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Abstract

The elements of a finite nonempty partially ordered set are exposed at independent uniform times
in [0,1] to a selector who, at any given time, can see the structure of the induced partial order on
the exposed elements. The selector’s task is to choose online a maximal element.
This generalizes the classical linear order secretary problem, for which it is known that the selector
can succeed with probability 1/e and that this is best possible.
We describe a strategy for the general problem that achieves success probability at least 1/e for an
arbitrary partial order.

1 Background

The classical secretary problem asks for a strategy that with reasonable probability picks online the
best of n applicants for a job, given that at any time the only information available is the relative
ranks of the applicants that have been interviewed so far. For a historical overview of the secretary
problem and some of its generalizations, consult [1].
The well-known solution is to reject the first n/e applicants (approximately), and after that to
accept the first applicant who is better than all those. The probability of success is asymptotically
1/e for large n, and this is best possible.
It was observed by J. Preater [5] that the selector can achieve success probability bounded away
from zero in a partially ordered version of the problem. Here the secretaries are replaced by the
elements of a partially ordered set P. These elements are exposed in random order, and at every
time the selector can see the order relations between all pairs of exposed elements, in other words
the induced partial order on the exposed elements. The task is now to select online one of the
maximal elements of P.
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The details of the problem can be phrased in a couple of different ways. The selector can be
assumed to know in advance the number of elements in P. Alternatively, the selector knows the
structure of P, but cannot “recognize” the individual elements as they arrive. In this later case,
optimal results are known for some special classes of partial orders. See, for instance, [4] for a
strategy that is optimal when P is known to be a binary tree.
In this paper we consider a continuous time version which is at least as hard for the selector as
these discrete time versions, and which can easily be shown to be equivalent as far as the best
general success probability goes. In this version, the elements of P are exposed at independent
uniform times in the interval [0,1]. We ask for a strategy that achieves success probability at least
c > 0 for every finite nonempty partial order P. Obviously such a strategy for the continuous time
version can be applied also in discrete time, since knowing the number n of elements in P, we can
generate n random “times” in [0, 1] ourselves, and assign them in order to the elements as they
arrive.
In [5], Preater described a simple strategy and showed that it succeeds with probability at least 1/8
for every P. The analysis of Preater’s strategy was refined by N. Georgiou, M. Kuchta, M. Morayne
and J. Niemiec [2], who showed that with a trivial improvement, it actually succeeds with proba-
bility at least 1/4.
Later, Kozik [3] suggested another strategy for the general situation, and proved that it has success
probability at least a constant c > 1/4 for every sufficiently large n. Kozik’s strategy is indeed a
generalization of the strategy in the linear case.
Here, we describe a different strategy that achieves success probability at least 1/e for every P.
Since this matches the upper bound given by the analysis of the classical linear order case, it settles
the question of the best possible general success probability.

2 Description and analysis of the strategy

Suppose that the elements of a finite nonempty partial order P are assigned distinct real weights.
We define the greedy maximum of P as follows. Let z0 be the element of smallest weight in P. As
long as zi is not maximal, let zi+1 be the element of minimum weight among the elements larger
than zi . This gives a chain whose terminal element is the greedy maximum of P.
Our strategy for the partially ordered secretary problem is as follows:

Strategy. We assign independent uniform weights from [0, 1] to the elements as they arrive.
After rejecting everything up to time 1/e, we accept the first element x which is itself the greedy
maximum of the induced partial order Px on the elements, including x , that have been exposed
up to the time when x arrives.

Theorem 1. This strategy succeeds in accepting a maximal element with probability at least 1/e for
every partially ordered set.

The rest of the paper is devoted to the proof of Theorem 1. To simplify the discussion, let us say
that we tag the element x if it is the greedy maximum of Px . In order for our strategy to accept x ,
three things are thus required: x must arrive at a time t > 1/e, it must be tagged, and finally no
other element must be tagged between time 1/e and time t.
In the following, we think of P as a fixed partially ordered set of n elements.

Lemma 2. Let a1, . . . , an be the elements of P in the order that they are exposed. Let Ak be the event
that ak is tagged. Then Pr(Ak) = 1/k and A1, . . . , An are independent.
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Proof. Suppose that we know P and the weights that are eventually assigned to all its elements.
Suppose moreover that we know the elements ak+1, . . . , an. Then in particular we know which of
them are tagged. Now consider the greedy maximum of the induced partial order on {a1, . . . , ak}.
The probability that this element was the last one to arrive and thereby labeled ak is clearly 1/k.
This shows that Pr(Ak) = 1/k conditioning on Ak+1, . . . , An, establishing our claim.

Lemma 3. Let 0 ≤ t ≤ 1. Conditioning on the set of elements being exposed before time t, and
assuming that this set is nonempty, the arrival time of the last element to be tagged before time t is
uniform in the interval [0, t].

Proof. Suppose k elements arrive before time t. Lemma 2 shows that the joint distribution of
A1, . . . , Ak is the same regardless of the structure of the induced partial order on {a1, . . . , ak}.
Therefore it suffices to establish the claim for the linear order on k elements. For this particular
order, it is obvious that the last element to be tagged is the unique maximal element, and its arrival
time is uniform in [0, t].

Supposing P is fixed, but the weights of its elements independent and uniform in [0,1], let µ(x)
be the probability that x is the greedy maximum of P. Moreover, for 0 ≤ t ≤ 1, let µt(x) be the
probability that x is the greedy maximum of P, conditioning on the weight of x being at most t.

Lemma 4. Suppose that x is maximal in P. Conditioning on x arriving at time t,

Pr(x is tagged) = µt(x).

Proof. Assign weights to the elements of P and condition on x having weight at most t. Since ele-
ments of weight greater than t (and therefore greater than the weight of x) will have no influence
on whether or not the greedy chain terminates at x , µt(x) is the probability that x is the greedy
maximum in a partial order obtained by first discarding all elements except x independently with
probability 1− t, and then choosing all weights uniformly in [0, t].
Two observations conclude the proof: First, if all weights are chosen from [0, t], we might as well
choose them from [0, 1]. Second, independently discarding all elements except x with probability
1− t is precisely how we get Px conditioning on x arriving at time t.

Lemma 5. Conditioning on x arriving at time t,

Pr(x is tagged)≥ µ(x).

Proof. In view of Lemma 4, it suffices to notice that since decreasing the weight of an element can
only increase its probability of being the terminal point of the greedy chain,

µt(x)≥ µ(x).

Proof of Theorem 1. To prove Theorem 1, only a simple calculation remains. Let x be maximal
in P, and suppose that x arrives at time t > 1/e. We want to estimate the probability that x is
accepted as a function of t and µ(x).
By Lemma 5, the probability that x is tagged is at least µ(x). If we condition on Px , then either
Px −{x} is empty, which means x was the first tagged element, or it is nonempty, and by Lemma 3
the arrival time of the last element that was tagged before time t is uniform in [0, t]. In any
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case, the probability that no element was tagged between time 1/e and time t is at least 1/(et).
Therefore the total probability that x is accepted is at least

µ(x) ·
∫ 1

1/e

1

et
d t =

1

e
·µ(x).

Summing over all maximal elements of P we find that the probability that one of them is accepted
is at least 1/e.
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