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Abstract

Let Kn be the number of types in the sample {1, . . . , n} of a Ξ-coalescent Π = (Πt)t≥0

with mutation and mutation rate r > 0. Let Π(n) be the restriction of Π to the
sample. It is shown that Mn/n, the fraction of external branches of Π(n) which
are affected by at least one mutation, converges almost surely and in Lp (p ≥ 1)
to M :=

∫∞
0

re−rtStdt, where St is the fraction of singleton blocks of Πt. Since
for coalescents without proper frequencies, the effects of mutations on non-external
branches is neglectible for the asymptotics of Kn/n, it is shown that Kn/n → M for
n → ∞ in Lp (p ≥ 1). For simple coalescents, this convergence is shown to hold
almost surely. The almost sure results are based on a combination of the Kingman
correspondence for random partitions and strong laws of large numbers for weighted
i.i.d. or exchangeable random variables.
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1 Introduction

Let E be the set of partitions of N := {1, 2, . . .}, where every e ∈ E is represented by
the collection of its blocks ordered by their least elements. A coalescent process (Πt)t≥0

(or simply coalescent) is a càdlàg stochastic process with state space E . Its distin-
guishing feature is the following block-merging mechanism: For n ∈ N let (Π

(n)
t )t≥0 :=

(%n ◦Πt)t≥0 be the restriction of (Πt)t≥0 to the set En of partitions of {1, . . . , n} (called n-

coalescent). Then (Π
(n)
t )t≥0 is Markovian and all transitions are done by merging blocks

of the current state which is a partition of {1, . . . , n}. The rate of such a transition is
determined by the number of blocks present before the merger and by the numbers of
blocks that are merged together to form each new block (independent of the sizes of
the blocks and of n). Each forming of a new block during such a transition is called a
collision.
The first and most important example is the Kingman coalescent, which allows only for
one binary merger at each transition. Sagitov [19, p. 1117] and Pitman [18, Theorem
1] independently characterise the distribution of a coalescent process allowing only for
one multiple collision at a transition by a finite measure Λ on the interval [0, 1]. The
rates are given by

λb,k :=

∫
[0,1]

xk−2(1− x)b−kΛ(dx),
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Asymptotics for the number of types for simple Ξ-coalescents

when k blocks of the b present blocks are merged during a transition of (Π
(n)
t )t≥0. These

coalescents are called coalescents with multiple collisions or Λ-coalescents. There is an
analog characterisation for the distribution of any coalescent (allowing for simultaneous
multiple collisions) by Schweinsberg [21, Theorem 2] which uses a finite measure Ξ on
the infinite simplex ∆ :=

{
(x1, x2, . . .)|xi ∈ R, x1 ≥ x2 ≥ · · · ≥ 0,

∑
i∈N xi ≤ 1

}
. Through-

out this work, for convenience define (x, x) :=
∑
i∈N x

2
i , |x| :=

∑
i∈N xi and a := Ξ({0}).

Using the appropriate characterizing measure Ξ, the rates of a coalescent are then
given by

λ(b; k1, . . . , kr) :=∫
∆\{0}

(

s∑
l=0

∑
i1 6=···6=ir+l

(
s

l

) r∏
j=1

x
kj
ij

l∏
m=1

xir+m
(1− |x|)s−l)Ξ(dx)

(x, x)
+ a1{r=1,k1=2}

for each transition in which r ≥ 1 sets of k1 ≥ . . . ≥ kr ≥ 2 of b present blocks are
merged into one block each and s ≥ 0 blocks remain unmerged. Since every coalescent
is characterised by such a measure Ξ, coalescents are also called Ξ-coalescents. Note
that in this paper the case of Ξ being the zero measure is excluded, which corresponds
to the case of a coalescent having no collisions at all.
Coalescents can be divided into two different classes. The first class is the class of
coalescents with proper frequencies. A coalescent has proper frequencies if and only
if the fraction St of singleton blocks (i.e. blocks with only one element) of all individ-
uals in the coalescent fulfills St = 0 almost surely for all t > 0 (see [21, p. 37]). This
class includes important coalescents such as the Kingman coalescent (where Λ is the
Dirac measure in 0) and the Bolthausen-Sznitman coalescent (where Λ is the uniform
distribution on [0, 1]). All other coalescents are called coalescents without proper fre-
quencies. A coalescent has no proper frequencies (see [21, Proposition 30]) if and only
if the characterising measure Ξ satisfies

Ξ({0}) = 0 and µ−1 :=

∫
∆\{0}

|x|Ξ(dx)

(x, x)
<∞. (1.1)

For Λ-coalescents this is equivalent to (see [18, Theorem 8])

Λ({0}) = 0 and µ−1 :=

∫
(0,1]

x−1Λ(dx) <∞. (1.2)

In this paper we focus on the class of coalescents without proper frequencies, especially
the subclass of simple coalescents in the spirit of Bertoin and LeGall (see [6, p. 275]),
which are those Ξ-coalescents satisfying

Ξ({0}) = 0 and µ−2 :=

∫
∆\{0}

Ξ(dx)

(x, x)
<∞. (1.3)

For Λ-coalescents, this can also be expressed by

Λ({0}) = 0 and µ−2 :=

∫
(0,1]

x−2Λ(dx) <∞. (1.4)

This class includes the Dirac coalescents with Ξ being the Dirac measure in a point
x ∈ ∆ \ {0} and the Poisson-Dirichlet coalescents. See [16, Section 4.1.2], [17, Section
6] and [20, Section 3] for some properties of Poisson-Dirichlet coalescents.
In population genetics, the restricted coalescent (Π

(n)
t )t≥0 is used as a model for the

genealogical tree of a sample of n individuals in a large (infinite) haploid population.
It is also possible to introduce a mutation mechanism to this model in the following
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way: For every n ∈ N, let a homogeneous Poisson process Ψ(n) with rate r > 0 gener-
ate points along the branches of the genealogical tree of (Π

(n)
t )t≥0 and independently

of that tree. This can and will be done in a pathwise consistent manner, meaning that
for m,n ∈ N with m < n the mutation structure on the genealogical tree of Π

(m)
t given

by Ψ(m) is pathwise the same as the mutation structure on the genealogical tree of the
individuals {1, . . . ,m} if their genealogy and mutations are tracked in the genealogical

tree of (Π
(n)
t )t≥0 with mutations Ψ(n). In this paper, mutations are neutral with respect

to reproduction and will behave according to the infinitely many alleles model. The in-
finitely many alleles model states that each individual i ∈ N inherits a common type (of
the common ancestor), but this type gets changed into a completely new type not yet
present in the sample/population by every mutation that occurs on the tree while follow-
ing the branch leading to the external node of the tree which symbolizes i. ((Πt)t≥0,Ψ)

is called a coalescent with mutation, where Ψ := (Ψ(n))n∈N, and r > 0 is called its mu-
tation rate.
An interesting quantity of coalescents with mutation is Kn, the number of different
types present in the sample {1, . . . , n}. Stated more precisely, Kn is the number of dif-

ferent types among the external nodes {1, . . . , n} of the tree generated by ((Π
(n)
t )t≥0,Ψ)

when mutations are interpreted in the infinitely many alleles model. Kn has been ana-
lyzed for many coalescent processes with mutation, for example for the Kingman coales-
cent (closely linked to the celebrated Ewens’ sampling formula) [10], the Bolthausen-
Sznitman coalescent [2, p. 6], some beta coalescents [4, Theorem 1.9], [5, Theorem
9], [3, Theorem 3, Theorem 4] (if Λ is a β(2 − α, α)-distribution with 1 < α < 2 or a
similar distribution) and the class of coalescents without proper frequencies [11, Theo-
rem 1.1, Theorem 1.2]. The present paper focuses on the class of coalescents without
proper frequencies and especially on simple coalescents. Roughly speaking, this class
of coalescents (more precisely, the restricted coalescents) can be seen as models for
the genealogical trees of populations (more precisely, for a sample of that population)
where one individual can have a huge number of offsprings, for example a fraction of
the whole population. This class appears in the work [8] of Eldon and Wakeley, see
also [1], [12] and [22] for some other models where coalescents without proper fre-
quencies/simple coalescents arise as genealogical trees. In this paper, an alternative
proof of a Lp-version (p ≥ 1) of the convergence of Kn/n proven in [11, Theorem 1.2]
is given. For the class of simple coalescents, this convergence is shown to also hold
almost surely.

2 Number of mutated external branches

Let ((Πt)t≥0,Ψ) be a coalescent with mutation. For n ∈ N let (Π
(n)
t )t≥0 be the restric-

tion of (Πt)t≥0 on En. Recall that if the (n-)coalescent is seen as a tree, the ith external
branch is the edge connecting the external node which represents the ith individual
with the rest of the tree. For i ∈ N let Ei be the time until the ith individual collides for
the first time. Analogously, let E(n)

i be the waiting time for the first collision of individ-

ual i in (Π
(n)
t )t≥0. These waiting times for individual i are the length of the ith external

branch (either in the restricted or the unrestricted coalescent). Note that

E
(i)
i ≥ E

(n)
i ≥ Ei for all i, n ∈ N, i ≤ n. (2.1)

For every t ≥ 0, Πt is an exchangeable partition of N. Recall that due to Kingman’s
representation theorem (see [15, Theorem 2, p. 240]), the frequency

fi,t = lim
n→∞

n−1|Ai ∩ {1, . . . , n} |
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of the ith biggest block Ai of Πt exists almost surely (Ai := ∅ if there are fewer than i

blocks) and an individual i ∈ N is a singleton almost surely if and only if it is not part of
a block with positive frequency. This means that for t ≥ 0

S
(n)
t :=

1

n

n∑
i=1

1{E(n)
i ≥t} −→ St almost surely as n→∞, (2.2)

where St = 1 −
∑
i∈N fi,t is the fraction of singletons of Πt. During the waiting time

for the first collision (the length of the external branch) each individual can be af-
fected by one or several mutations according to independent Poisson processes on these
branches. So every time there is a Poisson point on the ith external branch, the indi-
vidual i is mutated. First, the asymptotic behaviour of Mn, the number of mutated
external branches, i.e. how many external branches of (Π

(n)
t )t≥0 are affected by at least

one mutation, is analyzed. This will be a first step towards the analysis of the asymp-
totic behaviour of (Kn)n∈N for coalescents without proper frequencies, since for these
coalescents it will be shown that asymptotically for n → ∞, (Kn/n)n∈N behaves like
(Mn/n)n∈N. In order to analyze the asymptotics of (Mn/n)n∈N, a strong law of large
numbers for weighted sums of i.i.d. random variables is used (see, for example, [7,
Theorem 1.1]).

Theorem 2.1 (Strong law for weighted sums). Let (Ain)1≤i≤n,n∈N be an array of ran-
dom variables with sup1≤i≤n,n∈N |Ain| < ∞ almost surely and

∑n
i=1Ain/n → S almost

surely as n → ∞. Let X1, X2, . . . be i.i.d. integrable random variables independent of
(Ain)1≤i≤n,n∈N. Then

1

n

n∑
i=1

AinXi −→ S · E(X1) almost surely as n→∞.

Proof. Theorem 1.1 and Remark (v) of [7] yield 1
n

∑n
i=1Ain(Xi − E(Xi)) → 0 almost

surely as n→∞. The result follows, since

1

n

n∑
i=1

AinE(Xi) = E(X1)
1

n

n∑
i=1

Ain → E(X1)S almost surely as n→∞.

This is the main tool to prove the following result.

Theorem 2.2. Let (Πt)t≥0 be a Ξ-coalescent with mutation rate r > 0. Then,

Mn

n
−→

∫ ∞
0

re−rtStdt almost surely and in Lp (p ≥ 1) as n→∞. (2.3)

Proof. The proof is divided into two parts: First, a result similar to (2.3) is proven for
M

(t)
n , the number of external branches of (Π

(n)
t )t≥0 that are affected by at least one

mutation until time t > 0 (t excluded). This is done by establishing upper and lower
bounds for M (t)

n for all n ∈ N and showing that these bounds converge for n → ∞.
By successive refinement of the bounds for n ∈ N, it will be shown that the limits of
these bounds coincide eventually, thus showing that M (t)

n converges to the same limit.
Afterwards, the convergence result for M (t)

n will be extended to a convergence result
for Mn.
Before the proof is started, it is helpful to impose an i.i.d. structure on the model of
the coalescent with mutation in the following way. Recall first that the mutations on the
external branches of the n-coalescent are modelled as points of a Poisson point process
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independent of the n-coalescent. Now, for every i ∈ N, take a copy of [0,∞). For i > 1,

regard all Poisson points on the ith external branch of (Π
(i)
t )t≥0 as points on the interval

[0, E
(i)
i ) of the ith copy of [0,∞) where 0 represents the leaf. For i = 1, regard all Poisson

points on the first external branch of (Π
(2)
t )t≥0 as points on the interval [0, E

(2)
1 ) of the

first copy of [0,∞) instead. Note that, by construction, the points on different copies
of [0,∞) are independent. Now, take a Poisson process P ′i from an i.i.d. collection of
homogeneous Poisson processes (P ′i )i∈N on [0,∞) with intensity rate r independent of

the coalescent with mutation and shift all points by adding E
(i)
i (or E(2)

1 for i = 1). For
every i ∈ N, regard these shifted points also as points on the ith copy of [0,∞). Define
Pi as the set consisting of all Poisson points on the ith external branch and all shifted
points of P ′i (both regarded as points on the ith copy of [0,∞)). By independence of P ′i
and the Poisson points on the coalescent branches, the resulting concatenated random
set Pi of points on the ith copy of [0,∞) is again a homogeneous Poisson process with

rate r on [0,∞). Its restriction to [0, E
(n)
i ) for n ∈ N, i ≤ n, shows the position of each

mutation on the ith external branch of (Π
(n)
t )t≥0 starting at the leaf. This follows from

(2.1) and the pathwise consistency of the mutation process (Ψ(n))n∈N. Note that due to
independence of both the mutations on different branches and the Poisson processes
(P ′i )i∈N, (Pi)i∈N is an i.i.d. collection of Poisson processes on [0,∞).

The first step of the proof is establishing a convergence result similar to (2.3) for M (t)
n ,

the number of external branches that are affected by at least one mutation until time
t > 0 (t excluded). Define tj := jt/k for 0 ≤ j ≤ k,

Ainj := 1{
tj−1≤E(n)

i <tj
} for n ∈ N, 1 ≤ i ≤ n, 1 ≤ j < k and

Aink := 1{
tk−1≤E(n)

i

} for n ∈ N, 1 ≤ i ≤ n.

Let Y (j)
i := 1{|Pi∩[0,tj)|>0} for i ∈ N, 0 ≤ j ≤ k indicate whether there is a point (mu-

tation) of Pi on [0, tj). Note that, for each fixed j ∈ {1, . . . , k}, (Y
(j)
i )i∈N is i.i.d. with

E(Y
(j)
i ) = P (|Pi ∩ [0, tj)| > 0) = 1 − e−rtj . Now construct upper and lower bounds for

M
(t)
n . For each external branch i of length s with tj−1 ≤ s < tj for some 1 ≤ j ≤ k, Y (j)

i

is an upper bound and Y (j−1)
i is a lower bound for 1{|Pi∩[0,s)|>0}. For an external branch

i with length s ≥ t, there is only a contribution to M
(t)
n if there is a mutation of Pi on

[0, t). Since Y (k)
i is an upper bound and Y (k−1)

i is a lower bound for 1{|Pi∩[0,t)|>0}, these

variables are also bounds for the contribution to M (t)
n if the external branch has length

s ≥ t. In order to get an upper/lower bound for M (t)
n , one has to sum the appropriate

bounds for the contributions to M (t)
n of each external branch. Thus,

k∑
j=1

n∑
i=1

AinjY
(j)
i

n
≥ M

(t)
n

n
≥

k∑
j=1

n∑
i=1

AinjY
(j−1)
i

n
, (2.4)

where the variables (Ainj)1≤i≤n,1≤j≤k decide which bound is used depending on the
length of the external branch whose contribution is estimated. For n → ∞, Theorem
2.1 yields for j ∈ {1, . . . , k − 1}

n∑
i=1

AinjY
(j)
i

n

a.s.→ E(Y
(j)
1 )(Stj−1 − Stj )

= (1− e−rtj )(Stj−1 − Stj ) =

∫ tj

0

re−ru(Stj−1 − Stj )du and
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n∑
i=1

AinjY
(j−1)
i

n

a.s.→ E(Y
(j−1)
1 )(Stj−1

− Stj )

= (1− ertj−1)(Stj−1 − Stj ) =

∫ tj−1

0

re−ru(Stj−1 − Stj )du,

since Stj−1
− Stj is almost surely the fraction of the external branches (Ei)i∈N of the

coalescent process that are at least of length tj−1 but shorter than tj . For j = k, the
same argument shows

n∑
i=1

AinkY
(k)
i

n

a.s.→
∫ tk

0

re−ruStk−1
du and

n∑
i=1

AinkY
(k−1)
i

n

a.s.→
∫ tk−1

0

re−ruStk−1
du

for n→∞.
Thus, as n→∞, (2.4) becomes (after sorting with respect to Stj )∫ t

0

re−ru
k∑
j=1

Stj−11{tj−1≤u<tj}du ≥ lim sup
n→∞

M
(t)
n

n

≥ lim inf
n→∞

M
(t)
n

n
≥
∫ tk−1

0

re−ru
k∑
j=1

Stj1{tj−1≤u<tj}du almost surely. (2.5)

Since (St)t≥0 is non-increasing in t and bounded by zero and one, hence has only count-
able many jump points, one has

k∑
j=1

Stj−11{tj−1≤u<tj},

k∑
j=1

Stj1{tj−1≤u<tj} → Su

for λ-almost all u ∈ [0, t) as k →∞. Hence for k →∞, bounded convergence turns (2.5)
into ∫ t

0

re−ruSudu ≥ lim sup
n→∞

M
(t)
n

n
≥ lim inf

n→∞

M
(t)
n

n
≥
∫ t

0

re−ruSudu a.s. (2.6)

Note that (2.6) holds almost surely, since outside the union of the (countably many)
exception sets for the inequalities (2.5) for different values of k, the inequalities (2.5)
are all true, so taking limits does not change that. So the almost sure convergence is
shown for the truncated M (t)

n /n. For every t > 0, decompose

Mn

n
=
M

(t)
n

n
+
Mn −M (t)

n

n
. (2.7)

Mn−M (t)
n is the number of mutated external branches in (Π

(n)
t )t≥0 that are not affected

by a mutation until t, thus 0 ≤ (Mn − M
(t)
n )/n ≤ S

(n)
t , where S

(n)
t is the fraction of

singletons of all n individuals in Π
(n)
t . From (2.2), for every t ≥ 0, limn→∞ S

(n)
t = St

holds almost surely. Note that

E(St) = P ({1} is a block of Πt) = e−µ−1t → 0

for t→∞, where µ−1 is defined as in (1.1) (see [21, Proposition 30]). Thus St → 0 in L1.
Since (St)t≥0 is non-increasing, this convergence also holds almost surely. This shows

0 ≤ lim inf
n→∞

Mn −M (t)
n

n
≤ lim sup

n→∞

Mn −M (t)
n

n
→ 0 almost surely
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for t → ∞. The desired almost sure convergence of Mn/n for n → ∞ follows by let-

ting n, t → ∞ in (2.7), as (2.6) shows, for every t > 0, M (t)
n /n →

∫ t
0
re−ruSudu almost

surely for n → ∞. Since 0 ≤ Mn/n ≤ 1 is bounded, hence uniformly integrable, this
convergence also holds in Lp (p ≥ 1).

Remark 2.3. For Ξ-coalescents with proper frequencies, i.e. for coalescents satisfying
(1.1), one has St = 0 almost surely for all t > 0. In this case, the right hand side in (2.3)
is equal to 0 almost surely.

3 Asymptotics for the number of types for coalescents without
proper frequencies

Now, focus on Kn, the number of different types in the sample {1, . . . , n}. For coales-
cent processes without proper frequencies there are some known results for its asymp-
totic behaviour. Theorem 1.2 of [11] states thatKn/n converges weakly to

∫∞
0
re−rtStdt.

Theorem 2.2 shows that the latter object is also the almost sure and Lp-limit of Mn/n

for n → ∞ (p ≥ 1). Note that Mn ≤ Kn for n ∈ N, since any mutated external branch
will lead to a type that does not appear anywhere else. Recall that in [11, Corollary 4.2]
it is also shown that (Kn −Mn)/n → 0 in L1 as n → ∞. Since (Kn −Mn)/n ≤ 1 for
n ∈ N, this also implies convergence in Lp for all p ≥ 1. Together with Theorem 2.2,
this yields

Theorem 3.1. Let Kn be the number of types among the first n ∈ N individuals in a
Ξ-coalescent without proper frequencies. Then

Kn

n
−→

∫ ∞
0

re−rtStdt in Lp (p ≥ 1) as n→∞,

where, for t > 0, St is the fraction of singletons of Πt.

Remark 3.2. Theorem 3.1 slightly improves the convergence result in [11].

4 Almost sure/Lp asymptotics for the number of types for simple
Ξ-coalescents

In order to get almost sure convergence in Theorem 3.1, one would need to show
(Kn −Mn)/n → 0 almost surely as n → ∞. From [11, p. 13] it is known that for every
coalescent process with mutation

0 ≤ Kn −Mn ≤ Cn, n ∈ N, (4.1)

where Cn is the number of collisions of (Π
(n)
t )t≥0. So it suffices to show that Cn/n → 0

almost surely as n → ∞. In this section, this is shown for the class of simple Ξ-
coalescents, i.e. for coalescents satisfying (1.3).
Recall the Poisson construction for a simple Ξ-coalescent (Πt)t≥0 according to [21, Sec-
tion 3]: First take a Poisson process Z on [0,∞) × ∆ with intensity measure µ :=

dt⊗ (Ξ(dx)/(x, x)). For a simple Ξ-coalescent µ is finite on [0, t]×∆ for every t ∈ [0,∞),
thus σ-finite. Order the points of Z increasingly in the t-coordinate. To construct
(Πt)t≥0, start with Π0 as the partition of N into singletons. At each successive point
(t, x) of Z divide [0, 1) into intervals y0, y1, . . . defined by yk := [1−

∑∞
i=k xi, 1−

∑∞
i=k+1 xi)

(k ∈ N0) where x = (x1, x2, . . .) is the x-coordinate (simplex-valued coordinate) of the
Poisson point and x0 := 1 − |x|. This division is called Kingman’s paintbox. Now for
each block present in Πt− throw a ball randomly (i.e. with uniform distribution) onto
[0, 1) divided as described above. Each ball is thrown independently of all other balls.

ECP 17 (2012), paper 3.
Page 7/11

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v17-1704
http://ecp.ejpecp.org/


Asymptotics for the number of types for simple Ξ-coalescents

Then merge all blocks whose balls have fallen into the same compartment yj (j ∈ N)
of [0, 1). Do not merge any block whose ball has fallen into compartment y0. The new
blocks resulting from all of these mergers and the unmerged blocks form Πt.
Note that in order to construct (Π

(n)
t )t≥0, start with the partition of {1, . . . , n} into sin-

gletons, at every Poisson point (t, x) of Z use the balls described above and merge all

blocks of Π
(n)
t− whose balls have landed in the same compartment y1, y2, . . .. Also note

that in the case of simple Ξ-coalescents without restriction it can always be assumed
that (Πt)t≥0 is pathwise constructed via Poisson construction. There are many classi-
cal results for the balls-in-boxes problem that occurs in this construction. Here, the
following result is of most importance.

Lemma 4.1 (occupancy scheme). Let X = (X1, X2, . . .) be a ∆-valued random vari-
able and let U1, U2, . . . be i.i.d. random variables with uniform distribution on [0, 1)

independent of X. Define X0 := 1 − |X|. Divide [0, 1) into the compartments Yk :=

[1 −
∑∞
i=kXi, 1 −

∑∞
i=k+1Xi) (k ∈ N0) and let Vn be the number of compartments that

are occupied by at least one value of U1, . . . , Un. Then P (limn→∞ Vn/n = 0) = 1.

Proof. Define yk := [1 −
∑∞
i=k xi, 1 −

∑∞
i=k+1 xi) for x = (x1, x2, . . .) ∈ ∆, x0 := 1 − |x|,

k ∈ N0 and let fn(x, u) =
∑n
m=1

∑∞
i=0 1{um∈yi,u1,...,um−1 /∈yi} for u = (u1, u2, . . .) ∈ [0, 1]N

be the number of compartments y0, y1, . . . occupied by u1, . . . , un. Note that the expected
number of occupied boxes after n thrown balls U1, . . . , Un in such a set of fixed boxes
with lengths x0, x1, . . . is

µn(x) := E(fn(x, (Um)m∈N)) =
∑
i∈N0

(1− (1− xi)n), (4.2)

since
∑n
m=1 1{Um∈yi,U1,...,Um−1 /∈yi} is 0 if and only if all n balls have not fallen into

compartment yi which has probability (1 − xi)
n. The Bernoulli inequality yields 0 ≤

1 − (1 − xi)n ≤ nxi for every i ∈ N0. If now the sum in (4.2) is seen as an integral of
the counting measure µN0

on N0, it follows by bounded convergence with dominating
series (xi)i∈N0

lim
n→∞

µn(x)

n
=

∫
lim
n→∞

1− (1− xi)n

n
µN0

(di) = 0. (4.3)

[13, Theorem 8] shows that limn→∞ fn(x, ·)/µn(x) = 1 P(Um)m∈N -almost surely. Thus,
together with (4.3),

P ( lim
n→∞

fn(x, (Um)m∈N)/n = 0) = 1 for any x ∈ ∆. (4.4)

If you now throw balls into boxes of random lengths X0, X1, . . ., using Fubini and (4.4)
leads to

P ( lim
n→∞

Vn
n

= 0) = P ( lim
n→∞

fn(X, (U1, U2, . . .))

n
= 0) = 1.

The Poisson construction of coalescents mentioned above is the key to prove the
following result.

Lemma 4.2. Let (Πt)t≥0 be a simple Ξ-coalescent. Let Cn be the number of collisions

of (Π
(n)
t )t≥0. Then Cn/n→ 0 almost surely and in Lp for any p ≥ 1 as n→∞.

Proof. Without loss of generality, assume that (Πt)t≥0 is pathwise constructed via the
Poisson construction. Observe that collisions are always due to a Poisson point of Z. For
every j ∈ N, split Cn into the number of collisions due to the first j points (ordered in the
first coordinate) (T1, X1), . . . , (Tj , Xj) of Z and into the number of all other collisions.
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Let C(i)
n be the number of collisions due to the ith Poisson point, so the number of

collisions due to the first j Poisson points is
∑j
i=1 C

(i)
n . The number of collisions after

the first j Poisson points can be at most the number of blocks of Π
(n)
Tj

minus 1, since

l ∈ N blocks can have at most l − 1 collisions. To analyze the number of blocks of Π
(n)
Tj

,
define the following random variables for k, j ∈ N:

B
(j)
k := 1{

ball k has fallen into y(1)
0 , . . . , y

(j)
0 for the first j Poisson points

},
where y

(i)
0 is the y0-compartment of the paintbox generated by the i-th Poisson point.

After j Poisson points, Π
(n)
Tj

has at most V (1)
n + · · · + V

(j)
n +

∑n
k=1B

(j)
k blocks, where

V
(i)
n is the number of occupied boxes in the construction step of (Π

(n)
t )t≥0 belonging to

the ith Poisson point. This can be seen from the fact that every block of Π
(n)
Tj

comes
either from a collision due to the first j Poisson points or is a singleton block. If it is a
singleton block, every ball which was thrown for this block for one of the first j Poisson
points has either fallen into a non-y0-compartment where there were no other balls in
this compartment or has fallen into the compartment y0.
Thus, Cn is bounded by

Cn ≤ C(1)
n + · · ·+ C(j)

n + V (1)
n + · · ·+ V (j)

n +

n∑
k=1

B
(j)
k − 1

≤ 2(V (1)
n + · · ·+ V (j)

n ) +

n∑
k=1

B
(j)
k − 1,

for all j ∈ N, since, by construction, 0 ≤ C
(i)
n ≤ V

(i)
n for n ∈ N. The next step is to ana-

lyze the asymptotics of this bound for n → ∞ . Lemma 4.1 shows limn→∞(V
(i)
n /n) = 0

almost surely for every i ∈ N, since at most n independent balls are thrown for every
Poisson point. To analyze (B

(j)
k )k∈N it is helpful to look at the x-coordinates (the simplex

coordinates) of the points of Z. Recall that these coordinates govern the distribution
of the length of the compartments of the paintboxes used in the Poisson construction.
In the case of a simple measure Ξ satisfying (1.3), the x-coordinates (Xi)i∈N of the

points of Z (ordered in time) are i.i.d. random variables with X1
d
= ν/ν(∆), where

ν(dx) := (x, x)−1Ξ(dx). This can be read from the construction of the Poisson point
process in [14, p. 23] and the product structure of the intensity measure µ. It is conve-
nient to introduce Yi := |Xi| for i ∈ N, which gives the total length of all compartments

other than y
(i)
0 for the corresponding Poisson point. Yi is also the probability that a

ball does not hit compartment y(i)
0 . Since it is only interesting whether a ball hits com-

partment y(i)
0 or another compartment of [0, 1], (B

(j)
k )k∈N is conditional i.i.d. with B

(j)
1

Bernoulli-distributed with parameter
∏j
i=1(1− Yi) for every j conditioned on Y1, . . . , Yj .

Thus, (B
(j)
k )k∈N is exchangeable. By the strong law of large numbers for exchangeable

random variables (see for example [9, Remark 3]),∑n
k=1B

(j)
k

n
→

j∏
i=1

(1− Yi) almost surely as n→∞. (4.5)

Thus,

0 ≤ lim inf
n→∞

Cn
n
≤ lim sup

n→∞

Cn
n
≤

j∏
i=1

(1− Yi)

almost surely for all j ∈ N. Since (Yi)i∈N is i.i.d. with P (Yi > 0) = 1 (Ξ is simple, hence ν
has no mass in 0 ∈ ∆), the Borel-Cantelli lemma shows that P (lim supi→∞ {Yi ≥ ε}) = 1
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for some ε > 0. This implies
∏∞
i=1(1 − Yi) = 0 almost surely and yields the almost sure

convergence. Since 0 ≤ Cn/n ≤ 1 for all n ∈ N, the convergence also holds in Lp for
p ≥ 1.

This leads to the main result.

Theorem 4.3. Let Kn be the number of types among the first n ∈ N individuals in a
simple Ξ-coalescent. Then

Kn

n
→
∫ ∞

0

re−rtStdt almost surely and in Lp (p ≥ 1) as n→∞ ,

where, for t > 0, St is the fraction of singletons of Πt.

Proof. By Theorem 2.2, Mn/n →
∫∞

0
re−rtStdt almost surely and in Lp. With (4.1) and

Lemma 4.2, 0 ≤ (Kn −Mn)/n ≤ Cn/n→ 0 almost surely and in Lp as n→∞.
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