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Abstract

Branching annihilating random walk (BARW) is a generic term for a class of interacting particle
systems on Z

d in which, as time evolves, particles execute random walks, produce offspring (on
neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the
interest in such models stems from the fact that they typically lack a monotonicity property called
attractiveness, which in general makes them exceptionally hard to analyse and in particular highly
sensitive in their qualitative long-time behaviour to even slight alterations of the branching and
annihilation mechanisms.

In this short note, we introduce so-called caring double-branching annihilating random walk (cD-
BARW) on Z, and investigate its long-time behaviour. It turns out that it either allows survival with
positive probability if the branching rate is greater than 1/2, or a.s. extinction if the branching rate
is smaller than 1/3 and (additionally) branchings are only admitted for particles which have at
least one neighbouring particle (so-called ‘cooperative branching’). Further, we show a.s. extinc-
tion for all branching rates for a variant of this model, where branching is only allowed if offspring
can be placed at odd distance between each other.

It is the latter (extinction-type) results which seem remarkable, since they appear to hint at a
general extinction result for a non-trivial parameter range in the so-called ‘parity-preserving uni-
versality class’, suggesting the existence of a ‘true’ phase transition. The rigorous proof of such a
non-trivial phase transition remains a particularly challenging open problem.

1SUPPORTED BY THE DFG FORSCHERGRUPPE 718, BERLIN AND LEIPZIG, AND BY THE HAUSDORFF INSTITUTE
FOR MATHEMATICS, BONN.
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1 Introduction

In this note, we consider one-dimensional Branching Annihilating Random Walks (BARW) with
instant annihilation which are parity preserving. That is, if started in an even number of particles,
then the total number of particles will remain even for all time. More specifically, we will make
sure that this property holds by the assumption that at each given branching event, the number
of newly created particles equals two. In this case, we speak of a double-branching annihilating
random walk, short DBARW.
Such processes have been investigated frequently in the physics literature, see e.g. [CT96] and
[CT98] (and [SV10] for a nice overview), where they are considered as examples of elements
of the so-called ‘parity-preserving universality class’. They also received some attention in the
mathematics literature, see for example [SS08], [BEM07], and [SV10], where the interest often
stems from their connection (via duality) with models from population biology.
We begin with introducing the classical symmetric double branching annihilating random walk
considered by Sudbury in [S90]. For i, j ∈ Z, we write i ∼ j iff |i − j| = 1. We consider particle
configurations x:={x i : i ∈ Z, x i ∈ {0,1}} in the space E := {0,1}Z, where 1 indicates the pres-
ence, 0 the absence of a particle at site i. We denote the total number of ones in the configuration
x by

|x| :=
∑

i∈Z

1{x i=1}.

Definition 1.1 (symmetric DBARW). Let x be a particle configuration in E such that |x| is finite. Let

α ∈ [0,1]. The strong Markov process X={X i(t), i ∈ Z} with values in E, starting in X(0) = x, and

dynamics given by the transitions

¨

X i 7→ X i − 1

X j 7→ X j + 1 (mod 2)
(migration) at rate

α

2
X i1{i∼ j},

¨

X i+1 7→ X i+1 + 1 (mod 2)

X i−1 7→ X i−1 + 1 (mod 2)
(branching) at rate (1−α)X i ,

is called symmetric Double-Branching Annihilating Random Walk with instant annihilation, branch-

ing rate 1−α and migration rate α. We denote this process by sDBARW(α).

In [S90], Sudbury shows that, for all α ∈ (0,1], this process, started in a configuration with an
even number of particles, dies out a.s. in finite time. In particular, this model does not exhibit a
‘true’ phase transition in α between extinction und survival regimes.
Here, a.s. extinction relies on a beautiful ‘interface duality’ with another interacting particle sys-
tem. Indeed, the boundaries between regions of zeroes and ones in a one-dimensional voter model
with ‘swapping’ (where the types at neighbouring sites are exchanged with each other) follow pre-
cisely the above symmetric double-branching annihilating random walk with instant annihilation
and parameter α, if the voting rate is α/2 and the swapping rate for each given neighbouring pair
is 1− α. If we start from an even number of such boundaries, our ‘interface dual’ (the swapping
voter model) starts with a finite number of ones and, since the number of ones is a positive mar-
tingale, as observed by Sudbury in [S90], it is not hard to see that it will eventually converge
to zero. In other words the symmetric double-branching annihilating random walk with instant
annihilation dies out for any α ∈ (0,1]. A related martingale argument will be an important tool
later in this paper.
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As mentioned earlier, the long-time behaviour of DBARW models turns out to be very sensitive
with respect to slight alterations of the branching mechanism. For example, Sturm and Swart
introduce in [SS08] the asymmetric double branching annihilating random walk (aDBARW):

Definition 1.2 (asymmetric DBARW). Let x be a particle configuration in E such that |x| is finite.

Let α ∈ [0,1]. The strong Markov process X={X i(t), i ∈ Z} with values in E, starting in X(0) = x,

and dynamics given by the transitions

¨

X i 7→ X i − 1

X j 7→ X j + 1 (mod 2)
(migration) at rate

α

2
X i1{i∼ j},

¨

X i+1 7→ X i+1 + 1 (mod 2)

X i+2 7→ X i+2 + 1 (mod 2)
(branch right) at rate

1−α

2
X i ,

¨

X i−1 7→ X i−1 + 1 (mod 2)

X i−2 7→ X i−2 + 1 (mod 2)
(branch left) at rate

1−α

2
X i ,

is called asymmetric Double-Branching Annihilating Random Walk with instant annihilation, branch-

ing rate 1−α and migration rate α. We denote this process by aDBARW(α).

The only difference to the sDBARW(α) of Sudbury is that now the two offspring particles are either
placed both to the nearest and next-nearest neighbouring sites to the left or both to the nearest
and next-nearest neighbouring sites to the right (each with probability 1/2).
However, Sturm and Swart in [SS08] are able to show that for α sufficiently small, by comparison
with oriented percolation, this systems survives for all time with positive probability. Further,
recent simulations by Swart and Vrbenský [SV10] suggest that the region of survival for this
model and a further asymmetric variant is rather substantial, and that there is a phase transition
separating survival from extinction at a parameter α close to 1/2.
Given these simulations, together with claims from the physics literature, one might be tempted
to conjecture that there is a non-trivial critical value of α below which the aDBARW will die out,
but above which it will survive with positive probability, i.e. there exists a true phase-transition.
However, as pointed out by J.T. Cox, ‘(...) a formidable difficulty in answering this question is the

lack of a monotonicity property called attractiveness (...)’2. The lack of monotonicity is typical for
cancellative spin-flip system, see e.g. Griffeath [G79].
Unfortunately, the mathematical tools to prove such a phase transition seem currently out of reach.
Further (and maybe even worse), in some cases it seems hard to develop an intuition which might
explain the drastic changes in the qualitative long-time behaviour produced by such slight changes
in the branching mechanism.

An intermediate goal is to identify models in the ‘parity preserving universality class’, for which it
is possible to find non-trivial parameter values separating areas of extinction and survival. In the
present paper, we introduce and investigate a new class of DBARW models, which we call ‘caring’.
The results below for the ‘cooperative’ version of the caring model seem to be the first ones in the
literature in which both rigorous survival and extinction for such a parity preserving system can
be shown. Further, we show a.s. extinction for all α ∈ (0,1], similar to Sudbury’s result, for a
variant of caring DBARW that places new particles at odd distance of each other. Finally, we aim
to provide at least some intuition about why in some models extinction is certain, and in others
survival is possible, by discussing mechanisms leading to or preventing local extinction.

2Cf. J.T. Cox’ Math Review of [BG85], MR0772192
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Remark 1.3. So far, we have only considered alterations to the branching mechanism of DBARW.
Note that one might also drop the assumption of instant annihilation, and replace it with delayed

annihilation, where two particles may coexist for an exponential time at the same site. Such sys-
tems, which allow multiple (in fact unbounded) occupancy, seem harder to analyse. See [BEM07]
for some results on symmetric double-branching annihilating random walk with delayed annihi-
lation. In contrast to the symmetric model with instant annihilation, here survival is possible.
Results on extinction still remain elusive.

2 The ‘caring’ model and main results

We now introduce our main object of study, namely a version of DBARW which we call caring in
the sense that newly born offspring particles will always be placed on the nearest vacant sites, so
that they are safe from instant annihilation. More precisely, in each branching event, two new
particles will be created, where one of them will be placed at the nearest unoccupied site to the
left and the other one on the nearest unoccupied site to the right.
Intuitively, this should render survival more likely, since annihilation now only takes place during
walk-steps. Indeed, the proof of a survival result is simple. However, more interestingly, if in this
model we allow only for cooperative branchings, that is, branchings only for particles which have
at least one occupied neighbouring site, it is also possible to prove an extinction result, where the
parameter region ensuring extinction is rather substantial.
Let x be a non-trivial particle configuration in E with |x| <∞. Pick j ∈ Z such that x j = 1. Then,
we set

l j(x) :=max{k < j : xk = 0} and r j(x) :=min{k > j : xk = 0},

the positions of the nearest vacant sites to the left and the right of j in x.

Definition 2.1 (caring DBARW). Let x be a particle configuration in E such that |x| < ∞. Let

α ∈ [0,1]. The strong Markov process X={X i(t), i ∈ Z} with values E, starting in X(0) = x, and

dynamics given by the transitions

¨

X i 7→ X i − 1

X j 7→ X j + 1 (mod 2)
(migration) at rate

α

2
X i1{i∼ j},

¨

X li
7→ X li

+ 1

X ri
7→ X ri

+ 1
(careful branching) at rate (1−α)X i

is called caring Double-Branching Annihilating Random Walk with instant annihilation branching

rate (1−α) and migration rate α. We denote it by cDBARW(α).

The ‘cooperative’ version of cDBARW is defined as follows:

Definition 2.2 (cooperative caring DBARW). The DBARW with symmetric migration at rate α and

branching given by

¨

X li
7→ X li

+ 1

X ri
7→ X ri

+ 1
(cooperative caring branching) at rate (1−α)X i1{r(i)−l(i)≥3},

is called cooperative caring Double-Branching Annihilating Random Walk with parameter α, ccDBARW(α).
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Remark 2.3. Due to the long range branching mechanism, unlike sDBARW or aDBARW, it is not
obvious that caring DBARW can be defined for starting configurations with an infinite number of
particles.

Our first result is the following theorem on survival and extinction of ccDBARW.

Theorem 2.4. Consider ccDBARW(α) on Z, with finite starting configuration x.

(a) If α < 1/2, then ccDBARW(α) survives with positive probability.

(b) If α > 2/3 and |x| is even, then ccDBARW(α) dies out almost surely.

(c) If α > 2/3 and |x| is odd, then ccDBARW(α) almost surely in finite time reaches a state

consisting of one isolated particle.

The proof of this theorem will be given in Section 3 below, by analysing the behaviour inside
blocks of particles of a fixed length.

Remark 2.5. Note that the state consisting of one isolated particle is absorbing, in the sense that
a single particle still migrates, but the number of particles does not change anymore, since in the
“cooperative” model neither branching nor annihilation are possible.

Remark 2.6. We can think of ccDBARW as the ‘interface’ process of a ‘block-flipping voter model’
which we will introduce in section 3. Part (c) of the above theorem then implies interface tightness
(see [SV10] for a definition) of this model, since it shows that almost surely in finite time there
will be a sole isolated interface, and this state will be absorbing due to the cooperative nature of
the branching.

To state our result for cDBARW, we introduce ‘odd’ and ‘even’ versions of this model, which refer
to restricting branchings to particles which belong to odd resp. even blocks.

Definition 2.7 (odd caring DBARW). The DBARW with symmetric migration at rate α and branch-

ing given by

¨

X li
7→ X li

+ 1

X ri
7→ X ri

+ 1
(odd caring branching) at rate (1−α)X i1{r(i)−l(i)=0 mod 2},

is called odd caring Double-Branching Annihilating Random Walk with parameter α, in short

ocDBARW(α).

Definition 2.8 (even caring DBARW). The DBARW with symmetric migration at rate α and branch-

ing given by

¨

X li
7→ X li

+ 1

X ri
7→ X ri

+ 1
(even caring branching) at rate (1−α)X i1{r(i)−l(i)=1 mod 2},

is called even caring Double-Branching Annihilating Random Walk with parameter α, or ecDBARW(α).

Theorem 2.9. Consider cDBARW(α) on Z, with finite starting configuration x.

(a) If α < 1/2, then cDBARW(α) survives with positive probability.

(b) If α > 2/3 and |x| is even, then ecDBARW(α) dies out almost surely.

(c) If α > 0 and |x| is even, then ocDBARW(α) dies out almost surely.
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Parts (a) and (b) are proved analogously to Theorem 2.4. The rather surprising fact that odd
cDBARW dies out almost surely for all positive α follows by a variant of Sudbury’s martingale
argument, using ‘interface duality’ with the block-flipping voter model (Definition 3.2). One might
hope to be able to combine the two extinction results for even and odd branchings to obtain almost
sure extinction of cDBARW for suffinciently large α. However, since the extinction result for the
odd and for the even case rely on entirely different, and at first sight incompatible, techniques, it
is not straightforward to combine them, and thus the extinction result for cDBARW without the
assumption of cooperative branching remains open.

3 Proofs of the main results

Proof of Theorem 2.4. (a) Fix 0 < α < 1/2, and a starting configuration X(0) consisting of finitely
many particles. We let

n(t) := |X(t)|=
∑

i∈Z

1{X i(t)=1}

denote the number of particles at time t ≥ 0, and

s(t) :=
∑

i∈Z

1{X i(t)=1,ri−li=2}

the number of isolated particles at time t. Note that at any branching event, n(t) increases by
2, while during a migration event, n(t) either stays constant or decreases by 2, depending on
whether the neighbouring site is occupied or not. A branching events happens in the system at rate
(1−α)(n(t)−s(t)), while migration takes place at rate αn(t). Every branching event increases the
number of particles by 2. Thus we have that n(t) increases to n(t)+2 at rate (1−α)(n(t)− s(t)).
At rate α(n(t)−s(t)), an event occurs that may result in a reduction of n(t) by two. This is because
annihilation can only happen subsequent to a migration event, but not every migration event will
necessarily lead to annihilation. If we choose α < 1/2, this implies that we can couple {n(t)} with
a supercritical branching process, such that n(t) is bounded below at any time t by this branching
process that survives with positive probability. Hence PX0

{n(t)> 0 ∀t}> 0.
(b) To prove the extinction result for ccDBARW, it is useful to consider blocks of particles. We say
that a particle at site i belongs to a block of length k ∈N in configuration x, if ri(x)− li(x) = k+1,
and denote by Mk(t) the number of blocks of length k at time t. We have

n(t) =

∞
∑

k=1

kMk(t).

Since the branchings are cooperative and caring, we can analyze the dynamics of the whole par-
ticle configuration by considering the distinct blocks. The next branching or migration step may
affect the block size as follows (compare Figure 1):

(A) It increases by 2 due to internal branching at rate (1−α)k (this might make the block merge
with a neighbouring block, but the total number of particles will still increase by 2).

(B) It decreases by 2 at rate (k− 1)α, that is, if migration takes place inside the block in a way
that makes it split into two new blocks (possibly of length 0) whose total number of particles
is k− 2.
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(C) It remains unchanged, if migration takes place at the boundary in direction away from the
block (which happens at rate α), that is, the block splits into two blocks of size 1 and k− 1,
respectively. (This might again increase the number of particles in a neighbouring block, but
will not change n(t)).

(D) It increases by one if a particle from another block migrates and merges with our block, but
then this decreases the size of that block, thus leaves the total number of particles unchanged
(happens at rate at most α).

(E) It may increase by any number m due to a branching event in a neighbouring block of size at
least k at distance one. However, the total number of particles will still increase by 2. In fact,
this case corresponds to case (A) taking place in a block adjacent to the one we consider.

.
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.

.

. .

.

.

.

.

.

.

.

.

..

.

..

.

(A)

(B)

(C)

(D)

k

k′

k′k′

k(1−α)

(1− k)α

α

≤ α

k+ 2

k− 2

k− 1

k+ 1

k′ + 1

k′ − 1

Figure 1: Possible transitions inside a block

Summarizing the considerations in (A)-(E) above, we see that branching and annihilation events
in the process at time t happen at a rate which can be expressed in terms of the block sizes Mk(t)

at that time. We define

β(t) := (1−α)
∞
∑

k=2

kMk(t)

and

λ(t) := α
∞
∑

k=2

(k− 1)Mk(t).

Then (A)-(E) imply that β(t) is the rate of a branching event at time t conditional on Mk(t), k ≥ 1,
and λ(t) the rate of an annihilation event:

{n(t) 7→ n(t) + 2} at rate β(t)

and
{n(t) 7→ n(t)− 2} at rate λ(t).

We see that β(t) = 0 if and only if λ(t) = 0, and that this happens exactly at the times when there
is no block of size at least 2. Otherwise,

∑

k≥2 Mk(t)> 0, and the ratio of the rates is

λ(t)

β(t)
=

α

1−α

�

1−

∑∞

k=2 Mk(t)
∑∞

k=2 kMk(t)

�

. (1)
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In this case,
∑∞

k=2 Mk(t)
∑∞

k=2 kMk(t)
∈ (0,1/2],

thus we have
λ(t)

β(t)
≥

α

2(1−α)
.

This means that if we choose α > 2/3, we have that λ(t) ≥ β(t) at all times t, and thus n(t)

obtains a negative drift as long as there is at least one block of size at least 2. If there are only
single particles left, their number remains constant until two of them become nearest neighbours
(which, due to the recurrence of simple random walk in dimension 1, will happen a.s.), at which
occasion we again have a negative drift in the number of particles. This proves part (b).
(c) Like in the proof of (b), we obtain a negative drift if α > 2/3 as long as there are blocks of
size at least 2, and otherwise the number of particles remains constant. Note that the expected
time until two out of three or more particles meet is finite, so the single-particle state will even be
reached in finite time. �

Remark 3.1. If we allow branchings also for isolated particles, the rate of branching events be-
comes

β̂(t) := (1−α)
∞
∑

k=1

kMk(t)

and so equation (1), if n(t) 6= 0, is replaced by

λ(t)

β̂(t)
=

α

1−α

�

1−

∑∞

k=1 Mk(t)
∑∞

k=1 kMk(t)

�

.

But then
∑∞

k=1 Mk(t)
∑∞

k=1 kMk(t)
is bounded from above only by the trivial bound 1, which yields extinction

only for α= 1. To obtain a hypothetical sharp critical α, more precise estimates would be needed,
and since Mk(t) depends on the particle configuration in a very subtle way, this does not seem to
be easy.

Proof of Theorem 2.9. (a) Survival for cDBARW(α) if α < 1/2 is proved in the same way as for
ccDBARW. For cDBARW, branchings happen at rate (1−α)n(t), and annihilation events at rate at
most αn(t), so the above proof goes through.
(b) For ecDBARW, the ratio of the rates at which annihilation and branching events occur, given
that they are non-zero, satisfies

λ(t)

β(t)
=

α

1−α

∑∞

k=1(2k− 1)M2k(t) +
∑∞

k=1 2kM2k+1(t)
∑∞

k=1 2kM2k(t)

≥
α

1−α

�

1−

∑∞

k=1 M2k(t)
∑∞

k=1 2kM2k(t)

�

.

Then the same argument as before for ccDBARW applies.
(c) To prove extinction of ocDBARW, we introduce the interface process of cDBARW, which is
a voter model with block-flips, where now the blocks correspond to sequences of consecutive
alternating zeroes and ones.
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Let η = {ηi : i ∈ Z} ∈ E. For i ∈ Z, we define ηi,i−1 to be the configuration obtained from η by
changing ηi to ηi−1, that is,

η
i,i−1
j

:=

¨

η j if j 6= i,

ηi−1 else,

and similarly, define

η
i,i+1
j

:=

¨

η j if j 6= i,

ηi+1 else.

Finally, let ηi,[n] be the configuration that is obtained from η by flipping the states of all sites
j ∈ [i, i + n], i.e.

η
i,[n]
j

:=

¨

η j + 1 mod 2 if j ∈ [i, i + n],

η j else.

We say that η exhibits an interface at (i, i + 1), if either (ηi = 0 and ηi+1 = 1) or (ηi = 1 and
ηi+1 = 0).

Definition 3.2 (block-flipping voter model). Let η ∈ E denote a configuration with finitely many

ones and an even number of interfaces. Let α ∈ [0,1]. We denote by η = {η(t), t ≥ 0} the strong

Markov process with values η(t) ∈ E, starting in η(0) = η, described by the following dynamics:

η 7→ ηi,i−1 (voting from left) at rate
α

2
1{ηi 6=ηi−1}

,

η 7→ ηi,i+1 (voting from right) at rate
α

2
1{ηi 6=ηi+1}

,

η 7→ ηi,[n] (block flip) at rate n(1−α)1{ηi(t) 6=ηi+1(t)∀ j∈[i,i+n]} × 1{ηi−1=ηi ,ηi+n=ηi+n+1}
.

We call this process block-flipping voter model.

Note that flips can only occur to whole consecutive sequences of interfaces, i.e. blocks. It is
straightforward to check that cDBARW(α) appears as the interface process of the block-flipping
voter model with parameter α in the same sense as sDBARW describes the interface process of the
usual swapping voter model (see [S90], Section 10): Particles in the cDBARW are located precisely
at the interfaces between zeroes and ones in the corresponding block-flipping voter model. Voting
steps correspond to migration, while block flips correspond to ‘caring’ branching. We now use this
duality to prove extinction of ocDBARW. Let

ξ(t) := |η(t)|=
∑

i∈Z

1{ηi(t)=1}

be the number of ones in the block flipping voter model at time t ≥ 0. Note that if we only allow
for odd branchings, starting from a finite initial condition, this means that for the corresponding
voter model we only allow for flips of blocks of an even length, which means that any such flip
leaves the number of ones unaffected, and therefore ξ unchanged. We now verify the result by
means of a martingale argument (an alternative would be to argue as in [S90] via the graphical
representation, which in our case however would have to be defined with some care, since our
branching mechanism is not of bounded range).
Define by Ft = σ{η(s), s ≤ t}, t ≥ 0, the canonical filtration associated with {η(t)}. Note that,
for each t ≥ 0, ξ(t) is a measurable function of η(t) and hence Ft -adapted. Recall that we only
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consider finite initial states η(0) ∈ E (i.e. configurations with finitely many ones). Hence, for such
η(0),

τ := inf{s > 0 : η(s) 6= η(0)}

is strictly positive and finite a.s. At the stopping time τ, we have either

η(τ) = ηi, j(0), for some i ∼ j,

(voting event) or

η(τ) = ηi,[2n−1](0), for some i ∈ Z, n> 0,

(swapping event). Note that in the latter case, ξ(τ) = ξ(0), since the swap is of even length, and
that in the first case we have either ξ(τ) = ξ(0)−1 or ξ(τ) = ξ(0)+1, each with probability 1/2.
For ζ,ζ′ ∈ E, ζ finite, denote by

p(ζ,ζ′) := P{η(τ) = ζ′|η(0) = ζ}=: Pζ{η(τ) = ζ′} (2)

the corresponding probability weights. Let now τ0 := 0, and

τk+1 := inf{t > τk : η(t) 6= η(τk)}, k ≥ 1.

The τk are stopping times for the Markov process {η(t)} which are finite almost surely as long as
ξ(t) 6= 0, and which satisfy τk−1 < τk a.s. We define

F̂k :=Fτk
, η̂(k) := η(τk), k ≥ 0,

noting that {η̂(k)} is a discrete-time {F̂k}-Markov process, absorbed in 0, with transition proba-
bilities p(·, ·) as in (2) above. Finally, we set

ξ̂(k) := ξ(τk), k ≥ 0.

Note that {ξ̂(k)} is {F̂k}-adapted. It is now easy to see that {ξ̂(k)} is an {F̂k}-martingale (in fact,
ξ(k) = |η(k)| is a harmonic function for p(·, ·) on E). Indeed, we have by the above considerations
and the strong Markov property of {ηt}, for k ≥ 1,

E

h

ξ̂(k+ 1)
�

�

�F̂k

i

= E
�

ξ(τk+1)
�

�Fτk

�

= E
η(τk)
�

ξ(τk+1)
�

=
∑

ζ′∈E

|ζ′| p
�

η(τk),ζ
′
�

= ξ̂(k), a.s.

Hence, {ξ̂(k)} is a non-negative martingale absorbed in 0, and therefore converges to 0 almost
surely, which proves the result. �

Remark 3.3. If we take ocDBARW with α = 0 (i.e., no migration) started from an even initial
condition, this process will not die out: In finite time, a.s., it will be absorbed in a configuration
consisting only of blocks of even length, where no further branching is possible.
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4 Local extinction mechanisms

A possible heuristic explanation for the extinction of this model, despite the ‘caring’ branching
mechanism, might be given in terms of the behaviour just before local extinction. Suppose two
otherwise isolated particles come close to each other until they are neighbours. Then we see local
extinction if these particles meet.
A way to guarantee survival with positive probability might be to increase the probability that such
a ‘dangerous’ configuration of two adjoint (but otherwise isolated) particles will be left through a
‘safer’ state (e.g. if the two particles walk away from each other, or produce new offspring) to be
sufficiently close to one.

.

. . .

.

.

.

. . .

. .

. . . .

.

.

.

. . α

α

α

α

α

α

α

2(1−α)

2(1−α)

1

(1−α)

sDBARW aDBARW

ccDBARW/ecDBARW ocDBARW

Figure 2: ‘Dangerous’ configurations and rates of leaving them

Figure 2 shows that both for cDBARW and for aDBARW, this is always possible by decreasing
α, whereas the probability of leaving the ‘dangerous configuration’ without extinction remains
bounded away from 1 for sDBARW and odd cDBARW: Indeed, consider for example sDBARW. Any
of the two neighbouring particles walks away (in the ‘good’ direction) with rate α/2, migrates in
the ‘bad’ direction which leads to local extinction with the same rate α/2 and branches symmetri-
cally with rate 1−α, which leaves the local configuration unchanged (it is just shifted by one unit,
we assume that there are no more particles close by). The total rates with which the configuration
of two neighbouring particles changes is represented in Figure 2. Thus the probability of moving
into a safer configuration in the next step – let us denote it by ps – is the same as the probability
for extinction in the next step (denoted by pe), in fact,

ps = pe =
α

α+α+ 2(1−α)
=
α

2
≤

1

2
.

For aDBARW on the other hand, branching has a different effect on this particular configuration:
With rate (1−α)/2, a particle branches in the direction of the second particle, thus producing the
same configuration (the first exit configuration in Figure 2) as for a ‘good’ migration step (rate α/2
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for each particle), and with rate (1−α)/2 branching takes place in the other direction, producing
additional particles. Thus

ps =
1+ 1−α

2
= 1−

α

2
, pe =

α

2
.

Hence, for aDBARW (and similarly for cDBARW) we can make ps arbitrarily close to one by choos-
ing α small enough, while this is not possible for sDBARW where it is always bounded above by
1/2.
This consideration, although somewhat speculative, might yield a general pattern to predict whether
survival is possible or not for a given variant of DBARW. Indeed, the idea that extinction of the
whole system is governed by the local extinction events we just discussed, is supported by the fact
that the conjectured critical value for aDBARW is αc = 1/2 (see [SS08]), which is precisely the
value of α for which the probability of increasing the number of particles in the next step is the
same as the probability of (local) extinction in the next step (compare Figure 2).
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