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Abstract

In this paper we describe the pathwise behaviour of the integral functional
∫ t

0
f(Yu) du

for any t ∈ [0, ζ], where ζ is (a possibly infinite) exit time of a one-dimensional dif-
fusion process Y from its state space, f is a nonnegative Borel measurable function
and the coefficients of the SDE solved by Y are only required to satisfy weak local
integrability conditions. Two proofs of the deterministic characterisation of the con-
vergence of such functionals are given: the problem is reduced in two different ways
to certain path properties of Brownian motion where either the Williams theorem
and the theory of Bessel processes or the first Ray-Knight theorem can be applied
to prove the characterisation. As a simple application of the main results we give a
short proof of Feller’s test for explosion.
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1 Introduction

In this paper we investigate a problem of the convergence of the integral functional∫ t

0

f(Yu) du, t ∈ [0, ζ], (1.1)

of a one-dimensional J -valued diffusion Y that solves an SDE up to an exit time ζ. The
coefficients of the SDE are required to satisfy only some weak local integrability condi-
tions on the open interval J = (l, r) (see (2.2) and (2.3)) and the function f : J → [0,∞] is
assumed to be Borel measurable. The main results in this paper (see Theorems 2.6, 2.10
and 2.11) study the integral functional as a process, identify the stopping time after
which the integral explodes, and give a deterministic criterion for the convergence of
the integral functional at this stopping time. It turns out that this stopping time is the
first time the process Y hits the set where a local integrability condition fails. Questions
of such type appear naturally in stochastic analysis in connection with Girsanov’s mea-
sure change (see e.g. the discussion in Section 2.7 below) or in insurance mathematics,
where (1.1) is interpreted as the present value of a continuous stream of perpetuities
(see [7]).
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Convergence of integral functionals

The proof of the results consists of two steps. The first step, which uses only basic
properties of diffusion processes and their local times, reduces the original problem to a
question of the convergence of an integral functional of Brownian motion. The answer
to this question is given in Lemma 4.1, which is not new. This result or its general-
izations appeared in [8, p. 225–226], [1, Lem. 1.4.1], [3, Lem. 2], [2, Prop. A1.8], [11,
Prop. 3.2]. In the second step, we present two short proofs of Lemma 4.1: (i) Williams’
theorem (see [18, Ch. VII, Cor. 4.6]) and the result on integral functionals of Bessel
processes from [4] are applied; (ii) a direct approach based on the first Ray-Knight the-
orem (see [18, Ch. XI, Th. 2.2]) is followed. The second proof uses the same ideas as
the proofs in the references mentioned above (with a single technical point worked out
differently – see the discussion following the statement of Lemma 4.1). The two proofs
are presented for their simplicity and in order to make the paper self-contained.

In [11] the convergence of the integral functionals of the form
∫ t
0
f(Xs) ds is investi-

gated, where f is a nonnegative Borel function and X a strong Markov continuous local
martingale. The analytic condition that characterises the convergence of the integral
functionals is given in terms of the speed measure of X. The diffusion Y considered
in this paper is not necessarily a local martingale, but the process s(Y ), where s is the
scale function of Y , is a strong Markov continuous local martingale, thus our charac-
terisation theorems can be deduced from the ones in [11]. In our paper the behaviour
of integral functional (1.1) is described in a more compact way than in [11]. We do not
deduce our characterisation results from the ones in [11], but give a direct argument,
based on the path properties of the underlying diffusion process, which turns out to be
shorter. We would however like to emphasise that many ideas applied in this paper are
present in [11] and in the literature preceding [11] (for an extensive literature review,
see the discussion after Lemma 4.1).

In [14] a similar question is treated under different assumptions with the answer
given in different terms. Namely, in [14] the diffusion is assumed to be transient
(e.g. limt↗ζ Yt = r a.s.) and the function f to be locally bounded on J = (l, r), while
it is proved that convergence of a perpetual integral functional is equivalent to that g(r)

is an exit boundary for some auxiliary diffusion with the state space (g(l), g(r)), where g
is a certain increasing function. Further related papers are [19], where the conditions
are found which imply that a perpetual integral functional is identical in law with the
first hitting time of a point for some other diffusion, and [20], where the emphasis is on
perpetual integral functionals of a Brownian motion with drift, and (i) their finiteness,
(ii) moments, (iii) exponential moments and (iv) boundedness of potential are discussed.

The rest of the paper is organized as follows. Section 2 describes the setting, states
the main results deduces Feller’s test for explosions and presents other applications.
In Section 3 we show how to reduce the main theorems to a problem for Brownian
motion. Section 4 gives the characterisation for the convergence of integral functionals
of Brownian motion. Sections 5 and 6 give the two proofs of Lemma 4.1.

2 The Setting and Main Results

2.1. First we introduce some common notations used in the sequel. Let us consider
an open interval J = (l, r) ⊆ R.

• By J we denote [l, r].

• By L1
loc(J) we denote the set of Borel functions J → [−∞,∞], which are locally

integrable on J , i.e. integrable on compact subsets of J .

• For x ∈ J , L1
loc(x) denotes the set of Borel functions f : J → [−∞,∞] such that∫ x+ε

x−ε |f(y)| dy <∞ for some ε > 0.

ECP 17 (2012), paper 61.
Page 2/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1825
http://ecp.ejpecp.org/


Convergence of integral functionals

• Let α ∈ [l, r), β ∈ (l, r]. By L1
loc(α+) we denote the set of Borel functions f : J →

[−∞,∞] such that
∫ z
α
|f(y)| dy < ∞ for some z ∈ J , z > α. The notation L1

loc(β−)

is introduced similarly.

We will need the following statement. Its proof is straightforward.

Lemma 2.1. L1
loc(J) =

⋂
x∈J L

1
loc(x).

2.2. Let the state space be J = (l, r), −∞ ≤ l < r ≤ ∞, and Y = (Yt)t∈[0,∞) be a
J -valued solution of the one-dimensional SDE

dYt = µ(Yt) dt+ σ(Yt) dWt, Y0 = x0, (2.1)

on some filtered probability space (Ω,F , (Ft)t∈[0,∞),P), where x0 ∈ J and W is an
(Ft,P)-Brownian motion. We allow Y to exit its state space J at a finite time in a
continuous way. The exit time is denoted by ζ. That is to say, P-a.s. on {ζ = ∞} the
trajectories of Y do not exit J , while P-a.s. on {ζ < ∞} we have: either limt↑ζ Yt = r or
limt↑ζ Yt = l. Then we need to specify the behaviour of Y after ζ on {ζ < ∞}. In what
follows we assume that on {ζ < ∞} the process Y stays at the endpoint of J where it
exits after ζ, i.e. l and r are by convention absorbing boundaries.

Throughout the paper it is assumed that the coefficients µ and σ in (2.1) satisfy the
Engelbert–Schmidt conditions

σ(x) 6= 0 ∀x ∈ J, (2.2)

1

σ2
,
µ

σ2
∈ L1

loc(J). (2.3)

Under (2.2) and (2.3) SDE (2.1) has a weak solution, unique in law, which possibly exits
J (see [10] or Th. 5.15 and the discussion in the beginning of Sec. 5.C, in particular,
conditions (ND)′ and (LI)′ in [13, Ch. 5]). Conditions (2.2)–(2.3) are reasonable weak
assumptions: any locally bounded Borel function µ and locally bounded away from 0

Borel function σ on J satisfy (2.2) and (2.3).
Finally, the reason for considering an arbitrary interval J ⊆ R as a state space, and

not just R itself, is that there are natural examples, where (2.2)–(2.3) hold only on a
subset of R. Even for geometric Brownian motion conditions (2.2)–(2.3) with J = R are
not satisfied, hence our results would not be applicable even to a geometric Brownian
motion if we had assumed (2.2)–(2.3) only with J = R. To view a geometric Brownian
motion as a special case of (2.1) under assumptions (2.2)–(2.3), we need to take J =

(0,∞).

2.3. Now we state some well-known results about the behaviour of one-dimensional
diffusions with the coefficients satisfying (2.2)–(2.3) that will be extensively used in the
sequel. Let us also note that these results do not hold beyond (2.2)–(2.3).

Let s denote the scale function of Y and ρ the derivative of s, i.e.

ρ(x) = exp

{
−
∫ x

c

2µ

σ2
(y) dy

}
, x ∈ J, (2.4)

s(x) =

∫ x

c

ρ(y) dy, x ∈ J, (2.5)

for some c ∈ J . In particular, s is an increasing C1-function J → Rwith a strictly positive
absolutely continuous derivative, while s(r) (resp. s(l)) may take value∞ (resp. −∞).

For a ∈ J let us define the stopping time

τYa = inf{t ∈ [0,∞) : Yt = a} (inf ∅ :=∞). (2.6)
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Convergence of integral functionals

Proposition 2.2. For any a ∈ J we have P(τYa <∞) > 0.

Even though it is assumed in Proposition 2.2 that a ∈ J , we stress that τYa is defined
for any a ∈ J , which will be needed in Remark 2.7 below.

Further let us consider the sets

A =

{
ζ =∞, lim sup

t→∞
Yt = r, lim inf

t→∞
Yt = l

}
,

Br =
{
ζ =∞, lim

t→∞
Yt = r

}
,

Cr =

{
ζ <∞, lim

t↑ζ
Yt = r

}
,

Bl =
{
ζ =∞, lim

t→∞
Yt = l

}
,

Cl =

{
ζ <∞, lim

t↑ζ
Yt = l

}
.

Proposition 2.3. Either P(A) = 1 or P(Br ∪Bl ∪ Cr ∪ Cl) = 1.

Proposition 2.4. (i) P(Br ∪ Cr) = 0 holds if and only if s(r) =∞.
(ii) P(Bl ∪ Cl) = 0 holds if and only if s(l) = −∞.

In particular, we get that P(A) = 1 holds if and only if s(r) =∞, s(l) = −∞.

Proposition 2.5. Assume that s(r) <∞. Then either P(Br) > 0, P(Cr) = 0 or P(Br) = 0,
P(Cr) > 0. Furthermore, we have

P

(
lim
t↑ζ

Yt = r, Yt > a ∀t ∈ [0, ζ)

)
> 0

for any a < x0.

Propositions 2.2–2.5 are well-known and follow from the construction of solutions
(see e.g. [10] or [13, Ch. 5.5]) or can be deduced from the results in [9, Sec. 1.5]. Clearly,
Proposition 2.5, which contains statements about the behaviour of one-dimensional dif-
fusions at the endpoint r, has its analogue for the behaviour at l.

2.4. In this paper we study convergence of the integral functional∫ t

0

f(Yu) du, t ∈ [0, ζ], (2.7)

where f : J → [0,∞] is a nonnegative Borel function. In this subsection we reduce the
study of convergence of (2.7) in general to that of convergence of the integral∫ ζ

0

f(Yu) du (2.8)

for a nonnegative Borel function f : J → [0,∞] such that f
σ2 ∈ L1

loc(J). In the next
subsection we formulate the answer to the latter problem.

Let us consider the set

D =

{
x ∈ J :

f

σ2
/∈ L1

loc(x)

}
(2.9)

and note that D is a closed subset in J . Let us further define the stopping time

ηD = ζ ∧ inf{t ∈ [0,∞) : Yt ∈ D} (inf ∅ :=∞). (2.10)
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Convergence of integral functionals

Theorem 2.6. P-a.s. we have:∫ t

0

f(Yu) du <∞, t ∈ [0, ηD), (2.11)∫ t

0

f(Yu) du =∞, t ∈ (ηD, ζ]. (2.12)

Remark 2.7. After Theorem 2.6 it remains only to study the convergence of the integral∫ ηD

0

f(Yu) du.

If x0 ∈ D, then ηD ≡ 0, and the integral is clearly zero. Let us assume that x0 /∈ D and
set

α = sup(l, x0) ∩D (sup ∅ := l),

β = inf(x0, r) ∩D (inf ∅ := r).

It is easy to see that ηD = τYα ∧ τYβ . Now if we consider I := (α, β) as a new state

space for Y , then τYα ∧ τYβ will be the new exit time, and we will have f
σ2 ∈ L1

loc(I) by
Lemma 2.1. This concludes the reduction of the study of the convergence of (2.7) to
that of the convergence of (2.8).

In order to prove Theorem 2.6 we need some additional notation. Since Y is a
continuous semimartingale up to the exit time ζ, one can define its local time {Lyt (Y ); y ∈
J, t ∈ [0, ζ)} on the stochastic interval [0, ζ) for any y ∈ J in the usual way (e.g. via the
obvious generalization of [18, Ch. VI, Th. 1.2]). It follows from Theorem VI.1.7 in [18]
that the random field {Lyt (Y ); y ∈ J, t ∈ [0, ζ)} admits a modification such that the map
(y, t) 7→ Lyt (Y ) is a.s. continuous in t and cadlag in y.1 As usual we always work with
such a modification. Let us further recall that a.s. on {t < ζ} the function y 7→ Lyt (Y )

has a compact support in J and hence is bounded as a cadlag function with a compact
support.

We will need the following result.

Lemma 2.8 (Theorem 2.7 in [5]). Let a ∈ J . Then

Lat (Y ) > 0 and La−t (Y ) > 0 P-a.s. on {τYa < t < ζ}.

Remark 2.9. (i) By Proposition 2.2 we have P(τYa < ζ) > 0. Hence, there exists t ∈
(0,∞) such that P(τYa < t < ζ) > 0.

(ii) Let us note that the result of Lemma 2.8 no longer holds if the coefficients µ and
σ of (2.1) fail to satisfy (2.2)–(2.3) (see Theorem 2.6 in [5]).

Proof of Theorem 2.6. By the occupation times formula, P-a.s. we have∫ t

0

f(Yu) du =

∫ t

0

f

σ2
(Yu) d〈Y, Y 〉u =

∫
J

f

σ2
(y)Lyt (Y ) dy, t ∈ [0, ζ). (2.13)

Then (2.11) follows from the fact that P-a.s. on {t < ζ} the function y 7→ Lyt (Y ) is a
cadlag function with a compact support in J .

As for (2.12), it immediately follows from (2.13) and Lemma 2.8 in the case x0 ∈ D.
If x0 /∈ D, we first observe that ηD = τYα ∧ τYβ (see Remark 2.7), and hence {ηD < ζ} =

{τYα < ζ} ∪ {τYβ < ζ}. If P(τYα < ζ) > 0, then, since D is closed we have α ∈ D (note that

(l, x0) ∩D 6= ∅ in this case because otherwise α = l and P(τYα < ζ) = 0). Thus, (2.12) on
{τYα < ζ} follows from (2.13) and Lemma 2.8 applied with a = α ∈ D. Similarly we get
(2.12) on {τYβ < ζ}. This concludes the proof.

1Moreover, it can be proved that for a diffusion Y driven by (2.1) under conditions (2.2) and (2.3), any such
modification is, in fact, a.s. jointly continuous in (t, y); see [17, Proposition A.1].
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Convergence of integral functionals

2.5. As pointed out in the previous subsection, it remains to study the convergence
of the integral ∫ ζ

0

f(Yu) du (2.14)

for a nonnegative Borel function f : J → [0,∞] satisfying

f

σ2
∈ L1

loc(J). (2.15)

This study is performed in the following two theorems, where we separately treat the
cases P(A) = 1 and P(Br ∪ Bl ∪ Cr ∪ Cl) = 1 (see Propositions 2.3 and 2.4). Below νL
denotes the Lebesgue measure on J .

Theorem 2.10. Assume that the function f : J → [0,∞] satisfies (2.15). Let s(r) = ∞
and s(l) = −∞.

(i) If νL(f > 0) = 0, then ∫ ζ

0

f(Yu) du = 0 P-a.s.

(ii) If νL(f > 0) > 0, then ∫ ζ

0

f(Yu) du =∞ P-a.s.

Let us also note that ζ =∞ P-a.s. in the case s(r) =∞, s(l) = −∞.
In the remaining case s(l) > −∞ or s(r) <∞ we have

Ω =

{
lim
t↑ζ

Yt = r

}
∪
{

lim
t↑ζ

Yt = l

}
P-a.s.

In the following theorem we investigate the convergence of (2.14) on {limt↑ζ Yt = r}.
To this end we need to assume s(r) < ∞ because otherwise P(limt↑ζ Yt = r) = 0 by
Proposition 2.4.

Theorem 2.11. Assume that the function f : J → [0,∞] satisfies (2.15). Let s(r) <∞.
(i) If

(s(r)− s)f
ρσ2

∈ L1
loc(r−),

then ∫ ζ

0

f(Yu) du <∞ P-a.s. on

{
lim
t↑ζ

Yt = r

}
.

(ii) If
(s(r)− s)f

ρσ2
/∈ L1

loc(r−),

then ∫ ζ

0

f(Yu) du =∞ P-a.s. on

{
lim
t↑ζ

Yt = r

}
.

Clearly, Theorem 2.11 has its analogue that describes the convergence of (2.14) on
{limt↑ζ Yt = l}.

2.6. As an application let us deduce a deterministic distinction between the cases
P(Br) > 0, P(Cr) = 0 and P(Br) = 0, P(Cr) > 0 of Proposition 2.5.
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Convergence of integral functionals

Proposition 2.12 (Feller’s test for explosions). We have P(Br) = 0, P(Cr) > 0 if and
only if

s(r) <∞ and
s(r)− s
ρσ2

∈ L1
loc(r−).

Clearly, Proposition 2.12 has its analogue for the exit at l. Feller’s test for explosions
in this form can be found in [5, Sec. 4.1]. For a different (but equivalent) form see e.g.
[13, Ch. 5, Th. 5.29].

Proof. By Propositions 2.4 and 2.5, we need to have s(r) < ∞. Now the result follows
from Theorem 2.11 applied to f ≡ 1.

We note that Proposition 2.12 is not used in the proofs of our main results. Thus,
this is a valid method of obtaining Feller’s test for explosions.

2.7. The following discussion is inspired by the treatment in [15, Ch. 6]. Liptser
and Shiryaev consider a nonnegative local martingale (hence, a supermartingale) z =

(zt)t∈[0,∞) of the form

zt = 1 +

∫ t

0

γu dWu, t ∈ [0,∞), (2.16)

where γ is a progressively measurable process satisfying∫ t

0

γ2u du <∞, t ∈ [0,∞),

and prove that it can always be represented as a “generalized” stochastic exponential

zt = exp

{∫ t∧ξ

0

βu dWu −
1

2

∫ t∧ξ

0

β2
u du

}
, t ∈ [0,∞), (2.17)

where

ξ = inf{t ∈ [0,∞) : zt = 0} (inf ∅ :=∞),

βu =
γu
zu
, u ∈ [0, ξ),

and we necessarily have ∫ ξ

0

β2
u du =∞ a.s. on {ξ <∞} (2.18)

(see [15, Lem. 6.2]).
Let us now define another “generalized” stochastic exponential Z in our diffusion

setting as follows. Let b : J → R be an arbitrary Borel function. We define

Z−t :=

{
exp

{∫ t∧ζ
0

b(Yu) dWu − 1
2

∫ t∧ζ
0

b2(Yu) du
}

if
∫ t∧ζ
0

b2(Yu) du <∞,

0 if
∫ t∧ζ
0

b2(Yu) du =∞,
(2.19)

Zt := lim
ε↘0

Z−t+ε, t ∈ [0,∞) (2.20)

(cf. with (2.17) and (2.18)). Note that t 7→
∫ t∧ζ
0

b2(Yu) du is a left-continuous increasing
process that may go to ∞ by a jump (see the discussion below), so we need (2.20) to
get a càdlàg process Z.

Clearly, Theorems 2.6 and 2.11 applied to f := b2 yield explicit expressions for when∫ t∧ζ
0

b2(Yu) du is finite, and hence provide us with an explicit description of (2.19), (2.20).
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Convergence of integral functionals

We omit the full description here as it is straightforward but lengthy. Instead, let
us make a comment about the relation between “generalized” stochastic exponentials
(2.16), (2.17) and (2.19), (2.20). We will now use the set D of (2.9) with f := b2 and the
stopping time ηD of (2.10). If x0 ∈ D, then Z ≡ 0. Below we assume that x0 /∈ D and
consider two following cases.

Case 1: D = ∅. In this case Z is always a continuous local martingale, which is
strictly positive on [0, ζ). Note that we do not need (2.20) in this case, that is Z ≡ Z−.
At time ζ the process Z may (but not necessarily will) attain zero. Here (2.19) is a
special case of (2.16), (2.17) (just take γu := Zub(Yu)I(u < ζ)). In the case D = ∅
the local martingale Z is studied in [17], where deterministic necessary and sufficient
conditions for Z to be a martingale and to be a uniformly integrable martingale are
established.

Case 2: D 6= ∅, x0 /∈ D. Here Zt ≡ 0 for t ≥ ηD on the set {ηD < ζ} (note that
P(ηD < ζ) > 0). It may happen that ZηD− > 0 with positive probability on {ηD < ζ}.
In this situation Z is a supermartingale but not a local martingale, hence (2.19), (2.20)
is not a special case of (2.16), (2.17). On the other hand, Z is a local martingale (and
(2.19), (2.20) is a special case of (2.16), (2.17)) whenever ZηD− = 0 a.s. on {ηD < ζ}.
Such a process Z is studied in [16], where deterministic criteria for it to be a local
martingale, martingale, and uniformly integrable martingale are provided.

3 Proofs of Theorems 2.10 and 2.11

In this section we prove Theorems 2.10 and 2.11. In the latter proof we apply
Lemma 4.1 below, which will be proved in the next sections.

Let us set
Ỹt = s(Yt), t ∈ [0, ζ). (3.1)

Then
dỸt = σ̃(Ỹt) dWt, t ∈ [0, ζ), (3.2)

where
σ̃(x) = (ρσ) ◦ s−1(x), x ∈ (s(l), s(r)).

In particular, Ỹ is a continuous local martingale on the stochastic interval [0, ζ). By
the Dambis–Dubins–Schwarz theorem, there exists a Brownian motion B starting from
s(x0) (possibly on an enlargement of the initial probability space) such that

Ỹt = B〈Ỹ ,Ỹ 〉t P-a.s., t ∈ [0, ζ). (3.3)

Let us also introduce the function

f̃(x) = f ◦ s−1(x), x ∈ (s(l), s(r)).

Proof of Theorem 2.10. Here s(r) = ∞ and s(l) = −∞. Hence ζ = ∞ P-a.s. and,
moreover, P(A) = 1 (see Propositions 2.3 and 2.4). Then (3.1) implies that

P

(
lim sup
t→∞

Ỹt =∞, lim inf
t→∞

Ỹt = −∞
)

= 1.

Now it follows from (3.3) that 〈Ỹ , Ỹ 〉∞ =∞ P-a.s. We have∫ ∞
0

f(Yu) du =

∫ ∞
0

f̃(Ỹu) du =

∫ ∞
0

f̃

σ̃2

(
B〈Ỹ ,Ỹ 〉u

)
d〈Ỹ , Ỹ 〉u

=

∫ ∞
0

f̃

σ̃2
(Bv) dv =

∫
R

f̃

σ̃2
(x)Lx∞(B) dx P-a.s.
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The first equality above is clear (we used ζ = ∞ P-a.s.), the second follows from (3.2)
and (3.3), the third is due to the continuity of 〈Ỹ , Ỹ 〉 and the fact that 〈Ỹ , Ỹ 〉∞ = ∞
P-a.s., and the last one follows from the occupation times formula (Lxt (B) denotes the
local time of the Brownian motion B at time t and at level x). It remains to note that
νL(f > 0) > 0 is equivalent to νL(f̃ > 0) > 0 and that for a Brownian local time, P-a.s. it
holds Lx∞(B) ≡ ∞ ∀x ∈ R (see e.g. [18, Ch. VI, § 2]). The proof is completed.

Proof of Theorem 2.11. Here s(r) < ∞, i.e. P(limt↑ζ Yt = r) > 0. Let us set R :=

{limt↑ζ Yt = r} and observe that (3.1) and (3.3) imply

R ≡
{

lim
t↑ζ

Yt = r

}
=

{
lim
t↑ζ

Ỹt = s(r)

}
=

{
lim
t↑ζ

B〈Ỹ ,Ỹ 〉t = s(r)

}
.

In particular,
〈Ỹ , Ỹ 〉ζ = τBs(r) P-a.s. on R, (3.4)

where τBs(r) denotes the hitting time of the level s(r) by the Brownian motion B. Let

us note that ζ may be finite or infinite on R, but it follows from (3.4) that 〈Ỹ , Ỹ 〉ζ is in
either case finite on R. Similarly to the previous proof we get∫ ζ

0

f(Yu) du =

∫ τB
s(r)

0

f̃

σ̃2
(Bv) dv P-a.s. on R. (3.5)

The question of convergence of the integral in the right-hand side of (3.5) is studied in

Lemma 4.1 below. It is easy to obtain from (2.15) that f̃
σ̃2 ∈ L1

loc(s(J)), which means that
Lemma 4.1 can be applied (see (4.1)). Thus, to study the convergence of the integral in
the right-hand side of (3.5) we need to check whether

(s(r)− x)
f̃

σ̃2
(x) ∈ L1

loc(s(r)−)

(the notation “f(x) ∈M” for a function f and a class of functions M is understood to be
synonymous to “f ∈M”). We have∫ s(r)

s(·)

(s(r)− x)f(s−1(x))

ρ2(s−1(x))σ2(s−1(x))
dx =

∫ r

·

(s(r)− s(y))f(y)

ρ(y)σ2(y)
dy

(recall that s′ = ρ). Now the statement of Theorem 2.11 follows from (3.5) and Lemma 4.1.

4 The Setting and Notation in the Brownian Case

It remains to prove Lemma 4.1 below. From now on let us consider a Brownian
motion B starting from x0 ∈ R. We will extensively use the notation τBa (a ∈ R) for the
stopping time defined as in (2.6). Below we use the notation “f(x) ∈M” for a function
f and a class of functions M as a synonym for “f ∈M”.

Lemma 4.1. Let B be a Brownian motion starting from x0 ∈ R and x0 < r <∞. Assume
that the function f : I → [0,∞] with I := (−∞, r) satisfies

f ∈ L1
loc(I). (4.1)

(i) If (r − x)f(x) ∈ L1
loc(r−), then∫ τB

r

0

f(Bu) du <∞ P-a.s.
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(ii) If (r − x)f(x) /∈ L1
loc(r−), then

∫ τB
r

0

f(Bu) du =∞ P-a.s.

As it was explained in the introduction, Lemma 4.1 is in no way new. First it ap-
peared implicitly in [8, p. 225–226] and was stated explicitly in [3, Lem. 2]. The proofs
in [8] and [3] rest on an application of the Ray-Knight theorem and Shepp’s [21] di-
chotomy result for Gaussian processes. This dichotomy argument was at some point re-
placed by Jeulin’s [12] lemma (e.g. see [1, Lem. 1.4.2], [2, Lem. A1.7] or [11, Lem. 3.1]).
We also refer to the statements [1, Lem. 1.4.1], [2, Prop. A1.8], [11, Prop. 3.2] about
Brownian local time integrated in the space variable against a positive measure, which
contain Lemma 4.1 as a special case and which are proved in a similar way (the Ray-
Knight theorem and Jeulin’s lemma are used).

Thus, one can get a proof of Lemma 4.1 from any of the references in the previous
paragraph. In order to make the paper self-contained, we also present two short proofs
of Lemma 4.1 below. The first one is very short and is completely different from the
ones mentioned in the previous paragraph. It is based on Williams’ theorem (see [18,
Ch. VII, Cor. 4.6]) and Cherny’s investigation of convergence of integral functionals of
Bessel processes (see [4, Th. 2.1]). The second proof follows the same lines as the
ones mentioned in the previous paragraph, only the application of Shepp’s dichotomy
result (resp. of Jeulin’s lemma) in [8], [3] (resp. in [1], [2], [11]) is replaced by a direct
argument similar to the one in the proof in [6, Th. 1.4].

5 First Proof of Lemma 4.1

By the occupation times formula and (4.1), P-a.s. we get∫ t

0

f(Bu) du <∞, t ∈ [0, τBr ). (5.1)

By ρ = (ρt)t∈[0,∞) we denote a three-dimensional Bessel process starting from 0. Let us
set

ξ = sup{t ∈ [0,∞) : ρt = r − x0}

(note that ξ is a finite random variable because ρt →∞ a.s.). By Williams’ theorem,

Law
(
r −BτB

r −t; t ∈ [0, τBr )
)

= Law (ρt; t ∈ [0, ξ)) , (5.2)

where “Law” means distribution. It follows from Theorem 2.1 in [4] that, for a nonneg-
ative function g,

(A) xg(x) ∈ L1
loc(0+) implies that a.s. it holds ∃ε > 0

∫ ε
0
g(ρu) du <∞;

(B) xg(x) /∈ L1
loc(0+) implies that a.s. it holds ∀ε > 0

∫ ε
0
g(ρu) du =∞.

By (5.1), (5.2) and (A), (B), the question reduces to whether xf(r − x) ∈ L1
loc(0+), or,

equivalently, to whether (r − x)f(x) ∈ L1
loc(r−). This concludes the proof.

6 Second Proof of Lemma 4.1

By the occupation times formula,∫ τB
r

0

f(Bu) du =

∫ r

−∞
f(x)LxτB

r
(B) dx P-a.s. (6.1)
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Since P-a.s. the mapping x 7→ LxτB
r

(B) is a continuous function with a compact support
in R, we get from (4.1) that∫ x0

−∞
f(x)LxτB

r
(B) dx <∞ P-a.s.

By (6.1), the question of whether
∫ τB

r

0
f(Bu) du is finite reduces to the question of

whether
∫ r
x0
f(x)LxτB

r
(B) dx is finite, or, equivalently, to

whether

∫ r−x0

0

f(r − u)Lr−u
τB
r

(B) du is finite. (6.2)

Let W and W̃ be independent Brownian motions starting from 0. Let us set

ηt = W
2

t + W̃ 2
t , (6.3)

i.e. η = (ηt)t∈[0,∞) is a squared two-dimensional Bessel process starting from 0. It
follows from the first Ray-Knight theorem that

Law
(
Lr−u
τB
r

;u ∈ [0, r − x0]
)

= Law (ηu;u ∈ [0, r − x0]) . (6.4)

In what follows we prove that, for a Brownian motion W starting from 0,

(A) xf(r − x) ∈ L1
loc(0+) implies that

∫ r−x0

0
f(r − u)W 2

u du <∞ a.s.;

(B) xf(r − x) /∈ L1
loc(0+) implies that

∫ r−x0

0
f(r − u)W 2

u du =∞ a.s.

Together with (6.2)–(6.4) this will complete the proof of Lemma 4.1.
By Fubini’s theorem,

E

∫ r−x0

0

f(r − u)W 2
u du =

∫ r−x0

0

f(r − u)u du,

so (A) is immediate (recall that (4.1) holds).
In order to prove (B) we assume that

P

(∫ r−x0

0

f(r − u)W 2
u du <∞

)
> 0. (6.5)

Then there exists a sufficiently large M <∞ such that

γ := P(R) > 0, where R :=

{∫ r−x0

0

f(r − u)W 2
u du ≤M

}
.

Let us note that, for any positive δ and u, the probability

P(W 2
u ≥ δ2u) = P(|Wu/

√
u| ≥ δ) = P(|N(0, 1)| ≥ δ)

does not depend on u. We take a sufficiently small δ > 0 such that

P(|N(0, 1)| ≥ δ) ≥ 1− γ

2
.

Then, for any u,

E(W 2
uIR) ≥ δ2uP(R ∩ {W 2

u ≥ δ2u}) ≥
γ

2
δ2u.

By Fubini’s theorem,

E

[
IR

∫ r−x0

0

f(r − u)W 2
u du

]
=

∫ r−x0

0

f(r − u)E(W 2
uIR) du ≥ γ

2
δ2
∫ r−x0

0

f(r − u)u du.

The left-hand side is finite as on the event R the integral is not greater than M . Thus,
(6.5) implies uf(r−u) ∈ L1

loc(0+), which proves (B) and completes the proof of Lemma 4.1.
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