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Abstract

We give a simple and direct proof of the existence of a spectral gap under some Lyapunov
type condition which is satisfied in particular by log-concave probability measures on R

n. The
proof is based on arguments introduced in [2], but for the sake of completeness, all details are
provided.

1 Introduction and main results.

Let µ(dx) = e−V (x) dx be a probability measure on R
n. For simplicity, we will always assume

V is C2 and lower bounded. The famous Bakry-Emery criterion tells us that if V is such
that Hessx(V ) ≥ α Id in the sense of quadratic forms, for some α > 0 and all x ∈ R

n (i.e. V
is uniformly convex), then µ satisfies the Gross logarithmic Sobolev inequality. See [1] for a
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comprehensive introduction to this topic. If α = 0 this result is no more true (think to the
two sided exponential distribution). However, in [3], S. Bobkov showed that in this case µ still
satisfies a Poincaré inequality

Varµ (f) ≤ CP

∫

|∇f |2 dµ , (1.1)

for all smooth f . Actually Bobkov (see [3] Thm 1.2) proved a stronger result giving a lower
bound for the isoperimetric constant of log-concave probability measures, from which (1.1)
follows using Cheeger’s bound. In one dimension bounds are even more precise (see [3, 6]). In
particular such measures satisfy the L

1 version of Poincaré inequality, i.e. there exists some
CC such that for all nice f with median equal to 0,

∫

|f | dµ ≤ CC

∫

|∇f | dµ , (1.2)

In the recent paper [2], the authors developed a general strategy to get tractable conditions for
the Poincaré inequality (1.1) (as well as for weak Poincaré inequalities) using some Lyapunov
control function. Pushing forward these ideas, a new proof of Bakry-Emery criterion is obtained
in [5]. In this note we shall give an analogous proof of Bobkov’s result. Actually we shall prove
a stronger result we shall state after introducing some basic notation.

In the whole paper |x| will denote the euclidean norm of x, B(x,R) is the open euclidean ball
with center x and radius R, 〈x, y〉 denotes the scalar product. λ denotes the Lebesgue measure
and L = ∆ − 〈∇V,∇〉 is the µ symmetric natural operator.

Let W be a C2 function. We shall say that W is a Lyapunov function if W ≥ 1 and if there
exist θ > 0, b ≥ 0 and some R > 0 such that for all x,

LW (x) ≤ − θ W (x) + b 1IB(0,R)(x) . (1.3)

Since V is locally bounded, it is known that µ restricted to B(0, R) satisfies both a L
2 Poincaré

inequality with constant κR and a L
1 Poincaré inequality with constant ηR. A very bad bound

for these constants is given by Di Ri eOscRV where Di (i = 2 or i = 1) is a universal constant
and OscRV = supB(0,R) V − infB(0,R) V .
The main results are the following

Theorem 1.4. If there exists a Lyapunov function W satisfying (1.3), then µ satisfies a L
2

Poincaré inequality (1.1) with constant CP = 1
θ
(1+bκR), where κR is the L

2 Poincaré constant
of µ restricted to the ball B(0, R).

Theorem 1.5. If there exists a Lyapunov function W satisfying (1.3) and such that |∇W |/W
is bounded by some constant C, then µ satisfies a L

1 Poincaré inequality (1.2) with constant
CC = 1

θ
(C + bηR), where ηR is the L

1 Poincaré constant of µ restricted to the ball B(0, R).

As we already mentioned the L
1 Poincaré inequality is stronger than the L

2 inequality thanks to
Cheeger’s bound. However we shall derive both inequalities separately and get the announced
bounds directly. As it will be clear in the proof, we cannot reach the optimal value of CP

(or CC , nor the bounds obtained in [3, 6]), but our method partially extends to riemannian
manifolds. We shall explain how. Also note that the L

2 result is not new: with some additional
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assumptions it was proved by Wu ([8]) using spectral methods. The result is also shown in [2]
using an indirect strategy based on the study of the asymptotic behavior of the semi-group
generated by L. The proof we shall give in the next section is direct and elementary.

In order to see how to apply these theorems in concrete situations it is natural to ask about
the construction of such Lyapunov functions. The next corollary furnishes a large class of
examples

Corollary 1.6. (1) If there exist α > 0 and R ≥ 0 such that for |x| ≥ R,

〈x,∇V (x)〉 ≥ α |x| , (1.7)

we may apply both Theorem 1.4 and Theorem 1.5.

(2) If there exist a ∈ (0, 1), c > 0 and R ≥ 0 such that for |x| ≥ R,

a |∇V (x)|2 − ∆V (x) ≥ c , (1.8)

we may apply Theorem 1.4.

The first condition is reminiscent of the theory of diffusion processes. It is called a “drift
condition” by many authors. The second condition is reminiscent of the spectral theory of
Schrödinger operators and for a = 1/2 the result has been known for a long time (see e.g. [4]
Proposition 5.3).

Finally, according to Lemma 2.2 below, the first condition in Corollary 1.6 is satisfied when V
is convex, hence

Corollary 1.9. If µ is log-concave, i.e. if V is a convex function, then µ satisfies both a L
2

and a L
1 Poincaré inequality.

It turns out that in the log-concave situation, L
1 and L

2 Poincaré inequalities are actually
equivalent (see [7]).
We may build convex functions on R that do not satisfy condition (2) in Corollary 1.6.

2 Proofs.

To prove Corollary 1.6 it is enough to build an ad-hoc Lyapunov function.

In case (1) we may consider a smooth function W such that W (x) = eγ |x| for |x| ≥ R and
γ > 0, and W (x) ≥ 1 for all x (we choose here some R > 0).
We have for |x| ≥ R,

LW (x) = γ

(

n − 1

|x|
+ γ −

x.∇V (x)

|x|

)

W (x)

so that, we may find some b > 0 such that

LW (x) ≤ − γ (α − γ −
n − 1

R
)W (x) + b 1IB(0,R)(x) . (2.1)
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Hence W is a Lyapunov function provided

θ = γ (α − γ −
n − 1

R
) > 0 ,

so that taking a larger R if necessary (this is of course not a restriction) we may always find
some sufficiently small γ > 0.
In addition |∇W |/W is bounded.

In case (2) we may consider a smooth function W such that W (x) = eγ (V (x)−inf V )+ε for
|x| ≥ R and some ε > 0, and W (x) ≥ 1 for all x. For |x| > R we then have

LW (x) = γ
(

∆V (x) − (1 − γ) |∇V (x)|2
)

W (x) ,

so that for γ = 1 − a we again obtain a Lyapunov function with θ = (1 − a) c.

To prove corollary 1.9 we need the following elementary

Lemma 2.2. If V is differentiable, convex and
∫

e−V (x) dx < +∞ then

(1) for all x, 〈x,∇V (x)〉 ≥ V (x) − V (0),

(2) there exist α > 0 and R > 0 such that for |x| ≥ R, V (x) − V (0) ≥ α |x|.

Proof.

The first statement is true for any convex function. Indeed t 7→ g(t) = V (tx) is convex, so
g(0) ≥ g(1) + (0 − 1)g′(1) hence the result.
The second statement requires the integrability condition. Choose K > V (0) + 1. Then the
level set AK = {x;V (x) ≤ K} has non empty interior (since V is continuous it contains B(0, r)
for some r > 0), is convex and has finite Lebesgue measure, since λ(AK) ≤ eK

∫

AK

e−V dx <

+∞. It follows that AK is compact. Indeed if a ∈ AK does not belong to B(0, r), the open
cone with basis B(0, r) and vertex a is included in AK , due to convexity. Since the volume of
this cone growths linearly in |a|, AK has to be bounded.
We may thus find some R > 0 such that AK ⊆ B(0, R − 1). Consider now some u such
that |u| = R. u does not belong to AK hence V (u) − V (0) ≥ 1. Since V is convex, t 7→
(1/t)(V (tu) − V (0)) is non decreasing. It follows that for |x| ≥ R, V (x) − V (0) ≥ |x|/R.

Now we start with the proof of Theorem 1.4.

If g is a smooth function, we know that Varµ(g) ≤
∫

(g−c)2 dµ for all c. In the sequel f = g−c
where c is a constant to be chosen later.
We may write

∫

f2dµ ≤

∫

−LW

θ W
f2 dµ +

∫

f2 b

θ W
1IB(0,R) dµ .

Note that the right hand side could be infinite, depending on the behavior of −LW/W which
is positive for large |x|.
We first focus on the first term in the right hand side of the previous inequality.
Actually, since we do not assume integrability conditions for W and its derivatives, in the
derivation below, we have first to assume that g is compactly supported and f = (g − c)χ,
where χ is a non-negative compactly supported smooth function, such that 1IB(0,R) ≤ χ ≤ 1.
All the calculation below are thus allowed. In the end we choose some sequence χn satisfying
1IB(0,nR) ≤ χn ≤ 1, and such that |∇χn| ≤ 1, and we go to the limit.
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Since L is µ-symmetric and integrating by parts we get
∫

−LW

W
f2 dµ =

∫

∇

(

f2

W

)

.∇W dµ

= 2

∫

(f/W )∇f.∇W dµ −

∫

(f2/W 2) |∇W |2 dµ

=

∫

|∇f |2 dµ −

∫

|∇f − (f/W )∇W |
2

dµ

≤

∫

|∇f |2 dµ .

Note that the limiting procedure is allowed by using monotone convergence (recall that −LW/W
is positive for large |x|) in the left hand side, and bounded convergence in the right hand side.

Now come back to
∫

f2 b
θ W

1IB(0,R) dµ. Since µ satisfies a Poincaré inequality on B(0, R) with
constant κR,

∫

B(0,R)

f2 dµ ≤ κR

∫

B(0,R)

|∇f |2 dµ + (1/µ(B(0, R)))

(

∫

B(0,R)

f dµ

)2

.

Choosing c =
∫

B(0,R)
g dµ the latter term is equal to 0. So, using W ≥ 1 we get

∫

B(0,R)

(f2/W ) dµ ≤

∫

B(0,R)

f2 dµ ≤ κR

∫

B(0,R)

|∇f |2 dµ . (2.3)

We have finally obtained
∫

f2dµ ≤
1

θ
(1 + bκR)

∫

|∇f |2 dµ , (2.4)

i.e a Poincaré inequality

Varµ(g) ≤
1

θ
(1 + bκR)

∫

|∇g|2 dµ ,

with CP = 1
θ
(1 + bκR), which is of course certainly not the best constant.

The previous method can be used to get the stronger L
1 Poincaré inequality, i.e Theorem 1.5.

Consider an arbitrary smooth function f with median 0. Recall the Lyapunov condition (1.3).
Again in the sequel g will be f − c for some well chosen c. To be completely rigorous we need
the same approximation procedure as in the previous proof.
Now

∫

|g| dµ ≤

∫

|g|
−LW

θ W
dµ + (b/θ)

∫

|g|1IB(0,R) dµ

≤ (1/θ)

∫

∇

(

|g|

W

)

.∇W dµ + (b/θ)

∫

|g|1IB(0,R) dµ

≤ (1/θ)

{
∫

∇|g|.∇W

W
dµ −

∫

|g| |∇W |2

W 2
dµ

}

+ (b/θ)

∫

|g|1IB(0,R) dµ

≤ (1/θ)

∫

|∇g|
|∇W |

W
dµ + (b/θ)

∫

|g|1IB(0,R) dµ .
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To control the first term we use that |∇W |/W is bounded by C. Next as in the previous section
we may control

∫

|g|1IB(0,R) dµ by using the L
1 Poincaré inequality satisfied by µ restricted to

B(0, R) yielding
∫

|g|1IB(0,R) dµ ≤ ηR

∫

B(0,R)

|∇g| dµ ,

provided the median of g on the ball B(0, R) is equal to 0. Since g = f − c we may always
choose some c for this property to hold. Finally

∫

|f |dµ ≤
∫

|g|dµ since f has median 0, so
that

∫

|f | dµ ≤
C + bηR

θ

∫

|∇f | dµ . (2.5)

Remark 2.6. Most of the arguments remain true if we replace the flat space R
n by a non-

compact riemanian manifold M , provided M is Cartan-Hadamard and with Ricci curvature
bounded from below (by a non positive constant). Indeed, in this case the construction of the
Lyapunov function (case (1) in Corollary 1.6) is the same replacing |x| by ρ(o, x) for some
given o ∈ M , where ρ denotes the riemanian distance. It turns out that ∆ρ2 is still bounded
and that the first statement in Lemma 2.2 is still satisfied. The only point is that V does not
necessarily grow at least linearly as a function of the distance, so that this assumption has to
be made in addition to the convexity of V .
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de probabilités, XXXVIII, volume 1857 of Lecture Notes in Math., pages 95–123. Springer,
Berlin, 2005. MR2126968

[7] M. Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Sur-
veys in differential geometry., volume IX, pages 219–240. Int. Press, Somerville MA, 2004.
MR2195409

http://www.ams.org/mathscinet-getitem?mr=1742893
http://www.ams.org/mathscinet-getitem?mr=2188585
http://www.ams.org/mathscinet-getitem?mr=2126968
http://www.ams.org/mathscinet-getitem?mr=2195409


66 Electronic Communications in Probability

[8] L. Wu. Uniformly integrable operators and large deviations for Markov processes. J. Funct.
Anal., 172(2):301–376, 2000. MR1753178

http://www.ams.org/mathscinet-getitem?mr=1753178

	Introduction and main results.
	Proofs.
	References

