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Abstract

We construct the conditional versions of a multidimensional random walk given that it does not
leave the Weyl chambers of type C and of type D, respectively, in terms of a Doob h-transform.
Furthermore, we prove functional limit theorems for the rescaled random walks. This is an exten-
sion of recent work by Eichelsbacher and König who studied the analogous conditioning for the
Weyl chamber of type A. Our proof follows recent work by Denisov and Wachtel who used mar-
tingale properties and a strong approximation of random walks by Brownian motion. Therefore,
we are able to keep minimal moment assumptions. Finally, we present an alternate function that
is amenable to an h-transform in the Weyl chamber of type C.

1 Introduction

In his classical work [9] Dyson established a connection between dynamical versions of random
matrices and non-colliding random particle systems. Indeed, the eigenvalue process of a k × k
Hermitian Brownian motion has the same distribution as the evolution of k independent standard
Brownian motions conditioned never to collide (which means that they are in the same order at
all times). This process can also be characterised by saying that a k-dimensional Brownian motion
is conditioned on never leaving the Weyl chamber of type A, W A = {x = (x1, . . . , xk) ∈ Rk : x1 <
. . .< xk}.

1RESEARCH SUPPORTED BY THE DFG-GRADUIERTENKOLLEG "ANALYSIS, GEOMETRIE UND IHRE VERBINDUNG ZU
DEN NATURWISSENSCHAFTEN".
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This conditional process, called Dyson’s Brownian motion, attracted the interest of various re-
searchers. Several discrete versions were considered. Recently, Eichelsbacher and König [10]
constructed, in great generality, the analogous random walk version, i.e., the conditional version
of a random walk on Rk given that it never leaves W A. This result and its proof were recently
improved by Denisov and Wachtel [7]. It is the aim of this paper to extend their analysis to the
two cases of the Weyl chambers of type C and D, see Section 2. Let us first describe the random
walk version for the type-A chamber.

To fix notation, let S(n) = (S1(n), . . . , Sk(n)) denote the position of a random walk in Rk started
at x ∈ Rk after n steps with components S j(n) = x j + ξ

(1)
j + . . .+ ξ(n)j , 1 ≤ j ≤ k, where {ξ(i)j : 1 ≤

j ≤ k, i ∈ IN} is a family of independent identically distributed random variables. In particular,
S(0) = x . We write Px and Ex for the corresponding probability measure and expectation.

Actually one can understand conditioning to never leave W A in two ways. If τA = inf{n ∈
IN0 : S(n) /∈ W A} denotes the exit time from W A, then on the one hand one can mean the con-
ditional distribution of the path given the event {τA > m} asymptotically as m grows to infinity,
that is,

bPx(S(n) ∈ dy) = lim
m→∞
Px(S(n) ∈ dy | τA > m), x , y ∈W A.

On the other hand, one can make a change of measure by Doob’s h-transform [8]. Necessary for
this procedure is to find a function h which is strictly positive on W A and regular for the restriction
of the transition kernel to W A, i. e.,

Ex[h(S(1));τ
A > 1] = h(x), x ∈W A.

Then a new probability transition function on W A is defined by

bP(h)x (S(n) ∈ dy) = Px(S(n) ∈ dy;τA > n)
h(y)
h(x)

, x , y ∈W A.

The corresponding Markov chain is called the h-transform on W A. A priori there may be more
than one function h amenable to this procedure. However, if a positive regular function h governs
the upper tails of τA, i.e., Px(τA > n)∼ C1h(x)n−c2 as n→∞ for some C1, c2 > 0 for any x ∈W A,
then the two above constructions lead to the same process. Indeed, by the Markov property one
obtains in the limit m→∞

Px(S(n) ∈ dy | τA > m) = Px(S(n) ∈ dy;τA > n)
Py(τA > m− n)

Px(τA > m)

→ Px(S(n) ∈ dy;τA > n)
h(y)
h(x)

.

Eichelsbacher and König succeeded in finding a positive regular function V A which yields this
coincidence:

V A(x) = hA(x)−Ex[h
A(S(τA))], x ∈W A, (1)

with hA the Vandermonde determinant

hA(x) =
∏

1≤i< j≤k

(x j − x i) = det
�

(x j−1
i )i, j∈{1,...,k}

�

.

It should be noted that hA is, up to a multiplicative positive constant, the unique harmonic function
that is positive on the interior of W A and vanishes on the boundary. In potential theoretic terms,
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this is expressed by saying that hA is the réduite of W A. Furthermore, Eichelsbacher and König
showed that the rescaled random walk weakly converges to Dyson’s Brownian motion.

It is not easy to see that V A is strictly positive on W A, and it is surprisingly difficult to prove
that V A is well-defined, i.e., that hA(S(τA)) is integrable. The approach in [10] is based on the
discrete analogue of the Karlin-McGregor formula [13] for random walks and an application of
a local central limit theorem. By repeated use of the Hölder inequality, Eichelsbacher and König
lose track of minimal moment assumptions: they need the finiteness of moments E[|ξ(i)j |

r] with
r > ck3. Denisov and Wachtel [7] improve their results by showing that the minimal moment
requirement is actually r = k− 1 for k > 3. Since the k-dimensional Vandermonde determinant is
a polynomial which has in each variable at most order k− 1, at least moments of order k− 1 are
necessary. Hence Denisov and Wachtel’s moment requirement is indeed minimal. For k = 3 they
need higher moments since their approach is based on a strong coupling which will be explained
later.

A conditional version on never leaving W A under less integrability has not been constructed yet,
and it is unclear how to do that. This is a bit surprising since the question of leaving W A or not
has a priori nothing to do with moments.

The case k = 2 has already been extensively treated in the literature if one notes that staying in
order for two walkers can be translated to staying positive for a single walker. See for example
Bertoin and Doney [4].

The paper is organised as follows. We present our main results in Section 2, and the proofs are
given in Section 3. In the final Section 4, we discuss an alternate h-transform for the restriction of
the walk to the Weyl chamber of type C.

2 Extension to Weyl chambers C and D

A natural extension of the conditioned random walk setting just described is the one to different
Weyl chambers. They arise in Lie theory as the set of orbits of the adjoint action on a Lie algebra
or conjugation under the associated Lie group and first appeared in connection with Brownian
motion in a work by Grabiner [11]. There he considered Weyl chambers of type A, B, C, D, but
one should mention that the Weyl chambers B and C are actually identical. Those of type C and D
are defined as follows:

W C = {x = (x1, . . . , xk) ∈ Rk : 0< x1 < . . .< xk},
W D = {x = (x1, . . . , xk) ∈ Rk : |x1|< x2 < . . .< xk}.

As already mentioned, the Weyl chamber of type A imposes a strict order. For type C, an additional
wall at zero occurs, and for D the mirror image of x1 is incorporated into the order. It is important
(see [11, Section 6] or [12, Lemma 3]) that these chambers are also equipped with respective
réduites:

hD(x) =
∏

1≤i< j≤k

�

x2
j − x2

i

�

and hC(x) = hD(x)
k
∏

i=1

x i .

As we can handle the two cases simultaneously, we will write Z for C or D. Of course we need
corresponding exit times

τZ = inf{n ∈ IN0 : S(n) /∈W Z}.
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One of the most important objects of this paper is the function

V Z(x) = hZ(x)−Ex[h
Z(S(τZ))], x ∈W Z; (2)

its role will turn out to be analogous to the role of V A for W A.

Let us formulate our assumptions on the random walk (S(n))n∈IN0
, which are supposed for the

results of this section:

Moment Assumption (MA): E[|ξ(i)j |
(rZ )] <∞, where rC = 2k− 1 and rD = 2k− 2 if k ≥ 3, and

rC = 3 and rD > 2 arbitrary in case k = 2.

Symmetry Assumption (SA): E[(ξ( j)i )
r] = 0 for any odd integer r ≤ rZ.

Normalization Assumption (NA): E[(ξ( j)i )
2] = 1.

Like in case A, one sees from the definition of hZ that the moment requirements are indeed minimal
for the integrability of hZ(S(n)) in the cases k ≥ 3. In the case k = 2 we need for Z= D some higher
power for yet another application of the strong coupling, since second moments do not suffice. The
assumption (SA) is crucial for the proof of the martingale property stated in Proposition 2.1. The
normalization assumption is just for convenience.

First we make an interesting observation about a martingale property:

Proposition 2.1. The function hZ is regular for (S(n))n∈IN0
, i.e., for any x ∈ Rk we have Ex[hZ(S(1))] =

hZ(x). Thus, (hZ(S(n)))n∈IN0
is a martingale for any x ∈ Rk.

The proof uses the exchangeability of the step distribution of the random walk (S(n))n∈IN0
only,

not the independence of the components. The case Z = A was treated in [14]. Two important
properties of V Z are that this function is well-defined and strictly positive on W Z. We combine
these properties with some results that are of interest in themselves:

Proposition 2.2. a) V Z(x) = limn→∞Ex[hZ(S(n));τZ > n] for all x ∈W Z;

b) V Z ist monotone in the sense that V Z(x) ≤ V Z(y) if x j − x j−1 ≤ y j − y j−1 for 2 ≤ j ≤ k and
additionally either x1 ≤ y1 (Z=C) or x1 + x2 ≤ y1 + y2 (Z=D);

c) V Z(x) ∼ hZ(x) in the limit inf2≤ j≤k(x j − x j−1) → ∞ together with x1 → ∞ (Z = C) or
(x1 + x2)→∞ (Z = D) respectively;

d) there is c positive such that V Z(x)≤ chZ
2(x) for all x ∈W Z, with

hD
t (x) =

∏

1≤i< j≤k(t + |x j − x i |)(t + |x j + x i |) and hC
t (x) = hD

t (x)
∏k

i=1(t + |x i |);

e) V Z(x)> 0 for all x ∈W Z.

With help of these insights we get a hold on the upper tails of the exit time:

Theorem 2.3. The asymptotic behavior for n→∞ of the exit time starting from x ∈W Z is given by

Px(τ
Z > n)∼ cZV Z(x)n−(α

Z)/2
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with αC = k2 and αD = k2 − k, and cC, cD the following constants:

cD =
2(3k2−3k+2)/2

πkk!

∏

1≤i< j≤k

[(2 j− 1)2 − (2i− 1)2]−1
k
∏

i=1

�

Γ
�

1+
i

2

�

Γ
�

i

2

��

cC = cD2(3k−2)/2
k
∏

i=1

(2k+ 1− 2i)−1
Γ
�

k+1
2

�

Γ
�

1
2

� .

As in [7, Example 2], we can see that our moment assumption (MA) is optimal for the validity of
Theorem 2.3. Indeed, if P(ξ(1)1 > u) ∼ u−α for some α ∈ (rZ − 1, rZ), their argument shows that
Px(τZ > n)� n−(α

Z)/2.

The next result shows that V Z is indeed suitable for an h-transform:

Proposition 2.4. V Z is regular for the restriction of the transition kernel to W Z.

In particular, using Theorem 2.3, the two ways of conditioning the walk to stay in W Z that we
mentioned in the introduction coincide.

Furthermore, we prove a functional limit theorem for the conditional walk in the spirit of Donsker’s
theorem. Let us introduce the limit processes of the scaled random walks and state our result. For
a k-dimensional Brownian motion one can make a change of measure in the sense of Doob’s
h-transform using the corresponding réduite:

bP(h
Z)

x (B(t) ∈ dy) = Px(B(t) ∈ dy;τBM,Z > t)
hZ(y)
hZ(x)

, x , y ∈W Z,

with τBM,Z = inf{t ≥ 0: B(t) /∈W Z} denoting the exit time of the Brownian motion from the type-
Z Weyl chamber when started at x . We will term the corresponding processes Dyson’s Brownian
motion of type Z (note that for Z = D the process that receives that name in [6] is obtained from
the above one by applying an elementary bijection). It is possible to start these processes from
the origin (this can be seen by the same arguments as in [16]). They can also be seen [12] as the
eigenvalue processes of dynamical random matrices in the symmetry classes C and D of Altland
and Zirnbauer [1], [2]. For more comments on the physical background and the corresponding
stochastic differential equations see [12].

Theorem 2.5. For x ∈W Z, as n→∞,

Px

�

1
p

n
S(n) ∈ ·

�

�

�τZ > n
�

⇒ µZ,

with µZ the probability measure on W Z with density proportional to hZ(y)exp (−|y|2/2). Addition-
ally the process (X n(t))t≥0 = (

1p
n
S([nt]))t≥0 under the probability measure bP(V

Z)
x
p

n
weakly converges

to Dyson’s Brownian motion of type Z started at x. Under bP(V
Z)

x , this process converges weakly to
Dyson’s Brownian motion of type Z started at zero.

3 Proofs

First we prove the regularity of hZ on IRk, which is essential for our purposes:
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Proof of Proposition 2.1. We make an induction on the number k of components. For this we
exploit the Vandermonde determinant representation and write hZ in the form

hZ(x) = det
h

(x2i−2+γ
j )i, j∈[k]

i

, [k] = {1, . . . , k},

where γ = 1 for Z = C and γ = 0 for Z = D. We dispense with another superscript as not to
overburden the notation. For k = 1 the assertion trivially holds either by (SA) (Z = C) or a
constant determinant (Z = D). Now fix k ≥ 2 and assume that our assertion is true for k− 1. For
any x ∈ Rk and m ∈ [k] we define

hZ
m(x) = det

h

(x2i−2+γ
j )i∈[k−1], j∈[k]\{m}

i

,

which is the determinant of the matrix that we obtain by deleting the last row and the mth column.
In particular, it is a (k− 1)-dimensional analogue of hZ. Using Laplace expansion we write

hZ(x) =
k
∑

m=1

(−1)m−1 x2k−2+γ
m hZ

m(x).

We use this in the expectation and denote by µ the step distribution of the random walk, to obtain

Ex[h
Z(S(1))] =

∫

Rk

µ(dy)hZ(x + y) =
k
∑

m=1

(−1)m−1

∫

Rk

µ(dy) (xm + ym)
2k−2+γhZ

m(x + y).

We denote by ν the m-th marginal of µ, which does not depend on m by exchangeability, and by
µm(d ỹ|ym), ỹ = (y1, . . . , ym−1, ym+1, . . . , yk), the conditional distribution of µ given the coordinate
ym, which is exchangeable for ỹ . Hence, µ(dy) = ν(dym)µm(d ỹ|ym). By our induction hypothesis
we have for any ym ∈ R and x ∈ Rk that

∫

Rk−1

µm(d ỹ|ym)h
Z
m(x + y) = hZ

m(x).

This allows us to complete our computation:

Ex[h
Z(S(1))] =

k
∑

m=1

(−1)m−1

∫

R
ν(dym) (xm + ym)

2k−2+γhZ
m(x)

=
k
∑

m=1

(−1)m−1

∫

R
ν(dz)

2k−2+γ
∑

l=0

�

2k− 2+ γ
l

�

x2k−2+γ−l
m z lhZ

m(x)

=
2k−2+γ
∑

l=0,l even

∫

R
ν(dz) z l

�

2k− 2+ γ
l

� k
∑

m=1

(−1)m−1 x2k−2+γ−l
m hZ

m(x),

where we used (SA) in the third line. Now we apply the Laplace expansion to the m-sum in the last
line. For l ≥ 2 this m-sum vanishes since its summands are equal to the determinants of matrices
with two identical columns. For l = 0 it is equal to hZ(x). This finishes the proof.

Now we prove regularity of V Z on W Z.
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Proof of Proposition 2.4. For any x ∈W Z we get by the strong Markov property and the martin-
gale property of Proposition 2.1

Ex[V
Z(S(1))1{τZ>1}] =

= Ex[h
Z(S(1))1{τZ>1}]−Ex[ES(1)[h

Z(S(τZ))]1{τZ>1}]

= Ex[h
Z(S(1))1{τZ>1}]−Ex[h

Z(S(τZ))1{τZ>1}]

= Ex[h
Z(S(1))1{τZ>1}]−Ex[h

Z(S(τZ))] +Ex[h
Z(S(τZ))1{τZ≤1}]

= Ex[h
Z(S(1))]−Ex[h

Z(S(1))1{τZ≤1}]−Ex[h
Z(S(τZ))] +Ex[h

Z(S(τZ))1{τZ≤1}]

= V Z(x).

Now we turn to the proofs of the remaining results, Proposition 2.2 and Theorems 2.3 and 2.5.
We decided to give a sketch only, since the methods employed by Denisov and Wachtel for the
case W A can be straightforwardly extended. Rather than recapping all technical details in tedious
length, we indicate the key steps of their proof and illuminate the differences that are necessary
to adapt.

We first explain how they obtain their analogues to Proposition 2.2 and Theorems 2.3 and 2.5 for
the Weyl chamber of type A, in particular the asymptotics Px(τZ > n) ∼ cAV A(x)n−k(k−1)/4, with
cA a constant, and the weak convergence to Dyson’s Brownian motion of type A. Their idea is to
consider, additionally to τA, the stopping time

T A = inf{n ∈ IN0 : hA(S(n))≤ 0}.

This has the advantage that the triggering of the defining condition can more easily be exploited
for estimates since we have control over the sign of hA(S(n)). Furthermore, obviously, T A ≥ τA

almost surely. Therefore, certain estimates involving T A can be directly transferred to estimates
involving τA. Crucial for their approach is the fact that (hA(S(n)))n∈IN0

is a martingale. This yields
that the sequence Yn = hA(S(n))1{T A>n} is a nonnegative submartingale (this is solely based on the
martingale property). With this they next show that there is a universal constant C such that

Ex[h
A(S(n)); T A > n]≤ ChA

2(x), n ∈ IN, x ∈W A, (3)

where hA
t (x) =

∏

1≤i< j≤k(t + |x j − x i |) is defined similar to the expressions in Proposition 2.2d).
Proving (3) is technical and lengthy and uses an auxiliary Weyl chamber defined by

W A
n,ε = {x ∈ R

k : |x j − x i |> n1/2−ε, 1≤ i < j ≤ k}, ε > 0.

If a point of W A is additionally in W A
n,ε, it is far away from the boundary of W A. Furthermore,

W A
n,ε has the property that it is reached by the motion soon with high probability: the probability

of the entrance time νA
n = inf{m ∈ IN0 : S(m) ∈W A

n,ε} being bigger than n1−ε decays exponentially.
Indeed, we have that Px(νA

n > n1−ε) ≤ exp{−Cnε}. This can be shown by a subdivision of the
trajectory into nε pieces and an application of the central limit theorem to the pieces. Also expec-
tations of hA(S(n)) on the event {νA

n > n1−ε} decay exponentially, hence one can extend estimates
for expectations which start from x ∈ W A

n,ε to expectations with arbitrary starting points in W A

by the strong Markov property. For the former one can elementarily derive upper bounds with
standard estimates like Doob’s inequality. With this one is able to prove the bound in (3).
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Now this in turn yields the integrability of hA(S(τA)) by a direct application of martingale argu-
ments. Furthermore, Denisov and Wachtel obtain from this that the function V (T

A)(x) = limn→∞Ex[Yn]
is well defined on the set {x : hA(x) > 0}. To show that V A is strictly positive on W A they use that
(V (T

A)(S(n))1{τA>n})n∈N0
is a supermartingale; again this is solely based on the martingale prop-

erty.

Here we terminate our survey on the proofs of the corresponding statements of d) and e) of
Proposition 2.2. The corresponding results to a) and b) pop out easily from the method of proof.
The proof of c) is actually part of the derivation of e). This finishes the sketch of their analogue of
Proposition 2.2.

Now we turn to the sketch of the proofs of their analogues of Theorems 2.3 and 2.5. For this a
coupling of random walks and Brownian motion by Major [15] is applied which has already been
used in other contexts, see [3], [5].

Lemma 3.1. Given that E[|ξ(i)j |
2+δ] <∞ for some δ ∈ (0,1), a Brownian motion (B(t))t≥0 can be

defined on the same probability space as the random walk (S(n))n∈IN0
such that, for a ∈ (0, δ

2(2+δ)
),

P
�

sup
u≤n
|S([u])− B(u)| ≥ n1/2−a

�

= o
�

n2a+aδ−δ/2
�

.

Other important tools for the proof of the asymptotic behavior of Px(τA > n) are estimates for the
upper tails of the exit time of Brownian motion from W A due to Grabiner [11] and Varopoulos
[17]. Again, the auxiliary Weyl chamber W A

n,ε is used.

To attack the upper tails of τA, we know from the above mentioned exponential decay of Px(νA
n >

n1−ε) that the random walk reaches W A
n,ε after a short time, with high probability. Using the

strong Markov property at time νA
n , we only have to consider starting points y ∈ W A

n,ε instead
of x . For those, we use Lemma 3.1 with a = 2ε and see that the exit times from W A for the
Brownian motion and the coupled random walk are roughly identical with high probability, since
the distances between them, n1/2−2ε, are negligible with respect to the typical distances n1/2−ε

required in W A
n,ε. Hence, the upper tails of the random walk exit times can directly be related to

the ones of the Brownian motion, which are well-known. After identifying the asymptotic behavior
of Px(τA > n), one can use it to prove the functional limit theorem in a straightforward manner.

So, unlike in the proof of Eichelsbacher and König, there is no need to employ the discrete ana-
logue of the Karlin-McGregor formula, or Hölder’s inequality; the results are derived using a com-
parison to Brownian motion.

Now we argue that these proofs can be straightforwardly extended to cases C and D. This is due
to several factors. First, according to Proposition 2.1, (hZ(S(n)))n∈IN0

is also a martingale, and
one can analogously define the corresponding sub- and supermartingales, (hZ(S(n))1{T Z

x >n})n∈IN0

and (V (T
Z)(S(n))1{τZ>n})n∈IN0

. Second, as one easily sees, the inequalities T Z
x ≥ τ

Z hold almost
surely, too. Third, for proving the estimate in d) of Proposition 2.2, we split the functions hZ into
hD(x) =

∏

1≤i< j≤k(x j− x i)(x j+ x i) (and hC similarly). This is a more suitable representation when
used together with the corresponding auxiliary Weyl chambers defined by

W D
n,ε = {x ∈ Rk : |x j − x i |> n1/2−ε, |x j + x i |> n1/2−ε, 1≤ i < j ≤ k},

W C
n,ε = W D

n,ε ∩ {x ∈ R
k : |x i |> n1/2−ε, 1≤ i ≤ k}.
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Again the probability of the entrance time νZ
n = inf{m ∈ IN0 : S(m) ∈W Z

n,ε} being bigger than n1−ε

decays exponentially, which can be proved by the same argument as for W A
n,ε.

Fourth, by the works of Grabiner and Varopoulos [11, 17], we have analogous estimates for the
upper tails of the exit times from W Z at our disposal. Varopoulos formulated them more generally
for conical regions (i.e., closed under scaling by a positive constant and addition of elements), and
Grabiner formulated them directly for the Weyl chambers:

Lemma 3.2. a) For all y ∈W Z we have with τBM,Z = inf{t ≥ 0: B(t) /∈W Z},

Py(τ
BM,Z > t)≤ C

hZ(y)

t(αZ)/2
, t > 0,

where αC = k2 and αD = k2 − k.

b) As t →∞,

Py(τ
BM,Z > t)∼ cZ hZ(y)

t(αZ)/2
,

uniformly in y ∈W Z satisfying |y| ≤ θt
p

t with some θt → 0.

c) For y ∈W Z, denote by bZ
t (y, z) the density of Py(τBM,Z > t, y + B(t) ∈ dz). Then, as t →∞,

bZ
t (y, z)∼ KZ t−

k
2 e−|z|

2/(2t)hZ(y)hZ(z)t−α
Z
,

uniformly in y, z ∈W Z satisfying |y| ≤ θt
p

t and |z| ≤
p

t/θt with some θt → 0, and

KC =
2kk!cC

∫

Rk e−|x |2/2|hC(x)|dx
, KD =

2k−1k!cD

∫

Rk e−|x |2/2|hD(x)|dx
.

Of course we can use the same coupling of random walks and Brownian motion as in Lemma 3.1.
Using all these ingredients, we can easily adapt the strategy employed by Denisov and Wachtel to
prove Proposition 2.2 and Theorems 2.3 and 2.5.

4 An alternate h-transform for WC

In this section we present another function, eV C, that is positive and regular on the type-C Weyl
chamber, W C. This function is in general different from the function V C defined in (2), but be-
cause of its positivity and regularity on W C, it is amenable to an h-transform of the random walk
restricted to W C. This illustrates our remark in the introduction: Not every h-transform of the
random walk on a set W is equal to the conditional version of the walk given that it never leaves
W . The point is that eV C does not necessarily govern the upper tails of the exit time from W C, but
V C does; see Theorem 2.3.

The idea of the construction of eV C is to first condition every component on staying positive and
afterwards conditioning the resulting walk on never violating the order of the components. In
other words, we first condition on never leaving (0,∞)k and afterwards on never leaving W A.
Even though the intersection of these two sets is equal to W C, there is no reason to hope that the
sequentially conditioned random walk be equal to the conditional walk constructed in Section 2;
this is a general fact about conditional probabilities.
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Let us now describe the construction of eV C. For z ∈ (0,∞), denote V (z) = z −Ez[S1(τ+,(1))] with
τ+,(i) = inf{n ∈ IN0 : Si(n) ≤ 0} the exit time from (0,∞). When we apply the method of proof of
Denisov and Wachtel to k = 2 under sufficient moment assumptions, we know that V is positive
and regular for the restriction of a one-dimensional symmetric random walk (S1(n))n∈IN0

to (0,∞)
and that it governs the upper tails of the exit time τ+,(1). By independence, V⊗k is positive and
regular for the restriction of the walk (S(n))n∈IN0

to (0,∞)k and governs the upper tails of the exit
time τ+ = inf{n ∈ IN0 : S(n) /∈ (0,∞)k}. As a consequence,

bP+x (S(n) ∈ dy) := lim
m→∞
Px(S(n) ∈ dy | τ+ > m)

= Px(S(n) ∈ dy;τ+ > n)
V⊗k(y)

V⊗k(x)
.

(4)

Under bP+x , the walk is equal to the conditional version given that it does not leave (0,∞)k. Now
we need the version of the function V A defined in (1) for bP+x :

V+,A(x) = hA(x)− bE+x [h
A(S(τA))], x ∈W A.

Lemma 4.1. Assume that the step distribution of the walk is symmetric and possesses finite moments
of order k− 1 for k ≥ 4 or of some order r > 2 in cases k = 3 and k = 2. Then the function

eV C = V+,AV⊗k

is positive in W C and regular for the restriction of the transition kernel to W C.

Proof. The h-transform of bP+x with V+,A on W A is equal to the conditional version given that the
walk does not leave W A, i.e.,

lim
m→∞

bP+x (S(n) ∈ dy |τA > m) = bP+x (S(n) ∈ dy;τA > n)
V+,A(y)
V+,A(x)

. (5)

Using (4), we see that

bP+x (S(n) ∈ dy;τA > n) = Px(S(n) ∈ dy;τ+ > n,τA > n)
V⊗k(y)

V⊗k(x)
.

Using this in (5) and noting that {τ+ > n,τA > n}= {τC > n}, we arrive at

lim
m→∞

bP+x (S(n) ∈ dy |τA > m) = Px(S(n) ∈ dy;τC > n)
V+,A(y)
V+,A(x)

V⊗k(y)

V⊗k(x)

= Px(S(n) ∈ dy;τC > n)
eV C(y)
eV C(x)

.

Since the left hand side is a probability measure in y ∈ W C, the right hand side is as well. This
shows the regularity of eV C in W C. The positivity is obvious.

For the case D this approach does not work since it is not clear how to divide the condition in W D

into two conditions that can separately be handled with the methods presented in this paper.
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