t))t≥0 is bounded, an argument similar to the one
developed in Step 1 combined with the Ascoli Theorem yields that (z(t+ .)) is relatively
compact. If (z(tn+.))n≥0 denotes a subsequence of (z(t+.)), we can assume (at the price
of a potential extraction) that (z(tn + .))n≥0 converges to z∞(.). We have necessarily
L(z∞(t)) = `∞, for all t ≥ 0 and thus

d

dt
L(z∞(t)) = 0.

By (3.25), we deduce that y∞(t) = ∇U(x∞(t)) = 0. This means that z∞(.) is a stationary
solution and that every limit point of (z(t))t≥0 is an equilibrium point of the o.d.e.

Thus, we can conclude that every limit point of (z̃ψ(t))t≥0 belongs to {z, b(z) = 0}.
Finally, since the set of limit points of (z̃ψ(t))t≥0 is a compact connected set and since
the set {x,∇U(x) = 0} is finite, it follows that z̃ψ(t)→ z? = (x?, 0) when t→ +∞. Note
that here x? ∈ {x,∇U(x) = 0}. Then, by (3.21) if we prove that W is continuous at z?,
we shall deduce the announced result. This is the purpose of the next step.

• Step 3: We prove that for each z? ∈ {z, b(z) = 0}, i.e. for each z? = (x?, 0) with
x? ∈ {x,∇U(x) = 0}, W is continuous at z?. Since D2U(x?) is invertible, we deduce
from Lemma 4.3 that the dynamical system is locally controllable around z?, i.e. that
for all T > 0 and ε > 0, there exists η > 0 such that for every z ∈ B(z?, η), IT (z, z?) ≤ ε

and IT (z?, z) ≤ ε. Now, the definition of W implies that W (z?) ≤ W (z) + ε and W (z) ≤
W (z?) + ε. The continuity of W follows. Letting t go to +∞ in (3.21) ends the proof of
(iii).
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4 Freidlin and Wentzell theory

In this section, we derive some sharp estimations of the behaviour of (νε) when
ε → 0. To this end, we adapt the strategy of [14] to our setting. Our goal is twofold:
first, we aim at establishing some uniqueness property for the rate function W defined
in Theorem 1. This will then lead to a large deviation principle for (νε). Second, we
want to obtain a more explicit formulation of W in order to characterize, at least in
some particular cases, the limit behaviour of (νε) for some non-convex potential U . In
the paper, we assume that the potential U satisfies Assumption (HD) defined in Section
2.4.1, that is, the set of critical points of U is finite. We can then set {x ∈ Rd,∇U(x) =

0} = {x?1, . . . , x?`}.
First, we classify the critical points, i.e., we connect the critical points of the vector

field b to those of U and we determine their stability. Then, with respect to these criti-
cal points, we construct the so-called skeleton Markov chain associated to the process
(Xε

t , Y
ε
t ). Using this, we finally derive the LDP for (νε).

4.1 Classification of critical points.

We first need to classify the equilibria of the dynamical system ż = b(z). We recall
that {z ∈ R2d, b(z) = 0} = {z?1 , . . . , z?` } where for every i ∈ {1, . . . , `}, z?i = (x?i , 0). The
following proposition characterizes the nature of z?i with respect to that of x?i .

Proposition 4.1. Assume that D2U(x?i ) is invertible for all i ∈ {1, . . . , `}. If x?i is a
minimum of U , then z?i is a stable equilibrium of the deterministic dynamical system.
Otherwise, z?i is an unstable equilibrium.

Proof. We first define I = {i ∈ {1 . . . `}|x?i is a local minimum} and J = {1 . . . `} \ I. Let
us compute the Jacobian matrix of the vector field b: and for each i ∈ {1, . . . `}

Db(z?i ) =

(
0 −Id

D2U(x?i ) −Id

)
.

Now, simple linear algebra yields the characterization of the spectrum of the linearized
vector field near each equilibrium z?i :

Sp(Db(z?i )) =
{
λ,−λ(λ+ 1) ∈ Sp(D2U(x?i ))

}
=

{
−1/2±

√
1/4− µ, µ ∈ Sp(D2U(x?i ))

}
,

where
√

1/4− µ denotes i
√
|1/4− µ| if 1/4 − µ ≤ 0. When i ∈ I, one can note that

D2U(x?i ) is a positive definite matrix. It follows that µ ∈ Sp(D2U(x?i )) is positive and

∀i ∈ I < (Sp(Db(z?i ))) ⊂ (−1, 0),

so that z?i is a stable equilibrium in this case.
When x?i is another equilibrium point, D2U(x?i ) has some negative eigenvalues µ. Then,
Db(z?i ) has some positive eigenvalues (since

√
1/4− µ < 1/2 in this case). Thus, z?i is

an unstable equilibrium of the deterministic dynamical system.

4.2 Skeleton representation

The [14] description of the invariant measure νε of the continuous time Markov pro-
cess is based on its representation through the invariant measure of a specific skeleton
Markov chain. This formula, due to Khas’minskĭı (see [20], chapter 4) in the uniformly
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elliptic case, will remain true in our framework even if the original process is hypoel-
liptic and defined on a non compact manifold. This is the purpose of Proposition 4.2
below but before a precise statement, we first need to define the skeleton Markov chain
associated to our process.

Let ρ0 be the half of the minimum distance between two critical points:

ρ0 =
1

2
min
i6=j

d(z?i , z
?
j ). (4.1)

Now, let 0 < ρ1 < ρ0 and set gi = B(z?i , ρ1). Each boundary ∂gi is smooth as well as the
one of the set g defined by

g = ∪igi. (4.2)

Note that by construction, gi∩gj = ∅ if i 6= j. Finally, we denote by Γ the complementary
set of the ρ0-neighbourhood of the set of the critical points z?i :

Γ =
(
Rd ×Rd

)
\ ∪iB(z?i , ρ0). (4.3)

We provide in Figure 1 a short summary of the construction of the sets (gi)i, g,Γ as well
as the positions of the critical points z?i . An example of a path (Zεt )t≥0 is also depicted
(K will be defined in the sequel).

Figure 1: Graphical representation of the neighbourhood gi, the process (Zε,zt )t≥0, the
skeleton chain and the compact sets K and K1.

Now, let us define the skeleton Markov chain (Z̃n)n∈N. We consider a path of Zε

starting from z ∈ ∂g and we set Z̃0 = z. Then, the sequel of the skeleton chain is
defined through the hitting and exit times of the neighbourhoods defined above: we set
τ0(∂g) = 0,

τ ′1(Γ) = inf{t ≥ 0, Zε,zt ∈ Γ}, τ1(∂g) = inf{t > τ ′1(Γ), Zε,zt ∈ ∂g}. (4.4)

Then, for every n, τ ′n and τn are defined inductively by:

τ ′n(Γ) = inf{t > τn−1(∂g), Zε,zt ∈ Γ}, τn(∂g) = inf{t > τ ′n(Γ), Zε,zt ∈ ∂g}.

We will show in Proposition 4.2 that for all n ≥ 0, τn(∂g) < +∞ a.s. The skeleton is then
defined for all n ∈ N by, Z̃n = Zε,zτn(∂g). Note that (Z̃n)n≥0 belongs to ∂g and that (Z̃n)n≥0

is a Markov chain (this is actually a consequence of the strong Markov property). The
set ∂g being compact, existence holds for the invariant distribution (Z̃n)n∈N. We denote
such a distribution by µ̃∂gε . The proposition states that νε may be related to µ̃∂gε .
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Proposition 4.2. (i) Following the notations introduced before, we have

∀ε > 0 sup
z∈∂g

Eεz[τ1(∂g)] <∞.

(ii) For every set A ∈ B(Rd ×Rd) and for any ρ1 ∈ (0, ρ0) the measure

µ∂gε (A) =

∫
∂g

µ̃∂gε (dz)Ez

∫ τ1(∂g)

0

1Zε,zs ∈Ads (4.5)

is invariant for the process (Zεt )t≥0. Hence, µ∂gε is a finite measure proportional to νε.

Proof. Proof of (i). Using Proposition 3.2, one first check that one can find two compact
sets K,K1 such that g ⊆ K and g ( K1 and such that the first hitting time τ(K) of K
satisfies

sup
z∈∂K1

Eεz[τ(K)] < +∞. (4.6)

Then, the idea of the proof is to extend to our hypoelliptic setting the proofs of Lemma
4.1 and 4.3 of [20] given under some elliptic assumptions. Let z ∈ ∂g and set τ̃0 =

inf{t ≥ 0, Zε,zt ∈ ∂K},

τ̃ ′1 = inf{t > τ̃0, Z
ε,z
t ∈ ∂g ∪ ∂K1}, τ̃1 = inf{t > τ̃ ′1, Z

ε,z
t ∈ ∂K},

and recursively for all n ≥ 2,

τ̃ ′n = inf{t > τ̃n−1, Z
ε,z
t ∈ ∂g ∪ ∂K1} τ̃n = inf{t > τ̃ ′n, Z

ε,z
t ∈ ∂K}.

By construction, we have a.s.:

τ1(∂g) ≤ inf{τ̃ ′k, Z
ε,z
τ̃ ′k
∈ ∂g}.

Then, by the strong Markov property and (4.6), a careful adaptation of the proofs of
Lemma 4.1 and 4.3 of [20] shows that supz∈∂g E

ε
z[τ1(∂g)] <∞ as soon as the two follow-

ing points hold for all ε > 0:

• supz∈K E
ε
z[τ(∂K1)] < +∞.

• supz∈K\g pε(z) < 1 where pε(z) := P(Zε,zτ(∂g∪∂K1) ∈ ∂K1).

Let us focus on the first point. By Remark 5.2 of [27], it is enough to check that there
exists T > 0 and a control (ϕ(t))t∈[0,T ] such that

∀z ∈ K, inf{t ≥ 0, zϕ(t, z) ∈ Kc
1} ≤ T. (4.7)

Indeed, in this case, using the support theorem of [26], we obtain that supz∈K P(τ(∂K1) ≤
T ) < 1. The first point follows from the strong Markov property (see Remark 5.2 of [27]
for details). Now, we build (ϕ(t))t≥0 as follows. Let us consider the system:{

ẋ = Id

ẏ = ∇U(x)− y .

Setting ϕ̇ = y + Id, we obtain a controlled trajectory zϕ(z, .) and it is clear from its
definition that for all M > 0, there exists T > 0, such that for all z ∈ K, |xϕ(T )| > M .
The first point easily follows.

It is well-known (see for instance [27]) that for all ε > 0, pε is a solution of

Aεpε = 0 with pε|∂g = 0 and pε|∂K1
= 1. (4.8)
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Thus, since supz∈K1\g E[τ(δg ∪ δK1)] < +∞ and since h is defined by h(x) = 1 on ∂K1

and h(x) = 0 on ∂g is obviously continuous on ∂g ∪ ∂K1, we can apply Theorem 9.1 of
[27] with k = f = 0 to obtain that z 7→ pε(z) is a continuous map. Furthermore, for any
starting point z ∈ K\g, we can build a controlled trajectory starting at any z ∈ ∂K which
hits ∂g before ∂K1. Taking for instance ϕ̇ = 0, we check that (E(x0(t),y0(t)))t≥0 is non-
increasing (with E(x, y) = U(x)+|y|2/2) and that the accumulation points of (x0(t),y0(t))

lie in {z, b(z) = 0}. Thus, taking K1 large enough in order that sup(x,y)∈K E(x, y) <

inf(x,y)∈Kc
1
E(x, y), leads to an available control for all z ∈ K. Finally, using again the

support theorem of [26], w deduce that for each z ∈ ∂K, pε(z) < 1. The second point
then follows from the continuity of z 7→ pε(z). This ends the proof of i).

Proof of (ii). As argued in the paragraph before the statement of this proposition,
(Z̃n)n∈N admits a unique invariant measure µ̃∂gε . The fact that µ∂gε is invariant for (Zεt )t≥0

is classical and relies on the strong Markov property of the process (see e.g. in [19]).

Remark 3. One could also have used a uniqueness argument for viscosity solutions to
obtain the continuity of z 7→ pε(z) using the maximum principle on Aε (as it is already
used by [27]). One may refer to [3] for further details.

4.3 Transitions of the skeleton Markov chain

This paragraph is devoted to the description of estimations obtained through the
Freidlin and Wentzell theory for the Markov skeleton chain defined above. These esti-
mations as well as Proposition 4.2 are then used to obtain the asymptotic behaviour of
(νε). By Theorem 1, we know that there exists a subsequence (εn)n∈N such that (νεn)

satisfies a large deviation principle with speed ε2
n and good rate function W . For the

sake of simplicity, we keep the notation ε. Hence, ε → 0 means εn → 0 as n → +∞
(where (εn)n is a suitable (LD) convergent subsequence).

4.3.1 Controllability and exit times estimates

In order to obtain some estimates related to the transition of the skeleton Markov chain,
the first step is to control the exit times of some balls B(z?i , δ) where z?i denotes a
critical point of ż = b(z) (similarly to Section 1, Chapter 6 of [14]). In our hypoelliptic
framework, such a bound of the exit times is strongly based on the controllability around
the equilibria. We have the following property:

Lemma 4.3. Let i ∈ {1, . . . , `} such that D2U(x?i ) is invertible. Let T > 0. Then, for all
δ > 0, there exists ρ(δ) > 0 such that

∀ (a, b) ∈ B(z?i , ρ(δ)), ∃ϕ ∈ H such that zϕ(a, T ) = b and

∫ T

0

|ϕ̇(s)|2ds ≤ δ.

Proof. Setting

A =

(
0 −Id

D2U(x?i ) −Id

)
and B =

(
Id 0

0 0

)
,

the linearized system (at z?i ) associated with the controlled system

ż = b(z) +

(
ϕ̇

0

)
(4.9)

can be written ż = Az + Bu where u = (ϕ̇, ψ)t with ψ ∈ H(Rd). Since D2U(x?i ) is
invertible, one easily checks that Span(Bu,ABu, u ∈ R2d) = R2d. As a consequence, the
Kalman condition (see e.g. [11]) is satisfied and it follows from Theorems 1.16 and 3.8
of [11] that (4.9) is locally exactly controllable at z?i . The lemma is then proved.
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We are now able to obtain the following estimation.

Lemma 4.4. Suppose that (HD) holds and that either (HQ+) or (HQ−) is satisfied.
Then, for all γ > 0, there exists δ > 0 and ε0 small enough such that if we define
G = B(z?i , δ), the first exit time of G denoted τGc satisfies

∀ε ∈ (0, ε0], sup
z∈G

Eεz [τGc ] < eγε
−2

.

Proof. Let i ∈ {1 . . . `} and fix γ > 0. By Lemma 4.3 applied with T = 1, one can find
ρ > 0 such that

∀(a, b) ∈ B(z?i , 2ρ), ∃ϕ ∈ H such that zϕ(a, 1) = b and
1

2

∫ 1

0

|ϕ̇(s)|2ds ≤ γ

2
.

Now, we set δ = ρ/2, G = B(z?i , δ) and we fix a = z and take b such that |z?i − b| = ρ. This
implies that for every z ∈ B(z?i , δ), |z − b| ≤ 3δ < 3ρ/2. Thus, we can find ϕz ∈ H such

that zϕz (z, 1) = b and 1
2

∫ 1

0
|ϕ̇z(s)|2ds ≤ γ/2.

It is now possible to follow the proof of Lemma 1.7, chapter 6 of [14]: first, remark
that

Pεz[τGc ≤ 1] ≥ P

[
sup
t∈[0,1]

|Zε,zt − zϕz (z, t)| ≤ δ

]
. (4.10)

Second, since G is a compact set, there exists a convergent sequence (zk) of G and a
sequence (εk) such that εk → 0 and

lim inf
ε→0

inf
z∈G

ε2 lnPεz[τGc ≤ 1] = lim
k→+∞

ln(Pεkzk [τGc ≤ 1]).

Now, owing to Lemma 3.1 and Inequality (4.10), we deduce that

lim inf
ε→0

inf
z∈G

ε2 lnPεz[τGc ≤ 1] ≥ −1

2

∫ 1

0

|ϕ̇z∞(s)|2ds ≥ −γ
2
,

where z∞ := limk→+∞ zk. As a consequence, there exists ε0 > 0 such that for all
ε ∈ (0, ε0], for all z ∈ G,

Pεz[τGc ≤ 1] ≥ e−γε
−2

.

Then, the strong Markov property implies that

∀n ∈ N Pεz[τGc > n] ≤ [1− e−γε
−2

]n.

so that for every z ∈ G and ε ∈ (0, ε0]

Eεz [τGc ] ≤
∞∑
n=0

[1− e−γε
−2

]n ≤ e−γε
−2

.

Following the same kind of argument based on Lemma 4.3 and on the finite time large
deviation principle, we also obtain that Lemma 1.8, chapter 6 of [14] still holds. In our
context, this leads to the following lemma.

Lemma 4.5. Suppose that (HD) holds and that either (HQ+) or (HQ−) is satisfied. For
any ρ > 0 and any equilibrium z?i of (2.2), we define G := B(z?i , ρ). Then, for any small
enough ε and any γ > 0, there exists δ ∈ (0, ρ] such that the exit time of G satisfies:

inf
z∈B(z?i ,δ)

E

[∫ τGc

0

χ
B(z?

i
,δ)

(Zε,zt )dt

]
> e−γε

−2

.

EJP 18 (2013), paper 81.
Page 22/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2031
http://ejp.ejpecp.org/


LDP for invariant distributions of memory gradient diffusions

4.3.2 Transitions of the Markov chain skeleton

By Proposition 4.2, the idea is now to deduce the behaviour of (νε) from the control of
the transitions of the skeleton chain (Z̃n)n∈N . We recall that for any (ξ1, ξ2) ∈ (Rd×Rd)2,
It(ξ1, ξ2) denotes the L2-minimal cost to join ξ2 from ξ1 in a finite time t:

It(ξ1, ξ2) = inf
ϕ∈H,zϕ(ξ1,t)=ξ2

1

2

∫ t

0

|ϕ̇(s)|2ds,

and I(ξ1, ξ2) = inft≥0 It(ξ1, ξ2). We also introduce Ĩ(z?i , z
?
j ) defined for all (i, j) ∈ {1 . . . `}2

by:

Ĩ(z?i , z
?
j ) = inf

t>0

{
1

2

∫ t

0

|ϕ̇(s)|2ds, ϕ ∈ H, zϕ(z?i , t) = z?j ,∀s ∈ [0, t], zϕ(z?i , s) /∈ ∪k 6=i,jgk
}
.

The quantity Ĩ(z?i , z
?
j ) is the minimal cost to join z?j from z?i avoiding other equilibria of

(2.2). In the following proposition, we prove that Ĩ(z?i , z
?
j ) is always finite.

Proposition 4.6. For all (i, j) ∈ {1 . . . `}2, Ĩ(z?i , z
?
j ) < +∞.

Proof. In the proof, we assume that i 6= j and we build a controlled trajectory starting
at z?i , ending at z?j (in a finite time) and which avoids the other equilibria neighbour-
hoods ∪k 6=(i,j)gk.

We first assume that d > 1. In this case, for any fixed t0 > 0, for any ρ1-neighbourhood
gk of z?k, one can find a smooth trajectory (x0(t))t≥0 satisfying x0(0) = x?i , x0(t0) = x?j
and

∀s ∈ [0; t0] inf
k 6=i,j

|x0(s)− x?k| > ρ1.

Then, denote by (y0(t))t≥0 a solution of ẏ0(t) = ∇U(x0(t)) − y0(t) with the initial con-
dition y0(0) = 0 and let ϕ0 ∈ H satisfying ϕ̇0(t) = ẋ0(t) + y0(t). We obtain a controlled
trajectory zϕ0

(z?i , .) which satisfies zϕ0
(z?i , t) = (x0(t),y0(t)) for all t ∈ [0, t0]. This way,

we have
xϕ0

(z?i , t0) = x?j and ∀s ∈ [0; t0] zϕ0
(z?i , s) /∈ ∪k 6=i,jgk.

It remains now to join (x?j , 0) from (x?j , y0(t0)) without hitting ∪k 6=i,jgk. Let (x1(t),y1(t))t≥t0
be defined for all t ≥ t0 by x1(t) = x?j and y1(t) = y0(t0)et0−t (so that y1 is a solution
of ẏ1 = −y1 with y1(t0) = y0(t0)). Once again, (x1(t),y1(t))t≥t0 can be viewed as a
controlled trajectory zϕ1

((x?j ,y0(t0), .) by setting ϕ̇1(t) = y1(t).

Furthermore, zϕ1
((x?j ,y0(t0)), t)

t→+∞−−−−→ (x?j , 0). As a consequence, there exists T
such that zϕ1

((x?j ,y0(t0)), T ) ∈ gj . Hence, one can find a controlled trajectory starting
from zi and ending into any sufficiently small neighbourhood of zj in a finite time. More-
over, this trajectory avoids the other ρ1−neighbourhood of ∪k 6=(i,j)gk. It remains to use
Lemma 4.3 to obtain a controlled trajectory starting at zϕ1

((x?j ,y0(t0)), T ) and ending
at point z?j within a finite time. The global controlled trajectory is initialized at z?i ends
at z?j with a finite L2 control cost. The result then follows when d > 1.

Consider now the case d = 1 and consider x?i , x
?
j any two critical points of U . Without

loss of generality, one may suppose that x?i < x?j . From (HD), the number of critical
points which belong to [x?i , x

?
j ] is finite (denoted by p):

x?i < x?i1 < · · · < x?ip < x?ip+1
:= x?j .

Now, we consider a path which joins x?i to x?j parametrised as

xα(t) = x?i + α(t)[x?j − x?i ],
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with α(0) = 0 and α(T ) = 1 for T large enough which will be given later. Of course,
yα(t) is then defined as

∀t ∈ [0;T ] yα(t) =

∫ t

0

es−tU ′
(
x?i + α(s)[x?j − x?i ]

)
ds. (4.11)

For the sake of simplicity, we consider only increasing maps α. If p = 0, we know
that (xα(t),yα(t))t∈[0;1] avoids ∪k 6=(i,j)(x

?
k, 0) and then Ĩ(z?i , z

?
j ) < +∞ which proves the

proposition. If p > 0, there exists t1, . . . tp such that xα(tk) = x?ik and we shall prove that
one can find α such that yα(tk) 6= 0. Since α is increasing, we first show that one can
find a monotone α satisfying yα(t1) 6= 0. Let α be any C1 increasing parametrisation
defined on [0; t1]. We know that U ′ does not vanish on ]x?i , x

?
i1

[ and from equation (4.11),
yα(t1) 6= 0. Suppose without loss of generality that yα(t1) < 0, which means that U ′ < 0

on ]x?i , x
?
i1

[. Since we know that U”(x?i1) 6= 0, one can find δ > 0 small enough such that
U ′ > 0 on ]x?i1 ;x?i1 + δ[. Let ξ1 ∈]x?i1 ;x?i1 + δ[, we continue the parametrisation α from t1
to t̃1 such that x(t̃1) = ξ1 and α remains constant on [t̃1; t̃1 + δt1]. Expanding the integral
given in Equation (4.11) between [0, t1], [t1, t̃1] and [t̃1, t̃1 + δt1], a simple computation
yields

yα(t̃1 + δt1) = yα(t1)et1−t̃1−δt1 +

∫ t̃1

t1

es−t̃1+δt1U ′(x?i +α(s)[x?j − x?i ])ds+U ′(ξ1)[1− e−δt1 ].

Hence, it is obvious to see that we can find a sufficiently large δt1 such that yα(t̃1+δt1) >

0 since U ′(ξ1) > 0. We continue the parametrisation α until t2, time at which x?i2 is
reached. By construction, yα(t2) > 0. Now, one can repeat the same argument by
induction to find α such that yα(tk) 6= 0 for all k ≤ p+ 1 such that xα(tk) = x?ik .

Thus, at time tp+1, xα(tp+1) = x?j and yα(tp+1) 6= 0. It remains now to join z?j = (x?j , 0)

without hitting ∪k 6=i,jgk. This concluding step can be achieved exactly as in dimension
d > 1.

It is now possible to obtain the estimation of the invariant measure µ̃∂gε of the skele-
ton chain. This point follows from the estimation of the transition probability of (Z̃n)n∈N
(denoted P̃ ε(z, .)). From Lemmas 4.3, 4.4, 4.5 and Proposition 4.6, we deduce the fol-
lowing result from a simple adaptation of the proof of Lemmas 2.1 and 2.2, chapter 6 of
[14].

Proposition 4.7. For any γ > 0, there exist some sufficiently small ρ0 and ρ1 satisfying
0 < ρ1 < ρ0 such that we have for any small enough ε

∀(i, j) ∈ {1 . . . `}2 ∀z ∈ ∂gi e−ε
−2[Ĩ(z?i ,z

?
j )+γ] ≤ P̃ ε(z, ∂gj) ≤ e−ε

−2[Ĩ(z?i ,z
?
j )−γ].

4.4 {i}-Graphs and invariant measure estimation

We recall that {i}-Graphs for Markov chains are defined in paragraph 2.4.2, and that
the set of all possible {i}-Graphs is referred as G(i) . Recall that

W(z?i ) = min
IG∈G(i)

∑
(m→n)∈IG

I(z?m, z
?
n).

As pointed in Lemma 4.1 of [14], one can check that

W(z?i ) = min
IG∈G(i)

∑
(m→n)∈IG

Ĩ(z?m, z
?
n).

We are now able to obtain the main result of this paragraph. From the skeleton rep-
resentation (Proposition 4.2) and the estimations given by Lemma 4.5 and Proposition
4.7, we obtain the asymptotic behaviour of (νε) as ε −→ 0. The result is as follows.
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Theorem 4. For any γ > 0, there exist some real numbers ρ0 and ρ1 satisfying 0 <

ρ1 < ρ0 such that if gj = B(z?j , ρ1):

e
−ε−2

[
W(z?i )− min

j∈{1,...,`}
W(z?j ) + γ

]
≤ νε(gj) ≤ e

−ε−2
[
W(z?i )− min

j∈{1,...,`}
W(z?j )− γ

]
,

for all i ∈ {1 . . . `}. As well, in terms of W , we get that

e
−ε−2

[
W (z?i ) + γ

]
≤ νε(gj) ≤ e

−ε−2
[
W (z?i )− γ

]
, ∀i ∈ {1 . . . `}.

The proof of this theorem is straightforward according to the previous results: the
invariant measure νε only weights small neighbourhoods of global minima of W , when
ε → 0. Such global minima are appropriately described using the quasipotential I and
the functionW obtained through the {i}-graph structures.

5 Lower and upper bound of the rate function with a double-well
landscape in R

This last part is devoted to the proof of Theorem 3. Here, we focus on a one dimen-
sional potential U with a double-well profile and on the memory gradient system with
fixed memory parameter λ. In this case we push further our study of (νε) when ε → 0.
From Freidlin and Wentzell estimates, νε concentrates on the minima of W (this set is
also the minima ofW). Here we derive that (νε) concentrates on the global minimum of
U . For this purpose, we consider of a double-well potential U whose the two minima are
denoted by x?1 and x?2. One needs to compare the costs I(z?1 , z

?
2) and I(z?2 , z

?
1) for the two

stable equilibria z?1 = (x?1, 0) or z?2 = (x?2, 0). Without loss of generality, we fix x?1 < x?2
and we assume that there exists a unique local maximum x? of U such that x?1 < x? < x?2
and U ′(x?) = 0, U”(x?) < 0. We assume without loss of generality that U(x?1) < U(x?2).

We first describe how one can provide a lower bound of the cost I(z?1 , z
?
2). We propose

two approaches using sharp estimates of some particular Lyapunov functions. In the
next subsection, we adopt a non-degenerate approach where the main idea is to project
the drift vector field onto the gradient of a Lyapunov function. However, even if the
idea seems to be original, the bounds are not very satisfactory (see Proposition 5.1).
In Subsection 5.2 we propose a second approach which provides better bounds (see
Proposition (5.2)).

5.1 Lower-Bound using a non-degenerate approach

In this section, we consider the following Lyapunov function defined by

Lβ,γ(z) := Lβ,γ(x, y) = U(x) + βy2/2− γU ′(x)y,

when (β, γ) ∈ R2. For the sake of simplicity, we omit the dependence on β and γ and
denote by L this function. Here, the main idea relies on the fact that ∇L corresponds
to a favoured direction of the drift b. This will allow us to control the L2 cost to move
from z?1 to z?2 . First let us remark that the cost I is necessarily bounded from below by
the L2 cost for an elliptic system. In the elliptic context, the L2 cost is defined by

IE,T (z?1 , z
?
2) = inf

ϕ=(ϕ1,ϕ2)∈H×H

{
1

2

∫ T

0

|ϕ̇− b(ϕ)|2 | ϕ(0) = z?1 , ϕ(T ) = z?2

}
,

which can also been written as

IE,T (z?1 , z
?
2) = inf

(u,v)∈L2([0;T ])

{
1

2

∫ T

0

|(u, v)(s)|2ds | ż = b(z) +

(
u

v

)
, z(0) = z?1 , z(T ) = z?2

}
.

(5.1)
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As a consequence, since the set of admissible control for the degenerate cost IT is
included in the set of admissible controls for IE,T (v is forced to be 0 in Equation (5.1)),
we deduce that IT is greater than IE,T . This way, a lower bound for IE,T will yield a
lower bound for IT .

Now, let u and v be admissible controls for IE,T , we have

u2 + v2 = |ż− b(z)|2. (5.2)

Adapting the approach of [10], we shall use the Lyapunov function L to bound from be-
low the term above (somehow the Lyapunov function L will play the role of U ). Indeed,
if ∇L 6= 0, one can decompose b as follows

b(z) = b∇L(z) + b∇L(z)⊥ , (5.3)

where b∇L(z) is the orthogonal projection of b on the line generated by ∇L. In the
special case ∇L = 0, we fix b∇L(z) = 0 so that Equation (5.3) makes sense for any z. Let
us now remark that

|ż− b(z)|2 = |ż− b∇L(z) − b∇L(z)⊥ |2

= |ż− b∇L(z)⊥ |2 + |b∇L(z)|2 − 2〈ż; b∇L(z)〉

≥ −2
〈b(z);∇L(z)〉
|∇L(z)|2

〈ż;∇L(z)〉.

If one can find β and γ such that there exists α > 0 satisfying

∀z ∈ R2 − 〈b(z);∇L(z)〉
|∇L(z)|2

≥ α, (5.4)

then, it would be possible to conclude that for all T > 0

IE,T (z1, z2) = inf
(u,v)∈L2([0;T ])

{
1

2

∫ T

0

u2(s) + v2(s)ds, ż = b(z) +

(
u

v

)
, z(0) = z1, z(T ) = z2

}
,

and so

IE,T (z1, z2) ≥ inf
ϕ

{∫ T

0

−〈b(z(s)),∇L(z(s))〉
|∇L(z(s))|2

〈ż(s), ∇L(z(s))〉ds, ϕ(0) = z1, ϕ(T ) = z2

}
,

≥ α[L(z(t))− L(z?1)], ∀t ∈ [0, T ].

Now, remark that for admissible controls, (z(t))t≥0 moves continuously from z1 to z2

and there exists t? such that x(t?) = x?. We then obtain

IE,T (z?1 , z
?
2) ≥ α[L(z(t?))− L(z?1)].

In the definition of L, if β ≥ 0, one obtains a lower bound of the cost of the form

IE,T (z?1 , z
?
2) ≥ α[U(x?)− U(x?1)].

In the case β ≤ 0, the only available minoration is obtained taking t = T and we then
get the weaker bound

IE,T (z1, z2) ≥ α[U(x?2)− U(x?1)].

The next proposition provides a lower bound of the cost in the (restrictive) case of
subquadratic potential U (that is under HQ−).
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Proposition 5.1. Let U : Rd → R be a C2 one-dimensional double-well potential such
that U ′′ is bounded and set M = ‖U”‖∞. Then,

IE(z
?
1 , z

?
2) ≥ αλ(M)[U(x?)− U(x?1)],

where αλ(M) satisfies the asymptotic properties

lim
M→0

αλ(M) =
1

1 + 1
2λ2 +

√
1 + 1

4λ4

, αλ(M) ∼M→∞
λ

M
[
1 + 1

2λ2 +
√

1 + 1
4λ4

] .
At last, we have

∀M > 0 lim
λ7→+∞

αλ(M) = 2.

Proof. The idea is to optimize the ratio given in Equation (5.4) for the largest possible
α. Such a ratio can be written as a quadratic form on y and U ′(x). This way, an algebraic
argument based on a simultaneous reduction of these quadratic forms yields a suitable
calibration for M and α. We refer to [16] for the missing technical details.

Let us remark that this bound strongly depends on the second derivative of U . In
particular, when M = ‖U”‖∞ is large, the lower bound vanishes as M → +∞ and
becomes useless.

5.2 Lower bound using a degenerate approach (Proof of (ii) of Theorem 3)

Our original dynamical system is indeed degenerated on the first coordinate. In
order to take into account the degeneracy, we derive a lower bound of IT (z1, z2) by
a gradient of a suitable Lyapunov function. This approach will lead to some better
estimates than those of the previous paragraph obtained with an elliptic argument.

For this purpose, we consider the Lyapunov function defined by

Lα,β,γ(z) = Lα,β,γ(x, y) := αU(x) + βy2/2− γyU ′(x)

where α, β and γ are real numbers such that α > 0. We are looking for a suitable choice
of (α, β, γ). Consider ϕ ∈ H(R+,R

d) and denote by (zϕ(t))t≥0 the associated controlled
trajectory. Our objective is to obtain the following kind of lower bound:

∀ϕ ∈ H(R+,R
d), ∀t ≥ 0 ϕ̇2(t) ≥ 2

dLα,β,γ(zϕ(t))

dt
. (5.5)

Such a lower bound is useful especially if α is positive, largest as possible and β is non-
negative. Indeed, denote by t? the first time at which a controlled trajectory (z(t))t≥0

reaches z? = (x?, 0) where x? denotes the (unique) local maximum of U . Then, if In-
equality (5.5) holds, we have for all T > 0

IT (z?1 , z
?
2) = inf

u∈L2([0;T ])

{
1

2

∫ T

0

u2(s)ds, ż = b(z) +

(
u

0

)
, z(0) = z?1 , z(T ) = z?2

}

≥ inf
u∈L2([0;T ])

{
1

2

∫ t?

0

u2(s)ds, ż = b(z) +

(
u

0

)
, z(0) = z?1 , z(T ) = z?2

}

≥ α[U(x?)− U(x?1)] +
β

2
y(t?)2

≥ α[U(x?)− U(x?1)]. (5.6)

The next proposition shows that indeed, Inequality (5.5) holds for a suitable choice of β
and γ. In some case, the lower bound is almost optimal.
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Proposition 5.2. For any α ∈ [0; 2[, there exist some explicit constantsmλ(α), β?(α), γ?(α)

such that (5.5) is true for β = β?(α), γ = γ?(α) and for all one-dimensional double well
potential U satisfying ‖U”‖∞ = M < mλ(α). In this case, we get

I(z?1 , z
?
2) ≥ α

[
U(x?)− U(x?1)

]
.

Proof. Again, we only give the sketch of the proof. Dropping the time parameter, we
write u2 − dLα,β,γ(z)/dt as a quadratic form that depends on ẋ,y and U ′(x). We know
that this quadratic form is positive if and only if all its principal minors are positive.
Then, a careful calibration of the several parameters yields the desired results. We
refer to [16] for a detailed proof of this result.

When M is large, the admissible values of α vanish and our lower bound becomes
useless. When M → 0, we obtain I(z1, z2) ≥ 2[U(x?) − U(x1)] which is optimal in view
of the upper bound constructed in the next paragraph (it is obviously better than the
bound obtained in Proposition 5.1). A comparison of the two methods is depicted in
Figure 2 through the size of admissible α for several values of λ.

Figure 2: Maximum size of α with ‖U”‖∞ when λ = 1 (left) and λ = 10 (right) for both
approaches (Proposition 5.1 and 5.2).

5.3 Upper-Bound for the cost function (Proof of i) of Theorem 3)

Remind that we assume that there are two local minima for U denoted by x?1 and
x?2 with U(x?1) < U(x?2) and a local maximum denoted by x?. Again, we set z?1 = (x?1, 0),
z?2 = (x?2, 0) and z? = (x?, 0). We are looking for a upper-bound of I(z?2 , z

?
1) and then for

W . This is the purpose of the next proposition.

Proposition 5.3. Assume that U is a one-dimensional double well potential defined as
above such that U(x?1) < U(x?2). Then, for all λ > 0,

W (z?1) = I(z?2 , z
?
1) ≤ 2(U(x?)− U(x?2)).

where z?1 = (x?1, 0), z?2 = (x?2, 0) and x? denotes the unique local maximum of U .

This proposition is a consequence of the following Lemma 5.4 and Lemma 5.5 com-
bined with the fact that I(z?2 , z

?
1) ≤ I(z?2 , z

?) + I(z?, z?1). Let us stress that the proofs of
Lemma 5.4 and Lemma 5.5 rely both on Lemma 5.6.
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Lemma 5.4. Under the assumptions of Proposition 5.3, I(z?, z?i ) = 0 for i = 1, 2.

Proof. We establish the result for i = 1. We first show that for all starting points zε =

(xε, yε) such that U(xε) + |yε|2/(2λ) < U(x?) and xε ∈ [x?1, x
?], we have I(zε, z

?
1) = 0.

Second, applying Lemma 5.6, we will find (zε)ε>0 such that for all ε > 0, I(z?, zε) ≤ ε

and the result will follow when ε→ 0.

Let (z(t))t≥0 = (x(t),y(t))t≥0 be a solution of ż = b(z) starting from zε and let F be
the function defined by F (t) = E(x(t),y(t)) = U(x(t)) + |y(t)|2/(2λ). One can check that
F ′(t) = −y(t)2. In particular, F is a positive non-increasing function and thus conver-
gent,when t goes to infinity. As a consequence, F is bounded on R+. Then, using that E
is coercive, it follows that (z(t))t≥0 is bounded. Since U” is continuous, we deduce that
U ′ is Lipschitz continuous on the set where (x,y) is living. Using standard arguments,
this implies that the family of shifted trajectories (z(t + .))t≥0 is relatively compact for
the topology of uniform convergence on compact sets. If z∞ stands for the limit of a
convergent subsequence (z(tn + .))n≥0, then z∞ is a solution of ż = b(z). Since F is con-
tinuous and converges as t → +∞ to some limit l, we deduce that E(x∞(s),y∞(s)) = l

for all s ≥ 0. Thus we get

∀t ≥ 0,
d

dt
E(x∞(t),y∞(t)) = 0.

Using that F ′(t) = −y(t)2, we then obtain y∞(t) = 0 for all t ≥ 0. Thus, x∞ is constant
and z∞ is a stationary solution of ż = b(z). We can deduce that every accumulation
point of (x(t),y(t))t≥0 belongs to {z ∈ R2d, b(z) = 0}. Under the assumption U(xε) +

|yε|2/(2λ) < U(x?), and since F is non increasing, the only possible limit is z?1 . Then,

(x(t),y(t))
t→+∞−−−−→ z?1 and I(zε, z

?
1) = 0. As a consequence, we have

I(z?, z?1) ≤ I(z?, zε).

Now, by Lemma 5.6, we get that for any ε > 0, one can find zε = (xε, yε) such that we
both have U(xε) + |yε|2/(2λ) < U(x?), xε ∈ [x?1, x

?] and I(z?, zε) ≤ ε (taking for instance
zε on the segment [z?1 , z

?] sufficiently close to z?). The result follows.

Lemma 5.5. Assume the assumptions of Proposition 5.3. Then,

I(z?2 , z
?) ≤ 2(U(x?)− U(x?2)).

Proof. The idea of the proof is to use the "reverse" differential flow (see (5.7) below).
Since z?2 is an equilibrium point of ż = b(z), it follows from Lemma 5.6 that for all ε > 0,
there exists z̃ε such that z̃ε = z?2 + δε(z

? − z?2) = (x?2 + δε(x
? − x?2), 0) with δε ∈ (0, 1),

U(x̃ε) > U(x?2) and I(z?2 , z̃ε) ≤ ε. It is now enough to prove that

∀ ε > 0, I(z̃ε, z
?) ≤ 2(U(x?)− U(x̃ε)).

Let us consider zε = (xε,yε) defined as the solution of{
ẋε(t) = yε(t) = −yε(t) + 2yε(t)

ẏε(t) = λ(U ′(xε(t))− yε(t))
(5.7)

starting from z̃ε. Note that setting ϕ(t) = 2
∫ t

0
yε(s)ds, zε = zϕ. Let us study its

asymptotic behavior. To this end, we now introduce the function F̃ defined by F̃ (t) =
yε(t)

2

2λ − U(xε(t)). We observe that F̃ ′(t) = −yε(t)2 and thus that F̃ is non-increasing.
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We first show that (xε(t),yε(t)) starting from z̃ε satisfies x?1 < xε(t) < x?2 for all t ≥ 0.
On the one hand, let τ1 := inf{t ≥ 0,xε(t) = x?1}. Then, if τ1 < +∞, remark that ỹε = 0

and one should have

yε(τ1)2

2λ
− U(x?1) = −U(x̃ε)−

∫ τ1

0

yε(s)
2ds. (5.8)

It would imply that U(x̃ε) − U(x?1) < 0, which is impossible under our assumptions.
Thus, τ1 = +∞. On the other hand, the fact that U(x̃ε) > U(x?2) implies similarly that
τ2 := inf{t ≥ 0,xε(t) = x?2} satisfies τ2 = +∞. Thus, we obtain that (xε(t))t≥0 belongs to
the interval (x?1, x

?
2).

This point combined with the decreasing property of F̃ implies that

sup
t≥0
|yε(t)|2 ≤ 2λ

(
F̃ (0) + sup

x∈[x1,x2]

U(x)

)
< +∞.

As a consequence, (xε(t),yε(t))t≥0 is bounded and an argument closed to the one used
in the proof of Lemma 5.4 yields that the limit (x∞ε ,y

∞
ε ) of any convergent subsequence

(xε(tn + .),yε(tn + .))n≥1 lies in the set of stationary solutions of (5.7). Thus, we deduce
that x∞ε ∈ {x?1, x?, x?2}.

Now, Equation (5.8) and the fact that U(x̃ε) > max(U(x?1), U(x?2)) imply that x∞ε can
not be x?1 or x?2. Thus,

(xε(t),yε(t))
t→+∞−−−−→ z?.

Finally, since zε = zϕ with ϕ̇ = 2yε, we deduce that

I(z̃ε, z
?) ≤ 1

2

∫ +∞

0

|ϕ̇(s)|2ds = 2

∫ +∞

0

|yε(s)|2ds = 2(U(x?)− U(x̃ε)).

The announced result follows.

Lemma 5.6. Let x0 be an equilibrium point for U such that, in the neighbourhood of
x0, U is strictly convex (resp. strictly concave) if x0 is a local maximum (resp. a local
minimum). Let v ∈ R2 with |v| = 1 and set z0 = (x0, 0). Then, for any positive ε and ρ,
there exist ρ̃ > 0 and τ ≥ 0 such that zε := z0 + ρ̃v satisfies Iτ (z0, zε) ≤ ε.

This result is a particular case of Lemma 4.3 if U ′′(x0) 6= 0. In the degenerate case,
i.e. when U ′′(x0) = 0, this result can be proved using the fact that there exists an infinite
number of oscillations of the dynamical system around the stable points of ż = b(z) (see
[16] for a detailed proof).

Appendix A: Proof of Proposition 3.4

Proof. Let ε > 0 and h be a bounded continuous function. Since νε is an invariant
distribution, we have for all t > 0,∫

h
1
ε2 dνε =

∫
hε,tdνε where hε,t(z) = E[h

1
ε2 (Zε,zt )].

Since h is bounded continuous, it follows from Assumption (ii) and Lemma 3.1.12 of
[22] that for all z ∈ R2d, for all (zε)ε>0 such that zε → z,

lim
ε→0

(hε,t)
ε2(zε) = sup

v∈R2d

h(v) exp(−It(z, v)). (A.1)
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Now, since (νε)ε>0 is exponentially tight, (νε)ε>0 admits some (LD)-convergent sub-
sequence. Let (νεn)n≥1 denote such a subsequence. Then, (νεn)n≥1 satisfies a large
deviation principle with speed ε−2 and rate function denoted by W . Then, by Lemma
3.1.12 of [22], we have(∫

h
1
ε2n dνεn

)ε2n
n→+∞−−−−−→ sup

z∈R2d

h(z) exp(−W (z))

and by (A.1) and Lemma 3.1.13 of [22], we obtain that

(∫
hεn,tdνεn

)ε2n
n→+∞−−−−−→ sup

z∈R2d

(
sup
v∈R2d

h(v) exp(−It(z, v)) exp(−W (z))

)
.

It follows that for all bounded continuous function h,

sup
z∈R2d

h(z) exp(−W (z)) = sup
z∈R2d

h(z)

(
sup
v∈R2d

exp(−It(v, z)) exp(−W (v))

)
.

By Theorem 1.7.27 of [22], the above equality holds in fact for all bounded measurable
function h. Applying this equality with h = 1{z0}

exp(−W (z0)) = sup
v∈R2d

exp(−It(v, z0)) exp(−W (v)),

and the result follows.

Appendix B: Proof of Lemma 3.3

Proof. The explicit computation of AεV p gives for all (x, y),

AεV p(x, y) = pV p−1(x, y)

(
−m〈x,∇U(x)〉 − (1−m)|y|2

)

+
ε2

2
Tr
[
p(p− 1)V p−2∇xV ⊗∇xV + pV p−1D2

xV
]
, (B.1)

where for u, v ∈ Rd, u⊗ v is the d× d matrix defined by (u⊗ v)i,j = uivj .
Then, let us prove (3.9) under Assumption (HQ+). Since m ∈ (0, 1), we have

−m〈x,∇U(x)〉 − |y|2(1−m) ≤ mβ −mαU(x)− (1−m)|y|2 ≤ β1 − α1V (x, y),

for some constants β1 ∈ R and α1 > 0. Moreover, since D2
xV (x, y) = D2U(x) + mId,

ρ ∈ (0, 1) and lim|(x,y)|→+∞ V (x, y) = +∞ (see (3.16)), we have

Tr
[
p(p− 1)V p−2∇xV ⊗∇xV + pV p−1D2

xV
]

V p(x, y)
−→ 0 as |(x, y)| −→ +∞.

It follows that there exists β2 > 0 such that for all ε ∈ (0, 1],

ε2

2
Tr
[
p(p− 1)V p−2∇xV ⊗∇xV + pV p−1D2

xV
]
≤ β2 +

pα1

2
V p(x, y).

Therefore, we get for all ε ∈ (0, 1]

AV p(x, y) ≤ pβ1V
p−1(x, y) + β2 −

pα1

2
V p(x, y).

EJP 18 (2013), paper 81.
Page 31/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2031
http://ejp.ejpecp.org/


LDP for invariant distributions of memory gradient diffusions

Using again that lim|(x,y)|→+∞ V (x, y) = +∞, we deduce that pβ1V
p−1 ≤ β3 + pα1

4 V p and

we deduce there exist some positive β̃ and α̃ such that

∀ε ∈ (0, 1], ∀(x, y) ∈ R2d, AV p(x, y) ≤ β̃ − α̃V p(x, y).

Let us now consider (3.9) under assumption (HQ−). Here, we fix p ∈ (a − 1, a). Since
m ∈ (0, 1), we have that

−m〈x,∇U(x)〉−|y|2(1−m) ≤ mβ−mα(|x|2)a−(1−m)|y|2 ≤ β1−α1V
a(x, y) (β′ ∈ R, α′ > 0)

where in the second inequality, we used the elementary inequalities u2a ≤ 1 + u2 for
u ≥ 0 and (u + v)a ≤ ua + va for u, v ≥ 0, and the fact that V (x, y) ≤ C(1 + |x|2) + |y|2)

(|∇U |2 ≤ C(1 + U) implies that
√
U is sublinear).

Under (HQ−) we also have
sup
x∈Rd

‖D2
xV (x, y)‖ < +∞,

and since p ∈ 0, 1 we have

Tr
[
p(p− 1)V p−2∇xV ⊗∇xV + pV p−1D2

xV
]
≤ CV p−1(x, y).

This way, there exist α̃ > 0, β̃ such that for all ε ∈ [0, 1] and all (x, y), we have

AV p(x, y) ≤ β − αV p+a−1(x, y).

Now we prove inequality (3.10). One can check that

Aεψε =
δ

ε2
ψε

(
− pV p−1

(
m〈x,∇U(x)〉+ (1−m)|y|2

)
(B.2)

+
1

2
Tr
[
ε2
(
p(p− 1)V p−2 + δp2V 2p−2

)
∇xV ⊗∇xV + ε2pV p−1D2

xV
])

. (B.3)

We recall that ∇xV = ∇U +m(x−y) and that D2
xV = D2U +mId. Thus, using (HQ+)(ii)

and (HQ−)(ii), we obtain that when |(x, y)| → +∞,

(B.3) =

{
F1 + F2 under (HQ+)

F1 under (HQ−),

where F1 ≤ C(1 + V 2p−1) for a suitable constant C and F2/V
p → 0 as |(x, y)| → +∞.

Then, since 2p − 1 < p if p ∈ (0, 1) and that 2p − 1 < p + a − 1 if p < a, we obtain easily
(3.10) by following the lines of the part of the proof.
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