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Abstract
Consider two urns, A and B, where initially A contains a large number n of balls and B is empty.
At each step, with equal probability, either we pick a ball at random in A and place it in B, or
vice-versa (provided of course that A, or B, is not empty). The number of balls in B after n steps
is of order

p
n, and this number remains essentially the same after

p
n further steps. Observe that

each ball in the urn B after n steps has a probability bounded away from 0 and 1 to be placed back
in the urn A after

p
n additional steps. So, even though the number of balls in B does not evolve

significantly between n and n+
p

n, the precise contain of urn B does.
This elementary observation is the source of an interesting two-time-scale phenomenon which we
illustrate using a simple model of fragmentation-coagulation. Inspired by Pitman’s construction of
coalescing random forests, we consider for every n ∈ N a uniform random tree with n vertices, and
at each step, depending on the outcome of an independent fair coin tossing, either we remove one
edge chosen uniformly at random amongst the remaining edges, or we replace one edge chosen
uniformly at random amongst the edges which have been removed previously. The process that
records the sizes of the tree-components evolves by fragmentation and coagulation. It exhibits
subaging in the sense that when it is observed after k steps in the regime k ∼ tn+ s

p
n with t > 0

fixed, it seems to reach a statistical equilibrium as n→∞; but different values of t yield distinct
pseudo-stationary distributions.

1 Introduction

Aging refers to systems that seem to reach a statistical equilibrium in a certain regime depending
on two time-scales: the age of the system and the duration of the observation. If the observation
scale is much shorter that the age of the system scale, then the effect is, more precisely, called
subaging. It arises in a variety of models in random media; see for instance Ben Arous and Černý
[4] and references therein. The purpose of this note is to point out that subaging occurs in a
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process which evolves by fragmentation and coagulation, and is related to the work of Pitman [9]
on coalescent random forests. It has its source in an elementary random urn dynamic which we
now describe.

1.1 A two-time-scale phenomenon

Consider two urns, say A and B, and assume that at the initial time A contains n balls and B is
empty. At each step k = 1, 2, . . ., we flip a fair coin. If head comes up then we pick a ball in A
uniformly at random and place it in B (provided of course that A is not empty, else we do nothing).
Similarly, if tail comes up then we pick a ball in B uniformly at random and place it in A (provided
of course that B is not empty, else we do nothing). Fix s, t > 0 arbitrarily. By the invariance
principle, the numbers of balls in B after btnc steps and after btn+ s

p
nc steps are both close top

nRt , where Rt is a reflecting Brownian motion evaluated at time t, i.e. has the distribution of the
absolute value of an N (0, t)-variable. Precisely because B contains about

p
n balls in that period,

each ball in B after btnc steps has a probability bounded away from 0 and 1 to be selected and
placed back in A during the next bs

p
nc steps. In other words, even though the number of balls in

B remains essentially unchanged between btnc and btn+ s
p

nc steps, the precise contain of urn B
evolves significantly.
Now imagine a stochastic process governed by the contain of urn B. Suppose that the one-
dimension distributions of this process can be renormalized as n → ∞ in such a way that they
have a non-degenerate limit, say µr , when there are approximately r

p
n balls in B. Let n be large,

t > 0 fixed and let s vary. The process observed after btn+ s
p

nc steps then seems to be in statis-
tical equilibrium, in the sense that its one-dimensional distributions do not change much when s
increases. More precisely the almost equilibrium law can be expressed as the mixture

∫ ∞

0

µrP(Rt ∈ dr) .

However this is only a pseudo-stationarity as this almost equilibrium distribution depends on the
parameter t.
The rest of this work is devoted to the rigorous analysis of this two-time-scale phenomenon in
the special case when the stochastic process alluded above is a fragmentation-coagulation process
induced by a natural modification of Pitman’s coalescing random forests [9].

1.2 Fragmentation-coagulation of random forests

Pitman considered the following random dynamics: one first picks a tree with n labeled vertices
uniformly at random, and one deletes its edges one after the other, also uniformly at random. At
each step the tree-component containing the edge which is deleted splits into two smaller trees, so
after k ≤ n−1 steps, we obtain a forest with k+1 trees, and the process terminates after n−1 steps
when all vertices are isolated. Pitman’s motivation for considering these edge-deletion dynamics
stems from its connexion with the additive coalescence. The latter governs the evolution of a
particle system in continuous times in which pairs of particles coalesce with a rate proportional to
the sum of their masses. More precisely, Pitman pointed out that the process of the sizes of the tree-
components in the forests resulting from the edge-deletion dynamics is a Markovian fragmentation
chain, and that time-reversal yields the discrete-time skeleton of the additive coalescent started
from n monomers (i.e. n atoms each having a unit mass).
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On the one hand, it is well-known from the work of Aldous [1] that the uniform random tree on
a set of n vertices can be rescaled (specifically edges by a factor 1/

p
n and masses of vertices by a

factor 1/n) and then converges weakly as n→∞ towards the Continuum Random Tree (for short,
CRT). On the other hand, Evans and Pitman [7] proved that the additive coalescent started from
a large number of monomers possesses a scaling limit, which is known as the standard additive
coalescent. Roughly speaking, Aldous and Pitman [2] put the pieces together: they showed that
the properly rescaled edge-deletion procedure on finite trees converges weakly to a Poissonian
logging of the CRT. The latter induces the CRT fragmentation of masses, denoted here by (Ft)t≥0,
and in turn this yields the standard additive coalescent upon time-reversal.

We consider in this work an evolution which combines edge-removal and edge-replacement, and
should be viewed as an avatar of the urn dynamic depicted in the first part. In this direction it
will be convenient to use marks on edges, agreeing that a mark on an edge means that this edge
has been removed, while the absence of mark means that this edge is present. For each fixed n,
we first pick a tree on n vertices uniformly at random and declare that initially all edges have no
mark. At each step we flip a fair coin. If head comes up then we put a mark on one edge chosen
uniformly at random amongst the un-marked edges (provided of course that there still remains
at least one edge without mark; else we do nothing), while if tail comes up then we erase the
mark of one edge chosen uniformly at random amongst the marked edges (provided of course
that there exists such an edge; else we do nothing). For every integer k ≥ 0, we denote by F (n)k

the random forest which results from removing the marked edges after the k-th step and by X(n)k

the collection of the sizes of the tree-components in F (n)k rescaled by a factor 1/n and ranked in

the decreasing order. In a technical jargon, X(n)k is a random mass-partition, that is a decreasing
sequence of positive real numbers with sum 1. Plainly the addition of a mark corresponds to a
fragmentation event and erasure to a coalescence; in other words the chain (X(n)k )k∈N evolves by
fragmentation and coagulation.

Our purpose is to investigate the asymptotic behavior in distribution of X(n)k as k, n → ∞. This
is easy as far as only one-dimensional distributions are concerned. Indeed Donsker’s invariance
principle implies that when n is large, the number of marks after btnc steps is about

p
nRt , where

(Rt : t ≥ 0) is a reflected Brownian motion. It then follows from results in Aldous and Pitman
[2] that for every fixed t > 0, X(n)btnc converges weakly as n → ∞ towards FRt

, the CRT mass-
fragmentation observed at the independent random time Rt .

It turns out that things are more subtle for finite-dimensional marginals. The simple rescaling
of times by a factor n is too crude and the asymptotic behavior in law is better revealed in
the finer regime tn + s

p
n. Indeed our main result says that for every fixed t > 0, the pro-

cess (X(n)btn+s
p

nc)s∈R converges weakly in the sense of finite-dimensional marginals towards some
non-degenerate stationary process with stationary law given by the distribution of FRt

. Thus the
fragmentation-coagulation process X(n) exhibits subaging, in the sense that this process seems to
reach a statistical equilibrium in the regime tn+ s

p
n when n is large and t fixed.

The plan of the rest of this note is as follows. Our main result is stated and proved in Section 2 after
recalling some notions on the CRT. Finally Section 3 is devoted to some comments, complements
and open questions. Our approach owes much to the construction by Aldous and Pitman of the
standard additive coalescent via Poissonian cuts on the skeleton of a Continuum Random Tree.
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2 Main result

We start by recalling some elements on the CRT, refering the reader to Aldous [1], Evans [6] and
Le Gall [8] for background, and then state our main result.

Let T be a Brownian CRT; in particular T is almost surely a compact metric space which has the
structure of a real tree. Extremities of T are called leaves; in other words a ∈ T is a leaf means
that if a lies on some path joining two points b, c in T , then necessarily a = b or a = c. The subset
of leaves is totally disconnected; its complement is referred to as the skeleton. One endows T with
a probability measure µ carried by the subset of leaves and with a sigma-finite length measure λ
carried by the skeleton. More precisely the distance between to points in T , say a, b, is given by
λ([a, b]), where [a, b] stands for the path joining a to b in T .

We next introduce marks on the skeleton of T that appear and disappear randomly as time passes
at some constant rate. Specifically, we fix a parameter r > 0 and introduce a Poisson point process
on R× (0,∞)×T with intensity

1

2
ds⊗

1

2r
e−u/2rdu⊗ dλ .

An atom (s, u, x) should be interpreted as follows: at time s a mark appears at location x on the
skeleton and is erased at time s+u. In words, on any portion of the skeleton with length measure
`, marks appear with rate `/2 and the lifetime of each mark is exponentially distributed with
expectation 2r, independently of the other marks. For every s ∈ R, we denote byMr,s the random
point measure on the skeleton of T induced by the marks present at time s. It is immediate to
check that for each fixed s, conditionally on T ,Mr,s is a Poisson point measure on the skeleton of
T with intensity rλ.

Following Aldous and Pitman [2], for every s ∈ Rwe use the atoms of the Poisson random measure
Mr,s to decompose the set of leaves of T . More precisely, we decide that two leaves belong to
the same component if and only if Mr,s has no mass on the path that joins those leaves (note
that the probability of this event is exp(−r`) where ` is the length of the path between those two
leaves). The components are closed in the subset of leaves, and we denote by Yr,s the sequence of
their µ-masses ranked in the decreasing order. We stress that for every s ∈ R, Yr,s has the same
distribution as Fr , the CRT mass-fragmentation evaluated at time r, which was mentioned in the
Introduction and is described in Theorem 4 of [2].

Recall from the Introduction the construction of the fragmentation-coagulation chain X(n)k . We are
now able to state

Theorem 1. For each fixed t > 0, the fragmentation-coagulation process

(X(n)btn+s
p

nc)s∈R

converges weakly in the sense of finite dimensional distributions as n→∞ towards the mixed process

(YRt ,s)s∈R,

where Rt denotes a random variable on (0,∞) which is independent of the preceding processes and
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has the distribution of a reflected Brownian motion at time t, viz.

P(Rt ∈ dr) =

r

2

tπ
exp

�

−
r2

2t

�

dr , r > 0 .

The rest of this section is devoted to the proof of Theorem 1; the scheme of the argument is adapted
from Aldous and Pitman [2]. We first recall the formulation of the convergence of uniform random
trees towards the CTR via reduced trees.
Given T , we sample a sequence U1, . . . of i.i.d. random leaves according to the law µ, and for every
integer i ≥ 1, we denote by R(∞, i) the subtree reduced to the first i leaves, i.e. the smallest
connected subset of T containing U1, . . . , Ui . The reduced tree R(∞, i) is a combinatorial tree
(simple graph with no cycles) with leaves labeled by 1, . . . , i and some unlabeled internal nodes.
The paths between two adjacent internal nodes or between a leaf and an adjacent internal node
are called edges. The lengths of edges are given by the length measure λ on T , and the joint
distribution of the shape and the edge-lengths is described by Lemma 21 in [1].
For every integer n ≥ 2, we also consider a uniform random tree Tn on a set of n vertices, say
{1, . . . , n}, and assign length 1/

p
n to every edge. For every 1 ≤ i ≤ n, we denote by R(n, i) the

sub-tree reduced to the first i vertices. We agree that internal nodes with degree 2 are discarded,
so that the edge-length between two adjacent vertices in R(n, i) is (1+ j)/

p
n with j the number

of internal nodes with degree 2 lying on the path connecting these vertices. It has been shown by
Aldous (see (49) in [1] or Lemma 9 in [2]) that for every fixed i,

R(n, i) =⇒R(∞, i) as n→∞ , (1)

in the sense of weak convergence of the joint distributions of shape and edge lengths.
We then add and erase marks randomly on Tn as explained in the Introduction. For each integer
k ≥ 0, we denote byM (n)

k a random point measure on Tn that assigns a unit mass to each marked

edge after k steps, and for every i ≤ n by M (n,i)
k the restriction of M (n)

k to R(n, i). Similarly,
we also denote by M (∞,i)

r,s the restriction of the Poisson point measure Mr,s to the reduced tree
R(∞, i). The key to Theorem 1 lies in the following limit theorem which can be viewed as a
multi-dimensional extension of Equation (18) in [2]. Essentially it is a consequence of the law
of rare events combined with the convergence of reduced trees. Recall that the reduced trees are
defined by their shapes and edge-lengths, and that the set of shapes of trees with i vertices is finite.
The reduced trees R(n, i) and R(∞, i) should thus be viewed as random variables with values in
some Polish space, and weak convergence of random point measures should be understood in this
setting.

Lemma 1. Fix t > 0 and an integer i. The process of random point measures on the reduced trees

(M (n,i)
btn+s

p
nc,R(n, i))s∈R

converges weakly in the sense of finite dimensional distributions as n→∞ towards the mixed process
of point measures on the reduced CRT

(M (∞,i)
Rt ,s

,R(∞, i))s∈R,

where Rt denotes a random variable on (0,∞) which is independent of the preceding processes and
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has the distribution of a reflected Brownian motion at time t, viz.

P(Rt ∈ dr) =

r

2

tπ
exp

�

−
r2

2t

�

dr , r > 0 .

Proof. We first deal with the one-dimensional convergence in the statement, rephrasing (and
slightly developing) the argument for Equation (18) in [2].
By Skorohod’s representation, we may assume that the convergence (1) for the reduced trees
holds almost surely and not merely in distribution. Thus with a probability close to 1 when n is
large, the shape of R(n, i) coincides with that of R(∞, i), and the edge lengths of R(n, i) and of
R(∞, i) are close. We denote by N (n)k the total number of marks on Tn after k steps and consider a
sequence (rn)n∈N of integers with rn ∼ r

p
n for some r > 0. We first work for each n conditionally

on the event that N (n)btn+s
p

nc = rn.

Recall that Tn has n−1 edges, each of length 1/
p

n, so the number of edges in a segment of Tn isp
n times the length of that segment. We stress that when n is large, the number of edges in the

reduced tree R(n, i) is of order
p

n = o(n) and the number of marked edges in R(n, i) of order
O(1) = o(rn). This is important to justify the claims of asymptotic independence which will be
made below.
As (n− 1)−1rn

p
n ∼ r, it follows from the law of rare events that when n is large, the number of

marked edges after btn+ s
p

nc steps on a segment in Tn is approximately Poisson distributed with
parameter given by r times the length of that segment, and further to disjoint segments corre-
spond asymptotically independent Poisson variables. This entails that the conditional distribution
of M (n,i)

btn+s
p

nc converges weakly as n → ∞ towards a Poisson random measure on R(∞, i) with
intensity rλ, i.e.

L
�

M (n,i)
btn+s

p
nc | N

(n)
btn+s

p
nc = rn

�

=⇒ M (∞,i)
r,s , (2)

where the notation L (Z | Λ) refers to the conditional law of the variable Z given the event Λ.
We next present the main lines of the argument for extending (2) to multi-dimensional conver-
gence by analyzing the evolution of the random point measures as s increases. It is readily checked
that with probability one

N (n)btn+(s+s′)
p

nc ∼ rn ∼ r
p

n

uniformly for s′ ≥ 0 in an arbitrary bounded interval. Thus for every k = nt +O(
p

n), each atom
of M (n,i)

k has a probability close to 1/(2rn) ∼ 1/(2r
p

n) to be erased at the next step, where
the factor 1/2 accounts for the probability that head turns up when the fair coin is flipped. The
probability that a given atom ofM (n,i)

btn+s
p

nc has not been erased after bs′
p

nc further steps is close
to

�

1− 1/(2rn)
�bs′
p

nc ∼ exp(−s′/(2r))

when n is large; in other words if one unit of time corresponds to
p

n steps, each atom ofM (n,i)
btn+s

p
nc

is removed after a time which is approximately exponentially distributed with mean 2r. A similar
argument shows that asymptotically, each atom ofM (n,i)

btn+s
p

nc is removed or not after bs′
p

nc more
steps independently on the other atoms.
On the other hand, at each step, a mark appears on an un-marked edge with probability close to
1/(2(n− rn))∼ 1/(2n). Recalling that any given mark is also erased at each step with probability
close to 1/(2r

p
n), and neglecting the event of multiple appearances and erasures of a mark
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whose probability is of lower order, we deduce that the probability that an edge with no mark
after btn+ s

p
nc steps be marked after bs′

p
nc further steps is

bs′
p

nc
∑

j=1

1

2n

�

1−
1

2r
p

n

� j

=
r
p

n

 

�

1−
1

2r
p

n

�

−
�

1−
1

2r
p

n

�bs′
p

nc+1
!

∼
r
p

n

�

1− exp

�

−
s′

2r

��

.

It then follows from the law of rare events that for any given segment of R(n, i) with length
` (i.e. with `

p
n edges), the number of marked edges after btn+ (s+ s′)

p
nc steps which were

un-marked after btn+ s
p

nc steps is approximately Poisson with parameter

r`

�

1− exp

�

−
s′

2r

��

.

Further, one checks readily that the evolutions of marks on a given finite sequence of disjoint
segments are asymptotically independent.

Putting the pieces together, this shows that when n is large, the distribution ofM (n,i)
btn+(s+s′)

p
nc given

M (n,i)
btn+s

p
nc is close to that of a measure obtained fromM (n,i)

btn+s
p

nc by removing each atom with prob-
ability 1− exp(−s′/(2r)) independently one of the others (i.e. by thinning), and further adding
an independent Poisson measure on R(n, i) with intensity r

�

1− exp
�

−s′/2r
��

λ. Comparing
with the evolution of the random point measureM (∞,i)

r,s when s increases, we see that (2) can be
extended as follows: for every s′ ≥ 0 we have

L
��

M (n,i)
btn+s

p
nc,M

(n,i)
btn+(s+s′)

p
nc

�

| N (n)btn+s
p

nc = rn

�

=⇒
�

M (∞,i)
r,s ,M (∞,i)

r,s+s′

�

.

An iteration based on the obvious Markov property of the processes of the radom measures in-
volved (in the case of (M (∞,i)

r,s )s∈R, this Markov property follows from the absence of memory of
the exponential variables that specify the lifetime of the marks) enables us to conclude that

L
�
�

M (n,i)
btn+s′

p
nc

�

s′≥s
| N (n)btn+s

p
nc = rn

�

=⇒
�

M (∞,i)
r,s′

�

s′≥s
, (3)

in the sense of finite dimensional distributions.

All that we need now is to get rid of the conditioning in (3), which is straightforward. Indeed
Donsker’s invariance principle shows that there is the weak convergence

1
p

n
N (n)btn+s

p
nc =⇒ Rt ,

where Rt is a random variable distributed as in the statement. On the other hand, it is easy seen
from the construction of the random point measuresMr,s that the finite-dimensional distributions
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of the process
�

M (∞,i)
r,s′

�

s′≥s
depend continuously on the parameter r. We derive from above that

�

M (n,i)
btn+s′

p
nc

�

s′≥s
=⇒

�

M (∞,i)
Rt ,s′

�

s′≥s

in the sense of finite dimensional distributions, which is our claim. �
We now explain how Theorem 1 follows from Lemma 1, focussing on one-dimensional distribu-
tions as the multi-dimensional case is similar but with heavier notation.

For every integers n, k ≥ 1, we denote by Π(n)k the random partition of {1, . . . , n} induced by the

marks on edges of Tn after k steps, that is the blocks of Π(n)k are characterized by the property that

there is no mark on the paths connecting two vertices in the same block. By definition, X(n)k is the

sequence of the sizes of the blocks of Π(n)k ranked in the decreasing order and rescaled by a factor
1/n.

Similarly, for every s ∈ R, we denote by Π(∞)r,s the random partition of N such that two integers
j, j′ belong to the same block of Π(∞)r,s if and only if there is no atom of the independent mixed-
Poisson random measureMr,s on the path in T from the leaf U j to the leaf U j′ . Plainly the random
partition Π(∞)r,s is exchangeable and the asymptotic frequencies of its blocks are given by Yr,s, i.e.
the sequence of the µ-masses of the connected components of the CRT T cut at the atoms ofMr,s.

For every integer i ≤ n, we also denote by Π(n,i)
k (respectively by Π(∞,i)

r,s ) the restriction of Π(n)k

(respectively of Π(∞)r,s ) to the first i vertices. Plainly these restricted partition only depend on the
reduced tree R(n, i) and R(∞, i), and the marks on their edges after k steps and the atoms of the
random measureM (∞,i)

r,s , respectively. Lemma 1 implies that for every i, in the obvious notation,
when n→∞ there is the weak convergence

Π(n,i)
btn+s

p
nc =⇒ Π

(∞,i)
Rt ,s

. (4)

Repeating the argument of Aldous and Pitman for proving Theorem 3 in [2] enables us to conclude
from (4) and the preceding observations that

X(n)btn+s
p

nc =⇒ YRt ,s ,

which is the one-dimensional version of Theorem 1. The multidimensional case is similar, using
the full strength of Lemma 1.

3 A comment, a complement, and an open question

The stationary limiting process (YRt ,s)s∈R which appears in Theorem 1 is expressed as a mixture.
The mixing variable Rt may be thought of as the effective age of the system as it represents the
intensity of cuts along the skeleton of the CRT. In this direction, we note that the variables Rt are
stochastically increasing with t. We also mention that Rt can be recovered from a sample of YRt ,s.
Indeed, it follows easily from Theorem 4 in Aldous and Pitman [2] and the law of large numbers
for Poisson processes that if Ft(i) denotes the i-th largest term of Ft , the CRT fragmentation of
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masses observed at time t, then with probability one

Ft(i)∼
2

πt2i2 as i→∞ .

Equivalently

Yr,s(i)∼
2

πr2i2 as i→∞ ,

where Yr,s(i) denotes the i-th largest term of Yr,s and we conclude that

Rt = lim
i→∞

È

2

πYRt ,s(i)i
2 a.s.

We used uniform random trees Tn merely to stick to Pitman’s original framework [9]. Nonetheless
the same results hold if we replace Tn by any other sequence of discrete random tree which con-
verges to the Brownian CRT after rescaling edge lengths by a factor 1/

p
n and masses of vertices

by a factor 1/n (for instance critical Galton-Watson trees with finite variance and conditioned to
have total size n). In the same vein, the results of this note can be extended to certain sequences of
so-called birthday trees. Indeed, Camarri and Pitman [5] have established the weak convergence
of suitably rescaled birthday trees towards certain Inhomogeneous Continuum Random Trees. On
the other hand, dynamics of edge-deletion for birthday trees bears the same connection to the
additive coalescence as uniform random trees, except that the initial distribution of masses is in-
homogeneous. The asymptotic behavior of the latter has been characterized by Aldous and Pitman
[3], in the study of the entrance boundary of the additive coalescence. We thus have all the ingre-
dients needed to apply the arguments of the present work to this more general setting. Of course,
the limiting processes will then have different distributions.
Our aim in this work was to point at the phenomenon of subaging in a fragmentation-coagulation
process. The model that we used for this purpose is easy to deal with although somewhat artificial.
There are other discrete models for the evolution of random forests which may be more natural,
but are also much harder to investigate. Here is an example, which inspired by the subtree prune
and regraft algorithm; see Chapter 9 of Evans [6]. We now work with rooted forests on n vertices,
that is each tree has one distinguished vertex that serves as the root. At each step we flip a fair
coin. With probability 1/2 we delete an edge chosen uniformly at random in this forest. This
disconnects the tree containing that edge into two rooted subtrees. With probability 1/2, we
create a new edge between a vertex chosen uniformly at random and the root of a tree chosen
uniformly at random amongst the trees to which the chosen vertex does not belong. Our result
suggests that a similar subaging phenomenon might occur at the same scale as in the present
study. Proving or disproving this property would be interesting, but does not seem easy.
Acknowledgments. I would like to thank an Associate Editor and two anonymous referees for
their pertinent comments and suggestions on the first draft. This work has been supported by
ANR-08-BLAN-0220-01.
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