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1 Introduction

Consider a graph G. Following [2], we define the Excited Random Walk

(ERW) on G, as a process Xn on the vertices of G which behaves as a simple
random walk on G (that is, it goes to each of its neighbors with the same

probability), provided the current vertex has been visited before. However,

when the ERW visits a vertex for the first time, the walk (and the vertex) be-

comes “excited” and the walk’s transitional probabilities are different there.

The choice of the law on the excited vertices may vary, but we can assume

that the walk has some preferred direction.

In [2], the ERW on Zd was considered. The rules of their walk require

it on the excited vertices to step right with the probability (1 + ε)/(2d), left

with the probability (1 − ε)/(2d), and in other directions with probability

1/(2d). On not excited vertices, the ERW jumps as a simple random walk.

It was shown in [2] that for d ≥ 2 and any ε > 0 such a process is transient,

by which we understand that the walk visits every vertex at most finitely

often.

The idea of the ERW is probably related to [5], and in general the ERW

belongs to a class of path-dependent process, including notoriously hard to

analyze reinforced random walks (RRW). More references can be found in

[2]; also for a quite comprehensive review of the RRWs see [10].

Consider an infinite tree G rooted at v0 with the property that each vertex,

except possibly the root, is incident to at least three vertices. (The simplest

example is the regular binary tree.) Fix an ε > 0. We define the ERW on a

tree G as the process which goes toward the root with probability 1− ε when

it visits a vertex v for the first time and goes to every neighbor of v with

equal probability from already visited vertices. In a sense, this walk can be

viewed as a vertex analogue of the once edge-reinforced random walk (once

edge RRW), studied in [9]. This is a nearest-neighbor walk on a regular tree,

with transition probabilities proportional to “weights” of the edges. Initially

all edges have weight 1, and the weight of the ever traversed edge is c for

some fixed constant c > 1. It is shown in [9] that once edge RRW on a tree
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is recurrent for all values of c ≥ 1.
Alternatively, the ERW on a tree can be represented as a RRW of sequence

type (see [4], [11]). The sequence type edge RRW is defined as a nearest-

neighbor process on the vertices of a graph G, which jumps across each edge

with the probability proportional to that the weight of that edge. In turn,

the weight of a particular edge equals wk whenever the walk has traversed

this edge exactly k times, in either direction. On a b−ary regular tree, the
sequence of weights w0 = 1, w2 = w3 = · · · = c > 0 gives the once edge RRW;

and the sequence of weights w0 = 1, w1 = b(ε−1 − 1), w2 = w3 = · · · = 1
corresponds to an ERW. In [11] a number of properties of the edge RRW on

the d−dimensional integer lattice has been established.
In our paper, we will show that on any tree satisfying the condition above

(about the number of edges attached to a vertex), and for all ε ≥ 0 the ERW
is transient. Intuitively it seems “clear” that for the ERW it is “easier” to

run to infinity than for the once edge RRW, however, as usual for this type

of problems, it was not possible to construct a rigorous coupling.

In Section 2 we provide rigorous definitions as well as the proofs for

the case ε > 0. The case ε = 0 is studied in Section 3 alongside with

a generalization of the ERW, which we call Digging Random Walk. Final

comments are presented in Section 4.

2 The proofs

Let Xn be a nearest-neighbor walk on the vertices of G. As it was mentioned
above, the vertex v 6= v0 is called excited at time n if Xn = v and for all

m < n Xm 6= v. The root v0 is never excited by convention.

Let Fn = σ(X0, X1, . . . , Xn) be the sigma-algebra generated by the path

of the Xn. For a vertex v ∈ G, let N(v) denote the set of the adjacent

vertices, and let |N(v)| be the cardinality of this set. If v 6= v0, let A(v) be

the “parent” vertex in N(v) which lies on the shortest path connecting v to

v0. Fix an ε ≥ 0. Suppose that for each w 6= v0 there is a positive constant
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εw ≥ 0 such that for any v 6= v0

∑

w: w is a child of v

εw = ε.

Define the transitional probabilities of the ERW as

P(Xn+1 = w |Xn = v,Fn) =



















1/|N(v)|, if w ∈ N(v) and v is not excited

1− ε, if w = A(v) ∈ N(v) and v is excited

εw, if w ∈ N(v)\A(v) and v is excited

0, otherwise.

Suppose that X0 = v0, and let P denote the law of the stochastic process Xn.

Let us also define a modification of the ERW. Suppose G1 is a finite subtree

of G containing the root. Let the ERW(G1) be the process identical to the

ERW, except that at vertices of G1 the walk goes to each of its neighbors with

the same probability, even if this vertex is visited for the first time. One can

think of the ERW(G1) as of the ERW started in the past and conditioned on

the fact that by time 0 its range is exactly G1, and Xn is at the root at this

time. Thus the ERW described above coincides with the ERW(∅). Let PG1

denote the law of the ERW(G1).

¿From now on throughout this section we assume that ε 6= 0 (the case
ε = 0 is studied in Section 3).

Let

An = {∃k ≥ 1 : |Xk| = n and 0 < |Xi| < n for all 1 ≤ i < k} (2.1)

be the event that the ERW(G1) started at the root hits level n before return-

ing to the root. (As usual, for a vertex v ∈ G, |v| denotes the number of
edges in the shortest path connecting v and the root, with |v0| = 0).
Since it is straightforward how to establish the transience of the ERW

when ε > 1/2, throughout the rest of the proof we assume that 0 < ε ≤ 1/2.
Set

αn = inf
all G1

PG1
(An). (2.2)
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Note that since the event An depends only on finitely many vertices of G,
αn > 0 for any n ≥ 1. Also, since An+1 ⊂ An, {αn} is a decreasing sequence.
First, we obtain a crude lower bound on αn, which will be improved later.

Lemma 1 There exists a C1 = C1(ε) > 0 such that for all n ≥ 2

αn ≥
C1

n3/2
. (2.3)

Proof. On the event An, let k = inf{i : |Xi| = n}, and let vn = Xk be

the first visited vertex on level n. Also, let l = (v0, v1, . . . , vn−1, vn) be the

unique self-avoiding path connecting the root v0 to vn. Then all vertices of l

have been visited by time k. Let τ = inf{i ≥ 1 : |Xi| = 0} and

B = {∀i ∈ [k + 1, τ) : Xi ∈ l\{vn} and Xi+1 /∈ l, ∃j > i : Xj ∈ l}

be the event that (before returning to the root if this ever happens) the

walk always returns to path l after leaving it for another subtree. Since

PG1
(An+1) = PG1

(An+1 |An)PG1
(An) and PG1

(An+1 |Bc, An) = 1 for any G1,

to get the lower bound on αn+1 it suffices to compute the probability of An+1

conditioned on An and B.

Firstly, observe that after reaching level n, on the next step the walk

either goes directly to level n+1 with probability ε or with probability 1− ε

goes to vn−1 (unless vn ∈ G1, which will make the first probability at least
1
3
). Further in the proof we assume that vn /∈ G1, as this case can be handled

in the same way.

Secondly, if Xk+1 = vn−1, then the vertex vn will not be excited when

(and if) the walk visits vn in the future. We consider the walk restricted to

l and conditioned on B, whence from each vi it goes to either vi−1 or vi+1

with probability 1
2
, except the root and vn (see also the proof of Theorem 1).

¿From the latter the ERW goes to level n + 1 with probability no less than
2
3
, since vn has at least two children by the condition imposed on the tree in

the introduction. Consequently, the probability that the ERW(G1) started

at vn−1 will visit level n+ 1 before the root is at least

n− 1
(n− 1) + 1 + 1/2 =

n− 1
n+ 1/2
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(to get this probability one can use e.g. the electrical networks arguments –

see [7]). Hence for n ≥ 2

αn+1 ≥ αn

[

ε+ (1− ε)
n− 1

n+ 1/2

]

≥ αn

[

1− 3/2

n+ 1/2

]

≥ αn exp

(

−3/2
n
− 3

n2

)

,

where we used the inequality log(1 − x) > −x − x2 for x < 2/3. Iterating

this for n = 2, 3, . . . and taking into account the fact that both log(N) −
∑N

n=1 1/(n+ 1) and
∑N

n=1 1/n
2 converge to constants, we obtain (2.3).

Next, we need the following elementary lemma about the simple random

walk on Z, which can be derived, for example from [1]. For the purpose of
exposition, below we present its short proof.

Lemma 2 Let Si, i ≥ 0, be a simple random walk on Z, i.e. Si+1 − Si are

iid random variables equal to ±1 with probability 1
2
. Suppose S0 = 0. Then

for any 0 < δ < 1/2 and γ > 0 there is a C2 = C2(δ, γ) > 0 such that

P( max
0≤i≤N

Si > γN 1/2+δ) ≤ C2N
1/2 exp(−γ2N2δ/2). (2.4)

Proof. From the reflection principle ([3], Chapter 1.4) it follows that for any

positive integer a,

P( max
0≤i≤N

Si > a) ≤ 2P(SN > a) = 2
∑

j>a

P(SN = j). (2.5)

On the other hand, if N = 2m and j = 2k > 0

P(SN = j) = P(S2m = 2k) =
(2m)!

(m− k)!(m+ k)!
× 1

22m

which decreases as k ≥ 0 goes up. Therefore, for k > k0 = bγ/2N 1/2+δc

P(S2m = 2k) ≤ P(S2m = 2k0) (2.6)

∼ 1√
πm

(

1− k2
0

m2

)−m(

1 +
k0

m

)−k0−0.5(

1− k0

m

)k0−0.5
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where we used the Stirling’s formula (see e.g. [8] Chapter 2.1) for large k0 and

m, and xn ∼ yn means that xn/yn → 1. The RHS of (2.6) asymptotically

equals

exp(−γ2N2δ)/2
√

πN/2
.

Plugging this into (2.5), and observing that P(SN = j) = 0 for odd j’s and

for j > N , completes the proof for large even N . Also, we can choose C2 so

large, that (2.4) will hold for all even N ≥ 2. The proof in the case when N

is odd is similar.

Next we improve the lower bound obtained in Lemma 1.

Theorem 1 There exists a positive

α := lim
n→∞

αn > 0.

Proof. First, the limit trivially exists since αn > 0 is a decreasing sequence

as mentioned above. Thus we only need to show that it is 6= 0.
Let B, vn, and k be the same as the proof of Lemma 1. Let Vn+1 be

the set of vertices which are the children of vn on the tree G. Recall that
PG1
(An+1 |Bc, An) = 1, whence PG1

(An+1 |An) ≥ PG1
(An+1 |An, B). We will

show that this probability is very close to 1. To avoid cumbersome notations

involving the integer part sign b·c, without loss of generality suppose that n
is divisible by 4.

On the event An ∩B, let

τ = inf{i > k : Xi = vn/2},
η = inf{i > k : Xi ∈ Vn+1}.

Obviously,

PG1
(An+1 |An, B) ≥ PG1

(An+1 and {τ < η} |An, B)

with the convention for the stopping times that ∞ =∞.
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Next, conditioned on An ∩B ∩ {τ < η} let ν(0) ≡ τ, ν(1), ν(2) . . . be the

times of the consecutive steps of the walk on l, that is for m ≥ 1

ν(m) = inf{i > ν(m− 1) : Xi ∈ l, Xi 6= Xν(m−1)},

so that Xν(m) is an embedded random walk on l. Moreover, as long as ν(m)

is finite, Xν(m) is isomorphic to a a simple random walk on Z. Set

κ = min{m > 0 : Xν(m) = vn/4 or Xν(m) = v3n/4}.

Fix some small δ > 0 and let N = bn2−δc. Then

P(κ ≤ N |An, B, τ < η) = P( max
i=1,...,N

|Si| > n/4) (2.7)

where Si is a simple random walk on Z with S0 = 0. By symmetry, and by

using Lemma 2 we obtain

P(maxi=1,...,N |Si| > n/4) ≤ 2P(maxi=1,...,N Si > n/4)

≤ 2P
(

maxi=1,...,N Si >
1
4
N

1
2
+ δ

4−2δ

)

≤ 2C2(δ/(4− 2δ), 1/4)N 1/2 exp
(

− 1
32
N

δ
2−δ

)

= 2C2 exp
(

−nδ[1 + o(1)]/32
)

=: rn
(2.8)

since n ≥ N 1/(2−δ) = N1/2+δ/(4−2δ). Therefore, κ ≥ N with probabil-

ity at least 1 − rn. On the other hand, every time Xi visits vertex v ∈
{vn/4+1, . . . , v3n/4−1} ⊂ l at time j, with probability at least 1

3
it goes to a

child of v, say v′, such that v′ /∈ l. Consider the walk on a subtree G(v′)
rooted at v′. ¿From v′, with probability at least εα3n/4 it reaches level 3n/4

of the subtree G(v) before returning to v. It is essential that this lower bound

is independent of the past of the process Xi, i.e., {Xi, i < j}. Indeed, if the
walk visited G(v′) before j, some of its vertices will not be excited when vis-

ited after time j. However, this is not a problem because of the way αn has

been defined in (2.2).

At the same time, if the walk on G(v′) reaches level 3n/4, since (n/4 +
1)+ 3n/4 = n+1, it means that the event An+1 has occurred. The formulae
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(2.7) and (2.8) imply

P(An+1 |An, B, τ < η) ≥ (1− rn)P(An+1 |An, B, τ < η, κ > N)

while

P(An+1 |An, B, τ < η, κ > N) ≥ 1−
[

1− 1
3
εα3n/4

]N+1

≥ 1−
[

1− C1ε(4/3)
3/2

3n3/2

]n2−δ

(2.9)

> 1− exp
(

−C1ε

2
n1/2−δ

)

=: 1− sn

for large n. Choose δ ∈ (0, 1/2). Then, finally,

αn+1 ≥ αn(1− rn)(1− sn)

and since
∑

n rn <∞ and
∑

n sn <∞, this yields

α = limαn ≥ αn0

∞
∏

n=n0

(1− rn)(1− sn) > 0.

Corollary 1 The ERW is transient a.s.

Proof. Every time the ERW visits a new vertex v, independently of the past

the walk leaves to a child of v and never returns to v with probability at least

εα > 0. Thus the corollary follows e.g. from the conditional Borel-Cantelli

lemma ([8], Chapter 4.3).

3 Digging random walk

In this section we consider the case ε = 0. However, we would like to view

this as a special case of the process, which we call a Digging Random Walk
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(DRW) with the transitional probabilities defined below. Let r ≥ 1 be a

positive integer.The DRW on a tree G is a nearest-neighbor random walk

with the transitional probabilities

P̃(Xn+1 = w |Xn = v,Fn)

=



















1/|N(v)|, if w ∈ N(v) and either v = v0 or v has been visited

at least r times up to time n− 1
1, if w = A(v) ∈ N(v) and v has been visited < r times

0, otherwise

where N(v), A(v) and Fn are defined in the introduction. Also we suppose

that X0 = v0 and at the root the walk is always equally likely to go to each

of its neighbors. We say that a vertex of G is excited, if it was visited by the

walk for the kth time, k < r. From an excited vertex the walk always goes

back to where it came from. From a not excited vertex the walk jumps as a

simple random walk on G.
One can think of this process as of a rodent exploring tunnels, but it has

to visit each junction at least r times (“to dig” through it) before it can go

any further.

Once again, the DRW on any tree corresponds to the sequence type edge

RRW defined in [11] with the weight sequence w1 = w3 = · · · = w2r−1 = ∞
and the rest of weights = 1. Also, the ERW with ε = 0 is identical to the

DRW with r = 1.

Theorem 2 Suppose that r ∈ {1, 2}. Then the DRW is transient a.s.

Proof. Basically we will “recycle” the proofs for the ERW with some mod-

ifications. To sketch these modifications and to simplify the exposition,

throughout this proof we assume that G is the binary rooted tree, as the
same proof more or less verbatim can be translated to all the trees with the

properties described in the introduction. Also suppose r = 2 (the case r = 1

is similar).
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First, the events An described in (2.1) now cannot occur. Instead, given

X0 = v0, we define the events

Ãn = {∃k ≥ 1 : |Xk| = n and 0 < |Xi| < n for all k1 ≤ i < k}
where k1 is the time of the r + 1st visit to N(v0)

Then the events Ãn are non-trivial, as with a positive probability the walk

jumps r times to the same child v1 of v0 and then it can with a positive

probability not to return to v0 before reaching level n. Similarly to the

ERW(G1), we define DRW(G1), the measures P̃ and P̃G1
corresponding to the

DRW and DRW(G1) respectively, and

α̃n = inf
all G1

P̃G1
(Ãn).

Suppose that we could show that

α̃n ≥
C̃1

n2−ν
(3.10)

for some 0 < ν < 2. Then the proof of the Theorem 1 (and therefore

Corollary 1) will be applicable for the DRW with the only exception that the

RHS of (2.9) is replaced by

1−
[

1− 2

3r+1
α̃3n/4

]N+1

> 1−
[

1− 2C̃1(4/3)
2−ν

3r+1n2−ν

]n2−δ

> 1− exp
(

− C̃1

3r+1nν−δ

)

=: 1− s̃n

since from a vertex v described in the proof of Theorem 1, the walk makes

r+1 consecutive steps to the same v′ and back, and one more step to a child

of v′ with probability ( 1
3
)r × 2

3
. Consequently, we can consider the DRW(G1)

on the subtree rooted at v′ and use the definition of α̃n to obtain the above

inequality. Choosing δ ∈ (0, ν) would finish the proof.
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Thus, it suffices to show (3.10) for some ν > 0. We proceed along the

lines of the proof of Lemma 1. Let k be the first time when the walk hits level

n at some vertex vn and let v
′
n be the other (yet unvisited) child of vn−1. Let

qi,j be the (conditional, given the past) probability that the walk will hit the

root before level n+1 after time m, given that Xm = vn and that the vertex

vn (v
′
n resp.) has been visited by time m exactly i (j resp.) times2. Then,

taking into account that qi,j = qr+1,j when i > r, and using the symmetry

between v′n and vn, we have

q10 ≤ 1

2n
+
1

2
(q11 + q20) +O(n−2)

q11 ≤ 1

2n
+ q21 +O(n−2)

q12 = q21 ≤ 1

2n
+
1

2
(q31 + q22) +O(n−2)

q13 ≤ 1

2n
+
1

2
(q31 + q23) +O(n−2)

q20 ≤ 1

2n
+
1

2
(q30 + q12) +O(n−2)

q22 ≤ 1

2n
+ q32 +O(n−2)

q23 ≤ 1

2n
+ q33 +O(n−2)

q30 ≤ 1

3

[

1

2n
+
1

2
(q30 + q13)

]

+O(n−2)

q31 ≤ 1

3

[

1

2n
+
1

2
(q31 + q23)

]

+O(n−2)

q32 ≤ 1

3

[

1

2n
+
1

2
(q32 + q33)

]

+O(n−2)

q33 ≤ 1

3

3

4n
+O(n−2) =

1

4n
+O(n−2).

Again, to compute some of the probabilities we used the electrical network

arguments, in the same spirit as e.g. in [6]. For the purpose of exposition, let

2to be rigorous, one has to define qi,j also as the infimum over all possible G1’s
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us explain how to obtain the first of these inequalities, for q10. When the walk

hits vn, it has to go back to its parent vn−1. Then, with probability at most
1/2

1/2+(n−1)
= 1

2n−1
= 1

2n
+ O(n−2) the walk reaches the root before returning

to the set {vn, v′n}. On the other hand, if the walk hits this set first, then it
is equally likely to be at v′n or vn. In the first case, the probability to hit the

root is bounded by q11 and in the second case it is bounded by q20. The rest

of the inequalities is obtained in the same way.

Solving this system of inequalities, we conclude

q10 ≤
1.89

n
+O(n−2)

whence

α̃n+1 ≥ α̃n

[

1− 1.9
n

]

≥ α̃n exp

(

−1.9
n
−O(n−2)

)

,

yielding (3.10) with ν = 0.1.

Unfortunately, similar arguments fail when r ≥ 3.

4 Other possible results

Repeating the arguments from [9] one can demonstrate that the ERW (and

perhaps DRW for r = 1, 2) go to infinity approximately at a constant speed

and to establish that |Xn| also satisfies the invariance principle – see The-
orems 2-3 in [9]. Let us briefly sketch what needs to be changed in their

proofs.

First of all, ERW will have the same cut-times as the once edge RRW

(see Section 3 of [9]), since their Lemma 1 and inequality (2.6) and later

(3.12) hold verbatim for the ERW, with their constant b/(b + c) replaced

by ε. Their Lemmas 7 and 8 also hold, with the RHS of inequality (2.40)

(and hence (3.10)) replaced by the similar expression 1− 2C2 exp{−C3n
1/4}

resulting from our inequalities (2.8) and (2.9) with δ = 1/4. In turn, this

yields different constants K14 and δ in the proof of Lemma 7 and different
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q in the proof of Lemma 8 (the equation (3.13) remains unchanged, but the

one just above it will have a different RHS, in accordance with inequalities

(2.8) and (2.9) of our paper). The rest of the proof of Lemma 8 is identical.

And the proofs of Theorems 2 and 3 of [9] are based on these two Lemmas –

see the discussion above Lemma 7.

The most significant question left open by our paper, is what happens

with the DRW for r ≥ 3. We conjecture that the DRW is recurrent for all

integer r ≥ 0.
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