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Abstract

It is possible to represent each of a number of Markov chains as an evolving se-
quence of connected subsets of a directed acyclic graph that grow in the following
way: initially, all vertices of the graph are unoccupied, particles are fed in one-by-
one at a distinguished source vertex, successive particles proceed along directed
edges according to an appropriate stochastic mechanism, and each particle comes to
rest once it encounters an unoccupied vertex. Examples include the binary and dig-
ital search tree processes, the random recursive tree process and generalizations of
it arising from nested instances of Pitman’s two-parameter Chinese restaurant pro-
cess, tree-growth models associated with Mallows’ φ model of random permutations
and with Schützenberger’s non-commutative q-binomial theorem, and a construction
due to Luczak and Winkler that grows uniform random binary trees in a Markovian
manner. We introduce a framework that encompasses such Markov chains, and we
characterize their asymptotic behavior by analyzing in detail their Doob-Martin com-
pactifications, Poisson boundaries and tail σ-fields.
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1 Introduction

Several stochastic processes appearing in applied probability may be viewed as
growing connected subsets of a directed acyclic graph that evolve according to the
following dynamics: initially, all vertices of the graph are unoccupied, particles are
fed in one-by-one at a distinguished source vertex, successive particles proceed along

∗SNE supported in part by NSF grants DMS-0405778 and DMS-0907630.
†Department of Statistics, University of California, 367 Evans Hall #3860,

Berkeley, CA 94720-3860, USA. E-mail evans@stat.berkeley.edu
‡Institut für Mathematische Stochastik, Leibniz Universität Hannover, Postfach 6009,

30060 Hannover, Germany. E-mail: rgrubel@stochastik.uni-hannover.de
§Institut für Mathematik, Goethe-Universität,

60054 Frankfurt am Main, Germany. E-mail: wakolbinger@math.uni-frankfurt.de

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/EJP.v17-1698
http://arXiv.org/abs/1010.0453v2


Trickle-down processes and their boundaries

directed edges according to an appropriate stochastic mechanism, and each particle
comes to rest once it encounters an unoccupied vertex. If we picture the source vertex
as being at the “top” of the graph, then successive particles “trickle down” the graph
until they find a vacant vertex that they can occupy.

We are interested in the question: “What is the asymptotic behavior of such a (highly
transient) set-valued Markov chain?” For several of the models we consider, any finite
neighborhood of the source vertex will, with probability one, be eventually occupied by
a particle and so a rather unilluminating answer to our question is to say in such cases
that the sequence of sets converges to the entire vertex set V . Implicit in the use of the
term “converges” in this statement is a particular topology on the collection of subsets
of V ; we are embedding the space of finite subsets of V into the Cartesian product
{0, 1}V and equipping the product space with the usual product topology. A quest for
more informative answers can therefore be thought of as a search for an embedding
of the state space of the chain into a topological space with a richer class of possible
limits.

An ideal embedding would be one such that the chain converged almost surely to a
limit and the σ-field generated by the limit coincided with the tail σ-field of the chain
up to null events. For trickle-down processes, the Doob-Martin compactification pro-
vides such an embedding, and so our aim is to develop a body of theory that enables
us to identify the compactification for at least some interesting examples. Moreover, a
knowledge of the Doob-Martin compactification allows us to determine, via the Doob
h-transform construction, all the ways in which it is possible, loosely speaking, to condi-
tion the Markov chain to behave for large times. This allows us to construct interesting
new processes from existing ones or recognize that two familiar processes are related
by such a conditioning.

A prime example of a Markov chain that fits into the trickle-down framework is
the binary search tree (BST) process, and so we spend some time describing the BST
process in order to give the reader some concrete motivation for the definitions we in-
troduce later. The BST process and the related digital search tree (DST) processes that
we consider in Section 5 arise from considering the behavior of tree-based searching
and sorting algorithms. The trickle-down mechanism is at the heart of both algorithms:
the vertices of the complete rooted binary tree are regarded as potential locations for
the storage of data values x1, x2, . . . that arrive sequentially in time. We interpret these
values as labels of particles. The particles are fed in at the root vertex, which receives
x1, and they are routed through the tree until a free vertex is found. How we travel
onwards from an occupied vertex depends on the algorithm: in the BST case we as-
sume that the input stream consists of real numbers and we compare the value x to be
inserted with the content y of the occupied vertex, moving to the left or right depending
on whether x < y or x > y, whereas in the DST case the inputs xi are taken to be infinite
0-1 sequences, and we move from an occupied vertex of depth k to its left or right child
if the kth component of xi is 0 or 1 respectively. If the input is random and we ignore
the labeling of the vertices by elements of the input data sequence, then we obtain a
sequence of subtrees of the complete binary tree; the n-th element of the sequence is
the subtree consisting of the vertices occupied by the first n particles.

Binary trees in general and their role in the theory and practice of computer sci-
ence are discussed in [32]. Several tree-based sorting and searching algorithms are
described in [33]. In particular, a class of trees (generalizing binary search trees as
well as digital search trees) with a construction similar to our trickle-down process is
introduced in [10]. An introduction to the literature on tree-valued stochastic processes
arising in this connection is [38]. Historically, real valued functionals such as the path
length or the insertion depth of the next item were investigated first, with an emphasis
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on the expected value for random input as a function of the amount of stored data (that
is, of the number of vertices in the tree). In recent years, several infinite-dimensional
random quantities related to the shape of the trees such as the node depth profile
[6, 15], the subtree size profile [12, 17] and the silhouette [27] have been studied.

In the present paper we develop a framework for trickle-down processes that con-
tains the BST and DST processes as special cases. As a consequence, we obtain limit
results for the sequence of random trees themselves, using a topology on the space of
finite binary trees that is dictated by the underlying stochastic mechanism. We also
establish distributional relationships; for example, we show that the Markov chains
generated by the BST and the DST algorithms are related via h-transforms – see Theo-
rem 5.1.

In order to motivate our later formal definition of trickle-down processes, we now
reconsider the BST process from a slightly different point of view by moving away some-
what from the search tree application and starting with a bijection from classical enu-
merative combinatorics (see, for example, [51]) between permutations of the finite set
[n] := {1, 2, . . . , n} and certain trees with n vertices labeled by [n].

Denote by {0, 1}? :=
⊔∞
k=0{0, 1}k the set of finite tuples or words drawn from the

alphabet {0, 1} (with the empty word ∅ allowed) – the symbol
⊔

emphasizes that this is
a disjoint union. Write an `-tuple (v1, . . . , v`) ∈ {0, 1}? more simply as v1 . . . v`. Define a
directed graph with vertex set {0, 1}? by declaring that if u = u1 . . . uk and v = v1 . . . v`
are two words, then (u, v) is a directed edge (that is, u→ v) if and only if ` = k + 1 and
ui = vi for i = 1, . . . , k. Call this directed graph the complete rooted binary tree. Say
that u < v for two words u = u1 . . . uk and v = v1 . . . v` if k < ` and u1 . . . uk = v1 . . . vk;
that is, u < v if there exist words w0, w1, . . . , w`−k with u = w0 → w1 → . . .→ w`−k = v.

A finite rooted binary tree is a non-empty subset t of {0, 1}? with the property that
if v ∈ t and u ∈ {0, 1}? is such that u → v, then u ∈ t. The vertex ∅ (that is, the empty
word) belongs to any such tree t and is the root of t. See Figure 1.

10

00

101

10 11

000 001

Figure 1: A finite rooted binary tree.

If #t = n, then a labeling of t by [n] is a bijective map φ : t→ [n].
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Suppose that r(1), . . . , r(n) is an ordered listing of [n]. Define a permutation π of [n]

by π−1(k) = r(k), k ∈ [n]. There is a unique pair (t, φ), where t is a finite rooted binary
tree with #t = n and φ is a labeling of t by [n], such that

• φ(∅) = 1,

• if u, v ∈ t and u < v, then φ(u) < φ(v),

• if u, v ∈ t, u0 ≤ v, then π ◦ φ(u) > π ◦ φ(v).

• if u, v ∈ t, u1 ≤ v, then π ◦ φ(u) < π ◦ φ(v).

The labeling may be constructed inductively as follows. If n = 1, then we just have the
tree consisting of the root ∅ labeled with 1. For n > 1 we first remove n from the list
r(1), . . . , r(n) and build the labeled tree (s, ψ) for the resulting listing of [n − 1]. The
labeled tree for r(1), . . . , r(n) is of the form (t, φ), where t = s ∪ {u} for u /∈ s, φ(u) = n,
φ restricted to s is ψ, and, setting u = u1 . . . uk,

u` =

{
0, if π ◦ ψ(u1 . . . u`−1) < π(n),

1, if π ◦ ψ(u1 . . . u`−1) > π(n).

To illustrate this construction, take n = 9 and consider the ordered listing r(1), . . . , r(9)

of the set [9] to be 8, 7, 9, 4, 1, 3, 5, 2, 6. See Table 1 for the resulting permutation, written
in the usual two line format.

k 1 2 3 4 5 6 7 8 9
π(k) 5 8 6 4 7 9 2 1 3

Table 1: Permutation of [9] with 8, 7, 9, 4, 1, 3, 5, 2, 6 as the corresponding ordered listing
r(1), . . . , r(9).

The successive ordered listings of [1], . . . , [9] implicit in the recursive construction are

1

1, 2

1, 3, 2

· · ·
8, 7, 4, 1, 3, 5, 2, 6

8, 7, 9, 4, 1, 3, 5, 2, 6.

As illustrated in Figure 2, the label 1 is inserted at the root, the label 2 trickles down to
the vertex 1, the label 3 trickles down to the vertex 10, the label 4 trickles down to the
vertex 0, and so on until the label 9 trickles down to the vertex 001.

Now let (Un)n∈N be a sequence of independent identically distributed random vari-
ables that each have the uniform distribution on the interval [0, 1]. For each positive
integer n define a uniformly distributed random permutation Πn of [n] by requiring that
Πn(i) < Πn(j) if and only if Ui < Uj for 1 ≤ i, j ≤ n. That is,

Πn(k) = #{1 ≤ ` ≤ n : U` ≤ Uk}

and the corresponding ordered list

Rn(k) := Π−1n (k), 1 ≤ k ≤ n,

is such that URn(1) < URn(2) < . . . < URn(n). The corresponding ordered list for Πn+1

is thus obtained by inserting n + 1 into one of the n− 1 “slots” between the successive
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24

7

5

3 6

8 9

1

8 7 9 4 1 3 5 2 6

Figure 2: The labeled binary tree corresponding to the permutation of [9] with
r(1), . . . , r(9) = 8, 7, 9, 4, 1, 3, 5, 2, 6. For the sake of clarity, the coding (see Figure 1)
of the vertices as elements of {0, 1}? is not shown. The correspondence between the
labeling by the set [9] and the vertices as elements of {0, 1}? is 1 ↔ ∅, 2 ↔ 1, 3 ↔ 10,
4↔ 0, 5↔ 101, 6↔ 11, 7↔ 00, 8↔ 000, 9↔ 001.

elements of the existing list or into one of the two “slots” at the beginning and end of
the list, with all n+ 1 possibilities being equally likely.

Applying the procedure above for building labeled rooted binary trees to the succes-
sive permutations Π1,Π2, . . . produces a sequence of labeled trees (Ln)n∈N, where Ln
has n vertices labeled by [n]. This sequence is a Markov chain that evolves as follows.
Given Ln, there are n + 1 words of the form v = v1 . . . v` such that v is not a vertex of
the tree Ln but the word v1 . . . v`−1 is. Pick such a word uniformly at random and adjoin
it (with the label n+ 1 attached) to produce the labeled tree Ln+1.

If we remove the labels from each tree Ln, then the resulting random sequence of
unlabeled trees is also a Markov chain that has the same distribution as the sequence
of trees generated by the BST algorithm when the input stream consists of independent
random variables that all have the same continuous distribution function. In essence, at
step n+1 of the BST algorithm there are n+1 vertices that can be added to the existing
tree and the rank of the input value xn+1 within x1, . . . , xn, xn+1 determines the choice
of this “external vertex”: for i.i.d. continuously distributed random input, this rank is
uniformly distributed on {1, . . . , n + 1}, resulting in a uniform pick from the external
vertices (see also the discussion following (4.2)). See Figure 3 for an example showing
the external vertices of the finite rooted binary tree of Figures 1 and 2.

From now on we will refer to any Markov chain on the space of finite rooted binary
trees with this transition mechanism as “the” BST process and denote it by (Tn)n∈N.

We note in passing that the labeled permutation trees L1, . . . , Ln−1 can be recon-
structed from Ln, but a similar reconstruction of the history of the process from its
current value is not possible if we consider the sequence of labeled trees obtained by
labeling the vertices of the tree in the binary search tree algorithm with the input values
x1, . . . , xn that created the tree.

Write Gn (respectively, Dn) for the number of vertices in Tn of the form 0v2 . . . v`
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Figure 3: A finite rooted binary tree, the tree with 9 vertices connected by the solid
edges, and its 10 external vertices, the vertices connected to the tree by dashed edges.
For simplicity, the coding of the vertices as elements of {0, 1}? is not shown.

(resp. 1w2 . . . wm). That is, Gn and Dn are the sizes of the “left” and “right” subtrees in
Tn below the root ∅. Then, Gn + 1 and Dn + 1 are, respectively, the number of “slots” to
the left and to the right of 1 in the collection of n+ 1 slots between successive elements
or at either end of the ordered list Π−1n (1), . . . ,Π−1n (n). It follows that the sequence of
pairs (Gn + 1, Dn + 1), n ∈ N, is itself a Markov chain that evolves as the numbers
of black and white balls in a classical Pólya urn (that is, as the process describing
the successive compositions of an urn that initially contains one black and one white
ball and at each stage a ball is drawn uniformly at random and replaced along with
a new ball of the same color). More precisely, conditional on the past up to time n, if
(Gn+1, Dn+1) = (b, w), then (Gn+1+1, Dn+1+1) takes the values (b+1, w) and (b, w+1)

with respective conditional probabilities b
b+w and w

b+w .

More generally, suppose for a fixed vertex u = u1 . . . uk ∈ {0, 1}∗ that we write Gun
(respectively, Du

n) for the number of vertices in Tn of the form u1 . . . uk0v2 . . . v` (resp.
u1 . . . uk1w2 . . . wm). That is, Gun and Du

n are the sizes of the “left” and “right” subtrees
in Tn below the vertex u. Put Cun := #{v ∈ Tn : u ≤ v} and Sur = inf{s ∈ N : Cus = r} for
r ∈ N; that is, Sur is the first time that the subtree of Tn rooted at u has r vertices. Then,
the sequence (GSur , DSur ), r ∈ N, obtained by time-changing the sequence (Gun, D

u
n),

n ∈ N, so that we only observe it when it changes state is a Markov chain with the same
distribution as (Gn, Dn), n ∈ N.

It follows from this observation that we may construct the tree-valued stochastic
process (Tn)n∈N from an infinite collection of independent, identically distributed Pólya
urns, with one urn for each vertex of the complete binary tree {0, 1}?, by running the
urn for each vertex according to a clock that depends on the evolution of the urns
associated with vertices that are on the path from the root to the vertex.

More specifically, we first equip each vertex u ∈ {0, 1}? with an associated indepen-
dent N0 × N0-valued routing instruction process (Y un )n∈N0 such that (Y un + (1, 1))n∈N0

evolves like the pair of counts in a Pólya urn with an initial composition of one black
and one white ball. Then, at each point in time we feed in a new particle at the root
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∅. At time 0 the particle simply comes to rest at ∅. At time 1 the root is occupied and
so the particle must be routed to either the vertex 0 or the vertex 1, where it comes to
rest, depending on whether the value of Y ∅1 is (1, 0) or (0, 1). We then continue on in
this way: at time n ≥ 2 we feed a particle in at the root ∅, it is routed to the vertex 0

or the vertex 1 depending on whether the value of Y ∅n − Y ∅n−1 is (1, 0) or (0, 1), the par-
ticle then trickles down through the tree until it reaches an unoccupied vertex. At each
stage of the trickle-down, if the particle is routed to a vertex u that is already occupied,
then it moves on to the vertex u0 or the vertex u1 depending on whether the value of
Y uAun − Y uAun−1 is (1, 0) or (0, 1), where Aun is the number of particles that have passed
through vertex u and been routed onwards by time n. The resulting sequence of trees
is indexed by N0 rather than N, and if we shift the indices by one we obtain a sequence
indexed by N that has the same distribution as (Tn)n∈N.

It is well-known (see [4]) that the Doob-Martin compactification of the state space
N2 of the classical Pólya urn results in a Doob-Martin boundary that is homeomorphic
to the unit interval [0, 1]: a sequence of pairs ((bn, wn))n∈N from N2 converges to a point
in the boundary if and only if bn + wn → ∞ and wn

bn+wn
→ z for some z ∈ [0, 1]. We can,

of course, identify [0, 1] with the space of probability measures on a set with two points,
say {0, 1}, by identifying z ∈ [0, 1] with the probability measure that assigns mass z to
the point 1.

It is a consequence of results we prove in Section 4 that this result “lifts” to the
binary search tree process: the Doob-Martin boundary is homeomorphic to the space
of probability measures on {0, 1}∞ equipped with the weak topology corresponding to
the product topology on {0, 1}∞ and a sequence (tn)n∈N of finite rooted binary trees
converges to the boundary point identified with the probability measure µ if and only if
#tn →∞ and for each u ∈ {0, 1}?

#{v ∈ tn : u ≤ v}
#tn

→ µ{v ∈ {0, 1}∞ : u ≤ v},

where we extend the partial order ≤ on {0, 1}? to {0, 1}? t {0, 1}∞ by declaring that
two distinct elements of {0, 1}∞ are not comparable and u ∈ {0, 1}? is dominated by
v ∈ {0, 1}∞ if u is a prefix of v.

An outline of the remainder of the paper is the following. In Section 2 we give a gen-
eral version of the trickle-down construction in which the complete rooted binary tree
{0, 1}∗ is expanded to a broad class of directed acyclic graphs with a unique “root” ver-
tex and the independent Pólya urns at each vertex are replaced by independent Markov
chains that keep a running total of how many particles have been routed onwards to
each of the immediate successors of the vertex. For example, we could take the graph
to be N2

0 with directed edges of the form ((i, j), (i + 1, j)) and ((i, j), (i, j + 1)) (so that
the root is (0, 0)) and take the Markov chain at vertex (i, j) to correspond to successive
particles being routed independently with equal probability to either ((i, j), (i + 1, j))

or ((i, j), (i, j + 1)). This gives a process somewhat reminiscent of Sir Francis Galton’s
quincunx – a device used to illustrate the binomial distribution and central limit theo-
rem in which successive balls are dropped onto a vertical board with interleaved rows
of horizontal pins that send a ball striking them downwards to the left or right “at ran-
dom”. We illustrate the first few steps in the evolution of the set of occupied vertices in
Figure 4.

We give a brief overview of the theory of Doob-Martin compactifications in Sec-
tion 3. We present our main result, a generalization of the facts about the Doob-Martin
boundary of the binary search tree process we have stated above, in Section 4. It says
for a large class of trickle-down processes that if the convergence of a sequence to a
point in the Doob-Martin boundary for each of the component Markov chains is deter-
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Figure 4: The first five steps in the trickle-down process for the directed acyclic graph
N2

0 with directed edges of the form ((i, j), (i+ 1, j)) and ((i, j), (i, j + 1)). The root (0, 0)

is drawn at the top. Dashed lines show that paths taken by successive particles as they
pass through occupied vertices until they come to rest at the first unoccupied vertex
they encounter.
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mined by the convergence of the proportions of points that are routed to each of the
immediate successors, then the Doob-Martin boundary of the trickle-down process is
homeomorphic to a space of probability measures on a set of directed paths from the
root that either have infinite length or are “killed” at some finite time. We then consider
special cases of this general result in Section 5, where we investigate the binary and
digital search tree processes, and in Section 6, where we study random recursive tree
processes that are related to a hierarchy of Chinese restaurant processes.

More specifically, we show in Section 5 that, as we already noted above, the Doob-
Martin boundary of the BST process may be identified with the space of probability
measures on {0, 1}∞ equipped with the weak topology corresponding to the product
topology on {0, 1}∞, that every boundary point is extremal, that the digital search tree
process is a Doob h-transform of the BST process with respect to the extremal har-
monic function corresponding to the fair coin-tossing measure on {0, 1}∞, and that an
arbitrary Doob h-transform may be constructed from a suitable “trickle-up” procedure
in which particles come in successively from the “leaves at infinity” of the complete
rooted binary tree {0, 1}∗ (that is from {0, 1}∞) and work their way up the tree until
they can move no further because their path is blocked by an earlier particle.

We observe in Section 6 that the random recursive tree (RRT) process – see [50] for
a review – can be built from the above sequence (Πn)n∈N of uniform permutations in
a manner analogous to the construction of the BST process by using a different bijec-
tion between permutations and trees. The RRT process is also a trickle-down process
similar to the BST process, with the tree {0, 1}∗ replaced by the tree N∗ and the Pólya
urn routing instructions replaced by the Markov chain that gives the block sizes in the
simplest Chinese restaurant process model of growing random partitions. We extend
this construction to incorporate Pitman’s two-parameter family of Chinese restaurant
processes and then investigate the associated Doob-Martin compactification. We iden-
tify the Doob-Martin boundary as a suitable space of probability measures, show that
all boundary points are extremal, demonstrate that h-transform processes may be con-
structed via a “trickle-up” procedure similar to that described above for the BST pro-
cess, and relate the limit distribution to the Griffiths–Engen–McCloskey (GEM) distri-
butions. Similar nested hierarchies of Chinese restaurant processes appear in [13, 44]
and in [52, 3] in the statistical context of mixture models, hierarchical models, and
nonparametric Bayesian inference.

A commonly used probability distribution on the set of permutations of a finite set is
the Mallows φ model – see [39, 8, 18, 14, 7, 40] – for which the uniform distribution is
a limiting case. This distribution extends naturally to the set of permutations of N, and
applying the obvious generalization of the above bijection between finite permutations
and labeled finite rooted subtrees of the complete rooted binary tree {0, 1}? leads to an
interesting probability distribution on infinite rooted subtrees of {0, 1}?. In Section 7
we relate this distribution to yet another model for growing random finite trees that we
call the Mallows tree process. We show that the Doob-Martin boundary of this Markov
chain is a suitable space of infinite rooted subtrees of {0, 1}?. We outline a parallel
analysis in Section 8 for a somewhat similar process that is related to Schützenberger’s
non-commutative q-binomial theorem and its connection to weighted enumerations of
“north-east” lattice paths.

The routing instruction processes that appear in the trickle-down construction of
the Mallows tree process have the feature that if we know the state of the chain at
some time, then we know the whole path of the process up to that time. We observe
in Section 9 that such processes may be thought of as Markov chains on a rooted tree
with transitions that always go to states that are one step further from the root. As
one might expect, the Doob-Martin compactification in this case is homeomorphic to
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the usual end compactification of the tree. We use this observation to describe the
Doob-Martin compactification of a certain Markov chain that takes values in the set of
compositions of the integers and whose value at time n is uniformly distributed over the
compositions of n.

As we have already remarked, our principal reason for studying the Doob-Martin
compactification of a trickle-down chain is to determine the chain’s tail σ-field. The
Doob-Martin compactification gives even more information about the asymptotic be-
havior of the chain, but it is not always easy to compute. We describe another approach
to determining the tail σ-field of certain trickle-down chains in Section 10. That result
applies to the Mallows tree process and the model related to the non-commutative q-
binomial theorem. We also apply it in Section 11 to yet another Markov chain model
of growing random trees from [37]. The latter model, which turns out to be of the
trickle-down type, has as its state space the set of finite rooted binary trees and is
such that if it is started at time 0 in the trivial tree {∅}, then the value of the pro-
cess at time n is equally likely to be any of the Cn rooted binary trees with n vertices,
where Cn := 1

n+1

(
2n
n

)
is the nth Catalan number. Even though we cannot determine the

Doob-Martin compactification of this chain, we are able to show that its tail σ-field is
generated by the random infinite rooted subtree of the complete binary tree that is the
(increasing) union of the successive values of the chain. Also, knowing the tail σ-field
allows us to identify the Poisson boundary – see Section 3 for a definition of this object.

We observe that there is some similarity between the trickle-down description of the
binary search tree process and the internal diffusion limited aggregation model that
was first named as such in [36] after it was introduced in [11]. There particles are fed
successively into a fixed state of some Markov chain and they then execute independent
copies of the chain until they come to rest at the first unoccupied state they encounter.
The digital search tree process that we discuss in Section 5 turns out to be internal
diffusion limited aggregation model for the Markov chain on the complete rooted binary
tree that from the state u moves to the states u0 and u1 with equal probability.

Finally, we note that there are a number of other papers that investigate the Doob-
Martin boundary of Markov chains on various combinatorial structures such as Young
diagrams and partitions – see, for ex., [43, 34, 19, 24, 21, 20].

2 The trickle-down construction

2.1 Routing instructions and clocks

We begin by introducing a class of directed graphs with features generalizing those
of the complete binary tree {0, 1}? considered in the Introduction.

Let I be a countable directed acyclic graph. With a slight abuse of notation, write
u ∈ I to indicate that u is a vertex of I. Given two vertices u, v ∈ I, write u → v if (u, v)

is a directed edge in I.

Suppose that there is a unique vertex 0̂ such that for any other vertex u there is
at least one finite directed path 0̂ = v0 → v1 → . . . → vn = u from 0̂ to u. Define a
partial order on I by declaring that u ≤ v if u = v or there is a finite directed path
u = w0 → w1 → . . .→ wn = v. Note that 0̂ is the unique minimal element of I. Suppose
further that the number of directed paths between any two vertices is finite: this is
equivalent to supposing that the number of directed paths between 0̂ and any vertex is
finite.

For each vertex u ∈ I, set

α(u) := {v ∈ I : v → u}
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and

β(u) := {v ∈ I : u→ v}.

That is, α(u) and β(u) are, respectively, the immediate predecessors and the immediate
successors of u. Suppose that β(u) is non-empty for all u ∈ I. Thus, any path 0̂ = v0 →
v1 → . . . → vn = u is the initial piece of a semi-infinite path v0 → v1 → . . . → vn →
vn+1 → . . .

We next introduce the notion of routing instructions that underlies the construction
of a sequence of connected subsets of I via a trickle-down mechanism analogous to
that described in the Introduction for the BST: at each point in time a particle is fed
into 0̂ and trickles down through I according to the routing instructions at the occupied
vertices it encounters until it finds a vacant vertex to occupy.

Let (N0)β(u) be the space of functions on the set of successors of u ∈ I that take
values in the non-negative integers. Let ev, v ∈ β(u), be the function that takes the
value 1 at v and 0 elsewhere. That is, if we regard ev as a vector indexed by β(u), then
ev has 1 in the vth coordinate and 0 elsewhere. Formally, a routing instruction for the
vertex u ∈ I is a sequence (σun)n∈N0 of elements of (N0)β(u) with the properties:

• σu0 = (0, 0, . . .),

• for each n ≥ 1, σun = σun−1 + evn for some vn ∈ β(u).

The interpretation of such a sequence is that, for each v ∈ β(u), the component (σun)v

counts the number of particles out of the first n to pass through the vertex u that are
routed onwards to vertex v ∈ β(u). The equation σun = σun−1 + evn indicates that the nth

such particle is routed onwards to the vertex vn ∈ β(u).
For s = (sv)v∈β(u) ∈ (N0)β(u) we put

|s| :=
∑

v∈β(u)

sv. (2.1)

Note that a routing instruction (σun)n∈N0
for the vertex u satisfies |σun| = n for all n ∈ N0.

For each vertex u ∈ I, suppose that we have a non-empty set Σu of routing instruc-
tions for u. Put Σ :=

∏
u∈I Σu. Depending on convenience, we write a generic element

of Σ in the form ((σun)n∈N0
)u∈I or the form ((σu(n))n∈N0

)u∈I. Recall that σun = σu(n) is
an element of (N0)β(u), and so it has coordinates (σun)w = (σu(n))w for w ∈ β(u).

Given σ ∈ Σ, each vertex u of I has an associated clock (aun(σ))n∈N0 such that aun(σ)

counts the number of particles that have passed through u by time n and been routed
onwards to some vertex in β(u). For each n ∈ N and σ ∈ Σ the integers aun(σ), u ∈ I, are
defined recursively (with respect to the partial order on I) as follows:

(a) a0̂n(σ) := n,

(b) aun(σ) := (
∑
v∈α(u)(σ

v(avn(σ)))u − 1)+, u 6= 0̂.

In particular, a0(σ) = (0, 0, . . .) for all σ ∈ Σ. The equation in (b) simply says that the
number of particles that have been routed onwards from the vertex u by time n is equal
to the number of particles that have passed through vertices v with v → u and have
been routed in the direction of u, excluding the first particle that reached the vertex u
and occupied it.

We say that the sequence (xn)n∈N0
= ((xun)u∈I)n∈N0

given by

xun := σu(aun(σ)) (2.2)

is the result of the trickle-down construction for the routing instruction σ ∈ Σ.
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Example 2.1. Suppose that the directed graph I has N2
0 as its set of vertices and

directed edges of the form ((i, j), (i+ 1, j)) and ((i, j), (i, j + 1)). The root is (0, 0).

(a) Figure 5 shows the state at time n = 12 (that is, the values of xu12 for u = (i, j) in
I = N2

0) generated by routing instructions whose initial pieces are

σ
(0,0)
1 = (0, 1), σ

(0,0)
2 = (0, 2), σ

(0,0)
3 = (1, 2), σ

(0,0)
4 = (2, 2),

σ
(0,1)
1 = (0, 1), σ

(1,0)
1 = (1, 0), σ

(1,0)
2 = (2, 0), σ

(1,1)
1 = (0, 1),

when the states (i+1, j) and (i, j+1) that comprise β(u), the immediate successors
of u, are taken in that order.

(b) The clock a(0,1), which translates from “real time” to the “local time” at the vertex
(0, 1) ∈ I = N2

0 by counting the particles that pass through this vertex, has a

corresponding sequence of states that begins a(0,1)0 = a
(0,1)
1 = a

(0,1)
2 = a

(0,1)
3 = 0,

a
(0,1)
4 = a

(0,1)
5 = 1.

(c) The configuration x5 consists of a pair xu5 = x
(i,j)
5 ∈ N2

0 for every u = (i, j) ∈
I = N2

0. Each such pair records the onward routings by time 5 to the immediate
successors β(u) = {(i + 1, j), (i, j + 1)} of u. Following through the construction

gives x(0,0)5 = (2, 2), x(1,0)5 = (0, 1), x(0,1)5 = (2, 0), x(1,1)5 = (0, 1), with all the other

components of x5 being (0, 0). For example, the value x(0,1)5 = (2, 0) indicates that
by time 5 the vertex (0, 1) has been occupied, 2 particles have been sent onwards
to the vertex (1, 1), and 0 particles have been sent onwards to the other immediate
successor (0, 2).

(d) Looking at the state xu12, u ∈ I, at time n = 12 we cannot reconstruct the relevant
initial segments of the routing instructions but we can see, for example, that

– 13 particles have been fed into the root (0, 0): the first of these stayed at the
root, 6 of the remainder were routed onwards to (1, 0) and the other 6 were

routed onwards to (0, 1) (that is, a(0,0)12 (σ) = 12 and σ(0,0)
12 = (6, 6));

– of the 6 particles routed from the root towards (1, 0), the first stayed there, 2

of the remainder were routed onwards to (2, 0) and the other 3 were routed

onwards to (1, 1) (that is, a(1,0)12 (σ) = 5 and σ(1,0)
5 = (2, 3));

– of the 6 particles routed from the root towards (0, 1), the first stayed there, 3

of the remainder were routed onwards to (1, 1) and the other 2 were routed

onwards to (0, 2) (that is, a(0,1)12 (σ) = 5 and σ(0,1)
5 = (3, 2)).

For each vertex u ∈ I, write Su ⊆ (N0)β(u) for the set of vectors that can appear as
an entry in an element of Σu. That is, s ∈ Su if and only if s = σm for some sequence
(σn)n∈N0

∈ Σu, where, of course, m = |s|. Note that the set Su is countable.

Let S denote the subset of
∏
u∈I S

u consisting of points x = (xu)u∈I that can be
constructed as (xu)u∈I = (σu(aum(σ)))u∈I for some m ∈ N0 and some σ = ((σvn)n∈N0

)v∈I ∈
Σ ; that is, x appears as the value at time m in the result of the trickle-down construction
for the routing instruction σ. Clearly, if a sequence (xu)u∈I ∈

∏
u∈I S

u belongs to S, then ∑
v∈α(u)

(xv)u − 1


+

=
∑

w∈β(u)

(xu)w. (2.3)

Given two points x, y ∈ S, say that x � y if for some m,n ∈ N0 with m ≤ n and some
σ ∈ Σ we have xu = σu(aum(σ)) and yu = σu(aun(σ)) for all u ∈ I.
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(6,6) (2,3) (0,1)

(3,2) (3,2)

(1,0)

(2,1)

(2,0) (2,0)

(0,0)

(1,0)

(0,1)

Figure 5: A possible result of the trickle-down construction at time n = 12 on I = N2
0.

See the text for details.

Remark 2.2. Note that if x � y, then (xu)v ≤ (yu)v for all u ∈ I and v ∈ β(u). Moreover,
if x � y, then{

σ ∈ Σ : (σu(aum(σ)))u∈I = x and (σu(aun(σ)))u∈I = y for some m ≤ n ∈ N0

}
=

σ ∈ Σ :

σu
 ∑
v∈β(u)

(xu)v


u∈I

= x and

σu
 ∑
v∈β(u)

(yu)v


u∈I

= y


=
∏
u∈I

σu ∈ Σu : σu

 ∑
v∈β(u)

(xu)v

 = xu and σu

 ∑
v∈β(u)

(yu)v

 = yu


=
∏
u∈I

{σu ∈ Σu : σu(p) = xu and σu(q) = yu for some p ≤ q ∈ N0} .

Example 2.3. Suppose that I is a tree. This amounts to imposing the extra condition
that for each vertex u ∈ I there is a unique directed path from 0̂ to u. For each u ∈ I

take Σu to be the set of all allowable routing instructions for u, so that the corresponding
set Su is (N0)β(u). In this case, there is a bijection between S and finite subtrees of I
that contain the root 0̂. An element x ∈ S determines a finite rooted subtree t by

t = {0̂} ∪ {v ∈ I \ {0̂} : (xu)v > 0 for some u ∈ α(v)}.

In other words, the tree t consists of those vertices of I that are occupied by the first∑
v∈β(0̂)(x

0̂)v particles.

Conversely, if t is a finite subtree of I that contains 0̂, then the corresponding ele-
ment of S is

x =
(

(#{w ∈ t : v ≤ w})v∈β(u)
)
u∈I

;
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that is, x appears as the result of the trickle down construction at some time n and for
each pair of vertices u ∈ I and v ∈ β(u) the integer #{w ∈ t : v ≤ w} gives the number
of particles that have been routed onwards from vertex u ∈ I to vertex v ∈ β(u) by time
n. The partial order � on S is equivalent to containment of the associated subtrees.
From now on, when I is a tree we sometimes do not mention this bijection explicitly and
abuse terminology slightly by speaking of S as the set of finite subtrees of I that contain
the root 0̂.

Example 2.4. In Example 2.3, the set Su of states for the routing instructions at any
vertex u ∈ I is all of (N0)β(u). At the other extreme we have what we call the single trail
routing: as always, the first item is put into the root, but now, in the step from n to n+1,
the new item follows the trail u0, . . . , un−1 left by the last one and then chooses un from
β(un−1). In this case, Su = {0} t

⊔
v∈β(u)Nev, where 0 is the zero vector in (N0)β(u).

Examples of this type appear in Section 9.

Remark 2.5. In the setting of Example 2.3, the sequence (xn)n∈N0
in S constructed

by setting xun = σu(aun(σ)) for some σ ∈ Σ corresponds to a sequence of growing sub-
trees that begins with the trivial tree {0̂} and successively add a single vertex that is
connected by a directed edge to a vertex present in the current subtree, and this cor-
respondence is bijective. In Example 2.4, a sequence (xn)n∈N0

in S corresponds to the
sequence of initial segments of some infinite directed path, 0̂ = u0 → u1 → u2 → · · ·
through I, and this correspondence is also bijective.

2.2 Trickle-down chains

We now choose the routing instructions randomly in order to produce an S-valued
stochastic process.

For each u ∈ I, let Qu be a transition matrix whose rows and columns are indexed by
some subset Ru ⊆ (N0)β(u) such that (0, 0, . . .) ∈ Ru, and Qu(s′, s′′) > 0 for s′, s′′ ∈ Ru

implies that s′′ = s′+ev for some v ∈ β(u). Let Σu be the set of sequences σu = (σun)n∈N0

in Ru that satisfy σu0 = (0, 0, . . .) and Qu(σun, σ
u
n+1) > 0 for all n ∈ N0. Then Σu is a set

of routing instructions for the vertex u. Define, as in the previous subsection, Su to be
the set of elements of Nβ(u)0 that can appear as an entry in an element of Σu. Note that
Su ⊆ Ru: the set Su consists of the states that are reachable by a Markov chain with
transition matrix Qu started from the state (0, 0, . . .). We will suppose from now on that
Ru = Su.

Write (Y un )n∈N0
for the corresponding Su-valued Markov chain with its associated

collection of probability measures Qu,ξ, ξ ∈ Su. A realization of the process Y u starting
from the zero vector in (N0)β(u) will serve as the routing instruction for the vertex
u; that is, the nth particle that trickles down to u and finds u occupied will be routed
onward to the immediate successor v ∈ β(u) specified by ev = Y un −Y un−1. By assumption,
and with 0 the zero vector in (N0)β(u), Y u has positive probability under Qu,0 of hitting
any given state in Su. We will refer to Y u as the routing chain for the vertex u. Let

Y := (Y u)u∈I,

where the component processes Y u are independent and have distribution Qu,0.
With a0, a1, . . . the clocks defined in Section 2.1, set

An :=

{
an(Y ), if Y0 = (0, 0, . . .),

0, otherwise.

Thus, (An)n∈N0
is an (N0)I-valued stochastic process with non-decreasing paths and

initial value (0, 0, . . .). When Y0 = (0, 0, . . .), the value of the process An at time n is a
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vector (Aun)u∈I: the non-negative integer Aun records the number of particles that have
trickled down to the vertex u by time n, found u already occupied, and have been routed
onwards.

Define
Zun := Y uAun , u ∈ I, n ∈ N0.

By construction, Z := (Zn)n∈N0 = ((Zun)u∈I)n∈N0 is a Markov chain on the countable
state space S under the probability measure

⊗
u∈IQ

u,0. The paths of Z start from the
state (0, 0, . . .) and increase strictly in the natural partial order on S. The random vector
Zun gives for each immediate successor v ∈ β(u) of u the number of particles that have
trickled down to u by time n, found u already occupied, and have been routed onwards
towards v.

By standard arguments, we can construct a measurable space (Ω,F), a family of
probability measures (Px)x∈S and an S-valued stochastic process X = (Xn)n∈N0 such
that X under Px is a Markov chain with X0 = x and the same transition mechanism as
Z.

Remark 2.6. Note that if J is a subset of I with the property that {v ∈ I : v ≤ u} ⊆ J

for all u ∈ J, then ((Xu
n)u∈J)n∈N0

is a Markov chain under Px. Moreover, the law of the
latter process under Px agrees with its law under Py for any y ∈ S with xu = yu for all
u ∈ J.

3 Doob-Martin compactification background

We restrict the following sketch of Doob-Martin compactification theory for discrete
time Markov chains to the situation of interest in the present paper. The primary refer-
ence is [16], but useful reviews may be found in [35, Chapter 10], [45, Chapter 7], [47],
[55, Chapter IV], [46, Chapter III].

Suppose that (Xn)n∈N0 is a discrete time Markov chain with countable state space
E and transition matrix P . Define the Green kernel or potential kernel G of P by
G(i, j) :=

∑∞
n=0 P

n(i, j) for i, j ∈ E and assume that there is a reference state e ∈ E

such that 0 < G(e, j) <∞ for all j ∈ E. This implies that any state can be reached from
e and that every state is transient. For the chains to which we apply the theory, the
state space E is a partially ordered set with unique minimal element e and transition
matrix P such that P (k, `) = 0 unless k < `, so that the sample paths of the chain are
increasing and

G(i, j) = Pi{Xn = j for some n ∈ N0} =: Pi{X hits j}

for all i, j ∈ E.
A function f : E → R+ is said to be excessive (respectively, regular) if∑

j∈E
P (i, j)f(j) =: Pf(i) ≤ f(i)

for all i ∈ E (respectively, Pf(i) = f(i) for all i ∈ E). Excessive functions are also called
non-negative superharmonic functions. Similarly, regular functions are also called non-
negative harmonic functions. Given a finite measure µ on E, define a function Gµ :

E → R+ by Gµ(i) :=
∑
j∈I G(i, j)µ({j}) for i ∈ E. The function Gµ is excessive and is

called the potential of the measure µ. The Riesz decomposition says that any excessive
function f has a unique decomposition f = h + p, where h is regular and p = Gν is the
potential of a unique measure ν.

Note for any excessive function f that f(e) ≥ supn∈N0
Pn(e, j)f(j), and so f(e) = 0

implies that f = 0. Therefore, any excessive function is a constant multiple of an
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element of the set S of excessive functions that take the value 1 at e. The set S is a
compact convex metrizable subset of the locally convex topological vector space RE .

The Martin kernel with reference state e is given by

K(i, j) :=
G(i, j)

G(e, j)
=
Pi{X hits j}
Pe{X hits j}

;

that is, K(·, j) is the potential of the unit point mass at j normalized to have value 1 at
the point e ∈ E. For each j ∈ E the function K(·, j) belongs to S and is non-regular.
Moreover, K(·, j) is an extreme point of S and any extreme point of S that is not of the
form K(·, j) for some j ∈ E is regular. It also follows from the Riesz decomposition that
the map φ : E → S given by φ(j) := K(·, j) is injective. Therefore, we can identify E with
its image φ(E) ⊂ S that sits densely inside the compact closure F of φ(E) in S. With the
usual slight abuse of terminology, we treat E as a subset of F and use the alternative
notation Ē for F . The construction of the compact metrizable space Ē from E using the
transition matrix P and the reference state e is the Doob-Martin compactification of E
and the set

∂E := Ē \ E

is the Doob-Martin boundary of E.
By definition, a sequence (jn)n∈N in E converges to a point in Ē if and only if the

sequence of real numbers (K(i, jn))n∈N converges for all i ∈ E. Each function K(i, ·)
extends continuously to Ē and we call the resulting functionK : E×Ē → R the extended
Martin kernel.

The set of extreme points Fex of the convex set F is a Gδ subset of F and any regular
function h ∈ S (that is, any regular function h with h(e) = 1) has the representation

h =

∫
K(·, y)µ(dy)

for some unique probability measure on F that assigns all of its mass to Fex ∩Ec ⊆ ∂E.
The primary probabilistic consequence of the Doob-Martin compactification is that

for any initial state i the limit X∞ := limn→∞Xn exists Pi-almost surely in the topology
of F and the limit belongs to Fex, Pi-almost surely.

If h is a regular function (not identical to 0), then the corresponding Doob h-trans-
form is the Markov chain (X

(h)
n )n∈N0

with state space Eh := {i ∈ E : h(i) > 0} and
transition matrix

P (h)(i, j) := h(i)−1P (i, j)h(j), i, j ∈ Eh.

When h is strictly positive, the Doob-Martin compactification of E and its set of extreme
points are the same for P and P (h).

The regular function h is extremal if and only if the limit limn→∞Xh
n is almost surely

equal to a single point y for some y ∈ F , in which case y ∈ Fex ∩ Ec and h = K(·, y). In

particular, h is extremal if and only if the tail σ-field of (X
(h)
n )n∈N0

is trivial. In this case,

the transformed chain (X
(h)
n )n∈N0

may be thought of as the original chain (Xn)n∈N0

conditioned to converge to y. The original chain is a mixture of such conditioned chains,
where the mixing measure is the unique probability measure ν supported on

Fex ∩ Ec ⊆ ∂E

such that 1 =
∫
K(·, y) ν(dy). Further, ν is the distribution of X∞ under Pe.

The Doob-Martin boundary provides a representation of the non-negative harmonic
functions. We close this review section with a brief discussion of a measure theoretic
boundary concept that has a more direct relation to tail σ-fields in the trickle-down
case.
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The set H of all bounded harmonic functions is a linear space and indeed a Banach
space when endowed with the supremum norm. The Poisson boundary is a measure
space (M,A, µ) with the property that L∞(M,A, µ) and H are isomorphic as Banach
spaces. The Doob-Martin boundary ∂E together with its Borel σ-field and the distribu-
tion ν of X∞ under Pe provides such a measure space.

Our models have the specific feature that, loosely speaking, ‘time is a function of
space’: the state space E of a trickle-down chain (Xn)n∈N0

may be written as the disjoint
union of the sets

En := {x ∈ E : Pe{Xn = x} > 0}.

Let T be the tail σ-field of the chain. Consider now the map that takes a bounded,
T -measurable random variable Z to the function h : E → R defined by

h(x) :=
1

Pe{Xn = x}

∫
{Xn=x}

Z dPe,

for all x ∈ En, on each En separately. Note that h(Xn) = Ee[Z|Xn]. Using martin-
gale convergence and the Markov property, it follows that this map is a Banach space
isomorphism between L∞(Ω, T ,Pe) and H.

For any embedding in which the chain converges to a limit X∞, this limit is T -
measurable. The limit in the Doob-Martin compactification of a transient chain gener-
ates the invariant σ-field up to null sets, where for a chain (Xn)n∈N0

with state space E,
an event A is invariant if there is a product measurable subset B ⊆ EN0 such that for
all n ∈ N0 the symmetric difference A4{(Xn, Xn+1, . . .) ∈ B} has zero probability. In
our models, the limit X∞ in the Doob-Martin compactification generates the tail σ-field,
because it is possible to reconstruct the value of the time parameter from the state of
the process at an unspecified time. Conversely, from the tail σ-field we may obtain the
Poisson boundary but not, in general, the Doob-Martin boundary.

4 Compactification for trickle-down processes

For each u ∈ I, let Qu be a transition matrix on Su ⊆ N
β(u)
0 with the properties

described in Section 2.2. The following result is immediate from the construction of the
trickle-down chain X and Remark 2.2.

Lemma 4.1. Consider elements x = (xu)u∈I and y = (yu)u∈I of S. Write

mu =
∑

v∈β(u)

(xu)v and nu =
∑

v∈β(u)

(yu)v.

Then,
Px{X hits y} =

∏
u∈I

Qu,x
u

{Y unu−mu = yu} =
∏
u∈I

Qu,x
u

{Y u hits yu}.

The product is zero unless x � y (equivalently, xu ≤ yu for all u ∈ I). Only finitely
many terms in the product differ from 1, because xu = yu = (0, 0, . . .) (equivalently,
mu = nu = 0) for all but finitely many values of u ∈ I.

Corollary 4.2. The Martin kernel of the Markov chain X with respect to the reference
state 0̂ is given by

K(x, y) =
∏
u∈I

Ku(xu, yu),

where Ku is the Martin kernel of the Markov chain Y u with respect to reference state
(0, 0, . . .) ∈ Su. The product is zero unless x � y (equivalently, xu ≤ yu for all u ∈ I).
Only finitely many terms in the product differ from 1, because xu = (0, 0, . . .) for all but
finitely many values of u ∈ I.
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Proof. It suffices to note that

K(x, y) =
Px{X hits y}
P0̂{X hits y}

and

Ku(ξ, ζ) =
Qu,ξ{Y u hits ζ}
Qu,0{Y u hits ζ}

,

and then apply Lemma 4.1.

Example 4.3. Consider the BST process from the Introduction. Recall that in this case
the directed graph I is the complete binary tree {0, 1}? and each of the processes

(Y un + (1, 1))n∈N0

is the classical Pólya urn in which we have an urn consisting of black and white balls,
we draw a ball uniformly at random at each step and replace it along with one of the
same color, and we record the number of black and white balls present in the urn at
each step. Note that if we start the Pólya urn with b black and w white balls, then the
probability that we ever see B black balls and W white balls is the probability that after
(B + W ) − (b + w) steps we have added B − b black balls and W − w white balls. The
probability of adding the extra balls in a particular specified order is

b(b+ 1) · · · (B − 1)w(w + 1) · · · (W − 1)

(b+ w)(b+ w + 1) · · · (B +W − 1)

(the fact that this probability is the same for all orders is the fundamental exchange-
ability fact regarding the Pólya urn). The probability of adding the required extra balls
of each color in some order is therefore

((B +W )− (b+ w))!

(B − b)!(W − w)!

b(b+ 1) · · · (B − 1)w(w + 1) · · · (W − 1)

(b+ w)(b+ w + 1) · · · (B +W − 1)
.

Hence,

Qu,ξ{Y u hits ζ}

=
((ζu0 + ζu1)− (ξu0 + ξu1))!

(ζu0 − ξu0)!(ζu1 − ξu1)!

(ξu0 + 1) . . . ζu0 × (ξu1 + 1) . . . ζu1

(ξu0 + ξu1 + 2)(ξu0 + ξu1 + 1) . . . (ζu0 + ζu1 + 1)

for ξ ≤ ζ, and so

Ku(ξ, ζ) =
(ξu0 + ξu1 + 1)!

ξu0!ξu1!

(ζu0 − ξu0 + 1) . . . ζu0 × (ζu1 − ξu1 + 1) . . . ζu1

((ζu0 + ζu1)− (ξu0 + ξu1) + 1) . . . (ζu0 + ζu1)

=
(ξu0 + ξu1 + 1)!

ξu0!ξu1!

ζu0!ζu1!

(ζu0 + ζu1 + 1)!

× ((ζu0 + ζu1)− (ξu0 + ξu1))!

(ζu0 − ξu0)!(ζu1 − ξu1)!
(ζu0 + ζu1 + 1).

Suppose that x, y ∈ S with x � y. It follows from Corollary 4.2 that

K(x, y) =
∏
u∈I

((xu)u0 + (xu)u1 + 1)!

(xu)u0!(xu)u1!

(yu)u0!(yu)u1!

((yu)u0 + (yu)u1 + 1)!

× (((yu)u0 + (yu)u1)− ((xu)u0 + (xu)u1))!

((yu)u0 − (xu)u0)!((yu)u1 − (xu)u1)!
((yu)u0 + (yu)u1 + 1).
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Recall from Example 2.3 that we may associate x and y with the two subtrees

s = {∅} ∪ {v ∈ I : (xu)v > 0 for the unique u ∈ α(v)}

and

t = {∅} ∪ {v ∈ I : (yu)v > 0 for some the unique u ∈ α(v)},

in which case (xu)v = #{w ∈ s : v ≤ w} =: #s(v) for v ∈ s \ {∅} and u ∈ α(v)

(respectively, (yu)v = #{w ∈ t : v ≤ w} =: #t(v) for v ∈ t \ {∅} and u ∈ α(v)). Note for
ε = 0, 1 that

(xu)uε =

{
#s(uε), if u ∈ s,

0, otherwise,

and that

(xu)u0 + (xu)u1 + 1 =

{
#s(u), if u ∈ s,

1, otherwise.

Similar relations exist for y and t. It follows that

∏
u∈I

((xu)u0 + (xu)u1 + 1)!

(xu)u0!(xu)u1!
= #s!,

∏
u∈I

(yu)u0!(yu)u1!

((yu)u0 + (yu)u1 + 1)!
=

1

#t!
,

∏
u∈I

(((yu)u0 + (yu)u1)− ((xu)u0 + (xu)u1))!

((yu)u0 − (xu)u0)!((yu)u1 − (xu)u1)!
=

(#t−#s)!∏
u∈t\s #t(u)

,

and ∏
u∈I

((yu)u0 + (yu)u1 + 1) =
∏
u∈t

#t(u),

so we arrive at the simple formula

K(x, y) =

(
#t

#s

)−1∏
u∈s

#t(u). (4.1)

This formula may also be obtained without using Corollary 4.2 as follows. With a
slight abuse of notation, we think of the process (Xn)n∈N0

as taking values in the set of
finite subtrees of {0, 1}? containing the root ∅. We first want a formula for Ps{X hits t}
when s and t are two such trees with s ⊆ t. For ease of notation, set k := #s and
n := #t. It is known (see, for example, [49, p.316]) that

P{∅}{X hits t} = P{∅}{Xn = t} =
∏
u∈t

(#t(u))−1, (4.2)

Write v1, . . . , vk+1 for the “external vertices” of s; that is, the elements of {0, 1}? that are
connected to a vertex of s by a directed edge, but are not vertices of s themselves (recall
Figure 3). Denote by t(vj), j = 1, . . . , k + 1 the subtrees of t that are rooted at these
vertices; that is, the t(vj) are the connected components of t \ s. In order for the BST
process to pass from s to t it needs to place the correct number nj := #t(vj) of vertices
into each of these subtrees and, moreover, the subtrees have to be equal to t(vj), for
j = 1, . . . , k+ 1. The process that tracks the number of vertices in each subtree is, after
we add the vector (1, . . . , 1), a multivariate Pólya urn model starting with k+ 1 balls, all
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of different colors. Thus, the probability that each subtree has the correct number of
vertices is (

n− k
n1, . . . , nk+1

) ∏k+1
i=1 ni!

(k + 1) · . . . · (n− 1) · n
=

(
#t

#s

)−1
,

using a standard argument for the Pólya urn [31, Chapter 4.5]. Moreover, it is ap-
parent from the recursive structure of the BST process that, conditional on k + 1 sub-
trees receiving the correct number of vertices, the probability the subtrees are actually
t(v1), . . . , t(vk+1) is

k+1∏
i=1

∏
v∈t(vi)

(#t(v))−1 =
∏
v∈t\s

(#t(v))−1.

Thus,

Ps{X hits t} =

(
#t

#s

)−1 ∏
v∈t\s

(#t(v))−1, (4.3)

and (4.1) follows upon taking the appropriate ratio.

With Example 4.3 in mind, we now begin to build a general framework for char-
acterizing the Doob-Martin compactification of a trickle-down chain in terms of the
compactifications of each of the routing chains.

Proposition 4.4. Suppose (yn)n∈N0 is a sequence in S such that yu∞ := limn→∞ yun
exists in the Doob-Martin topology of S̄u for each u ∈ I. Then, (yn)n∈N0 converges in the
Doob-Martin topology of S to a limit y∞ and the value at (x, y∞) of the extended Martin
kernel is K(x, y∞) =

∏
u∈IK

u(xu, yu∞).

Proof. The assumption that yu∞ := limn→∞ yun exists in the Doob-Martin topology of S̄u

for each u ∈ I implies that limn→∞Ku(ξ, yun) exists for each u ∈ I and ξ ∈ Su. This limit
is, by definition, the value Ku(ξ, yu∞) of the extended Martin kernel. We need to show
for all x ∈ S that limn→∞K(x, yn) exists and is given by

∏
u∈IK

u(xu, yu∞). It follows
from Corollary 4.2 that K(x, yn) =

∏
u∈IK

u(xu, yun). We also know from that result that
we may restrict the product to the fixed, finite set of u for which xu 6= (0, 0, . . .), and
hence we may interchange the limit and the product.

Remark 4.5. Proposition 4.4 shows that if the sequence (yn)n∈N0 in S is such that for
each u ∈ I the component sequence (yun)n∈N0 converges in the Doob-Martin compactifi-
cation of Su, then (yn)n∈N0 converges in the Doob-Martin compactification of S.

Establishing results in the converse direction is somewhat tricky, since K(x, yn) =∏
u∈IK

u(xu, yun) might converge because Kv(xv, yvn) converges to 0 for some particular
v ∈ I, and so we are not able to conclude that Ku(xu, yun) converges for all u ∈ I.
Instances of this possibility appear in Section 7 and Section 8.

The following set of hypotheses gives one quite general setting in which it is possible
to characterize the Doob-Martin compactification of S in terms of the compactifications
of the component spaces Su. These hypotheses are satisfied by a number of interesting
examples such as the binary search tree and the random recursive tree processes (see
Example 4.7 and Example 4.8 below as well as Section 5 and Section 6). The key con-
dition is part (iii) of the following set of hypotheses: it requires that the Doob-Martin
boundary of the routing chain for the vertex u may be thought of as a set of subproba-
bility measures on β(u) that arise as the vector of limiting proportions of particles that
have been routed onward to the various elements of β(u).

Hypothesis 4.6. Suppose that the following hold for all u ∈ I.
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(i) Writing |ξ| =
∑
v∈β(u) ξ

v for ξ ∈ Su, the sets {ξ ∈ Su : |ξ| = m} are finite for all
m ∈ N0, so that if (ζn)n∈N0

is a sequence from Su, then the two conditions

#{n ∈ N0 : ζn = ζ} <∞ for all ζ ∈ Su (4.4)

and

lim
n→∞

|ζn| =∞ (4.5)

are equivalent.

(ii) In order that a sequence (ζn)n∈N0 from Su is such that Ku(ξ, ζn) converges as
n→∞ for all ξ ∈ Su, it is necessary and sufficient that either

#{n ∈ N0 : ζn 6= ζ} <∞ for some ζ ∈ Su

or that the equivalent conditions (4.4) and (4.5) hold and, in addition,

lim
n→∞

ζvn
|ζn|

exists for all v ∈ β(u). (4.6)

(iii) If (ζ ′n)n∈N0
and (ζ ′′n)n∈N0

are two sequences from Su such that

#{n ∈ N0 : ζ ′n = ζ} <∞ and #{n ∈ N0 : ζ ′′n = ζ} <∞

for all ζ ∈ Su and both Ku(ξ, ζ ′n) and Ku(ξ, ζ ′′n) converge for all ξ ∈ Su, then

lim
n→∞

Ku(ξ, ζ ′n) = lim
n→∞

Ku(ξ, ζ ′′n)

for all ξ ∈ Su if and only if

lim
n→∞

(ζ ′n)v

|ζ ′n|
= lim
n→∞

(ζ ′′n)v

|ζ ′′n |

for all v ∈ β(u). It follows that there is a natural bijection between ∂Su := Su \ Su,
where Su is the Doob-Martin compactification of Su, and the set Su of subprobabil-
ity measures on β(u) that are limits in the vague topology of probability measures
of the form

1

|ζn|
∑

v∈β(u)

ζvnδv,

where (ζn)n∈N0 is a sequence from Su that satisfies (4.4).

(iv) The bijection between ∂Su and Su is a homeomorphism if the former set is equipped
with the trace of the Doob-Martin topology and the latter set is equipped with the
trace of the vague topology.

(v) There is a collection Ru ⊆ {0, 1}β(u)∩Su such that if (ζn)n∈N0 is a sequence from Su

that satisfies (4.4) and limn→0K
u(η, ζn) exists for all η ∈ Ru, then limn→0K

u(ξ, ζn)

exists for all ξ ∈ Su. Moreover, if (ζ ′n)n∈N0 and (ζ ′′n)n∈N0 are two sequences from
Su that both satisfy (4.4) and

lim
n→∞

Ku(η, ζ ′n) = lim
n→∞

Ku(η, ζ ′′n)

for all η ∈ Ru, then

lim
n→∞

Ku(ξ, ζ ′n) = lim
n→∞

Ku(ξ, ζ ′′n)

for all ξ ∈ Su.
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(vi) Suppose that (ζn)n∈N0
is a sequence from Su such that (4.4) holds and Ku(ξ, ζn)

converges as n→∞ for all ξ ∈ Su. Let ρ = (ρv)v∈β(u) be the subprobability vector
of limiting proportions defined by (4.6). The extended Martin kernel is such that
Ku(ξ, ρ) = 0 whenever ξv ≥ 2 for some v ∈ β(u) with ρv = 0, whereas if ρv > 0 for
some v ∈ β(u), then there exists a sequence (ξm)m∈N from Su such that ξvm = m,
ξwm ∈ {0, 1} for w 6= v, and K(ξm, ρ) > 0.

(vii) A subprobability vector ρ belongs to Su iff there is a sequence (σun)n∈N0
∈ Σu s.t.

lim
n→∞

σun
|σun|

= lim
n→∞

σun
n

= ρ.

Example 4.7. Hypothesis 4.6 holds if #β(u) = 2 for all u ∈ I (for example, if I = {0, 1}?),
Su = (N0)β(u), and the Markov chains Y u = (Y un )n∈N0

are such that (Y un +(1, 1))n∈N0
are

all Pólya’s urns starting with one black ball and one white ball. This is a consequence of
the results in [4]. Indeed, the same is true if for arbitrary I with β(u) finite for all u ∈ I

we take Su = (N0)β(u) and let Y u be an urn scheme of the sort considered in [5] where
there is a (not necessarily integer-valued) finite measure νu on β(u) that describes the
initial composition of an urn with balls whose “colors” are identified with the elements
of β(u), balls are drawn at random and replaced along with a new ball of the same color,
and Y un records the number of balls of the various colors that have been drawn by time
n. In this general case, the extended Martin kernel is given by

(|νu|+ |ξ| − 1)(|νu|+ |ξ| − 2) · · · |νu|∏
v∈β(u)[(ν

v
u + ξv − 1)(νvu + ξv − 2) · · · νvu]

∏
v∈β(u)

(ρv)ξ
v

,

where |νu| =
∑
v∈β(u) ν

v
u, |ξ| =

∑
v∈β(u) ξ

v, and (ρv)ξ
v

denotes the value ρv that the
probability measure ρ assigns to {v} raised to the power ξv. We may take the set Ru

in this case to be the coordinate vectors ev, v ∈ β(u), where ev has a single 1 in the vth

component and 0 elsewhere. The set Su consists of all the probability measures on the
finite set β(u).

Example 4.8. Hypothesis 4.6 also holds if the set β(u) is finite for all u ∈ I, Su =

(N0)β(u), and the routing chain Y u is given by Y u := (
∑n
k=1W

u
k )n∈N0

, where the Wu
k

are independent, identically distributed Su-valued random variables with distribution
that has support the set of coordinate vectors. If pvu is the probability that the common
distribution of the Wu

k assigns to the coordinate vector ev, then the extended Martin
kernel is given by

Ku(ξ, ρ) =
∏

v∈β(u)

(
ρv

pvu

)ξv
.

Results of this type go back to [54] and are described in [35]. Once again, we may take
Ru to be the set of coordinate vectors, and once again Su consists of all the probability
measures on the finite set β(u).

In order to state a broadly applicable result in the converse direction of Proposition
4.4 we first need to develop some more notation and collect together some auxiliary
results.

Adjoin a point � to I and write I∞ for the set of sequences of the form (un)n∈N0

where either un ∈ I for all n ∈ N0 and 0̂ = u0 → u1 → . . . or, for some N ∈ N0, un ∈ I

for n ≤ N , 0̂ = u0 → . . . → uN , and un = � for n > N . We think of I∞ as the space of
directed paths through I that start at 0̂ and are possibly “killed” at some time and sent
to the “cemetery” �.
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Write C∞ for the countable collection of subsets of I∞ of the form {(vn)n∈N0
∈ I∞ :

vk = uk, 0 ≤ k ≤ n}, where n ∈ N0, uk ∈ I for 0 ≤ k ≤ n, and 0̂ = u0 → . . .→ un. Denote
by I∞ the σ-field generated by C∞. The following result is elementary and we leave its
proof to the reader.

Lemma 4.9. Any probability measure on the measurable space (I∞, I∞) is specified
by its values on the sets in C∞. The space of such probability measures equipped with
the coarsest topology that makes each of the maps µ 7→ µ(C), C ∈ C∞, continuous is
compact and metrizable.

Consider the case of Lemma 4.9 where the measure µ describes the dynamics of a
Markov process. That is, for each u ∈ I there is a subprobability measure ru on β(u)

such that if the process is in state u, then the next step is with probability (ru)v to v,
and with probability 1−

∑
v∈β(u)(r

u)v to �.
Label u ∈ I with ↓ if u is reachable from 0̂ (in the classical sense of Markov chains),

and with † otherwise. Denote by J↓ and J† the sets of vertices labeled with ↓ and †,
respectively.

Clearly, in order to specify the distribution µ of the Markovian path starting from 0̂

it suffices to have the subprobability measures ru only for u ∈ J↓.
Note that the labeling (J↓,J†) has the two properties

• the vertex 0̂ is labeled with ↓;
• if for some v 6= 0̂ every vertex u ∈ α(v) is labeled with †, then v is also labeled with
†.

Let us now switch perspectives and start from a labeling instead of a collection of sub-
probability measures.

Definition 4.10. Say that a labeling of I with the symbols ↓ and † is admissible if it
satisfies the above two properties. Write I↓ (resp. I†) for the subset of vertices labeled
with ↓ (resp. †).

Note that if (I↓, I†) is an admissible labeling of I, (un)n∈N0
is a directed path in I with

u0 = 0̂, and we define a sequence (ũn)n∈N0
in I ∪ {�} by

ũn :=

{
un, if un ∈ I↓,

�, if un ∈ I†,

then (ũn)n∈N0 is an element of I∞.

Definition 4.11. Given an admissible labeling (I↓, I†) of I, say that a collection (ru)u∈I↓ ,
where ru is a subprobability measure on β(u) for u ∈ I↓, is compatible with the labeling
if a vertex v ∈ I\{0̂} is in I† if and only if α(v) ∩ I↓ = ∅ or (ru)v = 0 for u ∈ α(v) ∩ I↓.

Remark 4.12. For an admissible labeling (I↓, I†) of I and a collection of subprobabil-
ity measures as in Definition 4.11, compatibility of the subprobability measures with
the labeling is equivalent to the equality I↓ = J↓, where J↓ is the set of vertices that
are reachable from 0̂ under the Markovian dynamics specified by the subprobability
measures.

The assertions (i), (ii) and (iii) in the following lemma, with J↓ and J† instead of I↓

and I†, are obvious. The proof of the lemma is then clear from the previous remark.

Lemma 4.13. Consider an admissible labeling of I with the symbols ↓ and † and a
compatible collection of subprobability measures (ru)u∈I↓ .
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(i) There is a unique probability measure µ on (I∞, I∞) for which the mass assigned
to the set {(vn)n∈N0

∈ I∞ : vk = uk, 0 ≤ k ≤ n} ∈ C∞ is{∏n−1
k=0(ruk)uk+1 , if uk ∈ I↓ for 0 ≤ k ≤ n,

0, otherwise.

(ii) The vertex u belongs to I† if and only if µ{(vn)n∈N0 ∈ I∞ : vk = uk, 0 ≤ k ≤ n} = 0

whenever 0̂ = u0 → . . .→ un = u.

(iii) If u ∈ I↓ and v ∈ β(u), then

(ru)v =
µ{(vn)n∈N0

∈ I∞ : vk = uk, 0 ≤ k ≤ n+ 1}
µ{(vn)n∈N0 ∈ I∞ : vk = uk, 0 ≤ k ≤ n}

for any choice of 0̂ = u0 → . . . → un = u → un+1 = v such that the denominator
is positive. In particular, it is possible to recover the labeling and the collection
(ru)u∈I↓ from the probability measure µ.

Theorem 4.14. Suppose that Hypothesis 4.6 holds. Denote by R∞ the set of pairs
((I↓, I†), (ru)u∈I↓), such that (I↓, I†) is an admissible labeling of I and (ru)u∈I↓ ∈

∏
u∈I↓ Su

is a compatible collection of subprobability measures.

(i) If a sequence (yn)n∈N0
in S converges to a point in the Doob-Martin boundary

∂S = S̄\S, then there exists ((I↓, I†), (ru)u∈I↓) ∈ R∞ satisfying

lim
n→∞

yun
|yun|

= ru ∈ Su, for all u ∈ I↓. (4.7)

Moreover, if two such sequences converge to the same point then the correspond-
ing elements of R∞ coincide.

(ii) Conversely, if ((I↓, I†), (ru)u∈I↓) ∈ R∞, then there is a sequence (yn)n∈N0 in S that
converges to a point in the Doob-Martin boundary ∂S = S̄\S and satisfies (4.7).
Moreover, any two such sequences converge to the same point, establishing a
bijection between R∞ and ∂S.

(iii) For x ∈ S and ((I↓, I†), (ru)u∈I↓) ∈ R∞ ∼= ∂S, the value of the extended Martin
kernel is {∏

u∈I↓ K
u(xu, ru), if xv = (0, 0, . . .) for all v /∈ I↓,

0, otherwise.

(iv) Let P∞ be the set of probability measures on I∞ constructed from elements of
R∞ via the bijection of Lemma 4.13. Equip P∞ with the trace of the metrizable
topology introduced in Lemma 4.9. The composition of the bijection between P∞
and R∞ and the bijection between R∞ and ∂S is a homeomorphism between P∞
and ∂S.

Proof. Consider part (i). Suppose that the sequence (yn)n∈N0
converges to a point in

∂S; that is,
lim
n→∞

K(x, yn) exists for all x ∈ S (4.8)

and no subsequence converges in the discrete topology on S to a point of S. Thus,

#{n ∈ N0 : yn = y} <∞ for any y ∈ S. (4.9)

Because of (4.9) and Hypothesis 4.6(i), it follows that

lim
n→∞

|y0̂n| =∞. (4.10)

EJP 17 (2012), paper 1.
Page 24/58

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1698
http://ejp.ejpecp.org/


Trickle-down processes and their boundaries

Consider η ∈ R0̂. Define x ∈ S by setting x0̂ = η. By the consistency condition (2.3),
this completely specifies x. Note that xw = 0 if w 6= 0̂. By Corollary 4.2,

K(x, yn) = K 0̂(η, y0̂n),

and so limn→∞K 0̂(η, y0̂n) exists. Since this is true for all η ∈ R0̂, it follows from Hypoth-
esis 4.6(v) that limn→∞K 0̂(ξ, y0̂n) exists for all ξ ∈ S0̂. Hence, by Hypothesis 4.6(ii)

lim
n→∞

(y0̂n)v

|y0̂n|

exists for all v ∈ β(0̂). Write r0̂ = ((r0̂)v)v∈β(0̂) ∈ S 0̂ for the subprobability vector defined
by the limits.

If (r0̂)v = 0 for some v ∈ β(0̂), then, from Hypothesis 4.6(vi), limn→∞K(x, yn) = 0 for
any x ∈ S with (x0̂)v ≥ 2 – no matter what the values of yun are for u > 0̂. Consequently,
in order to understand what further constraints are placed on the sequence (yn)n∈N0 by
the assumption that (4.8) holds, we need only consider choices of x ∈ S with the prop-
erty that (x0̂)v = {0, 1} for all v ∈ β(0̂) such that (r0̂)v = 0. Note from the consistency
condition (2.3) that for this restricted class of x we must have xw = 0 for all w ∈ I such
that all directed path from 0̂ to w necessarily passes through v ∈ β(0̂) with (r0̂)v = 0.

Suppose that r0̂ 6= 0. Fix a vertex u ∈ β(0̂) such that (r0̂)u > 0 and η ∈ Ru. From
Hypothesis 4.6(vi), there exists θ ∈ S0̂ such that θu = |η|+ 1, and θw ∈ {0, 1} for w 6= u.
Define x ∈ S by setting x0̂ = θ and xu = η. By the consistency condition (2.3), this
completely specifies x. Note that xw = 0 if w /∈ {0̂, u}. By Corollary 4.2,

K(x, yn) = K 0̂(θ, y0̂n)Ku(η, yun),

and, by the choice of θ, K 0̂(θ, y0̂n) converges to a non-zero value as n → ∞. Therefore,
limn→∞Ku(η, yun) exists. Since this is true for all η ∈ Ru, it follows from Hypothe-
sis 4.6(v) that limn→∞Ku(ξ, yun) exists for all ξ ∈ Su. Hence, by Hypothesis 4.6(ii),

lim
n→∞

(yun)v

|yun|

exists for all v ∈ β(u). Write ru ∈ Su for the resulting subprobability measure.
Continuing in this way, we see that, under the assumption (4.9), if (4.8) holds then

there is a labeling of I with the symbols ↓ and † such that the following are true:

• the vertex 0̂ is in I↓;

• if a vertex u is in I↓, then the limiting subprobability measure

lim
n→∞

yun
|yun|

=: ru ∈ Su

exists;

• a vertex v 6= 0̂ belongs to I† if and only if every vertex u ∈ α(v) belongs to I† or
(ru)v = 0 for every vertex u ∈ α(v) ∩ I↓.

Thus, the labeling (I↓, I†) is admissible and the collection (ru)u∈I↓ ∈
∏
u∈I↓ Su are com-

patible, so (I↓, I†), (ru)u∈I↓) is an element of R∞.
Suppose that (yn)n∈N0 and (zn)n∈N0 are two sequences from S that converge to the

same point in ∂S. Then, |y0̂n| → ∞ and |z0̂n| → ∞ as n→∞,

lim
n→∞

K(x, yn) exists for all x ∈ S,
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lim
n→∞

K(x, zn) exists for all x ∈ S,

and
lim
n→∞

K(x, zn) = lim
n→∞

K(x, zn) for all x ∈ S.

It is clear that the vertices of I that are labeled with the symbol ↓ (resp. †) for the
sequence (yn)n∈N0 must coincide with the vertices of I that are labeled with the symbol
↓ (resp. †) for the sequence (zn)n∈N0 , and

lim
n→∞

yun
|yun|

= lim
n→∞

zun
|zun|

for the common set of vertices u ∈ I labeled with ↓. This completes the proof of part (i).
Moreover, it follows from what we have just done that if x ∈ S and the convergent

sequence (yn)n∈N0
is associated with (I↓, I†), (ru)u∈I↓), then

lim
n→∞

K(x, yn) =

{∏
u∈I↓ K

u(xu, ru), if xv = (0, 0, . . .) for all v /∈ I↓,

0, otherwise.
(4.11)

This establishes part (iii) once we show part (ii).
Now consider part (ii). Fix (I↓, I†), (ru)u∈I↓) ∈ R∞. By Hypothesis 4.6(vii), for each

u ∈ I↓ there is a sequence (σun)n∈N0
∈ Σu such that

lim
n→∞

σun
|σun|

= ru.

Choose sequences (σun)n∈N0 ∈ Σu for u /∈ I↓ arbitrarily and set σ = (σu)u∈I ∈ Σ. Define
a sequence (yn)n∈N0 from S by setting yun = σu(aun(σ)) for n ∈ N0 and u ∈ I. It is
clear from the arguments for part (i) that (yn)n∈N0 converges to a point in ∂S and
(4.7) holds. Moreover, it follows from the same arguments that any two convergent
sequences satisfying (4.7) must converge to the same point. This establishes (ii).

The proof of (iv) is straightforward and we omit it.

5 Binary search tree and digital search tree processes

Recall the binary search tree (BST) process from the Introduction. We observed in
Example 4.7 that Hypothesis 4.6 holds for the BST process. Recall from Example 2.3
that we can identify S in this case with the set of finite subtrees of the complete binary
tree {0, 1}? that contain the root ∅. Moreover, it follows from the discussion in Section 4
that ∂S is homeomorphic to the set of probability measures on {0, 1}∞ equipped with
the weak topology corresponding to the usual product topology on {0, 1}∞.

We therefore abuse notation slightly and take S to be set of finite subtrees of {0, 1}?
rooted at ∅ and take ∂S to be the probability measures on {0, 1}∞.

With this identification the partial order � on S is just subset containment and the
Martin kernel is given by

K(s, t) =

{(
#t
#s

)−1∏
u∈s #t(u), if s ⊆ t,

0, otherwise,
(5.1)

where we recall from Example 4.3 that #t(u) = #{v ∈ t : u ≤ v}.
A sequence (tn)n∈N in S with #tn → ∞ converges in the Doob-Martin compacti-

fication of S if and only if #tn(u)/#tn converges for all u ∈ {0, 1}?. Moreover, if the
sequence converges, then the limit can be identified with the probability measure µ on
{0, 1}∞ such that

µ{v ∈ {0, 1}∞ : u < v} = lim
n→∞

#tn(u)

#tn
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for all u ∈ {0, 1}?.
Recall that the partial order on {0, 1}? is such that if u = u1 . . . uk and v = v1 . . . , v`

are two words, then u ≤ v if and only if u is an initial segment of v, that is, if and
only if k ≤ ` and ui = vi for i = 1, . . . , k. Extend this partial order to {0, 1}? t {0, 1}∞
by declaring that any two elements of {0, 1}∞ are not comparable and u < v for u =

u1 . . . uk ∈ {0, 1}? and v = v1v2 . . . ∈ {0, 1}∞ when ui = vi for i = 1, . . . , k. Given µ ∈ ∂S,
set

µu := µ{v ∈ {0, 1}∞ : u < v}. (5.2)

That is, µu is the mass assigned by µ to the set of infinite paths in the complete binary
tree that begin at the root and that pass through the vertex u. The extended Martin
kernel is given by

K(s, µ) = (#s)!
∏
u∈s

µu, s ∈ S, µ ∈ ∂S. (5.3)

Note from the construction of the BST process that its transition matrix is

P (s, t) =

{
1

#s+1 , if s ⊂ t and #(t \ s) = 1,

0, otherwise,

(this is also apparent from (4.3)). Set hµ := K(·, µ) for µ ∈ ∂S. The Doob h-transform
process corresponding to the regular function hµ has state space

{t ∈ S : µu > 0 for all u ∈ t}

and transition matrix

P (hµ)(s, t) =

{
µu, if t = s t {u},
0, otherwise.

It follows that the h-transformed process results from a trickle-down construction.
For simplicity, we only verify this in the case when µu > 0 for all u ∈ {0, 1}? = I, so that
the state-space of the h-transformed process is all of S, and leave the formulation of the
general case to the reader. The routing chain on Su = N

{u0,u1}
0 has transition matrix Qu

given by

Qu((m,n), (m+ 1, n)) =
µu0
µu

and
Qu((m,n), (m,n+ 1)) =

µu1
µu

.

In other words, we can regard the routing chain as the space-time chain corresponding
to the one-dimensional simple random walk that has probability µu0/µu of making a −1

step and probability µu1/µu of making a +1 step.
We have the following “trickle-up” construction of the h-transformed process. Sup-

pose on some probability space that there is a sequence of independent identically
distributed {0, 1}∞-valued random variables (V n)n∈N with common distribution µ. For
an initial finite rooted subtree w in the state space of the h-transformed process, define
a sequence (Wn)n∈N0

of random finite subsets of {0, 1}? inductively by setting W0 := w

and Wn+1 := Wn ∪ {V n+1
1 . . . V n+1

H(n+1)+1}, n ≥ 0, where H(n + 1) := max{l ∈ N :

V n+1
1 . . . V n+1

l ∈ Wn} with the convention max ∅ = 0. That is, at each point in time
we start a particle at a “leaf” of the complete binary tree {0, 1}? picked according to µ
and then let that particle trickle up the tree until it can go no further because its path
is blocked by previous particles that have come to rest. It is clear that (Wn)n∈N0

is a
Markov chain with state space the appropriate set of finite rooted subtrees of {0, 1}?,
initial state w, and transition matrix P (hµ).
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It follows from the trickle-up construction and Kolmogorov’s zero-one law that the
tail σ-field of the h-transformed process is trivial, and hence µ is an extremal point of
S̄. Alternatively, µ is extremal because it is clear from the strong law of large numbers
that the h-transformed process converges to µ.

Consider the special case of the h-transform construction when the boundary point
µ is the “uniform” or “fair coin-tossing” measure on {0, 1}∞; that is, µ is the infinite
product of copies of the measure on {0, 1} that assigns mass 1

2 to each of the subsets
{0} and {1}. In this case, the transition matrix of the h-transformed process is

P (hµ)(s, t) =

{
2−|u|, if t = s t {u},
0, otherwise,

where we write |u| for the length of the word u; that is, |u| = k when u = u1 . . . uk. This
transition mechanism is that of the digital search tree (DST) process. We have therefore
established the following result.

Theorem 5.1. The digital search tree process is the Doob h-transform of the binary
search tree process associated with the regular function h(s) := (#s)!

∏
u∈s 2−|u|, s ∈ S.

The regular function h is extremal and corresponds to the uniform probability measure
on {0, 1}∞ thought of as an element of the Doob-Martin compactification of the state
space S of the BST process. Consequently, the Doob-Martin compactification of the DST
process coincides with that of the BST process.

Remark 5.2. The digital search tree (DST) algorithm is discussed in [33, p.496ff] and
in [38, Chapter 6]. The process in Theorem 5.1 appears as the output of the DST algo-
rithm if the input is a sequence of independent and identically distributed random 0-1
sequences with distribution µ, where µ is the fair coin tossing measure. In the liter-
ature this assumption is also known as the symmetric Bernoulli model; in the general
Bernoulli model the probability 1/2 for an individual digit 1 is replaced by an arbitrary
p ∈ (0, 1). In our approach we do not need any assumptions on the internal structure
of the random 0-1 sequences and we can work with a general distribution µ on {0, 1}∞.
Any such DST processes “driven by µ” is an h-transform of the BST process, provided
that µu > 0 for all u ∈ I, and the trickle-up construction shows that the conditional
distribution of the BST process, given that its limit is µ, is the same as the distribution
of the DST process driven by µ.

In the symmetric Bernoulli model, the sample paths of the DST process converge
almost surely to the single boundary point µ in the Doob-Martin topology, where µ is
the uniform measure on {0, 1}∞. We now investigate the distribution of the limit of the
sample paths of the BST process. There are several routes we could take.

Recall that the routing chains for the BST process are essentially Pólya urns; that is,
the routing chain Y u = ((Y u)u0, (Y u)u1) for the vertex u ∈ {0, 1}? makes the transition
(g, d)→ (g+ 1, d) with probability (g+ 1)/(g+ d+ 2) and the transition (g, d)→ (g, d+ 1)

with probability (d+1)/(g+d+2). It is a well-known fact about the Pólya urn that, when
((Y u0 )u0, (Y u0 )u1) = (0, 0), the sequence ((Y un )u0 + (Y un )u1)−1((Y un )u0, (Y un )u1), n ∈ N0,
converges almost surely to a random variable of the form (U, 1−U), where U is uniformly
distributed on [0, 1]. It follows that if we write (Tn)n∈N for the BST process, then almost
surely

#Tn(u)

#Tn
→

∏
∅<v≤u

Uv, u ∈ {0, 1}?,

where the pairs (Uu0, Uu1), u ∈ {0, 1}?, are independent, the random variables Uu0 and
Uu1 are uniformly distributed on [0, 1], and Uu0 + Uu1 = 1. Thus, the limit of the BST
chain is the random measure M on {0, 1}∞ such that Mu =

∏
∅<v≤u Uv for all u ∈ {0, 1}?.
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Another approach is to observe that, from the trickle-up description of the h-trans-
formed processes described above and the extremality of all the boundary points, we
only need to find a random measure on {0, 1}∞ such that if we perform the trickle-
up construction from a realization of the random measure, then we produce the BST
process. It follows from the main result of [5] that the random measure M has the
correct properties.

Yet another perspective is to observe that, by the general theory outlined in Sec-
tion 3, the distribution of the limit is the unique probability measure M on ∂S such
that

1 =

∫
∂S

K(s, µ)M(dµ).

In the present situation the right hand side evaluates to∫
∂S

(#s)!
∏
u∈s

µuM(dµ) = (#s)!E

[∏
u∈s

M̃u

]
,

where M̃ is a random measure on {0, 1}∞ with distributionM. Rather than simply verify
that taking M̃ = M , where Mu =

∏
∅<v≤u Uv as above, has the requisite property, we

consider a more extensive class of random probability measures with similar structure,
compute the corresponding regular functions, and identify the transition matrices of
the resulting h-transform processes.

Let the pairs (Ru0, Ru1), u ∈ {0, 1}?, be independent and take values in the set
{(a, b) : a, b ≥ 0, a + b = 1}. Define a random probability measure N on {0, 1}∞ by
setting Nu :=

∏
∅<v≤uRv for all u ∈ {0, 1}?. The corresponding regular function is

h(s) = E [K(s, N)]

= (#s)!E

[∏
u∈s

Nu

]

= (#s)!E

∏
u∈s

∏
∅<v≤u

Rv


= (#s)!E

 ∏
u∈s\{∅}

R#s(u)
u


= (#s)!

∏
u

Au(#s(u0),#s(u1)),

where the last product is over {0, 1}? and

Au(j, k) := E
[
Rju0R

k
u1

]
.

With this notation, the probability that the resulting h-transform of the BST process
makes a transition from s to t := s t {v} is

h(s)−1
1

#s + 1
h(t) =

1

#s+ 1

(#s+ 1)!
∏
uAu(#t(u0),#t(u1))

(#s)!
∏
uAu(#s(u0),#s(u1))

=
∏
u

Au(#t(u0),#t(u1))

Au(#s(u0),#s(u1))

=
∏
∅≤u<v

Au(#t(u0),#t(u1))

Au(#s(u0),#s(u1))
,

(5.4)

EJP 17 (2012), paper 1.
Page 29/58

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1698
http://ejp.ejpecp.org/


Trickle-down processes and their boundaries

because #s(u) = #t(u) unless u ≤ v.
The ratios in (5.4) have a simple form: if #s(u0) = j and #s(u1) = k, then

Au(#t(u0),#t(u1))

Au(#s(u0),#s(u1))
=
Au(j + 1, k)

Au(j, k)
, if u0 ≤ v, (5.5)

and
Au(#t(u0),#t(u1))

Au(#s(u0),#s(u1))
=
Au(j, k + 1)

Au(j, k)
, if u1 ≤ v. (5.6)

Suppose now that each Ru0 has a beta distribution with parameters θu and ηu, (so
that Ru1 = 1 − Ru0 has a beta distribution with parameters ηu and θu and the pair
(Ru0, Ru1) has a Dirichlet distribution with parameters θu and ηu). Then,

Au(j, k) =
θu(θu + 1) · · · (θu + j − 1)× ηu(ηu + 1) · · · (ηu + k − 1)

(θu + ηu)(θu + ηu + 1) · · · (θu + ηu + j + k − 1)
,

and the factors in (5.5) and (5.6) are

θu + j

θu + ηu + j + k
and

ηu + k

θu + ηu + j + k
,

respectively. As expected, the BST chain arises as the special case θu = ηu = 1 for all u.

Remark 5.3. The chain with θu = ηu = ` for some fixed ` ∈ N appears in connection
with the median-of-(2` − 1) version of the algorithms Quicksort and Quickselect (Find)
– see [26].

A special case of the above construction arises in connection with Dirichlet ran-
dom measures. Recall that a Dirichlet random measure (sometimes called a Fergu-
son random measure) directed by a finite measure ν on {0, 1}∞ is a random probabil-
ity measure Ñ on {0, 1}∞ with the property that, for any Borel partition B1, . . . , Bk of
{0, 1}∞, the random vector (Ñ(B1), . . . , Ñ(Bk)) has a Dirichlet distribution with param-
eters (ν(B1), . . . , ν(Bk)). In particular, Ñ(B) has a beta distribution with parameters
ν(B) and ν(Bc). It follows easily from Lemma 5.4 below that if θu = νu0 and ηu = νu1 for
all u in the above construction of a random probability measure using beta distributed
weights, then the result is a Dirichlet random measure directed by ν. (We note that the
random measures that appear as the limit of the BST and median-of-(2` − 1) processes
are not Dirichlet.)

Lemma 5.4. Suppose that (D1, D2, D3, D4) is a Dirichlet distributed random vector
with parameters (α1, α2, α3, α4). Then, the three pairs(

D1

D1 +D2
,

D2

D1 +D2

)
,

(
D3

D3 +D4
,

D4

D3 +D4

)
and (D1 +D2, D3 +D4)

are independent Dirichlet distributed random vectors with respective parameters

(α1, α2), (α3, α4), and (α1 + α2, α3 + α4).

Proof. Note that (D1, D2, D3, D4) has the same distribution as(
G1

G1 + · · ·+G4
, . . . ,

G4

G1 + · · ·+G4

)
,

where the G1, . . . , G4 are independent and Gi has the Gamma distribution with parame-
ters (αi, 1). Moreover, the latter random vector is independent of the sum G1 + · · ·+G4.
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Now, (
D1 +D2, D3 +D4,

D1

D1 +D2
,

D2

D1 +D2
,

D3

D3 +D4
,

D4

D3 +D4

)
has the same distribution as(

G1 +G2

G1 + · · ·+G4
,

G3 +G4

G1 + · · ·+G4
,

G1

G1 +G2
,

G2

G1 +G2
,

G3

G3 +G4
,

G4

G3 +G4

)
.

By the fact above,
G1 +G2,

G3 +G4,(
G1

G1 +G2
,

G2

G1 +G2

)
,

and (
G3

G3 +G4
,

G4

G3 +G4

)
are independent, and so (

G1 +G2

G1 + · · ·+G4
,

G3 +G4

G1 + · · ·+G4

)
,

(
G1

G1 +G2
,

G2

G1 +G2

)
,

and (
G3

G3 +G4
,

G4

G3 +G4

)
are independent.

6 Random recursive trees
and nested Chinese restaurant processes

6.1 Random recursive trees from another encoding of permutations

Recall from the Introduction how the binary search tree process arises from a classi-
cal bijection between permutations of [n] := {1, 2, . . . , n} and a suitable class of labeled
rooted trees. The random recursive tree process arises from a similar, but slightly less
well-known, bijection that we now describe.

We begin with a definition similar to that of the complete binary tree in the Introduc-
tion. Denote byN? :=

⊔∞
k=0N

k the set of finite tuples or words drawn from the alphabet
N (with the empty word ∅ allowed). Write an `-tuple (v1, . . . , v`) ∈ N? more simply as
v1 . . . v`. Define a directed graph with vertex set N? by declaring that if u = u1 . . . uk and
v = v1 . . . v` are two words, then (u, v) is a directed edge (that is, u → v) if and only if
` = k + 1 and ui = vi for i = 1, . . . , k. Call this directed graph the complete Harris-Ulam
tree. A finite rooted Harris-Ulam tree is a subset t of N? with properties:

• ∅ ∈ t,

• if v = u1 . . . uk ∈ t, then u1 . . . uj ∈ t for 1 ≤ j ≤ k − 1 and u1 . . . uk−1m ∈ t for
1 ≤ m ≤ uk − 1.

As in the binary case there is a canonical way to draw a finite rooted Harris-Ulam tree in
the plane, see Figure 6 for an example. Further, we can similarly define a vertex u ∈ N?
to be an external vertex of the tree t if u /∈ t and if t t {u} is again a Harris-Ulam tree.
Note that, in contrast to the binary case, external vertices are now specified by their
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Figure 6: An example of a finite rooted Harris-Ulam tree.

immediate predecessor; in particular, a Harris-Ulam tree with n vertices has n external
vertices.

Given a permutation π of [n], set r(i) = π−1(i) for 1 ≤ i ≤ n. Construct a finite rooted
Harris-Ulam tree with n+ 1 vertices labeled by [n] ∪ {0} from r(1), . . . , r(n) recursively,
as follows. Denote by t0 the tree consisting of just the root ∅ labeled with 0. Suppose
for 1 ≤ i ≤ n− 1 that a tree ti with i vertices labeled by {0, . . . , i− 1} has already been
defined. Assume that i = r(`). If {j : 1 ≤ j < `, r(j) < i} = ∅, set s := 0. Otherwise, set
s := r(k), where k := max{j : 1 ≤ j < `, r(j) < i}. Let u be the vertex in ti labeled by s.
Put q := max{p ∈ N : up ∈ ti}+ 1, adjoin the vertex uq to ti to create the tree ti+1, and
label this new vertex with i.

For example, 1 is always the first child of 0 (occupying the vertex 1 in the complete
Harris-Ulam tree) and 2 is either the second child of 0 (occupying the vertex 2 in the
complete Harris-Ulam tree) or the first child of 1 (occupying the vertex 11 in the com-
plete Harris-Ulam tree), depending on whether 2 appears before or after 1 in the list
r(1), . . . , r(n). See Figure 7 for an instance of the construction with n = 9.

Clearly, π can be reconstructed from the tree and its vertex labels.

As in the Introduction, given a sequence (Un)n∈N of independent identically dis-
tributed random variables that are uniform on the unit interval [0, 1], define a random
permutation Πn of [n] for each positive integer n by setting Πn(k) = #{1 ≤ ` ≤ n : U` ≤
Uk}. Applying the bijection to Πn, we obtain a random labeled rooted tree and a corre-
sponding unlabeled rooted tree that we again denote by Ln and Tn, respectively. Both
of these processes are Markov chains with simple transition probabilities. For example,
given Tn we pick one of its n+ 1 vertices uniformly at random and connect a new vertex
to it to form Tn+1. Thus, (Tn)n∈N is the simplest random recursive tree process (see, for
example, [50] for a survey of such models).

As with the BST and DST processes, we think of building the sequence (Tn)n∈N by
first building a growing sequence of finite rooted Harris-Ulam trees labeled with the
values of the input sequence U1, U2, . . . and then ignoring the labels. The transition rule
for the richer process takes a simple form: attach a new vertex labeled with Un+1 to
the root if Un+1 is smaller than each of the previous variables U1, . . . , Un; if not, then
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1 4 97

2 3 85

6

0

9 7 8 4 5 1 3 2 6

Figure 7: The labeled Harris-Ulam tree corresponding to the permutation of [9] with
r(1), . . . , r(9) = 9, 7, 8, 4, 5, 1, 3, 2, 6. For the sake of clarity, the Harris-Ulam coding of the
vertices as elements of N? is not shown. The correspondence between the labels from
[9]∪{0} and the coding of the vertices by elements ofN? is 0↔ ∅, 1↔ 1, 2↔ 11, 3↔ 12,
4↔ 2, 5↔ 21, 6↔ 111, 7↔ 3, 8↔ 31, 9↔ 4 .
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attach a new vertex labeled with Un+1 to the existing vertex that is the labeled with
the rightmost of the smaller elements. In contrast to the binary search tree situation,
the labeled versions of the trees T1, . . . , Tn−1 can now be determined from the labeled
version of Tn. However, if we remove the labels then we are in the same situation as in
the BST case: the next tree is obtained by choosing an external vertex of the current
tree uniformly at random and attaching it to the current tree.

6.2 Chinese restaurant processes

Suppose that in the tree Tn the root has k offspring. Let n1, . . . , nk denote the number
of vertices in the subtrees rooted at each of these offspring, so that n1 + · · · + nk = n.
Note that in constructing Tn+1 from Tn, either a new vertex is attached to the jth subtree
with probability nj/(n + 1) or it is attached to the root and begins a new subtree with
probability 1/(n + 1). Thus, the manner in which the number and sizes of subtrees
rooted at offspring of the root evolve is given by the number and sizes of tables in the
simplest Chinese restaurant process: the nth customer to enter the restaurant finds k
tables in use with respective numbers of occupants n1, . . . , nk and the customer either
sits at the jth table with probability nj/(n + 1) or starts a new table with probability
1/(n+ 1).

It is clear from the construction of (Tn)n∈N that if we begin observing the subtree
below one of the offspring of the root at the time the offspring first appears and only
record the state of the subtree at each time it grows, then the resulting tree-valued
process has the same dynamics as (Tn)n∈N. Iterating this observation, we see that we
may think of (Tn)n∈N as an infinite collection of hierarchically nested Chinese restaurant
processes and, in particular, that (Tn)n∈N arises as an instance of the trickle-down
construction.

Rather than just investigate the Doob-Martin compactification of (Tn)n∈N we first
recall the definition of Pitman’s two-parameter family of processes to which the simple
Chinese restaurant process belongs – see [41] for background and an extensive treat-
ment of the properties of these processes. We then apply the trickle-down construction
to build a tree-valued Markov chain that uses these more general processes as routing
instructions. Analogous finitely nested Chinese restaurant processes have been used in
hierarchical Bayesian inference [52].

A member of the family of Chinese restaurant processes is specified by two param-
eters α and θ that satisfy the constraints

α < 0 and θ = −Mα for some M ∈ N

or
0 ≤ α < 1 and θ > −α.

At time p the state of the process is a partition B of the set [p] with #B blocks that are
thought of as describing the composition of #B occupied tables. The next customer
arrives at time p+ 1 and decides either to sit at an empty table with probability

θ + α#B
p+ θ

,

thereby adjoining an extra block {p + 1} to the partition and increasing the number of
blocks by 1, or else to sit at an occupied table B ∈ B of size #B with probability

#B − α
p+ θ

,

thereby replacing the block B by the block B∪{p+1} and leaving the number of blocks
unchanged.
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The probability that the partition of [q] we see at time q is B = {B1, . . . , Bn} with
block sizes bk = #Bk is

(θ + α)(θ + 2α) · · · (θ + (n− 1)α)

(θ + 1)(θ + 2) · · · (θ + q − 1)

n∏
k=1

(1− α)(2− α) · · · (bk − 1− α).

Note that if α < 0 and θ = −Mα for some M ∈ N, then, with probability one, the
number of blocks in the partition is always at most M .

We are only interested in the process that records the number and size of the blocks.
This process is also Markov. The probability that the random partition at time q has
block sizes b1, b2, . . . , bn is

(θ + α)(θ + 2α) · · · (θ + (n− 1)α)

(θ + 1)(θ + 2) · · · (θ + q − 1)

n∏
k=1

(1− α)(2− α) · · · (bk − 1− α)

×
(
q − 1

b1 − 1

)(
q − b1 − 1

b2 − 1

)
· · ·
(
q − b1 − · · · − bn−2 − 1

bn−1 − 1

)
.

The ordering of the blocks in this formula is their order of appearance: b1 is the size of
the initial table, b2 is the size of the table that began receive customers next, and so on.

More generally, the probability that we go from the partition A = {A1, . . . , Am} at
time p to the partition B = {B1, . . . , Bn} at time q > p is

(θ +mα)(θ + 2α) · · · (θ + (n− 1)α)

(θ + p)(θ + p+ 1) · · · (θ + q − 1)

×
m∏
k=1

(ak − α)(ak + 1− α) · · · (bk − 1− α)

n∏
k=m+1

(1− α)(2− α) · · · (bk − 1− α).

The corresponding probability that we go from a partition with block sizes a1, . . . , am at
time p to one with block sizes b1, . . . , bn at time q > p is

(θ +mα)(θ + 2α) · · · (θ + (n− 1)α)

(θ + p)(θ + p+ 1) · · · (θ + q − 1)

×
m∏
k=1

(ak − α)(ak + 1− α) · · · (bk − 1− α)

n∏
k=m+1

(1− α)(2− α) · · · (bk − 1− α)

×
(
q − p
b1 − a1

)(
(q − b1)− (p− a1)

b2 − a2

)
× · · ·

(
(q − b1 − · · · − bm−1)− (p− a1 − · · · − am−1)

bm − am

)
×
(
q − b1 − · · · − bm − 1

bm+1 − 1

)(
q − b1 − · · · − bm+1 − 1

bm+2 − 1

)
× · · ·

(
q − b1 − · · · − bn−2 − 1

bn−1 − 1

)
.

We can think of the block size process as a Markov chain with state space

E := {(0, 0, · · · )} t
⊔
m∈N

Nm × {0} × {0} × · · · ⊂ NN0

when 0 ≤ α < 1 and θ > −α, or

E := {(0, 0, · · · )} t
M⊔
m=1

Nm × {0}M−m ⊂ NM0
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when α < 0 and θ = −Mα for some M ∈ N. For two states a = (a1, . . . , am, 0, 0, . . .) ∈ E

and b = (b1, . . . , bn, 0, 0, . . .) ∈ E with 1 ≤ m ≤ n, bi ≥ ai > 0 when 1 ≤ i ≤ m, bj > 0

when m+ 1 ≤ j ≤ n,
∑m
i=1 ai = p, and

∑n
j=1 bj = q, the Martin kernel is

K(a,b) =
(θ + 1)(θ + 2) · · · (θ + p− 1)

(θ + α)(θ + 2α) · · · (θ + (m− 1)α)

×

[
m∏
k=1

(1− α)(2− α) · · · (ak − 1− α)

]−1
× (q − p)!

(b1 − a1)!((q − p)− (b1 − a1))!

(b1 − 1)!(q − b1)!

(q − 1)!

× ((q − p)− (b1 − a1))!

(b2 − a2)!((q − p)− (b1 − a1)− (b2 − a2))!

(b2 − 1)!(q − b1 − b2)!

(q − b1 − 1)!

· · ·

× ((q − p)− (b1 − a1)− · · · − (bm−1 − am−1))!

(bm − am)!((q − p)− (b1 − a1)− · · · − (bm − am))!

× (bm − 1)!(q − b1 − · · · − bm)!

(q − b1 − · · · − bm−1 − 1)!
.

This expression can be rearranged to give

(θ + 1)(θ + 2) · · · (θ + p− 1)

(θ + α)(θ + 2α) · · · (θ + (m− 1)α)

[
m∏
k=1

(1− α)(2− α) · · · (ak − 1− α)

]−1
× (q − p)!

((q − p)− (b1 − a1)− · · · − (bm − am))!

× (b1 − 1)!

(b1 − a1)!
· · · (bm − 1)!

(bm − am)!

× (q − b1)!

(q − 1)!

(q − b1 − b2)!

(q − b1 − 1)!
· · · (q − b1 − b2 − · · · − bm)!

(q − b1 − b2 − · · · − bm−1 − 1)!

=
(θ + 1)(θ + 2) · · · (θ + p− 1)

(θ + α)(θ + 2α) · · · (θ + (m− 1)α)

[
m∏
k=1

(1− α)(2− α) · · · (ak − 1− α)

]−1
× [(q − p+ 1)(q − p+ 2) · · · (q − 1)]

−1

×
m∏
k=1

(bk − ak + 1) · · · (bk − 1)

m−1∏
k=1

(
q −

k∑
`=1

b`

)
.

If (bN )N∈N = ((bN,1, bN,2, . . .))N∈N is a sequence from E such that

#{N ∈ N : bN = b} <∞

for all b ∈ E, then limN→∞
∑∞
k=1 bN,k = ∞. In this case, it is not hard to see that

limN→∞K(a,bN ) exists for a ∈ E if and only if

lim
N→∞

bN,k∑∞
`=1 bN,`

=: ρk
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exists for all k ∈ N. Furthermore, for a = (a1, a2, . . . , am, 0, . . .) as above

lim
N→∞

K(a,bN ) =
(θ + 1)(θ + 2) · · · (θ + p− 1)

(θ + α)(θ + 2α) · · · (θ + (m− 1)α)

×

[
m∏
k=1

(1− α)(2− α) · · · (ak − 1− α)

]−1
× ρa1−11 · · · ρam−1m

× (1− ρ1)(1− ρ1 − ρ2) · · · (1− ρ1 − ρ2 − · · · − ρm−1)

=: K(a, ρ).

Note that limN→∞K(a,bN ) exists for all a ∈ E if and only if the limit exists for all
a ∈ E of the form (1, . . . , 1, 0, 0, . . .) (that is, for all a ∈ E with entries in {0, 1}). Note
also that the extended Martin kernel has the property that

K(a, ρ) = 0⇔

{
ak ≥ 1 for some k with

∑k−1
j=1 ρk = 1,

ak ≥ 2 for some k with ρk = 0.

Recall that if a is as above, then the transition probabilities of the block size process
are given by

P (a,b) =

{
θ+αm
θ+p , if b = (a1, . . . , am, 1, 0, . . .),
ak−α
θ+p , if b = (a1, . . . , ak+1, . . . , am, 0, . . .).

The Doob h-transform corresponding to the regular function hρ := K(·, ρ) therefore
has transition probabilities given by

P (hρ)(a,b)

=

{
θ+αm
θ+p

θ+p
θ+mα (1− ρ1 − · · · − ρm), if b = (a1, . . . , am, 1, 0, . . .),

ak−α
θ+p (θ + p)(ak − α)−1ρk, if b = (a1, . . . , ak + 1, . . . , am, 0, . . .).

That is,

P (hρ)(a,b)

=

{
(1− ρ1 − · · · − ρm), if b = (a1, . . . , am, 1, 0, . . .),

ρk, if b = (a1, . . . , ak + 1, . . . , am, 0, . . .).

Note that the parameters α and θ do not appear in this expression for the transition
probabilities. It follows that for a given M the block size chains all arise as Doob h-
transforms of each other.

We can build a Markov chain (Wn)n∈N0
with transition matrix P (hρ) and initial state

c as follows. Let (Vn)n∈N be a sequence of independent identically distributed random
variables taking values in [M ] ∪ {∞} with P{Vn = k} = ρk for k ∈ [M ] and P{Vn =

∞} = 1 −
∑
` ρ` (the latter probability is always 0 when M is finite). Define (Wn)n∈N0

inductively by setting W0 = c and, writing Nn := inf{j ∈ [M ] : Wnj = 0} with the usual
convention that inf ∅ =∞,

Wn+1 =

{
(Wn1, . . . ,WnNn , 1, 0, . . .), if Vn+1 > Nn,

(Wn1, . . . ,Wnk + 1, . . .WnNn , 0, . . .), if Vn+1 = k ≤ Nn,

for n ≥ 0. It is clear from this construction and Kolmogorov’s zero-one law that the tail
σ-field of the chain is trivial, and so the regular function hρ is extremal.
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6.3 Chinese restaurant trees

Fix an admissible pair of parameters α and θ for the two-parameter Chinese restau-
rant process. Set M := ∞ when 0 ≤ α < 1 and M := −θ/α ∈ N when α < 0. Put
[M ] := N for M =∞ and [M ] := {1, . . . ,M} otherwise.

Consider the trickle-down construction with the following ingredients. The under-
lying directed acyclic graph I has vertex set [M ]? :=

⊔∞
k=0[M ]k, the set of finite tuples

or words drawn from the alphabet [M ] (with the empty word ∅ allowed) and directed
edges are defined in a manner analogous to that in Subsection 6.1 – when [M ] = N we
just recover the complete Harris-Ulam tree of Subsection 6.1. Thus, I is a tree rooted at
∅ in which we may identify β(u), the set of offspring of vertex u ∈ I, with [M ] for every
vertex u. With this identification, we take the routing chain for every vertex to be the
Chinese restaurant block size process with parameters α and θ.

We may think of the state space S of the trickle-down chain (Xn)n∈N0
as the set of

finite subsets t of I with the property that if a word v = v1 . . . v` ∈ t, then v1 . . . v`−1 ∈ t

and v1 . . . v`−1k ∈ t for 1 ≤ k < v`. That is, when [M ] = N we may think of S as the set
of finite rooted Harris-Ulam trees from Subsection 6.1, and when M is finite we get an
analogous collection in which each individual has at most M offspring.

The partial order on I = [M ]? is the one we get by declaring that u ≤ v for two words
u, v ∈ I if and only if u = u1 . . . uk and v = v1 . . . v` with k ≤ ` and u1 . . . uk = v1 . . . v`, just
as for the complete binary tree. By analogy with the notation introduced in Example 4.3
for finite rooted binary trees, write #t(u) := #{v ∈ t : u ≤ v} for t ∈ S and u ∈ [M ]?.

It follows from the discussion in Subsection 6.2 that Hypothesis 4.6 holds. We may
identify the set I∞ with

[M ]∞ t
∞⊔
k=0

([M ]k × {�}∞)

For each vertex u ∈ I the collection Su consists of all probability measures on β(u)

when M is finite and all subprobability measures on β(u) when M = ∞. We may
therefore identify ∂S with the probability measures on I∞ that assign all of their mass
to [M ]∞ when M is finite and with the set of all probability measures on I∞ when
M = ∞. We may extend the partial order by declaring that u < v for u ∈ I = [M ]? and
v ∈ I∞ = [M ]∞ t

⊔∞
k=0([M ]k × {�}∞) if and only if u = u1 . . . uk and v = v1v2 . . . with

u1 . . . uk = v1 . . . vk.
The following result summarizes the salient conclusions of the above discussion.

Theorem 6.1. Consider the Chinese restaurant tree process with parameters (α, θ),
where α < 0 and θ = −Mα for some M ∈ N or 0 ≤ α < 1 and θ > −α, in which case
we define M =∞. We may identify the state space S of this process as the set of finite
rooted Harris-Ulam trees where the vertices are composed of digits drawn from [M ].
When M < ∞ (resp. M = ∞), the Doob-Martin boundary ∂S is homeomorphic to the
space of probability measures on [M ]∞ (resp. [M ]∞t

⊔∞
k=0([M ]k×{�}∞)) equipped with

the topology of weak convergence. With this identification, a sequence (tn)n∈N of finite
rooted Harris-Ulam trees converges in the topology of the Doob-Martin compactifica-
tion S̄ to the (sub)probability measure µ in the Doob-Martin boundary ∂S if and only if
limn→∞#tn =∞ and

lim
n→∞

#tn(u)

#tn
= µ

{
v ∈ [M ]∞ t

∞⊔
k=0

([M ]k × {�}∞) : u < v

}
for all u ∈ [M ]?.

Example 6.2. Suppose that M = ∞. Consider the sequence (tn)n∈N of finite rooted
Harris-Ulam trees given by tn := {∅, 1, 2, . . . , n, 21, 211, . . . , 21n−1}, where the notation
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21k indicates 2 followed by k 1s. This sequence of trees converges in the topology of S̄
to the probability measures on [M ]∞ t

⊔∞
k=0([M ]k ×{�}∞) that puts mass 1

2 at the point
� � � . . . and mass 1

2 at the point 2111 . . ..

Remark 6.3. The calculations of the extended Martin kernel and Doob h-transform
transition probabilities associated with a given µ ∈ ∂S are straightforward but nota-
tionally somewhat cumbersome, so we omit them. They show that there is the following
“trickle-up” construction of a Markov chain (Wn)n∈N0 with initial state w ∈ S and the h-
transform transition probabilities (compare the analogous construction for the Chinese
restaurant process itself in Subsection 6.2).

Let (V n)n∈N be a sequence of independent, identically distributed I∞-valued random
variables with common distribution µ. Suppose that S-valued random variables

w =: W0 ⊂ . . . ⊂Wn

have already been defined. Put

H(n+ 1) := max{h ∈ N : V n+1
1 . . . V n+1

h ∈Wn},

with the convention max ∅ = 0, and

M(n+ 1) := max{m ∈ N : V n+1
1 . . . V n+1

H(n+1)m ∈Wn},

again with the convention max ∅ = 0. Set

Wn+1 := Wn ∪ {V n+1
1 . . . V n+1

H(n+1)(M(n+ 1) + 1)}.

For example, if w = ∅ and µ is the unit point mass at the sequence � � . . ., then

Wn = {∅, 1, . . . , n}

for n ≥ 1; that is, Wn consists of the root ∅ and the first n children of the root.
It is clear from the Kolmogorov zero-one law that the tail σ-field of (Wn)n∈N0

is trivial
for any µ, and so any µ is extremal.

Remark 6.4. By analogy with the definition of the BST process in Section 5, we define
Tn to be the set of vertices occupied by time n (so that T0 = {∅}). Put, for each vertex
u, Tn(u) := {v ∈ Tn : u ≤ v}. The distribution of the random probability measure R on
[M ]∞ defined by R{w ∈ [M ]∞ : u < w} := limn→∞#Tn(u)/#Tn, u ∈ [M ]?, may be
derived from known properties of the two-parameter Chinese restaurant process (see,
for example, Theorem 3.2 of [41]). For v ∈ [M ]? put

(Uv1, Uv2, Uv3, . . .) := (Bv1, (1−Bv1)Bv2, (1−Bv1)(1−Bv2)Bv3, . . .),

where the random variables Bvk, v ∈ [M ]?, k ∈ [M ], are independent and Buk has
the beta distribution with parameters (1 − α, θ + kα). That is, the sequence (Uvk)k∈[M ]

has a Griffiths–Engen–McCloskey (GEM) distribution with parameters (α, θ). Then, R is
distributed as the random probability measure on [M ]∞ that for each u ∈ [M ]? assigns
mass

∏
∅<v≤u Uv to the set {w ∈ [M ]∞ : u < w}.

7 Mallows chains

7.1 Mallows’ φ model for random permutations and the associated tree

The φ model of Mallows [39] produces a random permutation of the set [n] for some
integer n ∈ N. One way to describe the model is the following.
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We place the elements of [n] successively into n initially vacant “slots” labeled by [n]

to obtain a permutation of [n] (if the number i goes into slot j, then the permutation
sends i to j). To begin with, each slot is equipped with a Bernoulli random variable.
These random variables are obtained by taking n independent Bernoulli random vari-
ables with common success probability 0 < p < 1 and conditioning on there being
at least 1 success. The number 1 is placed in the first slot for which the associated
Bernoulli random variable is a success. Thus, the probability that there are k vacant
slots to the left of 1 is

(1− p)kp
1− (1− p)n

, 0 ≤ k ≤ n− 1.

Now equip the remaining n− 1 vacant slots (that is, every slot except the one in which
1 was placed) with a set of Bernoulli random variables that is independent of the first
set. These random variables are obtained by taking n−1 independent Bernoulli random
variables with common success probability p and conditioning on there being at least 1

success. Place the number 2 in the first vacant slot for which the associated Bernoulli
is a success. The probability that there are k vacant slots to the left of 2 is

(1− p)kp
1− (1− p)n−1

, 0 ≤ k ≤ n− 2.

Continue in this fashion until all the slots have been filled.
The analogous procedure can be used to produce a permutation of N. Now the

procedure begins with infinitely many slots labeled by N, and at each stage there is no
need to condition on the almost sure event that there is at least one success. After each
m ∈ N is inserted, the current number of vacant slots to the left of the slot in which m

is placed is distributed as the number of failures before the first success in independent
Bernoulli trials with common success probability p, and these random variables are
independent. We note that this distribution on permutations of N appears in [23] in
connection with q-analogues of de Finetti’s theorem.

Suppose now that π is a permutation of the set S, where S = [n] or S = N. Let
I(π) := π(1). That is, if we think of π as a list of the elements of S in some order, then
I(π) is the index of 1. Put SL(π) := {i : π(i) < π(1)} and SR(π) := {i : π(i) > π(1)}.
Note that π maps SL(π) to {1, . . . , I(π) − 1} and SR(π) to I(π) + {1, . . . , n − I(π)} or
I(π) + N, and that SL(π) (respectively, SR(π)) is the set of elements of S that appear
before (respectively, after) 1 in the ordered listing of S defined by π.

If S = [n], write ψL(π) for the unique increasing bijection from {1, . . . , I(π) − 1} to
SL(π) and ψR(π) for the unique increasing bijection from {1, . . . , n − I(π)} to SR(π). If
S = N, define ψL(π) and ψR(π) similarly, except that now ψR(π) maps N to SR(π).

Define permutations σL(π) and σR(π) of {1, . . . , I(π) − 1} and {1, . . . , n − I(π)} (if
S = [n]) or {1, . . . , I(π) − 1} and N (if S = N) by requiring that π restricted to SL(π) is
ψL(π) ◦ σL(π) ◦ (ψL(π))−1 and that π restricted to SR(π) is ψR(π) ◦ σR(π) ◦ (ψR(π))−1.
In other words, σL(π)(i) is the index of the ith smallest element of SL(π) in the ordered
listing of S defined by π, and I(π) + σR(π)(i) is the index of the ith smallest element of
SR(π) in the ordered listing of S defined by π.

Note that π is uniquely specified by the objects I(π), SL(π), SR(π), σL(π), and σR(π).
The following lemma is immediate from the construction of the Mallows model.

Lemma 7.1. Suppose that Π is a random permutation of either [n] or N that is dis-
tributed according to the Mallows model with parameter p. Then, conditional on

(I(Π), SL(Π), SR(Π)),

the permutations σL(Π) and σL(Π) are independent and distributed according to the
Mallows model with parameter p.
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Recall from the description of the BST process in the Introduction how it is possible
to construct from a permutation π of [n] a subtree of the complete binary tree {0, 1}∗ that
contains the root ∅ and has n vertices. The procedure actually produces a tree labeled
with the elements of [n], but we are only interested in the underlying unlabeled tree.
Essentially the same construction produces an infinite rooted binary tree labeled with
N from a permutation π of N. This tree has the property that if a vertex u = u1 . . . uk
belongs to the tree, then there only finitely many vertices v such that u1 . . . uk0 ≤ v.

The following result is immediate from Lemma 7.1 and the recursive nature of the
procedure that produces a rooted subtree of {0, 1}∗ from a permutation.

Proposition 7.2. Let (Xn)n∈N0
be the Markov chain that results from the trickle-down

construction applied when the directed graph I is the infinite complete binary tree
{0, 1}? and all the routing chains have the common transition matrix Q on the state
space N0 ×N0, where

Q((i, 0), (i+ 1, 0)) := (1− p), for all i ≥ 0,

Q((i, 0), (i, 1)) := p, for all i ≥ 0,

and
Q((i, j), (i, j + 1)) := 1, for all i ≥ 0 and j ≥ 1.

We may regard (Xn)n∈N0 as a Markov chain taking values in the set of finite subtrees of
{0, 1}? that contain the root ∅, in which case {∅} = X0 ⊆ X1 ⊆ . . . and X∞ :=

⋃
n∈N0

Xn

is an infinite subtree of {0, 1}? that contains ∅. Then, X∞ has the same distribution
as the random tree constructed from a random permutation of N that is distributed
according to the Mallows model with parameter p.

We call the Markov chain (Xn)n∈N0
of Proposition 7.2 the Mallows tree process.

7.2 Mallows urns

Consider the Markov chain on N0×N0 with transition matrix Q introduced in Propo-
sition 7.2. We call this chain the Mallows urn, because its role as a routing chain for the
Mallows tree process is similar to that played by the Pólya urn in the construction of the
BST process. When started from (0, 0), a sample path of the Mallows urn process looks
like (0, 0), (1, 0), . . . , (K, 0), (K, 1), (K, 2), . . ., where P{K = k} = (1− p)kp for k ∈ N0.

The probability that the Mallows urn process visits the state (k, `) starting from the
state (i, j) is 

(1− p)k−i, if i ≤ k, j = 0 and ` = 0,

(1− p)k−ip, if i ≤ k, j = 0 and ` ≥ 1,

1, if i = k and 1 ≤ j ≤ `,
0, otherwise.

In particular, the probability that the process visits (k, `) starting from (0, 0) is{
(1− p)k, if ` = 0,

(1− p)kp, if ` ≥ 1.

Taking, as usual, (0, 0) as the reference state, the Martin kernel for the Mallows urn
process is thus

K((i, j), (k, `)) :=


(1− p)−i, if i ≤ k, j = 0 and ` = 0,

(1− p)−i, if i ≤ k, j = 0 and ` ≥ 1,

(1− p)−kp−1, if i = k and 1 ≤ j ≤ `,
0, otherwise,
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or, equivalently,

K((i, j), (k, `)) =


(1− p)−i, if i ≤ k and j = 0,

(1− p)−ip−1, if i = k and 1 ≤ j ≤ `,
0, otherwise.

(7.1)

It follows that if ((kn, `n))n∈N0 is a sequence for which kn + `n → ∞ then, in order
for the sequence (K((i, j), (kn, `n)))n∈N0 to converge, it must either be that kn = k∞ for
some k∞ for all n sufficiently large and `n →∞, in which case the limit is

(1− p)−i, if i ≤ k∞ and j = 0,

(1− p)−ip−1, if i = k∞ and j ≥ 1,

0, otherwise,

or that kn →∞ with no restriction on `n, in which case the limit is{
(1− p)−i, if j = 0,

0, otherwise.

Consequently, the Doob-Martin compactification N0 ×N0 of the state space of the
Mallows urn process is such that the Doob-Martin boundary

∂(N0 ×N0) := N0 ×N0 \N0 ×N0

can be identified with N0 ∪ {∞}, the usual one-point compactification of N0.
With this identification, the state space of the h-transformed process correspond-

ing to the boundary point k ∈ N0 is {(0, 0), (1, 0), . . . , (k, 0)} ∪ {(k, 1), (k, 2), . . .} and the
transition probabilities are

Qh((i, 0), (i+ 1, 0)) = ((1− p)−i)−1(1− p)(1− p)−(i+1) = 1, for 0 ≤ i ≤ k − 1,

Q((k, 0), (k, 1)) = ((1− p)−i)−1p(1− p)−ip−1 = 1,

and
Q((k, j), (k, j + 1)) = ((1− p)−ip−1)−11(1− p)−ip−1 = 1, for all j ≥ 1.

Thus, a realization of the h-transformed process starting from (0, 0) is the deterministic
path (0, 0), (1, 0), . . . , (k, 0), (k, 1), (k, 2), . . ..

Similarly, the state space of the h-transformed process corresponding to the bound-
ary point ∞ is {(0, 0), (1, 0), (2, 0), . . .} and a realization of the h-transformed process
starting from (0, 0) is the deterministic path (0, 0), (1, 0), (2, 0), . . ..

7.3 Mallows tree process

Recall from Example 2.3 that we may identify the state space S of the Mallows tree
process with the set of finite subtrees of the complete binary tree I = {0, 1}? that contain
the root ∅, and with this identification the partial order � is just subset containment.

Consider s in S and a sequence (tn)n∈N0
from S such that #tn → ∞ as n → ∞.

Given a vertex u of {0, 1}? write, as in Section 5, #s(u) := {v ∈ s : u ≤ v} and define
#tn(u) similarly. Note that in this setting the consistency condition (2.3) becomes

(#s(u)− 1)+ = #s(u0) + #s(u1)

and
(#tn(u)− 1)+ = #tn(u0) + #tn(u1).
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Write
L(s) :=

∑
u∈{0,1}∗

#s(u0).

When s ⊆ tn, put

M(s, tn) := #{u ∈ {0, 1}∗ : #s(u0) = #tn(u0), #s(u1) ≥ 1}

and

I(s, tn) :=

{
1, if #s(u0) = #tn(u0) whenever #s(u1) ≥ 1,

0, otherwise.

From Corollary 4.2 and (7.1), the Martin kernel of the Mallows tree process is

K(s, tn) :=

{
(1− p)−L(s)p−M(s,tn)I(s, tn), if s ⊆ tn,

0, otherwise.

Note that if s ⊆ tn and #s(u0) = #tn(u0), then {v ∈ s : u0 ≤ v} = {v ∈ tn : u0 ≤ v}.
Therefore, when s ⊆ tn, M(s, tn) counts the number of vertices of the form u0 such that
the subtree below u0 in s is the same as the subtree below u0 in tn and u1 ∈ s. Similarly,
I(s, tn) = 1 if and only if for all vertices of the form u0, the subtree below u0 in s is the
same as the subtree below u0 in tn whenever u1 ∈ s. Hence, if s ⊆ tn, then

p−M(s,tn)I(s, tn) = p−N(s)I(s, tn),

where N(s) := #{u ∈ {0, 1}∗ : u1 ∈ s}. Thus,

K(s, tn) =

{
(1− p)−L(s)p−N(s)I(s, tn), if s ⊆ tn,

0, otherwise.

Suppose that #tn(0) → ∞. For any s such that 1 ∈ s, I(s, tn) must be 0 for all n
sufficiently large, because the subtree below 0 in s cannot equal the subtree below 0 in
tn for all n.

On the other hand, if 1 /∈ s, then K(s, tn) = K(s, t̃n), where t̃n is the tree obtained
from tn by deleting all vertices v with 1 ≤ v. Consequently, if #tn(0) → ∞, then in
order to check whether K(s, tn) converges for all s ∈ S, it suffices to replace tn by t̃n
and restrict consideration to s such that 1 /∈ s. Moreover, the limits of K(s, tn) and
K(s, t̃n) are the same, so the sequences (tn)n∈N and (t̃n)n∈N correspond to the same
point in the Doob-Martin compactification.

Now suppose that #tn(0) 6→ ∞ (so that #tn(1) → ∞ must hold). It is clear that if
K(s, tn) converges for all s ∈ S with 1 /∈ s, then the sets {v ∈ tn : 0 ≤ v} are equal for
all n sufficiently large.

Let t̂m be the subtree of tm obtained by deleting from tm any vertex v such that
u1 ≤ v for some u with #tn(u0) → ∞. Applying the above arguments recursively, a
necessary and sufficient condition for the sequence (tn)n∈N0 to converge to a point in
the Doob-Martin compactification is that whenever #t̂n(u0) 6→ ∞ for some u, then the
set {v ∈ t̂n : u0 ≤ v} are equal for all n sufficiently large. Moreover, the sequences
(tn)n∈N0 and (t̂n)n∈N0 converge to the same limit point.

Suppose that (tn)n∈N0 and hence (t̂n)n∈N0 converges in the Doob-Martin compacti-
fication. Set

t∞ =
⋃

m∈N0

⋂
n≥m

t̂n.

Note that t∞ is an infinite subtree of {0, 1}? containing the root ∅ and if #t∞(u0) = ∞
for some u ∈ {0, 1}?, then #t∞(u1) = 0 (that is, u1 /∈ t∞). Equivalently, there is a unique
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Figure 8: A typical element of the set T of infinite rooted binary trees with a single
infinite spine. The beginning of the infinite spine is the thick line. The “blobs” hanging
off the left side of the spine represent finite subtrees. Any vertex that has a “left” child
with infinitely many descendants has no “right” child.

infinite path ∅ = u0 → u1 → u2 → . . . in t∞ and this path is such that if un = w1 · · ·wn−10,
then w1 · · ·wn−11 /∈ t∞. Let T be the set of subtrees with this property. We can think of
a subtree t ∈ T as consisting of the infinite “spine” ∅ = v0 → v1 → v2 → . . . to which
are attached the finite subtrees {v ∈ t : vn0 ≤ v} for those n ∈ N0 such that vn+1 = vn1

– see Figure 8.
We have

lim
n→∞

K(s, tn) = lim
n→∞

K(s, t̂n) =

{
(1− p)−L(s)p−N(s)I(s, t∞), if s ⊂ t∞,

0, otherwise,

where I(s, t∞) is defined to be 1 or 0 depending on whether or not for all vertices of the
form u0 with u1 ∈ s the subtree below u0 in s is the same as the subtree below u0 in t∞.

Recall that we write |u| for the length of a word u ∈ {0, 1}?; that is, |u| = k when
u = u1 . . . uk. Note that if t ∈ T, then the sequence (tn)n∈N0 in S defined by

tn := {u ∈ t : |u| ≤ n}

converges in the Doob-Martin compactification of S and the tree t∞ constructed from
this sequence is just t.

Finally, observe that if we extend K(s, t) for s ∈ S and t ∈ T by

K(s, t) :=

{
(1− p)−L(s)p−N(s)I(s, t), if s ⊂ t,

0, otherwise,

then for any distinct t′, t′′ ∈ T there exists s ∈ S such that K(s, t′) 6= K(s, t′′).
The important elements of the above discussion are contained in the following result.

Theorem 7.3. Consider the Mallows tree chain with state space S consisting of the set
of finite rooted binary trees. Let T be the set of infinite rooted binary trees t such that
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u1 ∈ t for some u ∈ {0, 1}? implies #t(u0) <∞. Equip StT with the topology generated
by the maps Πn : S t T → S, n ∈ N0, defined by Πn(t) := {u ∈ t : |u| ≤ n}, where on
the right we equip the countable set S with the discrete topology. The Doob-Martin
compactification S̄ is homeomorphic to S t T, and this homeomorphism identifies the
Doob-Martin boundary ∂S with T.

Remark 7.4. The limit in the Doob-Martin topology of the Mallows tree chain (Xn)n∈N0

started from the trivial tree ∅ is just the T-valued random variable X∞ :=
⋃
n∈N0

Xn

introduced in Proposition 7.2. Almost surely, the spine of X∞ (that is, the unique infinite
path from the root ∅) is equal to the rightmost path ∅ → 1→ 11→ 111 . . . in the complete
infinite binary tree.

Remark 7.5. It is straightforward to check that each of the harmonic functions K(·, t),
t ∈ T is extremal. If we order the alphabet {0, 1} so that 0 comes before 1 and equip the
set of words {0, 1}? with the corresponding lexicographic order, then the state space
of the h-transformed process corresponding to an infinite tree t ∈ T is the set of finite
subtrees s of t such that if u ∈ s, then every predecessor of u in the lexicographic
order also belongs to s. A realization of the h-transformed process started from ∅ is the
deterministic path that adds the vertices of t one at a time in increasing lexicographic
order.

Remark 7.6. As in the BST and DST cases, the Mallows tree process can be regarded
as a Markov chain which moves from a tree t to a tree s of the form s = t t {v}, where
the new vertex v is an external vertex of t (see the discussion following (4.2)). This
implies that the transition probabilities can be coded by a function p that maps pairs
(t, v), t ∈ I and v an external vertex of t, to the probability that the chain moves from t

to t t {v}.
In the BST case one of the |t|+1 external vertices of t is chosen uniformly at random,

that is, p(v|t) = 1/(|t|+ 1), whereas we have p(v|t) = 2−|v| in the DST case. For Mallows
trees, we have the following stochastic mechanism. Let u be the vertex of t that is
greatest in the lexicographic order. Denote by i1 < · · · < i` the indices at which the
corresponding entry of u is a 0 (we set ` = 0 if every entry of u is a 1). Write vj ,
1 ≤ j ≤ `, for the external vertices of t that arise if the 0 in position ij is changed to 1.
Put v`+1 := v1 and v`+2 := v0. Then, we choose vj with probability pij , j = 1, . . . , `, and

v`+1 and v`+1 with probabilities rp and r(1− p) respectively, where r := 1−
∑`
j=1 p

ij .
Note that not all Markov chains of the vertex-adding type can be represented as

trickle-down processes. Indeed, a distinguishing feature of the trickle-down chains
within this larger class is the fact that the restriction of the function v → p(v|t) to the
external vertices of the left subtree of t depends on t only via the number of vertices
in the right subtree of t. Similar restrictions hold with left and right interchanged, and
also for the subtrees of non-root vertices.

8 q-binomial chains

8.1 q-binomial urns

Fix parameters 0 < q < 1 and 0 < r < 1, and define a transition matrix Q for the
state space N0 ×N0 by

Q((i, j), (i+ 1, j)) = rqj

and
Q((i, j), (i, j + 1)) = 1− rqj

for (i, j) ∈ N0×N0. We note that this 2-parameter family of processes is a special case of
the 3-parameter family studied in [9], where it is shown to have a number of interesting
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connections with graph theory. In the next subsection, we use Markov chains with the
transition matrix Q as the routing chains for a trickle-down process on I = {0, 1}? in the
same way that we have used the Pólya and Mallows urn processes.

Note that, by a simple Borel-Cantelli argument, almost surely any sample path of a
Markov chain (Yn)n∈N0

= ((Y ′n, Y
′′
n ))n∈N0

with transition matrix Q is such that

Y ′N = Y ′N+1 = Y ′N+2 = . . .

for some N (so that Y ′′N+1 = Y ′′N + 1, Y ′′N+2 = Y ′′N + 2, . . .).
We want to compute the probability that the chain goes from (i, j) to (k, `) for i ≤ k

and j ≤ `. Observe that the probability the chain goes from (i, j) to (k, `) via (k, j) is

R((i, j), (k, `)) := (rqj)k−i(1− rqj)(1− rqj+1) · · · (1− rq`−1).

Observe also that if S(i, j) is the probability the chain goes from (i, j) to (i+ 1, j + 1)

via (i + 1, j) and T (i, j) is the probability the chain goes from (i, j) to (i + 1, j + 1) via
(i, j + 1), then T (i, j) = qS(i, j). It follows by repeated applications of this observation
that the probability the chain goes from (i, j) to (k, `) along some “north-east” lattice
path σ is

qA(σ)R((i, j), (k, `)),

where A(σ) is the area in the plane above the line segment [i, k] × {j} and below the
curve obtained by a piecewise linear interpolation of σ. Hence, the probability that the
chain hits (k, `) starting from (i, j) is∑

σ

qA(σ)R((i, j), (k, `)),

where the sum is over all “north-east” lattice paths σ from (i, j) to (k, `).
As explained in [1, Chapter 10], the evaluation of the sum is a consequence of the

non-commutative q-binomial theorem of [48] (see also [42]), and∑
σ

qA(σ) =
(1− q)(1− q2) · · · (1− q(k−i)+(`−j))

(1− q)(1− q2) · · · (1− q(k−i))× (1− q)(1− q2) · · · (1− q(`−j))
.

Taking, as usual, (0, 0) as the reference state, the Martin kernel for the chain is thus

K((i, j), (k, `)) =
(1− qk−i+1) · · · (1− qk)× (1− q`−j+1) · · · (1− q`)

(1− q(k−i)+(`−j)+1) · · · (1− qk+`)

× r−iqj(k−i) 1

(1− r)(1− rq) · · · (1− rqj−1)
,

for i ≤ k and j ≤ ` (and 0 otherwise).
The Doob-Martin compactification of a chain with transition matrix Q is identified

in [22, Section 4], but for the sake of completeness we present the straightforward
computations. If ((kn, `n))n∈N0

is a sequence such that kn + `n → ∞, then, in order for
K((i, j), (kn, `n)) to converge, we must have either that kn = k∞ for some k∞ for all n
sufficiently large and `n →∞, in which case the limit is

(1− qk∞−i+1) · · · (1− qk∞)× r−iqj(k∞−i) 1

(1− r)(1− rq) · · · (1− rqj−1)

for i ≤ k∞ (and 0 otherwise), or that kn → ∞ with no restriction on `n, in which case
the limit is {

r−i, if j = 0,

0, otherwise.
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Consequently, the Doob-Martin compactification N0 ×N0 of the state space is such that
∂(N0 ×N0) := N0 ×N0 \N0 ×N0 can be identified with N0 ∪ {∞}, the usual one-point
compactification of N0.

With this identification, the h-transformed process corresponding to the boundary
point k ∈ N0 has state space {0, . . . , k} ×N0, and transition probabilities

Qh((i, j), (i+ 1, j)) = (1− qk−i), i < k,

Qh((i, j), (i, j + 1)) = qk−i, i < k,

and
Qh((k, j), (k, j + 1)) = 1.

Similarly, the h-transformed process corresponding to the boundary point ∞ has state
space N0 × {0} and transition probabilities

Qh((i, 0), (i+ 1, 0)) = 1.

8.2 q-binomial trees

Suppose that we apply the trickle-down construction with I = {0, 1}? and all of the
routing chains given by the q-binomial urn of Subsection 8.1, in the same manner that
the BST process and the Mallows tree process were built from the Pólya urn and the
Mallows urn, respectively. Just as for the latter two processes, we may identify the
state space S with the set of finite subtrees of {0, 1}? that contain the root ∅. We call
the resulting tree-valued Markov chain the q-binomial tree process.

Recalling Theorem 7.3 and comparing the conclusions of Subsection 8.1 with those
of Subsection 7.2, the following result should come as no surprise. We leave the details
to the reader.

Theorem 8.1. Consider the q-binomial tree chain with state space S consisting of the
set of finite rooted binary trees. Let T be the set of infinite rooted binary trees t such
that u1 ∈ t for some u ∈ {0, 1}? implies #t(u0) < ∞. Equip S t T with the topology
generated by the maps Πn : S t T → S, n ∈ N0, defined by Πn(t) := {u ∈ t : |u| ≤ n},
where on the right we equip the countable set S with the discrete topology. The Doob-
Martin compactification S̄ is homeomorphic to StT, and this homeomorphism identifies
the Doob-Martin boundary ∂S with T. Moreover, each boundary point is extremal.

9 Chains with perfect memory

Recall the Mallows urn model of Subsection 7.2 and the q-binomial urn model of
Subsection 8.1. These Markov chains have the interesting feature that if we know the
state of the chain at some time, then we know the whole path of the process up to
that time. In this section we examine the Doob-Martin compactifications of such chains
with a view towards re-deriving the results of Subsection 7.2 and Subsection 8.1 in a
general context. We also analyze a trickle-down process resulting from a composition-
valued Markov chain.

We return to the notation of Section 3: X = (Xn)n∈N0
is a transient Markov chain

with countable state space E, transition matrix P and reference state e ∈ E such that

ρ(j) := Pe{X hits j} > 0, for all j ∈ E.

We suppose that the chain X has perfect memory, by which we mean that the sets

En := {j ∈ E : Pe{Xn = j} > 0}, n ∈ N0,
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are disjoint, and that there is a map f : E \ {e} → E with the property that

Pe{f(Xn) = Xn−1} = 1, for all n ∈ N.

Note that this implies that the tail σ-field associated with the process X is the same as
the σ-field σ({Xn : n ∈ N0}) generated by the full collection of variables of the process.

Suppose that we construct a directed graph T that has E as its set of vertices and
contains a directed edge (i, j) if and only if P (i, j) > 0. By the assumption on e, for any
j ∈ En, n ∈ N, there is a directed path e = i0 → . . . → in = j. Also, it follows from the
perfect memory assumption that a directed edge (i, j) must have i ∈ En and j ∈ En+1

for some n. Moreover, if (i, j) is such a directed edge, then there is no h ∈ En for which
(h, j) is also a directed edge. Combining these observations, we see that the directed
graph T is a rooted tree with root e. The function f is simply the map that assigns to
any vertex j ∈ E \ {e} its parent. For j ∈ En, n ∈ N, the unique directed path from e to
j is e = fn(j)→ fn−1(j)→ . . .→ f(j)→ j.

Suppose from now on that the tree T is locally finite; that is, for each i ∈ E, there
are only finitely many j ∈ E with P (i, j) > 0.

As usual, we define a partial order ≤ on T (= E) by declaring that i ≤ j if i appears
on the unique directed path from the root e to j.

We now recall the definition of the end compactification of T . This object can be
defined in a manner reminiscent of the definition of the Doob-Martin compactification
as follows. We map T injectively into the space RT of real-valued functions on T via the
map that takes j ∈ T to the indicator function of the set {i ∈ T : i ≤ j}. The closure
of the image of T is a compact subset of RT . We identify T with its image and write
T̄ for the closure. The compact space T̄ is metrizable and a sequence (jn)n∈N from T

converges in T̄ if and only if 1{i≤jn} converges for all i ∈ T , where 1{i≤·} is the indicator
function of the set {j ∈ T : i ≤ j}. The boundary ∂T := T̄\T can be identified with the
infinite directed paths from the root e. We can extend the function 1{i≤·} continuously
to T̄ . We can also extend the partial order ≤ to T̄ by declaring that ξ 6≤ ζ for any
ξ 6= ζ ∈ ∂T and i ≤ ξ for ξ ∈ ∂T if and only if 1{i≤ξ} = 1.

Theorem 9.1. Let X be a chain with state space E, reference state e, perfect memory,
and locally finite associated tree T . Then, the associated Martin kernel is given by

K(i, j) =

{
ρ(i)−1, if i ≤ j,
0, otherwise,

for i, j ∈ E.

The Doob-Martin compactification of E is homeomorphic to the end compactification of
T . The extended Martin kernel is given by

K(i, ζ) =

{
ρ(i)−1, if i ≤ ζ,
0, otherwise,

for i ∈ E, ζ ∈ ∂E ∼= ∂T.

Proof. By definition,

K(i, j) =
Pi{X hits j}
Pe{X hits j}

.

By assumption, the numerator is 0 unless i ≤ j. If i ≤ j, then the denominator is

Pe{X hits j} = Pe{X hits i}Pi{X hits j}

and the claimed formula for the Doob-Martin kernel follows.
The remainder of the proof is immediate from the observation that the manner in

which the end compactification is constructed from the functions 1{i≤·}, i ∈ E, is iden-
tical to the manner in which the Doob-Martin compactification is constructed from the
functions K(i, ·) = ρ(i)−11{i≤·}, i ∈ E.
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Example 9.2. The Mallows urns process satisfies the conditions of Theorem 9.1. The
tree T has N2

0 as its set of vertices, and directed edges of the form ((i, 0), (i+ 1, 0)) and
((i, j), (i, j + 1)), i, j ∈ N0. The perfect memory property survives the lift from urn to
tree. The “parenthood” function f takes a tree t in the state space of the Mallows tree
process and simply removes the vertex of t that is greatest in the lexicographic order.

This description of the state space of the Mallows tree process as a “tree-of-trees”
also makes its Doob-Martin compactification easier to understand. We know from Sec-
tion 7.3 that points in the Doob-Martin boundary can be identified with rooted binary
trees with a single infinite path – the “spine” – with nothing dangling off to the right of
the spine. It is, of course, easy to construct a sequence of finite rooted binary trees that
tries to grow more than one infinite path: for example, let tn be the tree that consists
of the two vertices 00 . . . 0, 11 . . . 1 ∈ {0, 1}n and the vertices in {0, 1}? on the directed
paths connecting them to the root ∅. The sequence (tn)n∈N must have a subsequence
with a limit point in the compact space S̄ or, equivalently, it must have a subsequence
that converges to a limit in the end compactification T̄ of the tree T . From the above
description of the parenthood function f , we see for a tree s ∈ T that s ≤ tn if and only
if one of the following three conditions hold:

• s consists of the two vertices 00 . . . 0 ∈ {0, 1}n and 11 . . . 1 ∈ {0, 1}m for some m ≤ n
and their prefixes in {0, 1}?;

• s consists of the vertex 00 . . . 0 ∈ {0, 1}m for some m ≤ n and its prefixes in {0, 1}?;
• s consists of the single vertex ∅ ∈ {0, 1}?.

It follows that s ≤ tn for all n sufficiently large if and only if s is the tree consisting of
some element of {0}? and its prefixes in {0, 1}?. Thus, tn converges in the end compact-
ification of T to t∞ ∈ T̄ \ T as n → ∞, where we can regard t∞ as the single infinite
path tree consisting solely of the infinite spine ∅ → 0→ 00→ . . ..

We note that the sequence (tn)n∈N of finite rooted binary trees converges even in
the Doob-Martin compactification of the binary search tree process to a point in the
boundary. Indeed (see the first paragraph of Section 5), we can identify this latter point
with the probability measure on {0, 1}∞ that puts mass 1

2 at each of the points 00 . . . and
11 . . ..

Example 9.3. A composition of an integer n ∈ N is an element c = (c1, . . . , ck) of N?

with the property that
∑k
i=1 ci = n. We recall the standard proof of the fact that there

are 2n−1 such compositions for a given n: one thinks of placing n balls on a string and
defines a composition by placing separators into some of the n − 1 gaps between the
balls. A combinatorially equivalent bijection arises from deleting the last of these balls,
labeling the balls to the left of each separator by 1 and labeling the remaining balls by
0. We can now construct a Markov chain (Xn)n∈N such that Xn is uniformly distributed
on the set of compositions of n and Xn is a prefix of Xn+1 for all n ∈ N: the state space
is E = {0, 1}? and the allowed transitions are of the form

(u1, . . . , un−1)→ (u1, . . . , un−1, 1), (u1, . . . , un−1)→ (u1, . . . , un−1, 0),

both with probability 1/2. Here X1 = ∅ represents the only composition 1 = 1 of n = 1.
Attaching the digit 1 to the state representing a composition of n means that the new
composition, now of n + 1, has an additional summand of size 1 at the end, whereas
adding 0 corresponds to increasing the last summand of the old composition by 1. A
construction of this type, which relates random compositions to samples from a geo-
metric distribution, has been used in [28] – see also the references given there.

The chain (Xn)n∈N certainly has the perfect memory property and the associated
tree T is just the complete rooted binary tree structure on {0, 1}? from the Introduction.
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It follows from Theorem 9.1 that the Doob-Martin compactification is homeomorphic to
{0, 1}? t {0, 1}∞, the end compactification of {0, 1}?.

Note that we can also think of the chain (Xn)n∈N as a result of the trickle-down
construction in which the underlying directed acyclic graph I is the complete rooted
binary tree, the routing instruction chains all have state space {(0, 0)} t (N × {0}) t
({0} ×N), and transition matrices are all of the form

Q((0, 0), (1, 0)) =
1

2
,

Q((0, 0), (0, 1)) =
1

2
,

Q((i, 0), (i+ 1, 0)) = 1, i ≥ 1,

Q((0, j), (0, j + 1)) = 1, j ≥ 1.

The chain is of the single trail type described in Example 2.4. For processes of this type
there are usually several possibilities for the underlying directed graph; here we may
take I = N0 ×N0 instead of the complete rooted binary tree if we interpret appending
0 as a move to the right and appending 1 as a move up.

Remark 9.4. For several of the chains (Xn)n∈N0 that we have considered in the previ-
ous sections there is a “background chain” (X̃n)n∈N0 with the perfect memory property
in the sense that there is a function Ψ : S̃ → S with Xn = Ψ(X̃n) for all n ∈ N, where S
and S̃ are the respective state spaces. For example, random recursive trees are often
considered together with their labels and are then of the perfect memory type – see
Figure 7.

Conversely, we can always extend the state space S of a given chain by including the
previous states, taking the new state space S̃ to be the set of words from the alphabet
S, to obtain a background chain of the perfect memory type. For example, the Pólya urn
then leads to a single trail chain in the sense of Example 2.4, with underlying directed
graphN×N and transitions Q((i, j), (i+1, j)) = i/(i+j) and Q((i, j), (i, j+1)) = j/(i+j).

10 Another approach to tail σ-fields

As mentioned in the Introduction, our initial motivation for studying the Doob-Martin
compactifications of various trickle-down chains was to understand the chains’ tail σ-
fields. Determining the compactification requires a certain amount of knowledge about
the hitting probabilities of a chain, and this information may not always be easy to come
by. In this section we consider a family of trickle-down chains for which it is possible
to describe the tail σ-field directly without recourse to the more extensive information
provided by the Doob-Martin compactification. The class of processes to which this
approach applies includes the Mallows tree and q-binomial tree process that we have
already analyzed, as well as the Catalan tree process of Section 11 below that we are
unable to treat with Doob-Martin compactification methods.

We begin with a lemma that complements a result from [53] on exchanging the order
of taking suprema and intersections of σ-fields.

Lemma 10.1. Suppose that on a probability space (Ω,F ,P) there is a collection of inde-
pendent sub-σ-fieldsHm, m ∈ N0, and another collection of sub-σ-fields Gm,n, m,n ∈ N0,
with the properties

G0,n ⊆ G1,n ⊆ . . . , for all n ∈ N0,

Gm,0 ⊇ Gm,1 ⊇ . . . , for all m ∈ N0,

G0,0 ⊆ H0,
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and
Gm+1,n ⊆ Gm,n ∨Hm+1, for all m,n ∈ N0.

Then, the two sub-σ-fields
∨
m∈N0

⋂
n∈N0

Gm,n and
⋂
n∈N0

∨
m∈N0

Gm,n are equal up to
null sets.

Proof. We first establish that∨
m∈N0

⋂
n∈N0

Gm,n ⊆
⋂
n∈N0

∨
m∈N0

Gm,n.

It suffices to check for each M ∈ N0 that⋂
n∈N0

GM,n ⊆
⋂
n∈N0

∨
m∈N0

Gm,n,

but this follows from the observation that

GM,n ⊆
∨

m∈N0

Gm,n

for every n ∈ N0.
We now verify that ∨

m∈N0

⋂
n∈N0

Gm,n ⊇
⋂
n∈N0

∨
m∈N0

Gm,n

up to null sets. For this it suffices to show that any bounded random variable Z that is
measurable with respect to

∨
m∈N0

⋂
n∈N0

Gm,n, satisfies the equality

E

[
Z
∣∣∣ ⋂
n∈N0

∨
m∈N0

Gm,n

]
= Z a.s.

By a monotone class argument, we may further suppose that Z is measurable with re-
spect to

∨M
m=0

⋂
n∈N0

Gm,n =
⋂
n∈N0

GM,n for some M ∈ N0. Our assumptions guarantee
that for all n ∈ N0 and m > M

Gm,n ⊆ GM,n ∨HM+1 ∨ · · · ∨ Hm

and
GM,n ⊆ H0 ∨ · · · ∨ HM .

From these inclusions, the backwards and forwards martingale convergence theorems
and the assumed independence of the Hj , j = 0, 1, . . . we see that

E

[
Z
∣∣∣ ⋂
n∈N0

∨
m∈N0

Gm,n

]

= lim
n→∞

E

[
Z
∣∣∣ ∨
m∈N0

Gm,n

]
= lim
n→∞

lim
m→∞

E [Z | Gm,n]

= lim
n→∞

lim
m→∞

E [E [Z | GM,n ∨HM+1 ∨ · · · ∨ Hm] | Gm,n]

= lim
n→∞

lim
m→∞

E [E [Z | GM,n] | Gm,n]

= lim
n→∞

E [Z | GM,n]

= E

[
Z
∣∣∣ ⋂
n∈N0

GM,n

]
= Z a.s. ,

as required.
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By the assumptions of the trickle-down construction, ((Y un )v)n∈N0
is nondecreas-

ing Qu,ξ-almost surely for every u ∈ I, v ∈ β(u) and ξ ∈ Su. Therefore, (Y u∞)v :=

limn→∞(Y un )v exists Qu,ξ-almost surely in the usual one-point compactificationN0t{∞}
of N0.

Recall for the Mallows tree and q-binomial tree processes that I = {0, 1}? and that
the routing chains in both cases all had the property (Y u∞)u0 <∞ and (Y u∞)u1 =∞, Qu,ξ-
almost surely. We see from the following result that it is straightforward to identify the
tail σ-field for a trickle-down process if all of its routing chains exhibit this kind of
behavior. Another example is the Catalan tree process defined in Section 11 below –
see Proposition 11.1.

Proposition 10.2. Suppose that β(u) is finite for all u ∈ I. Fix x ∈ S. Suppose that
#{v ∈ β(u) : (Y u∞)v =∞} = 1, Qu,x

u

-a.s. for all u ∈ I. Then, the tail σ-field⋂
m∈N0

σ{Xn : n ≥ m}

is generated by X∞ := (Xu
∞)u∈I up to Px-null sets.

Proof. By the standing hypotheses on I and the assumption that β(u) is finite for all
u ∈ I, we can list I as (up)p∈N0

in such a way that up ≤ uq implies p ≤ q (that is,
we can put a total order on I that refines the partial order ≤ in such a way that the
resulting totally ordered set has the same order type as N0). For each p ∈ N0, put
Jp := {u0, . . . , up}. By Remark 2.6, each process ((Xu

n)u∈Jp)n∈N0
is a Markov chain.

Now, ⋂
m∈N0

σ{Xn : n ≥ m} =
⋂

m∈N0

∨
p∈N0

σ{Xu
n : u ∈ Jp, n ≥ m}.

By construction,

σ{Xu
n : u ∈ Jp+1, n ≥ m} ⊆ σ{Xu

n : u ∈ Jp, n ≥ m} ∨ σ{Y up+1
n : n ∈ N0}.

Thus, by Lemma 10.1,⋂
m∈N0

σ{Xn : n ≥ m} =
∨
p∈N0

⋂
m∈N0

σ{Xu
n : u ∈ Jp, n ≥ m}

up to Px-null sets. To show the claimed assertion, it thus suffices to check that for all
p ∈ N0 ⋂

m∈N0

σ{Xu
n : u ∈ Jp, n ≥ m} = σ{Xu

∞ : u ∈ Jp}.

We establish this via induction as follows.
For brevity we suppose that xu = (0, 0, . . .) for all u ∈ I. In this way we avoid the

straightforward but somewhat tedious notational complications of the general case.
By assumption, there is a Px-a.s. unique random element V0 ∈ β(u0) = β(0̂) such

that (Xu0
∞ )V0 =∞. With Px-probability one,

(Xu0
n )v =

{
(Xu0
∞ )v, if v 6= V0,

n−
∑
w 6=V0

(Xu0
∞ )w, if v = V0.

for all v ∈ β(u0) and n sufficiently large. Thus,
⋂
m∈N0

σ{Xu
n : u ∈ J0, n ≥ m} is

generated by (Xu
∞)u∈J0

= X 0̂
∞ up to Px-null sets.

Suppose we have shown for some p ∈ N0 that
⋂
m∈N0

σ{Xu
n : u ∈ Jp, n ≥ m} =

σ{Xu
∞ : u ∈ Jp} up to Px-null sets.
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Now,

Aup+1
n =

 ∑
u∈α(up+1)

(Xu
n)up+1 − 1


+

.

Because α(up+1) ⊆ Jp, it follows from our inductive hypothesis that⋂
m∈N0

σ{Aup+1
n : n ≥ m} ⊆

⋂
m∈N0

σ{Xu
n : u ∈ Jp, n ≥ m} = σ{Xu

∞ : u ∈ Jp}

up to Px-null sets. In particular, the N0 t {∞}-valued random variable

Aup+1
∞ := lim

n→∞
Aup+1
n

is σ{Xu
∞ : u ∈ Jp}-measurable up to Px-null sets.

On the event {Aup+1
∞ = ∞}, there is a unique random element Vp+1 ∈ β(up+1) such

that (X
up+1
∞ )Vp+1 =∞ and

(Xup+1
n )v =

{
(Xu
∞)v, if v 6= Vp+1,

A
up+1
n −

∑
w 6=Vp+1

(X
up+1
∞ )w, if v = Vp+1,

for each v ∈ β(up+1) and n sufficiently large. Note that

{Aup+1
∞ =∞, v = Vp+1} = {(Xup+1

∞ )v =∞}

for each v ∈ β(up+1). It follows that⋂
m∈N0

[σ{Xu
n : u ∈ Jp, n ≥ m} ∨ σ{Xup+1

n 1{Aup+1
∞ =∞} : n ≥ m}]

⊆ σ{Xu
∞ : u ∈ Jp+1}

up to Px-null sets.
Furthermore, on the event {Aup+1

∞ < ∞}, Xup+1
n = X

up+1
∞ for all n sufficiently large,

and so ⋂
m∈N0

[σ{Xu
n : u ∈ Jp, n ≥ m} ∨ σ{Xup+1

n 1{Aup+1
∞ <∞} : n ≥ m}]

⊆ σ{Xu
∞ : u ∈ Jp+1}

up to Px-null sets. This completes the induction step, and thus the proof of the proposi-
tion.

Remark 10.3. When I is a tree and we are in the situation of Proposition 10.2, then X∞
may be thought of as an infinite rooted subtree of I with a single infinite directed path
from the root 0̂. Regarding (Xn)n∈N0

as a tree-valued process, we haveX∞ =
⋃
n∈N0

Xn.
Equivalently, X∞ is the limit of the finite subsets Xn of I if we identify the subsets of I
with the Cartesian product {0, 1}I in the usual way and equip the latter space with the
product topology.

11 The Catalan tree process

Let Sn denote the set of subtrees of the complete rooted binary tree {0, 1}? that
contain the root ∅ and have n vertices. The set Sn has cardinality Cn, where

Cn :=
1

n+ 1

(
2n

n

)
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is the nth Catalan number. A special case of a construction in [37] gives a Markov chain
(Xn)n∈N0

with state space the set of finite rooted subtrees of {0, 1}? such that

P{∅}{Xn = t} = C−1n+1, t ∈ Sn; (11.1)

that is, if the chain begins in the trivial tree {∅}, then its value at time n is uniformly
distributed on Sn+1. Moreover, the construction in [37] is an instance of the trickle-
down construction in which I = {0, 1}? and all of the routing chains have the same
dynamics.

For the sake of completeness, we reprise some of the development from [37]. Begin
with the ansatz that there is indeed a trickle-down process (Xn)n∈N0

with I = {0, 1}?
and identical routing chains such that (11.1) holds. Identify the state spaces of the
routing chains with N0 ×N0 and write Q for the common transition matrix. We have

Qn((0, 0), (k, n− k)) = P{∅} {#Xn(0) = k, #Xn(1) = n− k}

=
CkCn−k
Cn+1

, n ∈ N, k = 0, . . . , n.
(11.2)

Now,

Q((j, i), (j, i+ 1)) = Q((i, j), (i+ 1, j) = 1−Q((i, j), (i, j + 1))

by symmetry,

Q((0, j), (0, j + 1)) =
P{∅} {#Xj+1(0) = 0, #Xj+1(1) = j + 1}

P{∅} {#Xj(0) = 0, #Xj(1) = j}

=
C0Cj+1

Cj+2

/
C0Cj
Cj+1

=
(j + 3)(2j + 1)

(j + 2)(2j + 3)
,

and

P{∅} {#Xi+j(0) = i, #Xi+j(1) = j}

= P{∅} {#Xi+j−1(0) = i− 1, #Xi+j−1(1) = j}Q((i− 1, j), (i, j))

+ P{∅} {#Xi+j−1(0) = i, #Xi+j−1(1) = j − 1}Q((i, j − 1), (i, j))

where the appropriate probabilities on the right side are 0 if i = 0 or j = 0, so that

Q(i, j − 1), (i, j)) =
2j − 1

j + 1

(
i+ j + 2

2i+ 2j + 1
− (1−Q((i− 1, j), (i, j)))

i+ 1

2i− 1

)
.

Combining these observations, we can calculate the entries of the transition matrix
Q iteratively and, as observed in [37], the entries of Q are non-negative and the rows
of Q sum to one. We refer to the resulting Markov chain as the Catalan urn process.
Note that if the random tree T is uniformly distributed on Sn+1 then, conditional on
the event {#T (0) = k,#T (1) = n − k}, the random trees {u ∈ {0, 1}∗ : 0u ∈ T} and
{u ∈ {0, 1}∗ : 1u ∈ T} are independent and uniformly distributed on Sk and Sn−k,
respectively. Thus, a trickle-down construction with each routing chain given by the
Catalan urn process does indeed give a tree-valued chain satisfying (11.1).

Observe that

lim
n→∞

Cn+1

Cn
= 4.

It follows from (11.2) that

lim
`→∞

Qk+`((0, 0), (k, `)) = lim
`→∞

Qk+`((0, 0), (`, k)) = 4−(k+1)Ck
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for all k ∈ N0. Moreover, 2
∑
k∈N0

4−(k+1)Ck = 1 from the well-known fact that the
generating function of the Catalan numbers is∑

k∈N0

Ckx
k =

2

1 +
√

1− 4x
, |x| < 1

4
.

Hence, if ((Y ′n, Y
′′
n ))n∈N0

is a Markov chain with transition matrix Q and laws Q(y′,y′′),
then

(Y ′∞, Y
′′
∞) :=

(
lim
n→∞

Y ′n, lim
n→∞

Y ′′n

)
∈ (N0 × {∞}) t ({∞} ×N0), Q(0,0)-a.s.,

with

Q(0,0){(Y ′∞, Y ′′∞) = (k,∞)} = Q(0,0){(Y ′∞, Y ′′∞) = (∞, k)} = 4−(k+1)Ck, k ∈ N0.

The following result is immediate from Proposition 10.2.

Proposition 11.1. The tail σ-field of the Catalan tree process (Xn)n∈N0 is generated
up to null sets by the infinite random tree X∞ :=

⋃
n∈N0

Xn under P{∅}.

As we noted in Remark 10.3, the tree X∞ has a single infinite path from the root
∅. Denote this path by ∅ = U0 → U1 → . . .. For n ∈ N, define Wn ∈ {0, 1} by Un =

W1 . . .Wn. It is apparent from the trickle-down construction and the discussion above
that the sequence (Wn)n∈N is i.i.d. with P{Wn = 0} = P{Wn = 1} = 1

2 . Moreover, if we
set W̄n = 1−Wn and put

Tn := {u ∈ {0, 1}? : W1 . . .Wn−1W̄nu ∈ X∞},

so that Tn is either empty or a subtree of {0, 1}? rooted at ∅, then the sequence (Tn)n∈N
is i.i.d. and independent of (Wn)n∈N with

P{#Tn = k} = 2× 4−(k+1)Ck, k ∈ N0,

and

P{Tn = t |#Tn = k} =
1

Ck
, t ∈ Sk, k ∈ N.

Note that if (Sn)n∈N0
is any sequence of random subtrees of {0, 1}∗ such that Sn

is uniformly distributed on Sn+1 for all n ∈ N0, then Sn converges in distribution to a
random tree that has the same distribution as X∞, where the notion of convergence in
distribution is the one that comes from thinking of subtrees of {0, 1}∗ as elements of the
Cartesian product {0, 1}{0,1}∗ equipped with the product topology — see Remark 10.3.
The convergence in distribution of such a sequence (Sn)n∈N0

and the above description
of the limit distribution have already been obtained in [29] using different methods. For
a similar weak convergence result for uniform random trees, see [25] and the survey [2,
Section 2.5]. Also, if we define rooted finite d-ary trees for d > 2 as suitable subsets of
{0, 1, . . . , d− 1}? in a manner analogous to the way we have defined rooted finite binary
trees, then it is shown in [37] that it is possible to construct a Markov chain that grows
by one vertex at each step and is uniformly distributed on the set of d-ary trees with n

vertices at step n – in particular, there is an almost sure (and hence distributional) limit
as n→∞ in the same sense as we just observed for the uniform binary trees. We have
not investigated whether this process is the result of a trickle-down construction. Lastly,
we note that there are interesting ensembles of trees that can’t be embedded into a
trickle-down construction or, indeed, into any Markovian construction in which a single
vertex is added at each step; for example, it is shown in [30] that this is not possible
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for the ensemble obtained by taking a certain critical Galton-Watson tree with offspring
distribution supported on {0, 1, 2} and conditioning the total number of vertices to be
n ∈ N.
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