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1 Introduction and results

In this paper we deal with systems of independent simple random walks (SRWs) in Zd,
d ≥ 3. Initially we fix an infinite set S, 0 /∈ S, and we place one particle into each site
of S and into the origin; then each particle starts to perform a SRW independently of
the others. The models that we are considering here are conservative, i.e., particles
do not die and there is no influx of particles to the system (differently from e.g.
branching random walks). While the random walks themselves are independent, we
consider another types of interaction between the particles. Namely, to each particle
is assigned a spin (taking two possible values), and when two particles with different
spins meet, their spins may change according to some rules. Below we describe two
models which fit into this framework.

A competition model. At time 0 there is a blue particle in each site of S and a red
particle at the origin. Each of the particles performs a simple random walk with
continuous time with rate 1 independently of the others. If a blue particle jumps to
a site where there are some red particles, then all those particles become blue. If a
red particle jumps to a site that contains some blue particles, then all those become
red. The main question that we study here is whether the red particles survive with
positive probability.

Theorem 1.1 Let τ be the moment when the last red particle becomes blue. We have
that τ <∞ a.s. iff

∑

x∈S ‖x‖−(d−2) =∞.

An infection model. Here we again consider continuous time simple random walks,
and initially the particle from the origin is infected, while the other particles are
healthy. Infected particles transmit the infection to all the healthy particles they
meet, and there is no recovering.

Note that if the particles do not move until infected, then we obtain the frog
model, cf. [1, 2, 3, 6, 15, 16, 19]. For the present model (starting from a configuration
of constant density), linear growth results and shape theorems were obtained in [8,
9]. For other interacting particle systems on Zd modeling the spreading of different
infectious diseases see e.g. [10, 17] and references therein. The models investigated
there are related to the contact process.

In our infection model, analogously to [15], we are mainly interested in the follow-
ing question: will the origin be visited infinitely often by infected particles, almost
surely? Let us denote by GN = {x ∈ Zd : 2N ≤ ‖x‖ < 2N+1}, N = 1, 2, . . . (where
‖x‖ = (x2

1 + · · · + x2
d)

1/2). The following theorem gives sufficient conditions for the
process to be recurrent (i.e., an infinite number of infected particles visit the origin).
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Theorem 1.2 There exists a constant α = α(d) > 0 such that if

|GN ∩ S| ≥ α2N(d−2) (1.1)

for all N large enough, then

(i) each site of Zd will be visited by infected particles infinitely many times a.s.;

(ii) moreover, each particle will be infected a.s.

It is our conjecture that, analogously to Theorem 1.2, for the nonrecurrence of the
process it is enough that |GN ∩S| ≤ α′2N(d−2) for a small constant α′, for all N large
enough. However, at the present time we can only prove a weaker result. Suppose that
the initial configuration of healthy particles S is constructed by using the following
random procedure: for any x 6= 0, we put a particle there with probability q(x), and
leave it empty with probability 1− q(x).

Theorem 1.3 There exists a constant α′ = α′(d) > 0 such that if

q(x) ≤ α′

‖x‖2 (1.2)

for all x large enough, then the total number of visits of infected particles to the origin
will be finite a.s.

Analogously to Theorem 1.2 (ii), we can conjecture that if α′ is small enough,
then not every particle will be infected. However, the proof of that is still beyond
our reach.

Before going further, let us say a few words about the relationship of Theorems 1.2
and 1.3 with the corresponding results in [15] (besides the discrete time, which is really
not important, the only difference of the model of [15] from the present model is that
in the former one the particles begin to move at the moment they are infected). The
sufficient conditions for the transience (Theorem 1.1 (i) in [15] and Theorem 1.3 in
this paper) are similar; however, here the proof is considerably more difficult, since
the domination by branching random walk is not trivial. As for Theorem 1.2, it is
stronger than the corresponding result in [15], since here we are only interested in
the total number of particles inside GN , and so we permit that they “accumulate” in
some places of GN , leaving other regions of GN completely empty (which could not
happen in the situation of [15], where the initial configuration was always constructed
using the random procedure described before Theorem 1.3 here). In fact, it is not
difficult to construct an initial configuration S of healthy particles in such a way that
for that S the model with all the particles moving is recurrent, but the frog model
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is transient. For that it is enough to take S in such a way that (1.1) is satisfied
with a large α, but the points of GN ∩ S are so grouped together, that the set S is
not recurrent (i.e., with positive probability a SRW starting from the origin never
hits S). To understand this type of different behaviour of the two models, note that,
for the present model, even if initially some healthy particles were grouped together,
when the infection will come there they are likely to be much more scattered; that,
however, does not happen for the frog model.

One of the main tools in the proof of the above results is the following fact, which
may be of independent interest.

Theorem 1.4 The particle starting from the origin will a.s. meet only a finite num-
ber of particles starting from the sites of the set S iff

∑

x∈S

‖x‖−(d−2) <∞. (1.3)

Moreover, if (1.3) holds, then with positive probability the particle starting from the
origin will not meet any of the particles from S.

When the particles from S do not move, then the question of whether the particle
from 0 meets some other particle (in fact, whether it hits S) is answered by the
Wiener’s criterion (cf. e.g. [18]). This criterion is formulated in terms of capacities,
and its verification is usually much more difficult than that of the criterion given
by Theorem 1.4 (however, when the “trapping” set S is constructed using a random
procedure similar to that of Theorem 1.3, that question can be answered in a more
explicit way, cf. [7, 14]). On the other hand, if the particle from the origin is the only
one that does not move, then it is quite trivial to verify that the solution given by
Theorem 1.4 remains valid.

2 Proofs

This section is organized in the following way. First, we introduce some notations
and recall a few well-known facts about SRWs. Then, we prove Theorems 1.4, 1.1,
1.2, 1.3, in that order.

Denote by ξa(t) the position at the moment t of the particle that started the
continuous time SRW (with rate 1) from the site a. Also, denote by ξ̂n the discrete
time SRW. For x, y ∈ Zd, d ≥ 3, define the Green’s function G(x, y) by

G(x, y) = E
(

|{n ≥ 0 : ξ̂n = y}|
∣

∣ ξ̂0 = x
)

=
∞
∑

n=0

P[ξ̂n = y | ξ̂0 = x].
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It is known thatG(x, y) = G(0, x−y), thatP[ξ̂ ever hits y | ξ̂0 = x] = G(x, y)/G(0, 0),
and that G(0, x) ∼ γd‖x‖−(d−2) as x→∞ for some constant γd (cf. e.g. [11, 18]).

Note that, as ξa−ξb is in fact a SRW with rate 2 starting from a−b, the following
relation holds:

P[ξa(t) = ξb(t) for some t] = P[ξa(t) = b for some t] =
G(a, b)

G(0, 0)
. (2.1)

Throughout all proofs we denote by Da(r) = {x ∈ Zd : ‖x − a‖ ≤ r} and D(r) :=
D0(r). Then GN = D(2N+1) \D(2N).

Denote pt(x, y) = P[ξx(t) = y] = P[ξ0(t) = x − y]. We will need upper and
lower estimate on pt(x, y) in the spirit of the local CLT; however, we will not need
statements as strong as the local CLT itself. The following lemma can be deduced
from Proposition 1.2.5 and Lemma 1.5.1 of [11]. (The results of [11] are for discrete
time, but, for the needs of Lemma 2.1 below, the passage from discrete to continuous
time is rather straightforward. Note also that there is nothing mysterious about the
constant 8/5 in the lemma below; in Proposition 1.2.5 of [11] there is a parameter α
that should be strictly between 1/2 and 2/3, so we just took α = 5/8 for concreteness.)

Lemma 2.1 (i) There exists a constant θd such that

pt(0, x) ≤ θdt
−d/2e−

d‖x‖2

2t (2.2)

for t ≥ ‖x‖8/5, and
pt(0, x) ≤ θde

−‖x‖1/5 (2.3)

for t < ‖x‖8/5.

(ii) Suppose that L1‖x‖2 ≤ t ≤ L2‖x‖2 for some L1, L2 > 0. Then there exists a
constant θ′d = θ′d(L1, L2) such that

pt(0, x) ≥ θ′d‖x‖−d. (2.4)

Proof of Theorem 1.4. Suppose that
∑

x∈S ‖x‖−(d−2) < ∞. As, by (2.1), P[ξ0(t) =
ξz(t) for some t] ∼ γd‖z‖−(d−2)/G(0, 0), Borel-Cantelli lemma implies that a.s. the
particle from the origin will meet only finite number of other particles. In what
follows we prove that in this case it holds also that with positive probability that
particle will not meet anyone. Note that

∑

x∈S ‖x‖−(d−2) <∞ iff
∑

x∈S G(0, x) <∞.
Choose R in such a way that

∑

x∈S\D(R) G(0, x) < G(0, 0)/4, and define the process

ζt =
∑

x∈S\D(R)

G(0, ξx(t)).
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Consider the event B0 = {ζt ≤ G(0, 0)/2 for all t ≥ 0} (it is useful to keep in mind
that on the event B0 none of the particles starting from S \D(R) ever enters 0). As

G(0, x)− 1{x = 0} = 1

2d

∑

y:‖y−x‖=1

G(0, y),

the process ζt is a supermartingale, so we obtain that P[B0] ≥ 1/2.
Consider also the events

B1 = {ξ0(t) = 0 for all t ∈ [0, 1]},

B2 =
{

∑

x∈S∩D(R)

G(0, ξx(1)) <
G(0, 0)

2

and ξx(t) 6= 0 for all t ∈ [0, 1], x ∈ S ∩D(R)
}

.

Clearly, P[B1] > 0; since the set S ∩D(R) is finite, P[B2] > 0 as well. On the event
B0 ∩B1 ∩B2 at time 1 the particle from the origin is still the only infected one, and

∑

x∈S

G(0, ξx(1))

G(0, 0)
< 1. (2.5)

By (2.1), the probability that the particle starting from the origin ever meets the

particle starting from ξx(1) is G(0,ξx(1))
G(0,0)

, so (2.5) implies that, conditioned on B0 ∩
B1∩B2, with positive probability the particle starting from the origin will never meet
any of the particles starting from the sites of the set S. Now it only remains to note
that the events B0, B1, B2 are independent, so P[B0 ∩B1 ∩B2] > 0.

Now we are going to prove the “only if” implication in Theorem 1.4. First of all
we need the following elementary observation:

Lemma 2.2 If σ is a stopping time independent of the process ξx, then for any a 6= x

P[ξa(σ + t) = ξx(σ + t) for some t ≥ 0 | σ <∞]

≤ P[ξa(σ + t) = ξx(t) for some t ≥ 0 | σ <∞].

Proof. We have, by (2.1) and the fact that ξx is independent from σ and ξa,

P[ξa(σ + t) = ξx(σ + t) for some t ≥ 0 | σ <∞]

=
∑

z,z′∈Zd

P[ξa(σ) = z, ξx(σ) = z′ | σ <∞]P[ξz(t) = ξz
′

(t) for some t ≥ 0]
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=
∑

z,z′∈Zd

P[ξa(σ) = z, ξx(σ) = z′ | σ <∞]
G(z, z′)

G(0, 0)

= (P[σ <∞])−1
∑

z,z′∈Zd

∑

k

P[ξa(k) = z, ξx(k) = z′, σ = k]
G(z, z′)

G(0, 0)

= (P[σ <∞])−1
∑

z,z′∈Zd

∑

k

P[ξa(k) = z, σ = k]P[ξx(k) = z′]
G(z, z′)

G(0, 0)

= (P[σ <∞])−1
∑

z∈Zd

∑

k

P[ξa(k) = z, σ = k]
∑

z′∈Zd

P[ξx(k) = z′]
G(z, z′)

G(0, 0)

= (P[σ <∞])−1
∑

z∈Zd

∑

k

P[ξa(k) = z, σ = k]P[ξx(t) = z for some t ≥ k]

≤ (P[σ <∞])−1
∑

z∈Zd

∑

k

P[ξa(k) = z, σ = k]P[ξx(t) = z for some t ≥ 0]

= (P[σ <∞])−1
∑

z∈Zd

∑

k

P[ξa(k) = z, σ = k]

×P[ξx(t) = ξz(t) for some t ≥ 0]

= P[ξa(σ + t) = ξx(t) for some t ≥ 0 | σ <∞],

which proves Lemma 2.2.

Using this observation, let us prove the following two lemmas.

Lemma 2.3 For some fixed integer κ > 1, suppose that a ∈ D(2κ(i−1)) and b ∈
D(2κi+1) \ D(2κi), and denote σ := inf{t : ‖ξa(t)‖ ≥ 2κ(i+1)}. Then there exists κ0

such that for all κ ≥ κ0 the following inequality holds

P[ξa(t0) = ξb(t0) for some t0 < min{22κ(i+1), σ}] ≥ γ′

(2κi)d−2
(2.6)

for some γ ′ > 0 and all i.

Proof. Note that the number of jumps of SRW with continuous time with rate 2
until the moment t = 22κ(i+1) will be at least 22κ(i+1) with probability at least 1/2
(in fact, it will be so with probability very close to 1 for κ large). Observe also that
‖a− b‖ ≤ 2κi(2 + 2−κ) <

√
22κi+3 for large enough κ. So, using Theorem 2.2 from [1]

(it says that the probability that SRW hits a point which is h units away until the
time h2 is of order O(h−(d−2))), we get that

P[ξa(t0) = ξb(t0) for some t0 < 22κ(i+1)]
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≥ 1

2
P[ξ̂n0 = b− a for some n0 < 22κi+3 | ξ̂0 = 0]

≥ K1

(2κi)d−2
,

(recall that ξ̂ is the discrete time SRW) where K1 does not depend on κ. Also,
using (2.1), Lemma 2.2 and the fact that

inf
z /∈D(2κ(i+1))

‖b− z‖ ≥ 2κi(2κ − 2)

we get

P[ξa(t0) = ξb(t0) for the first time for some t0 > σ]

≤ P[ξa(σ + t) = ξb(σ + t) for some t ≥ 0 | σ <∞]

≤ P[ξa(σ + t) = ξb(t) for some t ≥ 0 | σ <∞]

≤ K2

(2κi(2κ − 2))d−2
=

K3

(2κi)d−2
,

where K3 can be made arbitrarily small by choosing κ large enough. So,

P[ξa(t0) = ξb(t0) for some t0 < min{22κ(i+1), σ}
≥ P[ξa(t0) = ξb(t0) for some t0 < 22κ(i+1)]

−P[ξa(t0) = ξb(t0) for the first time for some t0 > σ]

≥ K1 −K3

(2κi)d−2
≥ γ′

(2κi)d−2

for some γ ′ > 0. Lemma 2.3 is proved.

Lemma 2.4 If ‖a− b‖ ≥ x0 and ‖a− u‖ ≥ x0, then there exists γ ′′ > 0 such that

P[ξa(t) = ξb(t) for some t and ξa(t′) = ξu(t′) for some t′] ≤ γ′′

x2d−4
0

for all x0 large enough.

Proof. We have

P[ξa(t) = ξb(t) for some t and ξa(t′) = ξu(t′) for some t′]

= P[ξa(t0) = ξb(t0) /∈ Du(x0) for some t0

and ξa(t) = ξu(t) for the first time for some t ≥ t0]
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+P[ξa(t0) = ξb(t0) ∈ Du(x0) for some t0

and ξa(t) = ξu(t) for the first time for some t ≥ t0]

+P[ξa(t0) = ξu(t0) /∈ Db(x0) for some t0

and ξa(t) = ξb(t) for the first time for some t > t0]

+P[ξa(t0) = ξu(t0) ∈ Db(x0) for some t0

and ξa(t) = ξb(t) for the first time for some t > t0]

= I1 + I2 + I3 + I4. (2.7)

Clearly, it is sufficient to estimate the terms I1 and I2. Define the stopping time σ
by σ = inf{t : ξa(t) = ξb(t)} and put zσ := ξa(σ). The term I1 can be estimated as
follows. By (2.1), Lemma 2.2, and observing that ‖u− zσ‖ ≥ x0, we have

I1 ≤ P[ξa(σ + t) = ξu(σ + t) for some t ≥ 0, zσ /∈ Du(x0) | σ <∞]

×P[σ <∞]

≤ P[ξzσ(t) = ξu(t) for some t ≥ 0, zσ /∈ Du(x0) | σ <∞]P[σ <∞]

≤ K4

x
2(d−2)
0

, (2.8)

for some K4 > 0 not depending on x0. The bound for I2 is more complicated. Define
the random variable N(z) as the number of encounters in z between the particles
starting from a and b:

N(z) = sup{i ≥ 0 : there exist t1 < t′1 < . . . < ti < t′i :

ξa(tj) = ξb(tj) = z, ξa(t′j) 6= ξb(t′j), j = 1, . . . , i}.

Put ρ1 = ‖a−z‖, ρ2 = ‖b−z‖, s :=
(ρ2

1+ρ2
2)d

2t
. Observe that ρ21+ρ22 ≥ x2

0/2 = ‖a−b‖2/2.
By (2.1), Lemma 2.2, and using Lemma 2.1 (i), we get

I2 ≤
∑

z∈Du(x0)

P[ξu(t) = z for some t]P[σ <∞, ξa(σ) = z]

≤
∑

z∈Du(x0)

P[ξu(t) = z for some t]EN(z)

≤ K5

∑

z∈Du(x0)

P[ξu(t) = z for some t]E
(

∞
∫

0

1{ξa(t) = ξb(t) = z}dt
)

≤
∑

z∈Du(x0)

K6

‖u− z‖d−2
(

∞
∫

0

t−de−
ρ21d

2t e−
ρ22d

2t dt+O(‖x0‖8/5e−‖x0‖1/5)
)
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=
∑

z∈Du(x0)

K6

‖u− z‖d−2
(

∞
∫

0

(ρ21 + ρ22)s
d−2

21−d(ρ21 + ρ22)
d
e−s ds+O(‖x0‖8/5e−‖x0‖1/5)

)

≤ K7x
2
0

x2d
0

∑

z∈Du(x0)

1

‖u− z‖d−2 . (2.9)

Since
∑

z∈Du(x0)

1

‖u− z‖d−2 = O(x2
0),

using (2.9) we conclude the proof of Lemma 2.4.

Now we continue the proof of Theorem 1.4. Let us define the stopping times

τ0 = 0,

τi = min{22κi, inf{t : ξ0(t) /∈ D(2κi − 1)}}.

Fix ε < γ′

2(γ′′)2
, where γ ′ is the constant from Lemma 2.3 and γ ′′ is the constant

from Lemma 2.4. Define also the sets S̃ε
i = S ∩ Gκi, if |S ∩ Gκi| < ε2(κi)(d−2), and

if |S ∩ Gκi| ≥ ε2(κi)(d−2), then to construct the set S̃ε
i we remove some points from

S ∩Gκi in such a way that |S̃ε
i | = [ε2(κi)(d−2)].

Define the sequence of events

Ai = {ξ0(t) = ξb(t) for some t ∈ (τi−1, τi+1] for at least one b ∈ S̃ε
i },

Let F i
t be the sigma-field generated by the collection of random variables ξa′(s) for

0 ≤ s ≤ t and a′ ∈ D(2κi+1) ∩ S.
By virtue of two previous lemmas we show the following result.

Lemma 2.5 There exists L0 = L0(S) such that

P[Ai | F i−1
τi−1

] ≥ L0|S̃ε
i |

2(κi)(d−2)
.

Proof. By CLT it is elementary to obtain that the SRW originating from b ∈ Gκi

will still be in Gκi at the moment τi−1 with probability bounded away from zero by
some constant K8 for all k and all i. We will denote the set of such particles by
S̄ε
i = {b : b ∈ S̃ε

i , ξ
b(τi−1) ∈ Gκi}. Then there exists a constant K9 such that

P(|S̄ε
i | > K8|S̃ε

i |/2) ≥ 1− exp(−K9S̃
ε
i ) ≥ 1− exp(−K9) =: K10 (2.10)

for all |S̃ε
i | ≥ 1.
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For all b ∈ S̃ε
i let us introduce the event Eb = {ξ0(t) = ξb(t) for some t ∈

(τi−1, τi+1]}. Using Lemmas 2.3 and 2.4, we obtain for any a ∈ D(2κ(i−1)), 0 <
m < |S̃ε

i |, and B ∈ F i−1
τi−1

that

P[Ai | B ∩ {ξ0(τi−1) = a} ∩ {|S̄ε
i | = m}]

≥ P
[

⋃

b∈S̄εi

Eb | B ∩ {ξ0(τi−1) = a} ∩ {|S̄ε
i | = m}

]

≥
∑

b∈S̄εi

P[Eb | B ∩ {ξ0(τi−1) = a} ∩ {|S̄ε
i | = m}]

−
∑

b,u∈S̄εi

P[Eb ∩ Eu | B ∩ {ξ0(τi−1) = a} ∩ {|S̄ε
i | = m}]

≥
∑

b∈S̄εi

γ′

2κi(d−2)
−

∑

b,u∈S̄εi

(γ′′)2

22κi(d−2)
= m

γ′

2κi(d−2)

(

1− m(γ′′)2

2κi(d−2)γ′

)

≥ m

2κi(d−2)
γ′
(

1− ε(γ′′)2

γ′

)

=
K11m

2(κi)(d−2)
,

where 1− ε(γ′′)2

γ′
> 0 due to the choice of ε. It follows that

P[Ai | B ∩ {|S̄ε
i | = m}] ≥ K11m

2(κi)(d−2)
.

Then by (2.10)

P[Ai | B] ≥ K11(K8/2)|S̃ε
i |K10

2(κi)(d−2)
.

So, Lemma 2.5 is proved.

Now we are able to finish the proof of Theorem 1.4. If
∑

x∈S ‖x‖−(d−2) =∞, then

∑

x∈S

‖x‖−(d−2) ≤
κ−1
∑

m=0

∞
∑

i=0

|S ∩Gκi+m|
(2κi+m)d−2

=∞

for any κ ∈ N. So, let us choose κ according to Lemma 2.3 and observe that there
exists m0 ∈ {0, . . . , κ− 1} such that

∞
∑

i=0

|S ∩Gκi+m0 |
(2κi+m0)d−2

=∞.

Without loosing of generality, suppose that m0 = 0 (for the other cases, the proof is
quite analogous). Moreover, in this case at least one of the series

∞
∑

i=0

|S̃ε
2i|

(22κi)d−2
,

∞
∑

i=0

|S̃ε
2i+1|

(2κ(2i+1))d−2
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diverges, and we suppose without loss of generality that the first one does.
Observe also that, by Lemma 2.5 and by the fact that Aj only depends on the

paths of the particles originating from D(2κj) until the moment τj+1 it holds that

P[A2i | A2i−2, . . . , A2] ≥
L0|S̃ε

2i|
22κi(d−2)

. (2.11)

Now, consider the path ξ0 of the particle from the origin. Using (2.11), we see that

P[ξ0(t) = ξb(t) for some t ≥ 0 for at least one b ∈ S]

≥ 1−
∞
∏

i=1

P[A2i | A2i−2, . . . , A2]

≥ 1−
∞
∏

i=1

(

1− L0|S̃ε
2i|

22κi(d−2)

)

= 1, (2.12)

which shows that the particle from the origin will a.s. meet someone. It is elementary
to get that if initially

∑

x∈S ‖x‖−(d−2) =∞, then for any t ≥ 0 and y ∈ Zd

∑

x∈S

‖y − ξx(t)‖−(d−2) =∞ a.s. (2.13)

Indeed, for any t and y fixed there exists a constant h = h(t, y) > 0 such that for all
x with ‖x‖ large enough P[‖y − ξx(t)‖ > 2‖x‖] ≤ e−h‖x‖. Then

P[there exists x ∈ S ∩Gi : ‖y − ξx(t)‖ > 2‖x‖] ≤ 2(i+1)de−h2i .

Then, by Borel-Cantelli lemma,

P
[

there exists m0 : ‖y − ξx(t)‖ < 2‖x‖ for all x ∈
∞
⋃

i=m0

S ∩Gi
]

= 1.

Hence, the series
∑

x∈S ‖y − ξx(t)‖−(d−2) ≥∑

x∈
⋃∞
i=m0

S∩Gi(2‖x‖)−(d−2) diverges.
Then (2.13) immediately implies that the particle from the origin will a.s. meet

an infinite number of other particles, and so the proof of Theorem 1.4 is concluded.

Proof of Theorem 1.1. If
∑

x∈S ‖x‖−(d−2) <∞, then by Theorem 1.4 the red particle
(the one that starts at the origin) will not meet anyone with positive probability, so
Theorem 1.1 is immediate in this case.

Now, let
∑

x∈S ‖x‖−(d−2) = ∞. Suppose that with positive probability red par-
ticles survive forever. Then by Theorem 1.4 and (2.13) the number of collisions
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between blue and red particles is infinite with positive probability and then the num-
ber of red particles changes infinitely often. Clearly, the number of red particles is a
non-negative martingale. It converges a.s. to some random variable. So, from some
random moment of time the number of red particles should be constant, which leads
to a contradiction. Thus red particles die a.s.

Proof of Theorem 1.2. By Theorem 1.4 a particle starting from the origin will infect
infinitely many particles a.s. Then for any M0 > 0 by some random moment of time
there will be at least M0 infected particles. At that moment, those particles are
contained in the ball D(2n) for all large enough n. With the help of CLT it is not
difficult to see that for any n > 0, any x ∈ D(2n) and any t < 22n

P[ξx(t) ∈ D(2n)] > δ (2.14)

for some δ > 0. Then there is h∗ > 0 such that with probability greater than
1 − e−h∗M0 at least M := δM0/2 of these particles will be in D(2n) at the moment
22n.

In the following lemma we show that if n is chosen large enough compared to M ,
then with probability exponentially large in M within the time interval [22n, 22(n+1)]
these M particles will infect at least (2d−2+1)M particles originated from Gn = {x :
2n ≤ ‖x‖ < 2n+1} and being in D(2n+1) at the moment 22(n+1).

For any H ⊂ S define the H-restriction of the process of infection spreading as the
process with the initial configuration H of healthy particles. Clearly, the H-restricted
process can be coupled with the original process in such a way that at each moment
the set of infected particles in the original process contains the set of infected particles
in the H-restricted process. Let us introduce the events

A(L, n) = {at moment 22n for the S ∩D(2n)-restricted process

there are at least L infected particles in D(2n)},
Ã(L, n) = {at moment 22n for the S ∩D(2n)-restricted process

there are at least L infected particles

originating from Gn−1 in D(2n)}.

The following fact is the key to the proof of Theorem 1.2.

Lemma 2.6 Assume that the constant α > 0 in (1.1) is fixed large enough. Then
there exist h,Γ > 0 such that for all M and n verifying M2−n(d−2) < Γ we have

P[Ã((2d−2 + 1)M,n+ 1) | A(M,n)] ≥ 1− exp(−hM). (2.15)

Before proving the lemma, let us first finish the proof of the theorem assuming that
Lemma 2.6 holds true. Suppose that the event Ã(M(2d−2 + 1), n+ 1) have occurred
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(by Lemma 2.6, the probability of that is at least 1−exp(−hM)), and let us split the
set of these M(2d−2 + 1) particles into two sets A1 of M2d−2 and B1 of M particles
respectively; then apply (2.15) to A1 in D(2n+1). Since, by construction, the events
A(·, n), Ã(·, n) do not depend on the particles which were originally outside D(2n),
applying Lemma 2.6 (with A(M,n) substituted by A(M2d−2, n + 1) and Ã((2d−2 +
1)M,n+ 1) substituted by Ã((2d−2 + 1)2d−2M,n+ 2)), we obtain the following fact:
With probability greater than 1− exp(−hM2d−2) within the period [22(n+1), 22(n+2)]
the particles of A1 will contaminate at least M2d−2(2d−2+1) particles originated from
Gn+1 and situated in D(2n+2) at the moment 22(n+2). We split this set into two subsets
A2 of M22(d−2) and B2 of M2(d−2) particles and “send” the particles of the first set
to infect those originated from Gn+2. On the ith step of this infection spreading by
the time 22(n+i) there will be at least |Ai| = M2(i−1)(d−2)2d−2 plus |Bi| = M2(i−1)(d−2)

infected particles in D(2n+i) originated from Gn+i−1 with conditional probability at
least 1− exp(−hM2(i−1)(d−2)). The particles of Ai are supposed to contaminate the
next ones originated from Gn+i. Now let us consider the infected particles from the
sets Bi. Note that a particle from Bi is found in D(2n+i) (at time 22(n+i)) after
being infected. Then the probability that it will reach the origin 0 ∈ Zd after, is at
least O(2−(n+i)(d−2)). Since the series

∑∞
i=1 |Bi|2−(n+i)(d−2) diverges, then by Borel-

Cantelli lemma infinitely many of infected particles from ∪iBi will visit the origin a.s.
conditionally that the process of infection spreading by the sets Ai succeeds. Notice,
however, that it fails with probability at most 1 −∏∞

i=0(1 − exp(−hM2(d−2)i)) → 0
as M →∞. Since the choice of M is arbitrary, the origin will be visited by infinitely
many infected particles a.s. The same argument applies indeed for any point of Zd

finishing the proof of the statement (i) of the theorem.
Let us also derive from this reasoning the proof of (ii). Let us fix the trajec-

tory ξx(t) of the particle starting from the point x. Assume that it is in D(2n+i)
at time 22(n+i). At that moment there are M2(i−1)(d−2) infected particles of Bi in
D(2n+i). Observe also that all of them are at the distance at most 2n+i+1 from
ξx(22(n+i)). Analogously to Lemma 2.5 one can show that the probability that at
least one of those particles will infect the particle starting from x is greater than
1 − (1 − O(2−(n+i)(d−2)))M2(i−1)(d−2)

> δ > 0 with some δ = δ(M), for all i. Hence,
if ξx(22(n+i)) ∈ D(2n+i) happens for infinitely many i and the process of infection
spreading by Ai succeeds, the probability that no particle of ∪iBi infects the particle
from x is zero. On the other hand, it is elementary to see that there exists δ0 < 1
such that for any n, i, x̃ there exists m0 ≥ 1 such that

P[‖ξ(22(n+i+m0))‖2−(n+i+m0) ≥ 1 | ξ(22(n+i)) = x̃] ≤ δ0.

(Clearly, one can estimate this probability applying CLT to the vector ξ(22(n+i+m0))−
ξ(22(n+i)).) Then immediately lim inf i→∞ ‖ξ(22(n+i))‖2−(n+i) < 1 a.s. Thus, ξx will be
infected with probability 1, and the proof of Theorem 1.2 is finished.
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Proof of Lemma 2.6. Let us fix the trajectories of M infected (by the time 22n) par-
ticles starting from x1, . . . , xM within the time interval [22n, 22(n+1)]. We can regard
the set of those trajectories as a random space-time set WM of triples (y, T1, T2),
[T1, T2] ⊂ [22n, 22(n+1)]. Formally, the set WM can be described as follows: suppose
that the particle from xi were at y0i at the moment 22n. Suppose also that the subse-
quent evolution of that particle was the following: at moments T j

i , j = 1, . . . , ni−1, it
jumped from yj−1

i to yj
i , and there were no jumps in the time interval (T ni−1

i , 22(n+1)].
Put also T 0

i := 22n, T ni
i := 22(n+1), i = 1, . . . ,M . Then we define

WM = {(yj
i , T

j−1
i , T j

i ), i = 1, . . . ,M, j = 1, . . . , ni}.

Next, we modify the set WM by deleting from there all triples with y 6∈ D(2n+1)
leaving thus only pieces of trajectories of these particles which are contained in
D(2n+1). We say that a particle originated from x reaches WM and write x → WM

if there exists a triple (y, T1, T2) ∈WM such that ξx(t) = y for some t ∈ (T1, T2]. Let
us denote by PWM

the conditional probability when WM is fixed. The goal is to show
that there are some constants K1, h1 > 0 and ε > 0 such that for any x ∈ Gn, any
M and n with M2−n(d−2) < ε

P
[

WM : PWM
[x→ WM ] > K1M2−n(d−2)

]

≥ 1− exp(−h1M). (2.16)

Before starting the proof of the above inequality, assume first that (2.16) holds.
Then it is not difficult to finish the proof of the lemma. Consider a space-time set
WM such that the probability to reach it by any particle originated from Gn is at least
K1M2−n(d−2). The key observation here is that, for fixed WM , the events {x→ WM},
x ∈ S∩Gn, are conditionally independent. By the assumption of the theorem, initially
there are at least α2n(d−2) particles in Gn. Then by elementary exponential bounds
for sums of independent Bernoulli random variables, with probability greater than
1− exp(−h2αK1M) (where h2 > 0 is some constant not depending on M and n) at
least K1M2−n(d−2) × α2n(d−2)/2 = αK1M/2 of these particles will reach WM . Using
the observation (2.14) and the same tool again we derive that at least δαK1M/4 of
these particles will be located in D(2n+1) at the moment 22(n+1) with probability at
least 1− exp(−h3αK1M) where h3 > 0 does not depend on M and n. Then in view
of (2.16)

P[Ã(δαK1M/4, n+ 1) | A(M,n)]

≥ (1− exp(−h1M))(1− exp(−h2αK1M))(1− exp(−h3αK1M)).

Finally, it suffices to fix the constant α in (1.1) in such a way that δαK1/4 > 2d−1+1,
which would conclude the proof of the lemma.
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Thus, the proof of Lemma 2.6 is reduced to showing (2.16). To start with, let
us split Zd into cubes of side 22n/d, and consider those that lie fully inside the ball
D(2n+1). Then the volume of each cube is 22n and there are at most ` = O(2n(d−2))
of them; we will refer to those cubes as K1, . . . ,K`. Consider the space-time sets WM

satisfying the following property (P) with some constant 0 < γ̃ < 1:

(P): During at least half of the time within the period [22n+1, 22n+2] at least γ̃M
different cubes of D(2n+1) are occupied by points of WM .

Now we will show that

(i) There exists a positive constant K1 (depending on γ̃) such that for any x ∈
Gn and any WM satisfying the property (P) it holds that PWM

[x → WM ] ≥
K1M2−n(d−2).

(ii) There exists a positive constant h1 (depending on γ̃) such that the probability
that the set WM satisfies the property (P) is at least 1− exp(−h1M).

To proceed with (i), let us take WM satisfying (P). Let us say that a space-
time set W̃M is “smaller” than WM if for any triple (y, T̃1, T̃2) ∈ W̃M there exists
(y, T1, T2) ∈WM such that (T̃1, T̃2] ⊂ (T1, T2]. Then

PWM
[x→ WM ] ≥ PW̃M

[x→ W̃M ]. (2.17)

We construct W̃M from WM by deleting pieces of trajectories of M particles in such
a way that at any moment of time, in each cube containing more than one point
of WM it remains exactly one point. For this purpose let us enumerate M particles
and leave in each cube and at each moment of time only the one with the smallest
number. In other words, if (y1, T1, T2), (y2, T3, T4) ∈ WM such that y1, y2 belong to
the same cube and if moreover (T3, T4] ⊂ (T1, T2] then we delete (y2, T3, T4) from WM ,
if T1 < T3 < T2 < T4 then we replace the second triple by (y2, T2, T4). In view of
(2.17) it suffices to show (i) for this smaller set W̃M .

Let us denote by Et(x → W̃M) the expectation of the total time spent in W̃M

after the moment t by a particle being in x at time t. Then

Et(x→ W̃M) =
∑

(y,T1,T2)∈W̃M

E

∫ (T2−t)+

(T1−t)+
1[ξx(s) = y] ds

=
∑

(y,T1,T2)∈W̃M

∫ (T2−t)+

(T1−t)+
P[ξx(s) = y] ds. (2.18)
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We have
E0(x→ W̃M) ≤ PW̃M

[x→ W̃M ] sup
(y,T1,T2)∈W̃M

ET1(y → W̃M),

so

PW̃M
[x→ W̃M ] ≥ E0(x→ W̃M)

sup
(y,T1,T2)∈W̃M

E0(y → W̃M)
. (2.19)

We will show that the denominator in (2.19) is bounded from above by some constant
for all M and n, while the numerator is O(M2−n(d−2)).

Let us estimate the denominator. Using the fact that at each moment of time
there is at most one point of W̃M in each of Ki-s, we can write

E0(y → W̃M) =
∑̀

i=1

∑

(z,T1,T2)∈W̃M :
z∈Ki

∫ T2

T1

P[ξy(s) = z] ds

≤
∑̀

i=1

∫ +∞

0

sup
z∈Ki

P[ξy(s) = z] ds.

By Lemma 2.1 (i)

∫ +∞

0

sup
z∈Ki

P[ξy(s) = z] ds ≤ K2

(

min
z∈Ki

‖y − z‖
)−(d−2)

for some constant K2 > 0. Then there is a constant K3 > 0 such that for any
j = 1, 2, . . ., any n and any point z satisfying j22n/d ≤ ‖z−y‖ < (j+1)22n/d, it holds
that the mean number of visits to z starting from y does not exceed K3(j2

2n/d)2−d.
The number of cubes of side 22n/d touching D((j+1)22n/d)\D(j22n/d) in Zd is smaller
than K4j

d−1 with some K4 > 0 for all j = 1, 2, . . . all n and all y. Note also that there
is at most one particle in W̃M at distance smaller than 22n/d and the mean number
of visits to it is bounded by some constant K5 > 0. Since there are no particles in
W̃M outside D(2n+1), then the maximal distance between any two points of W̃M is
2n+2 = j22n/d with j = 2n(1−2/d)+2. Thus the denominator in (2.19) is bounded by
the constant

K5 +
2n(1−2/d)+2
∑

j=1

K3K4j
d−1(j22n/d)2−d = K5 +K3K42

−n(2−4/d)

2n(1−2/d)
∑

j=1

j ≤ K6

for all n. Let us remark that it was essential to obtain this estimate that in each cube
there is at most one particle of W̃M . Otherwise, if we allowed particles to accumulate
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in one cube in big amount (e.g. growing with M), then a particle starting from this
cube would reach such a space-time set for a mean number of times rather large
(growing with M).

Now let us deal with the numerator in (2.19). Note that the validity of the
property (P) for W̃M ensures that in W̃M there are at least γ̃M points during a large
part of time. This will be crucial in the estimate of the numerator. First, applying
Lemma 2.1 (ii), we deduce from the property (P) that

E0(x→ W̃M)

≥
∑

(z,T1,T2)∈W̃M

∫ T2

T1

P[ξx(s) = z] ds

≥ K72
−2dn

∫ 22n+2

22n+1

|{(z, T1, T2) ∈ W̃M : T1 ≤ s ≤ T2}| ds

≥ K72
−2dn

∫ 22n+2

22n+1

γ̃M1
{

|{(z, T1, T2) ∈ W̃M : T1 ≤ s ≤ T2}| ≥ γ̃M
}

ds

≥ K8M2−(d−2)n

with some positive constants K7, K8 as ‖x− z‖2/t is bounded uniformly for all x, z ∈
D(2n+1) and t ∈ [22n+1, 22n+2]. So, the probability (2.19) is limited from below by
K8γ̃M2−n(d−2)/K6 for all WM verifying (P). This finishes the proof of (i).

Finally, we concentrate on (ii). From Lemma 2.1 (ii) it follows that there ex-
ists β > 0 such that for any n, any cube K of side 22n/d in {(3/2)2n ≤ ‖x‖ ≤ 2n+1}
the probability to be in this cube at time t for a particle starting at time 22n from
any point in D(2n) is greater than β2−n(d−2) for all t ∈ [22n+1, 22n+2]. Thus at any
moment of time t ∈ [22n+1, 22n+2], M particles of WM are distributed throughout
K92

n(d−2) cells (cubes) (K9 > 0 is some constant) of {(3/2)2n ≤ ‖x‖ ≤ 2n+1}; the
probability for each particle to be in a given cell is greater than β2−n(d−2). Assume
that n is such that K92

n(d−2) = Γ̂M with some Γ̂ > 0. Then we have to estimate the
number of non-empty cells in an easy combinatorial problem: each of M particles
goes to each of Γ̂M cells independently of the others with probability βK9/Γ̂M , or
disappears with probability 1 − βK9. It is elementary to verify that for all small
enough γ̃ = γ̃(β,K9, Γ̂) > 0 there exists h = h(γ̃) > 0 such that at least γ̃M cells are
occupied with probability greater than 1 − exp(−hM). Furthermore, if the number
of cubes K92

n(d−2) > Γ̂M then we can group some cubes together in order to form
“exactly” Γ̂M cubes of the same volume and then apply the previous estimate. In-
deed, if the number of non-empty cubes in this coarser partition is bigger than γ̃M
than the same is true for the initial partition. Therefore for any M and n such that
K92

n(d−2) ≥ Γ̂M and at any moment of time t ∈ [22n+1, 22n+2] at least γ̃M cubes
are occupied by particles with probability greater than 1 − exp(−hM). Now let us
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construct a random variable ζWM
(t) taking the value 1 if at time t at least γ̃M cubes

contain particles of WM and the value 0 otherwise. Then EζWM
(t) ≥ 1− exp(−hM)

for any t ∈ [22n+1, 22n+2]. Let ζ̃WM
= 2−2n−1

∫ 22n+2

22n+1 ζ(s) ds be the proportion of time
within the interval [22n+1, 22n+2] when at least γ̃M cubes contain particles of WM . It
is elementary to see from the facts ζ̃WM

≤ 1 and Eζ̃WM
≥ 1− exp(−hM) that

P[ζ̃WM
> 1/2] ≥ 1− 2 exp(−hM).

Now it is straightforward to notice that the event {ζ̃WM
> 1/2} means that the

property (P) is verified for WM . Thus, (ii) is proven, and so the proof of Lemma 2.6
is finished.

Proof of Theorem 1.3. Similarly to the proof of the corresponding statement in [15],
the idea is to dominate the process of spreading of infection by a branching random
walk. However, here this comparison is not so straightforward as in [15]. The key to
the proof of Theorem 1.3 is the following fact:

Lemma 2.7 Suppose that the initial configuration of particles is sampled accordingly
to product measure Pq = ⊗x∈ZdP(q(x)), where P(λ) stands for the Poisson distri-
bution with parameter λ. Let F̃t be the σ-field generated by the process of infection
spreading up to time t and ηt(x) be the number of healthy particles at site x at time
t. Then, at each t, the field {ηt(x)}x∈Zd is dominated by a field {η̂t(x)}x∈Zd which is
independent of F̃t and has the law Pqt, where qt(x) =

∑

y pt(y, x)q(y).

Proof. Let W be the set of all finite trajectories until time t. We can represent the
elements of W as w = (x1, . . . , xn; t1, . . . , tn−1) where xi ∈ Zd, ‖xi − xi−1‖ = 1, and
ti-s are the moments of jumps from xi to xi+1, 0 < t1 < t2 < · · · < tn−1 ≤ t. If
w = (x1, . . . , xn; t1, . . . , tn−1), then we say that |w| = n. For 0 ≤ s ≤ t let w(s) be
the position of the trajectory at time s (i.e., w(s) = xi, if ti−1 ≤ s < ti, w(s) = x1, if
s < t1, w(s) = xn, if s ≥ tn−1). Let also

Wx,n = {w ∈ W : w(0) = x, |w| = n} = Sx,n × Tn,

where Sx,n are all discrete-time trajectories of length n beginning in x, and Tn =
{(t1, . . . , tn−1) : 0 < t1 < t2 < · · · < tn−1 ≤ t} ⊂ Rn−1 for n > 1, and T1 = ∅. Clearly,
any measure Λ on W = ∪x,nWx,n has the property Λ(A) =

∑

x,n Λ(A∩Wx,n), A ∈ W.
So, it is sufficient to define Λ on A = ν ×A0, where ν ∈ Sx,n, A0 ⊂ Tn. We set then,
for ν ∈ Sx,n, A0 ⊂ Tn, and n > 1

Λ(ν × A0) :=
q(x)e−t|A0|
(2d)n−1

(2.20)
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(here | · | stands for the Lebesgue measure in Rn−1), and Λ(ν × A0) = q(x)e−t for
n = 1.

Now we go back to the process of infection spreading and let us denote by η̃t(x)
the number of (both healthy and infected) particles at site x at time t. Then it is not
difficult to see that the process {η̃s(x)}x∈Zd,s∈(0,t) can be viewed as a Poisson point
process on W with parameter measure Λ(·) (cf. e.g. Section 2.4 of [4] for the theory
of general Poisson processes). To give a heuristic explanation of that fact, note that
the quantity in (2.20) should be equal to the mean number of particles starting in x
that follow the same fixed trajectory ν of (discrete) length n and have the vector of
times of jumps belonging to A0. Since the moments of jumps of a given particle form
one-dimensional Poisson process with rate 1, the probability that there are n − 1
jumps within the time interval [0, t] is tn−1

(n−1)!
e−t. The factor 1/(2d)n−1 corresponds

to the probability of the fixed discrete-time trajectory ν. Then, recall the fact that
conditioned on the event that a one-dimensional Poisson process has k points on some
interval, those points are independent and have uniform distribution. Since in Tn the
coordinates are ordered, this gives rise to the factor (n−1)!|A0|

tn−1 , so, gathering the pieces,
we arrive to (2.20). Then, for A ⊂ W let N(A) be the random set of the points of
the Poisson process which lie inside the set A, and N(A) stands for the cardinality
of the set N(A).

Now, to prove Lemma 2.7 we use the method similar to the generations method
in percolation (cf. e.g. [12]). Denote

T (w1, w2;u) = inf{s : u < s ≤ t, w1(s) = w2(s)},

and T (w1, w2;u) = ∞ if such s does not exist, so T (w1, w2;u) can be interpreted as
the first moment in the interval [u, t] when the trajectory w1 meets w2.

Let B0 = W0 := ∪nW0,n. If N(B0) = 0, then we stop.

If N(B0) = k0 ≥ 1, write N(B0) = {w0
1, . . . , w

0
k0
}. Define

B1 =

k0
⋃

i=1

{w ∈ W \ B0 : T (w,w0
i ; 0) <∞}.

If N(B1) = 0, then stop.

If N(B1) = k1 ≥ 1, then suppose that N(B1) = {w1
1, . . . , w

1
k1
} and define u1

i :=
minj T (w

1
i , w

0
j ; 0). Define also

B2 =

k1
⋃

i=1

{w ∈ W \ {B0 ∪ B1} : T (w,w1
i ;u

1
i ) <∞}.
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If N(B2) = 0, then stop.

If N(B2) = k2 ≥ 1, then suppose that N(B2) = {w2
1, . . . , w

2
k2
} and define u2

i :=
minj T (w

2
i , w

1
j ;u

1
i ). This construction is then repeated until certain instant n∗ when

it stops (in fact, an elementary percolation argument, similar to that of [5], implies
that n∗ is finite a.s., but we do not really need that).

Denote B = ∪nBn. By construction, N(B) is the set of the trajectories infected
until time t, and the key observation here is that B is independent of N(W \ B). Let
N′(W) be another Poisson point process with parameter measure Λ, independent of
the first one, and N ′(·) := |N′(·)|. Define

η̂t(x) = N({w : w(t) = x,w /∈ B}) +N ′({w : w(t) = x,w ∈ B}).

Since ηt(x) = N({w : w(t) = x,w /∈ B}), it is clear that {ηt(x)}x∈Zd is dominated
by {η̂t(x)}x∈Zd ; by the above observation, {η̂t(x)}x∈Zd is independent of F̃t and is
Poisson with parameters

Eη̂t(x) = Λ({w : w(t) = x}) =
∑

y

pt(y, x)q(y),

thus concluding the proof of Lemma 2.7.

Lemma 2.8 Suppose that q(x) ≤ U
(‖x‖+1)2

for some U > 0 and for all x ∈ Zd. Then

there exists a constant U ′ > 0 such that qt(x) ≤ UU ′

(‖x‖+1)2
for all x ∈ Zd.

Proof. Using Lemma 2.1 (i), we write

qt(x) =
∑

y:‖y‖≤
‖x‖
2

pt(y, x)q(y) +
∑

y:‖y‖>
‖x‖
2

pt(y, x)q(y)

≤ U

[

‖x‖
2

]

∑

i=1

K1

‖x‖d
id−1

i2
+

K2U

(‖x‖+ 1)2

∑

y:‖y‖>
‖x‖
2

pt(y, x)

≤ U
K3

(‖x‖+ 1)2
+

K2U

(‖x‖+ 1)2

where the constants K1, K2, K3 do not depend on t and x. Lemma 2.8 is proved.

Now we are able to finish the proof of Theorem 1.3. Note that for all x large
enough, a Bernoulli random variable with parameter α′/‖x‖2 is dominated by a Pois-
son random variable with parameter 2α′/‖x‖2. By Lemmas 2.7 and 2.8, the process
of infection spreading can be dominated by a branching random walk for which the
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mean number of newly generated particles at site x is at most 2U ′α′/‖x‖2. To com-
plete the proof of Theorem 1.3, we note that, by Theorem 5.1 of [13] (the condition
on variance of offspring distribution is not essential for the proof of the transience
there), that branching random walk is transient for α′ small enough.
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