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Abstract
A compound Poisson process is considered. We estimate the current position of the stochas-
tic process based on past discrete-time observations (non-linear discrete filtering problem) in
Bayesian setting. We obtain bounds for the asymptotic rate of the expected square error of
the filter when observations become frequent. The bounds depend linearly on jump intensity.
Also, estimation of process’ parameters is addressed.

1 Introduction

Filtering of stochastic processes has attracted a lot of attention. One of the examples is target
tracking, when a target is observed over a discrete time grid, corresponding to the successive
passes of a radar. Another is signal processing, where the observations are discretized. In both
cases, we deal with discrete observations.

We will further refer to the (unobservable) process of interest as“signal”(“state”) X(t). Assume
that the time grid is uniform. We attempt to establish asymptotic properties of such filtering
when the time interval τ between successive observations goes to zero. The signal+noise
model takes the form of a state-space model: the process X(t) evaluated at the grid points is
a discrete-time Markov process (see (1) below). The observation equation is

Yk = X(kτ) + ek, k = 1, 2, ...

where ek are i.i.d. with density φ, mean 0 and variance σ2
e .

The goal of filtering is to estimate the current position X(t) of the process based on all
observations up to the moment. The filter given by

E[X(t) | Y1, ...Yk, τk ≤ t < τ(k + 1)]
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is optimal with respect to square loss. That is, it minimizes E(X(t)− X̂(t))2 among all filters
X̂(t) based on up-to-the-moment observations (see Lemma 1 below).

We consider a special case of stochastic process: piecewise-constant or pure-jump process. It
is a compound Poisson process

X(t) = X0 +
∑
i: si≤t

ξi

where (si, ξi) are the events of a 2-dimensional Poisson process on [0, T ]×R. The intensity of
this process is given by λ(s, y) = λh(y), where λ > 0 is a constant “time intensity” describing
how frequently the jumps of X occur and h(y) = hθ(y) is the “jump density” describing
magnitudes of jumps ξi of process X. Here θ ∈ Θ ⊂ Rp is a parameter (possibly unknown)
defining the distribution of jumps and errors.

In the Bayesian formulation, let parameters θ and λ have a prior density π(θ, λ) with respect
to Lebesgue measure. Assume that for each θ ∈ Θ, Eξ2

1 <∞. Also, assume that starting value
X0 has some prior density π0(·). The Bayesian approach lends conveniently to the combined
parameter and state estimation via the posterior expectation

̂(X(t), θ, λ) := Eπ,π0 [X(t), θ, λ | Y1, ...Yk, τk ≤ t < τ(k + 1)]

Remark 1
a) Generalizations to non-constant jump intensity λ = λ(·) and more general structure where
λ(s, y) depends on current position of X(s) are possible, but will not be considered here.

b) A generalization to d-dimensional signal and observations is immediate when the density
φ of the error distribution takes a special form: φ(x1, ..., xd) =

∏d
i=1 φi(xi). In this case, the

optimal filter can be computed coordinate-wise.

More realistic cases in context of target-tracking (like processes with pure-jump velocity or
pure-jump acceleration) are more complex and will be discussed elsewhere. A special case of
a piecewise-linear process with uniform observational errors was considered in [12], but their
suggested asymptotics of O(n−2) appear to be incorrect. A general approach to filters for
target-tracking was laid out in [11].

There is a substantial body of work dedicated to the filtering of jump processes in continuous
noise (see [14] and references therein). In [13], jump processes of much more general type are
considered, but the process is assumed to be observed without error.

Recently, considerable interest was devoted to practical methods of estimating the optimal
filter. Particle filters described in [6] and [1] are useful, and have generated a great deal of
interest in signal-processing community. Still, some convergence problems persist, especially
when non-linearity of the model increases. Typically, the optimal filter is infinite-dimensional
and requires great computational effort.

On the other hand, the popular Kalman filter (which is an optimal linear filter, see, e.g., [4])
is fast but is based on the assumption of normality for both process and errors and may not
be very efficient. In target-tracking literature, several low-cost improvements for Kalman filter
have been suggested. In particular, interactive multiple model (IMM) filters were described in
[2].

See Fig. 1 for an example of the process considered and a graphical comparison of optimal
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Figure 1: optimal non-linear and linear filters

and Kalman filters. Parameters are τ = 0.2, λ = 0.2, Normal jumps with mean 0 and variance
= 52, and σe = 1.

One of the questions is how much improvement does the (optimal) non-linear filter bring
compared to (linear) Kalman filter. Another is how does the error distribution affect this
improvement.

To clarify the role of the error distribution, consider a special case well-known in statistics:
when the signal is constant over time. Then the problem reduces to estimating a location
parameter for the density. Asymptotic efficiency (as number of observations, or sampling rate
n→∞) of such estimator depends on the type of density [5]. For example, a continuous (e.g.
Normal) density allows the expected squared error of O(n−1) which is typical for statistical
estimation problems; but for a discontinuous (e.g. Uniform) density the expected squared error
improves to O(n−2). A point of discontinuity can be used to estimate the location parameter
much more efficiently than, say, the mean of the distribution. This phenomenon was called
hyper-efficiency in [5]. These questions are addressed in detail in [8]. This paper presents some
results derived in [10]. In Section 2 we consider the asymptotics for the optimal filter, and
compare it with Kalman filter. Section 3 deals with estimating parameters λ, θ, and Section 4
contains the results of a simulation study.
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2 Filtering of a jump process

2.1 Recursive formulation

Denoting Xk := X(τk), we have

Xk = Xk−1 + ζk (1)
Yk = Xk + ek

Here, ζk is a sum of jumps of X on the interval [τ(k − 1), τk). Thus, {ζk}k≥1 are i.i.d. with
an atom of mass e−λτ at 0 and the rest of the mass having (improper) density ψ̃ = ψ̃θ,λ
expressible in terms of the original density of jumps hθ. To simplify the notation, I will call ψ
a “density”, actually meaning that ψ(0) is a scaled δ-function, that is for any function g,∫

g(x)ψ(x)dx := e−λτ · g(0) +
∫
g(x)ψ̃(x)dx

Further on, subscripts θ, λ in φθ, ψθ,λ will be omitted.

The joint density of X0:k := (X0, ..., Xk), Y1:k := (Y1, ..., Yk), θ and λ is found as

p(x0:k, y1:k, θ, λ) = p(y1:k | x0:k, θ, λ) · p(x0:k | θ, λ) · π(θ, λ) =

= π(θ, λ) · π0(x0) ·
k∏
j=1

φ(yj − xj) ·
k∏
j=1

ψ(xj − xj−1) (2)

Let qk(x, θ, λ) :=
∫

Rk p(x0:k, Y1:k, θ, λ) dx0 ... dxk−1 be the unnormalized density of the latest
state Xk and parameters θ, λ given the observations Y1:k. The following relation is well-known
(see e.g. [6]).

Theorem 1.

q0(x, θ, λ) = πX0(x) · π(θ, λ),

qk(x, θ, λ) = φθ(Yk − x) ·
∫

R
ψθ,λ(x− z)qk−1(z, θ, λ) dz = (3)

= φθ(Yk − x) ·
[
e−λτqk−1(x, θ, λ) +

∫
R
ψ̃θ,λ(x− z)qk−1(z, θ, λ) dz

]
�

Remark 2
a) In order to use Theorem 1 for the estimation of state Xk, one should compute qj(x, θ, λ), j ≤
k consecutively, then compute marginal unnormalized density qk(x) :=

∫
qk(x, θ, λ) dθ dλ and

then find

X̂k := E(Xk|Y1:k) =

∫
R xqk(x)dx∫
R qk(x)dx

. (4)

b) Although not derived explicitly, the unnormalized density q has to do with a change of the
original probability measure to, say, Q, which makes the observations Y1, ..., Yk independent
of the process X(t), see [7]. This way, prior distributions on (θ, λ) and X(0) ensure that the
two measures are absolutely continuous with respect to each other. The change of measure
approach is often used in non-linear filtering.

The recursive formulas for the densities may be used to compute “on-line” updates as new
observations are coming in. Unfortunately, they generally cannot be integrated in closed form,
and approximations such as particle filters are used in practice.
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2.2 Multiple-block upper bound for expected square error

Next, we investigate asymptotic properties of the above filtering estimator X̂(T ) := X̂bnTc as
the observations become frequent (1/τ = n→∞). The following results were obtained when
the error distribution is considered known. Without loss of generality, assume T = 1 (since we
can always rescale time, and use the new jump intensity λT ). We assume that n is integer,
so that the last jump occurs at exactly 1. If n is not integer, then the estimation of X(1) is
based on Y1, ..., Ybnc, and the expected loss added on the interval (τbnc, 1] is of order 1/n, so
the overall asymptotics will not change.

The following discussion is based on the well-known fact (e.g. see [3, p. 84])

Lemma 1. For a square-integrable random variable X, sigma-algebra F and an F-measurable
random variable U ,

E[X − E(X|F)]2 ≤ E(X − U)2 �

Setting F := σ{Y1, ..., Yk}, we can see that the filtered estimator X̂k introduced by (4) has
the smallest expected square loss among all possible estimators of Xk based on observations
Y1:k. We will produce a sub-optimal estimate for X(1) based on the mean of observations for
a suitable interval. The difficulty lies in not knowing where exactly the last jump of process
X occurred.

Consider the intervals (blocks) going backwards (T1, T0], (T2, T1], ..., (TN , TN−1], where

T0 := 1
Tj := Tj−1 − (lnn)j/n, j = 1, ..., N

and the total number of blocks is N := b lnn
ln lnnc − 1; j-th block has length (lnn)j/n and nj

observations. The exact integer value of nj depends on the positioning of blocks, but it differs
from (lnn)j by no more than 1. Thus, in the future calculations we would sometimes use
(lnn)j instead of nj , as long as it will not change the asymptotic values of expressions.
Note that the total length of all blocks, for n large enough, is no greater than

lnn
n
· (lnn)

ln n
ln ln n−1 − 1

lnn− 1
=

n− lnn
n(lnn− 1)

< 1

Starting at the time 1, we will probe back one block of observations after another, stopping
whenever we believe that a jump has occurred.

Let Y j be the average of observations from the block j, that is

Y j := n−1
j

∑
k

Yk I(Tj <
k

n
≤ Tj−1).

Assumption 1. Let

χm :=
∑m
k=1 ek
σe
√
m

(5)

be the normalized sum of m errors. Assume that for the distribution of errors ek the following
is true. There exist constants C1, C2 and K > 0 such that for all sufficiently large m and
uniformly for all positive integers j,

E[χ2
m I(|χm| > C1 ·m

1
Kj )] < C2 exp(−m1/j).
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This assumption is satisfied for Normal errors with K = 2; in general, it requires ek to have
small tails. The following is simpler-looking but more restrictive than Assumption 1:

Assumption 1′. For χm given above, there exist constants G, γ > 0 such that for all suffi-
ciently large m, E exp(γ|χm|) ≤ G.

Proposition 1. Assumption 1′ implies Assumption 1 with K = 1.

Proof:
Suppose that Assumption 1′ is satisfied. Let Fm(.) be the distribution function of χm. Pick
C1 large enough, so that x2 < exp(γ|x|/2) for |x| > C1, and γC1/2 > 1.
Then for any j,∫

R
I{|x| > C1m

1/j}x2 dFm(x) ≤
∫

R
I{|x| > C1m

1/j} eγ|x|/2dFm(x) ≤

≤ exp(−γC1m
1/j/2)

∫
R
eγ|x|dFm(x) ≤ exp(−γC1m

1/j/2) ·G �

Theorem 2. Upper bound for E(X̂n(1)−X(1))2

Suppose that the error density φ is known and does not depend on the parameter θ. Then,
under Assumption 1, there exists a constant C such that for large enough n,

E(X̂n(1)−X(1))2 ≤ Cλ lnM n

n

with M = max{1 + 2
K , 2}.

Proof:
Consider N blocks as described above. Denote T ? the point of last jump of X: T ? = sup{0 ≤
t ≤ 1 : X(t)−X(t−) > 0}. Let also J? = the number of Block where the last jump happened.
The idea is to approximate T ?, then take the average of all observations from that Block.

Construct an estimate of X(1) as follows. Define j0 as

j0 := N ∧
(

inf
{
j ≥ 1 :

√
nj
|Y j − Y j+1|

σe
> 2C1 · n

1
Kj

j

})
(6)

Then, as our estimate of X(1), take X̃(1) := Y j0 . We will find an upper bound for the average
risk of this estimate, ` := E(X̃(1) − X(1))2. For this, we will need several inequalities, with
proofs to follow in the next section.

Case 1: Correct stopping
In the event S that the last jump of X occurred just before the Block j0,
S = {Tj0+1 < T ? ≤ Tj0} = {J? = j0 + 1}

`S := E[(X̃(1)−X(1))2IS ] ≤ C4 λ
ln2 n

n
(7.1)

Case 2: Late stopping
In the event L = {Tj0 < T ?} = {J? ≤ j0}

`L := E[(X̃(1)−X(1))2IL] ≤ C5 λ
(lnn)(1+2/K)∨2

n
(7.2)
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Case 3: Early stopping
In the event E that we stopped on the Block j0 but there was no jump of X, E = {T ? ≤ Tj0+1}

`E := E[(X̃(1)−X(1))2IE ] ≤ C6
(lnn)2−2/K

n
(7.3)

Now note that P (S ∪L ∪ E) = 1. Thus, ` = `S + `L + `E . Also, the bound for the asymptotic
rate of the estimator X̃ does not depend on the particular form of jump density hθ.

By Lemma 1, the risk of estimate X̂ does not exceed the risk of X̃. Even though the rate in
(7.3) does not depend on λ, it is of a smaller order. Combining (7.1) through (7.3), we obtain
the proof of the Theorem. �

2.3 Proofs of inequalities used in Theorem 2

Proof of (7.1)
If T ? ≤ Tj0 , then X(t) = X(1) for Tj0 < t < 1, and the squared loss from estimating X(1)
equals the variance of Y j0 , so that

E[(X̃(1)−X(1))2IS)] =
∑N−1
j=1 E[(Y j −X(1))2ISI(J? = j + 1)] ≤∑N−1

j=1 E[(Y j −X(1))2I(J? = j + 1)] ≤
∑N−1
j=1 P (a jump on Block j + 1) · σ2

e/nj

by independence of {ek} and process X. [Note that we used
∑N−1
j=1 in order to get rid of

randomness of j0 and therefore possible dependence on the Y j0 value.] Thus,

`S ≤
N−1∑
j=1

(λ lnj+1 n/n+ o(lnj+1 n/n)) · σ2
e ln−j n ≤ C4 λ

ln2 n

n
. �

Proof of (7.2)

The stopping rule (6) implies that for J? ≤ j ≤ j0, |Y j − Y j−1| ≤ 2σeC1n
− 1

2 + 1
K(j−1)

j−1 .
Thus, using the inequality (A−B)2 ≤ 2A2 + 2B2,

E[(X̃(1)−X(1))2IL] = E[(Y j0 −X(1))2IL] ≤

2 E
[(∑j0

j=J? |Y j − Y j−1|
)2

IL

]
+ 2 E

[
(Y J?−1 −X(1))2IL

]
≡ 2E1 + 2E2

Now,

E1 ≤
∑j0
j=J? P (a jump on Block J?)n

−1+ 2
K(j−1)

j−1 ≤

const · λ
n

(
lnJ

?

n+ o(lnJ
?

n)
)

(lnn)−(J?−1)+2/K ≤ const · λ
n

(lnn)1+2/K

(the inequalities hold regardless of j0, J?), and

E2 ≤ E[(Y J?−1 −X(1))2] ≤
∑N
j=2 E[(Y j−1 −X(1))2I(J? = j)] ≤∑N

j=2 E[(Y j−1 −X(Tj−2))2I(no jump on Block j − 1, a jump on Block j)] ≤

N∑
j=2

σ2
e(lnn)−(j−1) · λ

n

(
lnj n+ o(lnj n)

)
≤ const · λ ln2 n

n
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Consider separately the case J? = 1. Then, the summation for E1 has lower limit of J?+1 = 2,
and E2 changes to E[(Y 1 −X(1))2I(J? = 1)], so

E2 ≤ (σ2
e/ lnn+ Eξ2

1 + o(1)) · λ lnn
n
≤ const · λ lnn

n

because the probability of more than one jump on Block 1 is o(lnn/n) �

Proof of (7.3)
If the stopping occurred too early then X(t) = X(1) for Tj0+1 < t < 1. Also, the stopping
rule (6) implies that at least one of

|Y j0+1 −X(1)| > C1σen
− 1

2 + 1
j0K

j0
, |Y j0 −X(1)| > C1σen

− 1
2 + 1

j0K

j0

is true. Thus,

E[(X̃(1)−X(1))2IE ] ≤ E|Y j0 −X(1)|2 · P
(
|Y j0+1 −X(1)| > C1σen

− 1
2 + 1

j0K

j0

)
+

E
(
|Y j0 −X(1)|2I

[
|Y j0 −X(1)| > C1σen

− 1
2 + 1

j0K

j0

])
≡ E3 + E4.

By Assumption 1, E4 ≤
∑N
j=1 n

−1
j E

(
|χnj
|2I
[
|χnj
| > C1σen

− 1
2 + 1

jK

j

])
≤

C2

∑N
j=1 n

−1
j exp(−n1/j

j ) ≤ C2/n. This bound does not depend on λ!

To estimate E3, note that P
(
|Y j0+1 −X(1)| > C1σen

− 1
2 + 1

j0K

j0

)
would increase if n

− 1
2 + 1

j0K

j0
is

replaced by n
− 1

2 + 1
(j0+1)K

j0+1 , and consider the Chebyshev-type inequality

D2P (|Y j0+1 −X(1)| > D) ≤ E
[
|Y j0+1 −X(1)|2I(|Y j0+1 −X(1)| > D)

]
≡ E5

Then plug in D = C1σen
− 1

2 + 1
(j0+1)K

j0+1 and, similarly to E4, obtain E5 ≤ C2/n by Assumption 1.
Therefore

E3 ≤
∑N−1
j=1 σ2

e/nj · C2/n ·
(
C1σen

− 1
2 + 1

(j+1)K

j+1

)−2

≤

≤ C6

∑
j(lnn)−j · n−1 · (lnn)(j+1)(1− 2

(j+1)K
) = C6

∑
j

(lnn)1−2/K

n ≤ C6
(lnn)2−2/K

n �

2.4 Lower bound for expected square error

Let us, as before, have exactly n observations on the interval [0, T ], and we only need to
consider T = 1. Then X(1) = Xn.

To get the lower bound for the expected squared loss of the Bayesian estimate X̂n, consider
the estimator

X̆n = E(Xn|Y1, ..., Yn, Xn−1, In),

where In = I(Xn 6= Xn−1) is indicator of the event that some jumps occurred on the last
observed interval.

It’s easy to see that X̆n = E(Xn|Yn, Xn−1, In) and that E(X̆n −Xn)2 ≤ E(X̂n −Xn)2, since
the estimator X̆n is based on a finer sigma-algebra.
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Proposition 2. The expected square error for X̆n,

E(X̆n −Xn)2 = C λ/n+ o(1/n),

where C > 0 is some constant not depending on λ, n.

Proof:
Consider random variables Zm, m = 1, 2, ... having density ψ̃ so that Xm = Xm−1 + ImZm,
and let Wm = Zm + em. Joint distribution of Zm,Wm does not depend on n and

P (Zm ∈ dx,Wm ∈ dy) = ψ̃(x)φ(y − x).

Also note that on the event {In = 0}, Xn = Xn−1 and on the event {In = 1}, Yn = Xn−1+Wn.
Therefore,

X̆n = E(Xn|Yn, Xn−1, In) = Xn−1 + InE(Zn | Wn).

Let Ẑn := E(Zn |Wn). Then E(X̆n−Xn)2 = P (In = 1)E(Ẑn−Zn)2. Clearly, E(Ẑn−Zn)2 > 0
and P (In = 1) = 1− e−λ/n = λ/n+ o(n−1). This gives us the statement of Proposition with
C = E(Ẑn − Zn)2. �

This proposition shows us that the hyper-efficiency observed in case of estimating a constant
mean (different rates for different error distributions) here does not exist, because there’s
always a possibility of a last-instant change in the process. The following informal argument
shows what one can hope for with different error distributions.

Suppose that the number of observations J since the last jump is known. Set

X̌n = E(Xn|Y1, ..., Yn, J).

Just as before, E(X̌n −Xn)2 ≤ E(X̂n −Xn)2.

The optimal strategy is to use the latest J observations. If the error density φ has jumps (e.g.
uniform errors) then this strategy yields

E(X̌n −Xn)2 ' n−1(12 +
1
22

+ ...+
1
J2

) ' 1
n

On the other hand, for a continuous error density (e.g. normal errors)

E(X̌n −Xn)2 ' n−1(1 +
1
2

+ ...+
1
J

) ' lnn
n

2.5 Comparison to Kalman filter

The optimal linear filter for our problem is the well-known Kalman filter (see e.g. [4]). Its
asymptotic rate is of order n−1/2:

E(Xt − X̂t)2 =
√
λ/n · σξσe + o(1/

√
n)

This rate is much worse than lnM n/n given by Theorem 2. See Fig. 1 for a graphical com-
parison of linear (Kalman) and optimal non-linear filters.
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3 Parameter estimation for the jump process

Next, our goal is to estimate the parameters of the process itself, that is, the time-intensity λ
and parameter θ describing jump density hθ, based on observations Yj , 0 ≤ jτ ≤ T . Recursive
formula (Theorem 1) will allow us to do it. The question is: how efficient are these estimates?

Assume, as before, that the error density φ is known. Without loss of generality, let σe = 1.
Also, assume that λ is bounded by some constants: 0 < Λ1 ≤ λ ≤ Λ2.

When the entire trajectory of the process X(t, ω) is known, that is, we know exact times
t1, t2, ... when jumps happened, and exact magnitudes ξi = X(ti)−X(ti−), i ≥ 1, the answer
is trivial. For example, to estimate the intensity, we can just take λ̂ :=

∑
i≥1 I(ti ≤ T )/T .

Likewise, inference about hθ will be based on the jump magnitudes ξi. It’s clear that these
estimates will be consistent only when we observe long enough, that is T → ∞. In fact, we
will consider limiting behavior of the estimates as both n and T become large.

Now, when the only observations we have are noisy Yj , we can try to estimate the locations and
magnitudes of jumps of process X. Let n be number of observations on the interval [0, 1]. Split
the time interval [0, T ] into blocks of m := bnβc observations each. Let the total number of
Blocks b = bTnm c (we would get a slightly suboptimal estimate by ignoring some observations).

Let Zk be the average of observations over Block k,

Zk =
1
m

m∑
j=1

Ym(k−1)+j

Consider several cases. Let α > 0 and β > 0 be specified later.

Case 1.
√
m|Zk+1 − Zk| ≤ mα.

In this case we conclude that no jumps occurred on any of Blocks k, k + 1.

Case 2.
√
m|Zk+1 − Zk| > mα,

√
m|Zk − Zk−1| ≤ mα,

√
m|Zk+2 − Zk+1| ≤ mα.

In this case we conclude that a jump occurred exactly between Block k and Block k + 1, that
is, at the time t = mk/n. Let us estimate the magnitude of this jump as ξ∗ = Zk+1 − Zk.

Note: accumulation of errors does not occur when estimating ξ because the estimates are based
on non-overlapping intervals.

Case 3.
√
m(Zk+1 − Zk) > mα and

√
m(Zk − Zk−1) > mα, or√

m(Zk+1 − Zk) < −mα and
√
m(Zk − Zk−1) < −mα,

In this case, we conclude that a jump has occurred in the middle of Block k, that is, at the
time t∗ = m(k − 0.5)/n. We estimate the magnitude of this jump as ξ∗ = Zk+1 − Zk−1.

Case 4. Jumps occur on the same Block, or on two neighboring Blocks.
The probability that at least two such jumps occur on an interval of length 2m/n is asymptot-
ically equivalent to λ2(m/n)2b ≈ λ2Tm/n. We will pick T, β to make this probability small.

Of course, there are errors associated with this kind of detection, we can classify them as:

• Type I Error: we determined that a jump occurred when in reality there was none (this
involves Cases 2 and 3).
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• Type II Error: we determined that no jump occurred when in reality it did (this involves
Cases 1 and 4).

• Placement Error: we determined the location of a jump within a Block or two neighboring
Blocks incorrectly.

• Magnitude Error: the error when estimating the value of ξi (jump magnitude).

Note that the placement error is small, it is of order m/n. The magnitude error δi := ξ∗i − ξi
is based on the difference of averages of m i.i.d. values, and is therefore of order m−1/2.

3.1 Errors in jump detection: Lemmas

Let’s estimate the effect of Type I and II errors. Here, as in Section 2.2, we demand that
Assumption 1 hold.

Type I errors
Assume that there are no jumps over the Blocks k and k + 1, but we detected one according
to Case 2 or 3.
Consider

P (
√
m|Zk+1 − Zk| > mα) = P (|χm,k+1 − χm,k| > mα),

where χm,k = m−0.5
∑m
i=1 em(k−1)+i is the sum of normalized errors. Further,

P (|χm,k+1 − χm,k| > mα) ≤ 2P (|χm,k| ≥ 0.5mα).

From Assumption 1, for any integer j > 0

E
[
χ2
m,k I(|χm,k| > C1 ·m

1
Kj )
]
< C2 exp(−m1/j),

and an application of Chebyshev’s inequality yields

P (|χm,k| > C1 ·m
1

Kj ) < const · exp(−m1/j) ·m−
2

Kj < const · exp(−m1/j)

Picking j such that 1
Kj < α and for m large enough, summing up over bTnm−1c blocks, we

obtain

Lemma 2. As n→∞, provided that T grows no faster than some power of n,

P (Type I error) < const · Tnm−1 exp(−m1/j)→ 0. �

Type II errors
Suppose that a jump occurred on Block k, but it was not detected (Case 1), that is

max{|Zk−1 − Zk|, |Zk+1 − Zk|} ≤ mα−0.5

Of Blocks k − 1, k + 1, pick the one closest to the true moment of jump. Without loss of
generality, let it be Block k − 1. Let ξ be the size of the jump. Then, the averages of X(t) on
Blocks k and k − 1, Xk and Xk−1, differ by at least ξ/2 and, conditional on ξ,

P (|Zk−1 − Zk| ≤ mα−0.5) ≤ 2P (|Zk −Xk| > |ξ|/4−mα−0.5) ≤

2P (2|χm,k| > |ξ|
√
m/4−mα) < 2P [|χm,k| > const ·mα(mε/4− 1)] ,
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as long as |ξ| > m−0.5+α+ε, for an arbitrary ε > 0. Picking j and using Assumption 1 in a way
similar to Lemma 2, we obtain, after summing up over bTnm−1c blocks, the upper bound on
Type II errors const · Tnm−1 exp(−m1/j). This bound will go to 0 faster than any power of
n and can be ignored.

We still need to consider the case of “small jumps”

P

(⋃
i

{
|ξi| ≤ m−0.5+α+ε

})
≤ const (λT + o(T ))m−0.5+α+ε,

using the assumption 3(c) below that density of ξi is bounded in a neighborhood of 0 and the
total number of jumps is λT + o(T ). Finally, take into account Case 4 which yields an upper
bound const · λ2Tm/n. Summing up, we obtain

Lemma 3.
P (Type II error) < const · λT max{n(−0.5+α+ε)β , λnβ−1} �

3.2 Asymptotic behavior of parameter estimates

Since the jump magnitudes are independent of locations, we can determine the behavior of
estimates separately, that is consider first an estimate of λ, and then an estimate of θ. Sup-
pose that the true values of parameters are λ0 and θ0. Let t∗i be consecutive jumps of X(·)
determined by Cases 2, 3. Estimate the intensity λ by

λ∗ :=
1
T

∑
i≥1

I(t∗i ≤ T ).

From the previous discussion it’s clear that λ∗ is asymptotically equivalent (as T → ∞) to
λ̂ determined from the “true” trajectory of process X. Thus, it possesses the same property,
that is asymptotical normality with mean λ0 and variance C/T for some constant C.

To estimate θ, use the following

Assumption 2. Jump magnitude ξ belongs to an exponential family with densities hθ with
respect to some measure µ, hθ(x) = exp(θB(x)−A(θ))

Under this Assumption, A(θ) = ln
∫

exp(θB(x))dµ(x). Also, A′(θ) = EθB(ξ) and I(θ) :=
A′′(θ) = V arθ[B(ξ)] is Fisher information. We follow the discussion in [9, Example 7.1].

Assumption 3.
a) θ ∈ Θ, where Θ is a bounded subset of R
b) I(θ) ≥ Imin > 0
c) hθ(x) is bounded in a neighborhood of 0, uniformly in θ.
d) There is a constant γ > 0 such that for large enough M there exists ∆ = ∆(M) such that
P (|ξi| > ∆) = o(M−1) and

b∆ := sup|x|≤∆

∣∣∣∣ ∂∂x (lnhθ(x))
∣∣∣∣ = sup|x|≤∆|θB′(x)| = o(Mγ)

Define the log-likelihood function based on N∗ estimated jumps (determined in Cases 2, 3)

L∗(θ) =
N∗∑
i=1

lnhθ(ξ∗i )



222 Electronic Communications in Probability

Theorem 3. Let Assumptions 1-3 hold. Then the maximum likelihood estimate θ∗ =
argmaxθ∈Θ L∗(θ) is asymptotically normal, that is√

λ0T (θ∗ − θ0)→ N [0, I(θ0)−1] (8)

in distribution as n→∞, and T →∞ no faster than T = nκ, where κ < (3 + 2γ)−1.

Proof:
According to Cases 1-4, the estimated jump magnitudes are

ξ∗i = (ξi + δi)IEC + ξ0
i IE ,

where E is the exceptional set where Type I and II errors occurred, ξ0
i are the estimates

of ξ resulting from these errors, and δi are “magnitude errors” discussed in the beginning of
Section 3.

Pick β, κ, α and ε such that

κ+ β − 1 < 0, κ+ β(−0.5 + α+ ε) < 0, κ(1 + γ) < β/2

With α, ε arbitrarily small, this is achieved when 2κ(1+γ) < β < (1−κ), so that κ < (3+2γ)−1.
This choice, applied to Lemmas 2 and 3, ensures that P (E)→ 0 as n→∞. Therefore we can
disregard this set and consider only ξ∗i = ξi+ δi. Let N be the total number of jumps on [0, T ],
N → λ0T almost surely. Consider the log-likelihood function L(θ) =

∑N
i=1 lnhθ(ξi). Under the

conditions of Theorem, maximum likelihood estimate θ̂ = argmaxθ∈Θ L(θ) is asymptotically
normal with the given mean and variance. Next, we would like to show that the estimate θ∗

based on {ξ∗i }1≤i≤N∗ is close to θ̂ based on true values of ξi.

Note that both maxima exist because L′′(θ) = −NA′′(θ) and therefore L(θ) is a concave
function, the same is true for L∗(θ). Furthermore, for any θ in a neighborhood of θ̂,

L(θ) = L(θ̂)− (θ − θ̂)2

2
N A′′(θ̂) + o(θ − θ̂)2 (9)

According to Lemma 4 below, L(θ) − L∗(θ) = o(1) uniformly in θ, so that their maximal
values L(θ̂)−L∗(θ∗) = o(1) also. Therefore, L(θ̂)−L(θ∗) = o(1), and from (9), it follows that
(θ∗ − θ̂)2N A′′(θ̂) = o(1). Hence, (θ∗ − θ̂) = o(N−1/2), and the statement of Theorem follows
from the well-known similar statement for θ̂. �

Lemma 4. Under the conditions of Theorem 3, |L(θ)−L∗(θ)| = o(1) uniformly in θ, outside
some exceptional set E1 with P (E1) = o(1).

Proof:
Let M = λ0T and pick ∆ according to Assumption 3(d), so that probability of event E2 :=⋃
i{|ξi| > ∆} is o(1). Also, for a ν > 0, consider E3 :=

⋃
i{|δi| > n−β/2+ν}. Since ξi are

based on sums of m = bnβc i.i.d. terms, they are asymptotically normal, and P (E3) → 0
exponentially fast for any ν > 0. Let another exceptional set E4 := {N > λ0T + (λ0T )ζ},
P (E4)→ 0 as long as ζ > 1/2. Finally, N = N∗ outside the exceptional set E.

Thus, excluding E1 := E2 ∪ E3 ∪ E4 ∪ E, for large enough n,

|L(θ)− L∗(θ)| ≤
∑N
i=1 | lnhθ(ξi)− lnhθ(ξi + δi)| ≤

∑
|ξi|≤∆ |θB′(ξi)| · |δi| <

b∆Nn
−β/2+ν ≤ const · (λ0T + o(T ))1+γ n−β/2+ν ≤ const · λ1+γ

0 n−β/2+ν+κ(1+γ)
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The statement of Lemma follows as κ(1 + γ) < β/2. �

Assumption 3(d) is the hardest to verify. It holds, e.g., in following cases:
a) when B′(x) is bounded. For example, exponential distribution with
hθ(x) = exp(−θx+A(θ)), x ≥ 0.
b) The normal distribution with hθ(x) = exp(−θx2 +A(θ)). Here one can pick ∆(M) = lnM ,
and then b∆ = θ ln (M)/2 = o(Mγ) for arbitrarily small γ.

4 Simulations

The author has simulated the optimal filter for the jump process using the particle filtering
method described in [6]. The results of simulation are given in Table 1. The parameters are
λ = 0.2, Normal jumps with variance = 102 and σe = 1, and n = 1/τ varies.
For each sample path of the process, the ratio of effectiveness of non-linear filter to the linear
one was found:

R :=

[∑nT
t=1(X̂t −Xt)2∑nT
t=1(X̃t −Xt)2

]1/2

,

where X̂t is the optimal non-linear filter at time t and X̃t is the Kalman filter. Also, the
estimate of mean square error E(X̂t−Xt)2 of the optimal non-linear filter is given, along with
its standard error. In each case, N = 25 sample paths were generated.

n 5 10 15 20 25 30 50
R 0.353 0.252 0.244 0.232 0.229 0.211 0.190
MSE(Opt.) 0.277 0.197 0.149 0.141 0.132 0.126 0.088
St.Error (MSE Opt.) 0.032 0.016 0.013 0.009 0.011 0.012 0.009

Table 1. Simulation results

This and other simulations lead us to believe that the optimal filter becomes more effective
relative to the linear filter when:

a) τ → 0 (we know that from the asymptotics, as well as Table 1).
b) Noise variance σ2

e increases.
c) jump magnitudes increase, making the process more “ragged”.
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