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Abstract
In this work we address the problem of determining the asymptotic spectral measure of the product
of independent, Gaussian random matrices with correlated entries, as the dimension and the
number of multiplicative terms goes to infinity. More specifically, let {X p(N)}∞p=1 be a sequence
of N × N independent random matrices with independent and identically distributed Gaussian
entries of zero mean and variance 1p

N
. Let {Σ(N)}∞N=1 be a sequence of N × N deterministic

and Hermitian matrices such that the sequence converges in moments to a compactly supported
probability measure σ. Define the random matrix Yp(N) as Yp(N) = X p(N)Σ(N). This is a random
matrix with correlated Gaussian entries and covariance matrix E(Yp(N)∗Yp(N)) = Σ(N)2 for every
p ≥ 1. The positive definite N × N matrix

B
1

2n
n (N) :=

�

Y ∗1 (N)Y
∗

2 (N) . . . Y ∗n (N)Yn(N) . . . Y2(N)Y1(N)
�

1
2n −→ νn

converges in distribution to a compactly supported measure in [0,∞) as the dimension of the
matrices N → ∞. We show that the sequence of measures νn converges in distribution to a
compactly supported measure νn → ν as n → ∞. The measures νn and ν only depend on the
measure σ. Moreover, we deduce an exact closed-form expression for the measure ν as a function
of the measure σ.

1 Introduction

Considerable effort has been invested over the last century in determining the spectral properties
of ensembles of matrices with randomly chosen elements and in discovering the remarkably broad
applicability of these results to systems of physical interest. In the last decades, a considerable
amount of work has emerged in the communications and information theory on the fundamental
limits of communication channels that makes use of results in random matrix theory. In spite of
a similarly rich set of potential applications e.g., in the statistical theory of Markov processes and
in various chaotic dynamical systems in classical physics, the properties of products of random
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matrices have received considerably less attention. See [9] for a survey of products of random
matrices in statistics and [7] for a review of physics applications.

In this work we consider the problem of determining the asymptotic spectral measure of the
product of random matrices. More specifically, let {X p(N)}∞p=1 be a sequence of N×N independent
random matrices with independent, and identically distributed Gaussian entries of zero mean and
variance 1p

N
. Let {Σ(N)}∞N=1 be a sequence of N × N deterministic and Hermitian matrices such

that the sequence converges in moments to a compactly supported probability measure σ. More
precisely, for every k ≥ 1 the limit

lim
N→∞

trN (Σ
k(N)) =

∫

R

tk dσ(t) (1)

where trN (·) is the normalized trace (sum of the diagonal elements divided by N). Define the
random matrix Yp(N) as Yp(N) = X p(N)Σ(N). This is a random N × N matrix with correlated
Gaussian entries with covariance matrix E(Yp(N)∗Yp(N)) = Σ(N)2 for every p ≥ 1. We will
sometimes drop the index N for notation simplicity. We will show that the positive definite N ×N
matrix

B
1

2n
n :=

�

Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1

�
1

2n → νn

converges in distribution to a compactly supported measure in [0,∞) as the dimension of the ma-
trices N →∞. Moreover, the sequence of measures νn converges weakly to a compactly supported
measure

νn→ ν . (2)

The measures νn and ν only depend on the measure σ. Moreover, we deduce a exact closed-form
expression of the measure ν as a function of the measure σ. In particular, this gives us a map
∆ :M →M+ from the compactly supported measure in the real line to the compactly supported
measures in [0,∞). We would like also to mention that the normalization 1

2n
in the matrix Bn

is necessary for convergence, and it is indeed the appropriate one. We can think of this result
as a multiplicative version of the central limit theorem for random matrices. The case where the
matrices Σ(N) change with p and the corresponding limit laws of eigenvalues σp are allowed
to change from the different values of p is an interesting case to study. However, in this case the
matrices in the product are not identically distributed and the problem is a little bit more involved.
This question is out of the scope of this paper and we leave it for a subsequent work.

The Lyapunov exponents play an important role in a number of different contexts including the
study of the Ising model, the Hausdorff dimension of measures, probability theory and dynamical
systems. Recently there has been renewed interest because of their usefulness in the study of the
entropy rates of Markov models. It is a fundamental problem to find an explicit expression for the
Lyapunov exponents. Unfortunately, there are very few analytical techniques available for their
study. Traditionally, they have been approximated using methods such as Monte Carlo approxima-
tions and others. The Lyapunov exponents of a sequence of random matrices was investigated in
the pioneering paper of Furstenberg and Kesten [8] and by Oseledec in [18]. Ruelle [21] devel-
oped the theory of Lyapunov exponents for random compact linear operators acting on a Hilbert
space. Newman in [15] and [16] and later Isopi and Newman in [12] studied Lyapunov expo-
nents for random N × N matrices as N → ∞. Later on, Vladislav Kargin [14] investigated how
the concept of Lyapunov exponents can be extended to free linear operators (see [14] for a more
detailed exposition). The probability distribution of the Lyapunov exponents associated to the
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sequence {Yp}∞p=1, is the spectral probability distribution γ of the Hermitian operator with spectral
measure given by γ := ln(ν). Moreover, γ is absolutely continuous with respect to Lebesgue mea-
sure and from our work we can obtain a closed-form expression for its Radon–Nikodym derivative
with respect to Lebesgue measure.

This problem is not only interesting from the mathematical point of view but it is also important
for the information theory community. For example, it was studied in [5] that if one is interested
in exploring the performance in a layered relay network having a single source destination pair,
then the message is passed from one relay layer to the next till it reaches the destination. Assume
that there are n+ 1 layers of relay nodes between the source and the destination, with each layer
having N relay nodes. Each relay node has a single antenna which can transmit and receive
simultaneously. Thus, the complete state of this network is fully characterized by the n channel
matrices denoting the channels between adjacent layers. The matrix Ym denotes the channel
between layer m and m+ 1, i.e., Ym(i, j) is the value of the channel gain between the i-th node
in layer Lm+1 and the j-th relay node in layer Lm. Thus, the amplify-and-forward scheme converts
the network into a point-to-point MIMO system, where the effective channel is YnYn−1 . . . Y1 the
matrix product of Gaussian random matrices. Under the appropriate hypothesis the capacity of
this channel is given by

C = E
h

logdet(IN + snr · Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1)
i

(3)

where snr is the signal to noise ratio of the system.

Now we will describe the content of this paper. In Section §2, we recall some necessary preliminar-
ies as well as some known results. In Section §3, we prove our main Theorem and present some
examples and simulations. In Section §4, we derive the probability distribution of the Lyapunov
exponents of the sequence {Yp}∞p=1. Finally, in Section §5 we provide the proofs.

2 Preliminaries and Notation

We begin with an analytic method for the calculation of multiplicative free convolution discovered
by Voiculescu. Denote C the complex plane and set C+ = {z ∈ C : Im(z) > 0}, C− = −C+. For a
measure ν ∈M+ \ {δ0} one defines the analytic function ψν by

ψν(z) =

∫ ∞

0

zt

1− zt
dν(t)

for z ∈ C\[0,∞). The measure ν is completely determined byψν . The functionψν is univalent in
the half-plane iC+, andψν(iC+) is a region contained in the circle with center at −1/2 and radius
1/2. Moreover, ψν(iC+)∩ (−∞, 0] = (β − 1,0), where β = ν({0}). If we set Ων = ψν(iC+), the
function ψν has an inverse with respect to composition

χν : Ων → iC+.

Finally, define the S–transform of ν to be

Sν(z) =
1+ z

z
χν(z) , z ∈ Ων .
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See [3] for a more detailed exposition.

Denote byM the family of all compactly supported probability measures defined in the real line
R. We denote by M+ the set of all measures in M which are supported on [0,∞). On the set
M there are defined two associative composition laws denoted by ∗ and �. The measure µ ∗ ν is
the classical convolution of µ and ν . In probabilistic terms, µ ∗ ν is the probability distribution of
a + b, where a and b are commuting independent random variables with distributions µ and ν ,
respectively. The measure µ�ν is the free additive convolution of µ and ν introduced by Voiculescu
[24]. Thus, µ�ν is the probability distribution of a+ b, where a and b are free random variables
with distribution µ and ν , respectively. There is a free analogue of multiplicative convolution
also. More precisely, if µ and ν are measures in M+ we can define µ� ν the multiplicative free
convolution by the probability distribution of a1/2 ba1/2, where a and b are free random variables
with distribution µ and ν , respectively. The following is a classical Theorem originally proved
by Voiculescu and generalized by Bercovici and Voiculescu in [4] for measures with unbounded
support.

Theorem 2.1. Let µ,ν ∈M+. Then

Sµ�ν(z) = Sµ(z)Sν(z)

for every z in the connected component of the common domain of Sµ and Sν .

Analogously, the R-transform is an integral transform of probability measures on R. Its main
property is that it linearises the additive free convolution. More precisely, the following result
proved by Voiculescu [24] holds.

Theorem 2.2. Let µ,ν ∈M . Then

Rµ�ν(z) = Rµ(z) + Rν(z)

for every z in the connected component of the common domain of Rµ and Rν .

Hence in the analogy between the free convolution and the classical one, the R-transform plays
the role of the log-Laplace transform.

3 Main Results

In this Section we prove our main results. Let us first fix some notation. We say that two N × N
random matrices A and B have the same ∗–distribution if and only if

E
�

trN (p(A, A∗))
�

= E
�

trN (p(B, B∗))
�

(4)

for all non–commutative polynomials p ∈ C〈X , Y 〉. Note that we need the polynomials to be non–
commutative since the matrices might not commute! In this case we denote A ∼∗d B. If A and B
are Hermitian we say that A and B have the same distribution and we denote it by A∼d B.

Lemma 3.1. Let {Yk}∞k=1 be the sequence of random matrices as before. Let Ak = |Yk|= (Y ∗k Yk)1/2 be
the modulus of Yk. Then the matrices Bn = Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1 and bn = A1A2 . . . A2

n . . . A2A1 have
the same distribution.
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The proof of this result is in Section 5.1.

Since the random matrices {X p}∞p=1 are Gaussian and independent then the random matrices
{Yp}∞p=1 are asymptotically free as N → ∞ (see [23, 24, 17]). Denote by µ the limit distribu-
tion measure of the sequence Y ∗1 Y1 as the dimension N →∞. More precisely, µ is the compactly
supported probability measure such that

lim
N→∞

E
�

trN ((Y
∗

1 Y1)
k)
�

=

∫ ∞

0

tk dµ(t) (5)

for every k ≥ 1. The measure µ depends only on σ and their relation is well known. Moreover, this
topic is a focus of a lot of work in the information theory community, since it gives information on
the capacity of the correlated Gaussian channel (see [23, 24, 17, 1, 2, 20, 19, 22] for more on this).
If we consider the random matrix B2 defined as B2 = Y ∗1 Y ∗2 Y2Y1 it is not difficult to see that its limit
measure is µ�µ the multiplicative free convolution of µ with itself. This is essentially because the
moments of B2 are the same as the moments of Y ∗2 Y2Y ∗1 Y1 by the trace property. Analogously, the
random matrices Bn converge in distribution to

Bn = Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1→ µ� . . .�µ=: µn (6)

as N →∞. The relationship between the measure µ and µn is given by Voiculescu’s S-transform as
explained in the previous Section. Our interest is in the normalized version of µn. More specifically,
in the measure νn defined as the limit distribution of B1/2n

n as N →∞. The relationship between
the moments of µn and νn is given by

∫ ∞

0

tk dνn(t) =

∫ ∞

0

t
k

2n dµn(t) (7)

for every k ≥ 1.

Since the measure µn is compactly supported then it is clear that νn is compactly supported as
well. Our interest is in the asymptotic behavior of these measure as n→∞. Now we are ready to
state our main Theorem.

Theorem 3.2. Let {Yk}k be a sequence of random matrices as before. Let µ in M+ and Bn be as
before. The sequence of measures νn converges in distribution to a compactly supported measure ν .
Moreover,

dν = βδ0 + f (t)1(Fµ(β),Fµ(1)](t) d t (8)

where β = µ({0}), f (t) = d
d t
(F<−1>
µ

�

(t) and F<−1>
µ (t) is the inverse with respect to composition of

the function Fµ(t) = Sµ(t − 1)−1/2 for t ∈ (β , 1].

Remark 3.3. We will also show that the quantities Fµ(β) and Fµ(1) can be explicitly computed as

Fµ(β) =
�

∫ ∞

0

t−1 dµ(t)
�− 1

2 and Fµ(1) =
�

∫ ∞

0

t dµ(t)
�

1
2 . (9)

Note that the last Theorem gives us a map ∆ :M →M+ with σ 7→ ν . The measure ∆(σ) is a
compactly supported positive measure with at most one atom at zero and ∆(σ)({0}) = µ({0}).
Since

d∆(σ) = βδ0 + f (t)1(Fµ(β),Fµ(1)](t) d t.
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The function Sµ(t − 1) for t ∈ (β , 1] is analytic and completely determined by µ. If µ1,µ2 ∈M+
and Sµ1

(t−1) = Sµ2
(t−1) in some open interval (a, b)⊆ (0, 1] then µ1 = µ2. Therefore, the map

∆ is injective since µ is uniquely determined by σ.

3.1 Examples

In this Section we present an example and some simulations.

Example 3.4. The simplest case is when Σ(N) = IN is the identity N × N matrix. Therefore, the
measure σ = δ1 and µ is the limit spectral measure of X ∗1X1 which is known to be the Marchenko–
Pastur distribution with parameter one. Its density is given by

dµ=

p

t(4− t)

2πt
1(0,4)(t) d t.

A simple computation shows that the S transform

Sµ(z) =
1

z+ 1
.

Hence, by Theorem 3.2 we see that

d∆(σ) = 2t 1[0,1](t) d t.

In Figure 1 we see the spectral measure of X ∗1X1 for N = 300 whose limit as N → ∞ is the
well known Marchenko–Pastur distribution of parameter 1. In Figure 1 we also see the spectral
measure of B1/2

1 = (X ∗1X1)1/2 for N = 300 (whose limit is the well known quarter-circular law).

Analogously, in Figure 2 we see the spectral measure of B1/4
2 = (X ∗1X ∗2X2X1)1/4 for N = 300. Finally,

in Figure 2 we also show the spectral measure of B1/12
6 for N = 500 also. We can appreciate that

as n increases the spectral measures of the operators converge to the ramp measure described in
the previous example. Further simulations show that this convergence is relatively slow.

4 Lyapunov Exponents of Random Matrices

{Yk}∞k=1 be the sequence of random matrices as before. Let µ be the spectral probability measure of
Y ∗1 Y1 and assume that µ({0}) = 0. Using Theorem 3.2 we know that for every fixed n the sequence
of random matrices

B
1

2n
n :=

�

Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1

�
1

2n → νn

converges in distribution to a compactly supported measure in [0,∞) as the dimension of the ma-
trices N →∞. Moreover, the sequence of measures νn converge weakly to a compactly supported
measure

νn→ ν ∈M+. (10)

This distribution is absolutely continuous with respect to the Lebesgue measure and has Radon–
Nikodym derivative

dν(t) = f (t)1(Fµ(β),Fµ(1)](t) d t

where f (t) =
�

F<−1>
µ

�′(t) and Fµ(t) = Sµ(t−1)−1/2. Let Λ be a random variable with probability
distribution ν and let L be the possibly unbounded random variable defined by L := ln(Λ), and let
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Figure 1: On the left we show the spectral measure of X ∗1X1 for N = 300 where the average was

taken over 200 trials. On the right we show spectral measure of B1/2
1 for N = 300 where the

average was taken over 200 trials.

Figure 2: On the left we show the spectral measure of B1/4
2 for N = 300 where the average was

taken over 200 trials. On the right we show the spectral measure of B1/12
6 for N = 500 where the

average was taken over 200 trials.

γ be the spectral probability distribution of L. It is a direct calculation to see that γ is absolutely
continuous with respect to Lebesgue measure and has Radon–Nikodym derivative

dγ(t) = et f (et)1(Fµ(β),Fµ(1)](t) d t.

The probability distribution γ of L is what is called the distribution of the Lyapunov exponents
(see [15], [16] and [21] and [14] for a more detailed exposition on Lyapunov exponents in the
classical and non–classical case).

Theorem 4.1. Let {Yk}k be a sequence of random matrices as before. Let µ in M+ and Bn be as
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before. Let γ be probability distribution of the Lyapunov exponents associated to this sequence. Then
γ is absolutely continuous with respect to Lebesgue measure and has Radon–Nikodym derivative

dγ(t) = et f (et)1(Fµ(β),Fµ(1)](t) d t

where f (t) =
�

F<−1>
µ

�′(t) and Fµ(t) = Sµ(t − 1)−1/2 for t ∈ (β , 1]

Remark 4.2. Note that if the operator Y ∗1 Y1 is not invertible in the ‖ · ‖2 then the random variable L
is unbounded.

The following is an example done previously in [14] using different techniques.

Example 4.3. Let {Yk}k as in example 3.4. Then as we observed

dν(t) = 2t 1(0,1](t) d t.

Therefore, we see that the probability measure of the Lyapunov exponents is γ with

dγ(t) = 2e2t 1(−∞,0](t) d t.

This law is the exponential law discovered by C. Newman as a scaling limit of Lyapunov exponents of
large random matrices. (See [15], [16] and [12]). This law is often called the “triangle” law since it
implies that the exponentials of Lyapunov exponents converge to the law whose density is in the form
of a triangle.

5 Proofs

5.1 Proof of Lemma 3.1

Proof. Let Yk = UkAk be the polar decomposition of the matrix Yk, where Ak is positive definite
and Uk is a unitary matrix. We will proceed by induction on n. The case n = 1 is obvious since
Y ∗1 Y1 = A2

1. Assume now that Bk has the same distribution as bk for k < n. Then by the unitary
invariance and the induction hypothesis

Bn = Y ∗1 Y ∗2 . . . Y ∗n Yn . . . Y2Y1 ∼d (U1A1)
∗(A2 . . . A2

n . . . A2)(U1A1). (11)

Hence
Bn ∼d A1U∗1(A2 . . . A2

n . . . A2)U1A1 = U∗1(U1A1U∗1)(A2 . . . A2
n . . . A2)(U1A1U∗1)U1. (12)

Since conjugating by a unitary does not alter the distribution we see that

Bn ∼d (U1A1U∗1)(A2 . . . A2
n . . . A2)(U1A1U∗1). (13)

Since the random matrices {Yk}∞k=1 are independent then {{Uk, Ak}}∞k is also an independent fam-
ily and A1 ∼d U1A1U∗1 and independent with respect to {Ak}k≥2. Then,

Bn ∼d (U1A1U∗1)(A2 . . . A2
n . . . A2)(U1A1U∗1)∼d A1A2 . . . A2

n . . . A2A1

concluding the proof.



Asymptotic Products of Independent Gaussian Matrices 361

5.2 Proof of Theorem 3.2

Before staring the proof let us review some necessary results.

In [17] Nica and Speicher introduced the class of R–diagonal operators in a non commutative
C∗-probability space. An operator T is R–diagonal if T has the same ∗–distribution as a product
uh where u and h are ∗–free, u is a Haar unitary, and h is positive. The next Theorem and Corol-
lary were proved by Uffe Haagerup and Flemming Larsen ([10], Theorem 4.4 and the Corollary
following it) where they completely characterized the Brown measure of an R–diagonal element.
We will state their Theorem for completeness.

Theorem 5.1. Let (M ,τ) be a non–commutative finite von Neumann algebra with a faithful trace
τ. Let u and h be ∗–free random variables in M, u a Haar unitary, h ≥ 0 and assume that the
distribution µh for h is not a Dirac measure. Denote µT the Brown measure for T = uh. Then

1. µT is rotation invariant and

supp(µT ) = [‖h−1‖−1
2 ,‖h‖2]×p [0, 2π).

2. The S transform Sh2 of h2 has an analytic continuation to neighborhood of the interval (µh({0})−
1, 0], Sh2((µh({0})− 1, 0]) = [‖h‖−2

2 ,‖h−1‖2
2) and S

′

h2 < 0 on (µh({0})− 1, 0).

3. µT ({0}) = µh({0}) and µT (B(0, Sh2(t − 1)−1/2) = t for t ∈ (µh({0}), 1].

4. µT is the only rotation symmetric probability measure satisfying (3).

Corollary 5.2. With the notation as in the last Theorem we have

1. the function F(t) = Sh2(t − 1)−1/2 : (µh({0}), 1]→ (‖h−1‖−1
2 ,‖h‖2] has an analytic continua-

tion to a neighborhood of its domain and F
′
> 0 on (µh({0}), 1).

2. µT has a radial density function f on (0,∞) defined by

g(s) =
1

2πs
(F<−1>)

′
(s)1(F(µh({0})),F(1)](s).

Therefore, µT = µh({0})δ0 +σ with dσ = g(|λ|)dm2(λ).

Proof of Theorem 3.2: From the previous Lemma it is enough to prove the Theorem for Ak = |Yk|.
The sequence of random matrices {Ak}∞k=1 converge in distribution to a sequence of free and
identically distributed operators {ak}∞k=1 as the dimension N →∞. Therefore, the measure νn can
we characterized as the spectral measure of the positive operator

bn := (a1a2 . . . a2
n . . . a2a1)

1/2n.

Let u be a Haar unitary ∗–free with respect to the family {ak}k and let h = a1. Let T be the
R–diagonal operator defined by T = uh. Given u a Haar unitary and h a positive operator ∗–free
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from h it is known (see [23], [24]) that the family of operators {ukh(u∗)k}∞k=0 is free. Therefore,
defining ck = ukh(u∗)k we see that T ∗T ∼d c2

1 , (T ∗)2T 2 ∼d c2c2
1 c2 and it can be shown by induction

that
(T ∗)nT n ∼d cncn−1 · · · c2

1 · · · cn−1cn.

Therefore, since ck has the same distribution than ak, and both families are free, we conclude that
the operators (T ∗)nT n and bn have the same distribution. Moreover, by Theorem 2.2 in [11] the

sequence
�

(T ∗)nT n�
1

2n converges in distribution to a positive operator Λ. Let ν be the probability
measure distribution of Λ. If the distribution of a2

k is a Dirac delta, µ= δλ, then h=
p
λ and

�

(T ∗)nT n�
1

2n =
�

λn(u∗)nun�
1

2n =
p

λ.

Therefore, b
1

2n
n has the Dirac delta distribution distribution δpλ and ν = δpλ. If the distribution of

ak is not a Dirac delta, let µT the Brown measure of the operator T . By Theorem 2.5 in [11] we
know that

∫

C

|λ|pdµT (λ) = lim
n
‖T n‖

p
n
p
n

= lim
n
τ
�

[(T ∗)nT n]
p

2n

�

= τ(Λp) =

∫ ∞

0

t p dν(t). (14)

We know by Theorem 5.1 and Corollary 5.2 that

µT = βδ0 +ρ with dρ(r,θ) =
1

2π
f (r)1(Fµ(β),Fµ(1)](r) drdθ (15)

where f (t) =
�

F<−1>
µ

�′(t) and Fµ(t) = Sµ(t − 1)−1/2. Hence, using equation (14) we see that

∫ ∞

0

r p dν(r) =

∫ 2π

0

∫ Fµ(1)

Fµ(β)

1

2π
r p f (r) drdθ =

∫ Fµ(1)

Fµ(β)

r p f (r)dr

for all p ≥ 1. Using the fact that if two compactly supported probability measures inM+ have the
same moments then they are equal, we see that

ν = βδ0 +σ with dσ = f (t)1(Fµ(β),Fµ(1)](t) d t.

By Corollary 5.2, we know that

Fµ(1) = ‖a1‖2 and lim
t→β+

Fµ(t) = ‖a−1
1 ‖

−1
2

concluding the proof.
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