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Abstract

We consider invasion percolation on the square lattice. In [3] it has been proved that the
probability that the radius of a so-called pond is larger than n, differs at most a factor of order
log n from the probability that in critical Bernoulli percolation the radius of an open cluster is
larger than n. We show that these two probabilities are, in fact, of the same order. Moreover,
we prove an analogous result for the volume of a pond.

1 Introduction

Invasion percolation is a stochastic growth model of an interesting self-organised critical nature:
it has characteristics that resemble critical Bernoulli percolation, even though the definition
of the invasion process does not involve any parameter (see [4, 14]). Comparison of the two
processes helps to gain new insights into both of them (see e.g. [5, 7, 10, 1]).

Recently a new comparison result, relating a so-called ‘pond’ in invasion percolation to
a critical Bernoulli percolation cluster, has been proved in [3]. This result is sharpened and
extended in the present paper.

In the remainder of this Section we define the invasion percolation model and state our
main results. The proofs, and important prerequisites, are given in Section 2.

For general background on percolation, see [6].
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Consider the hypercubic lattice Z
d with its set of nearest neighbour bonds E

d. If an edge e
has endpoints v and w, we write e = 〈v, w〉. For an arbitrary subgraph G = (V,E) of (Zd, Ed),
we define the outer boundary ∆G as

∆G = {e = 〈v, w〉 ∈ E
d : e /∈ E, but v ∈ V or w ∈ V }.

Invasion percolation is defined as follows. Let τ(e), e ∈ E
d, be independent random variables,

uniformly distributed on the interval [0, 1]. Using these variables, we construct inductively an
increasing sequence G0, G1, G2, . . . of connected subgraphs of the lattice. G0 only contains the
origin. If Gi = (Vi, Ei) has already been defined, we select the bond ei+1 which minimizes τ
on ∆Gi, take Ei+1 = Ei ∪ {ei+1}, and let Gi+1 be the graph induced by the edge set Ei+1.
The graph Gi is called the invaded cluster at time i, and G∞ = (V∞, E∞) = ∪∞

i=0Gi is the
invaded region at time infinity.

Invasion percolation can be coupled to Bernoulli bond percolation in the following standard
way. Let 0 ≤ p ≤ 1. For each bond e we say that e is p-open, if τ(e) < p. One can then
define, in an obvious way, p-open paths and p-open clusters, and the study of these objects
corresponds with Bernoulli bond percolation with parameter p.

From now on we will only consider the case when d = 2. It is well-known and easy to see
that for every p ∈ [0, 1] the following holds: once the invasion reaches an infinite p-open cluster,
it never leaves it again. Further, it is a classical result for 2D Bernoulli percolation that for
every p > pc (which equals 1/2 on the square lattice) there is (a.s.) a p-open circuit that
surrounds O and belongs to the infinite p-open cluster, and that (a.s.) there is no infinite pc-
open cluster. These properties easily imply that (a.s.) τ̂ := maxe∈E∞

τ(e) exists and is larger
than pc. Let ê denote the edge where the maximum is taken and suppose that it is added to
the invasion cluster at step î + 1. Following the terminology in [13], the graph Gî = (V̂ , Ê) is
called a ‘pond’, or, more precisely, the first pond of O. Since the invasion can be started at
any vertex v, not necessarily O, we have the more general notion ‘first pond of v’.

The above defined ‘pond’ is a very natural object (see [13] and [3]), and has several inter-
pretations, for instance the following. In this (somewhat informal) interpretation each vertex
(x, y) ∈ Z

2 represents a ‘polder’: the square piece of (flat) land (x−1/2, x+1/2)×(y−1/2, y+
1/2), surrounded by four dikes, corresponding with (the dual edges of) the four edges of (x, y).
The heights of the dikes are the τ values of the corresponding edges. Now suppose that water
is supplied from some external source to the polder represented by the vertex O. The water
in this polder will rise until its level reaches the height of the lowest of its four dikes, say a.
Then the water starts spilling over that dike, so that the level in the neighbouring polder (on
the other side of the dike) starts to rise. If each of the other three dikes of that neighbouring
polder is higher than a, the water in the polder of O will remain at level a until the above
mentioned neighboring polder has reached this same water level, after which the level in both
polders rises (‘simultaneously’) until it reaches the height of the lowest of the six dikes bound-
ing the union of these two polders, etc. On the other hand, if the neighboring polder of O has
a dike with height b < a, the water level in this polder will rise up to level b and then starts
spilling over that dike to a third polder (while the level in the polder of O is still a) etc. In
any case, (a.s.) eventually the water level at O will remain constant forever, namely at the
level τ̂ defined above, and the ‘connected’ set of polders with the same final level as O is the
above defined ‘first pond’. Since water keeps being supplied, the ‘surplus’ water will spill over
the lowest dike (corresponding with the earlier defined ê), on the boundary of this pond: the
outlet from this first pond to a second (lower level) pond. For clarity we note that for each
vertex in the latter pond, this pond plays the role of ‘first pond’.
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For further clarity we also note that the above ‘hydrologic’ interpretation has a more ‘sym-
metric’ version as follows: Now at each vertex there is an external water source (rain, e.g.).
Again each polder has a final water level, and the maximal connected set of polders with the
same final water level, containing a given vertex v, is the earlier defined (first) pond of v.
Then, if V̂ (v) denotes the vertices of the first pond of v, the collection {V̂ (v)}v∈Z2 is a random
partition of Z

2 which is stationary under translations.
Before stating the results, we first fix some notation. Let R̂ := max{|x| + |y| : (x, y) ∈ V̂ }

be the radius of the first pond. Let Pcr denote the product measure corresponding to critical
Bernoulli bond percolation. Let B(n) denote the box [−n, n]2 and ∂B(n) := B(n) \B(n− 1).
Let A and B be sets of vertices. In the context of Bernoulli percolation, we denote the event
that there is an open path from A to B by {A ↔ B}. In the context of invasion percolation

we denote the event that there is a p-open path from A to B by {A p↔ B}. To indicate that
there is an infinite open (or p-open) path from A, we use the same notation with B replaced
by ∞.
We use the notation g(n) ≈ h(n), n → ∞ to indicate that

log g(n)

log h(n)
→ 1, as n → ∞,

and g(n) ≍ h(n) to indicate that g(n)/h(n) is bounded away from 0 an ∞.

Van den Berg, Peres, Sidoravicius and Vares have proved the following theorem:

Theorem. [3, Proposition 1.3]

P (R̂ ≥ n) ≈ Pcr(0 ↔ ∂B(n)), n → ∞. (1.1)

Using ideas and techniques from [7], we obtain the following improvement of the theorem
above.

Theorem 1.

P (R̂ ≥ n) ≍ Pcr(0 ↔ ∂B(n)). (1.2)

Moreover, we show that not only the radius but also the volume of the pond behaves like
that of a critical percolation cluster: Let

s(n) = n2Pcr(0 ↔ ∂B(n)) C(0) = {v ∈ Z
2 : 0 ↔ v}.

Theorem 2. There exist constants 0 < c, c′ < ∞, such that

cPcr(0 ↔ ∂B(n)) ≤ Pcr(|C(0)| > s(n)) ≤ P (|V̂ | > s(n))

≤ c′Pcr(0 ↔ ∂B(n)).
(1.3)

Corollary 3.
P (|V̂ | ≥ n) ≍ Pcr(|C(0)| ≥ n). (1.4)

Remark: These results, and the proofs in Section 2 also hold (with some obvious adapta-
tions) for the triangular and the hexagonal lattice.

2 Proofs of the main results

In the following all the constants are strictly positive and finite without further mentioning.
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2.1 Preliminaries

Let

σ(n,m, p) = P (there is a p-open horizontal crossing of [0, n] × [0,m]),

where it is assumed that the crossing does not use bonds lying on the top or the bottom sides
of the rectangle. Given ε > 0, we define, for p > pc,

L(p, ε) = min{n : σ(n, n, p) ≥ 1 − ε}.

It is shown in [9, (1.24)], that there exists an ε0 > 0 such that for all ε ≤ ε0, the scaling of L(p, ε)
is independent of ε in the sense that for all fixed 0 < ε1, ε2 ≤ ε0 the ratio L(p, ε1)/L(p, ε2)
is bounded away from both 0 and ∞ as p ↓ pc. We let L(p) = L(p, ε0) for the entire proof.
Below we list some properties of L(p) that will play a crucial role in the proof of our results.
The first two follow fairly easily from the definitions and standard arguments (see Section 2.2
in [7] for further explanation and references). The third is (a consequence of) a deep result in
[9]

1. L(p) is decreasing, right continuous and L(p) → ∞ as p ↓ pc.

2. There is a constant D such that

lim
δ↓0

L(p − δ)

L(p)
≤ D ∀ p > pc. (2.1)

3. Theorem [9, Theorem 2] There are constants C0 > 0 and C1 such that for all p > pc

C0Pcr

[

0 ↔ ∂B(L(p))
]

≤ θ(p) ≤ C1Pcr

[

0 ↔ ∂B(L(p))
]

, (2.2)

where θ(p) = Pp(0 ↔ ∞) is the percolation function for Bernoulli percolation.

Finally we mention the following result on the behavior of Pcr(0 ↔ ∂B(n)). It is believed
(see Chapters 9 and 10 in [6] for background) that for 2D percolation on sufficiently ‘nice’
2D lattices this has a power law (with critical exponent 5/48) but so far this has only been
proved for site percolation on the triangular lattice (see [12]). The following is sufficient for
our purpose.
There exists a constant D1 such that

Pcr(0 ↔ ∂B(n))

Pcr(0 ↔ ∂B(m))
≥ D1

√

m

n
, 1 ≤ m ≤ n. (2.3)

For m = 1 this was proved in [2, Corollary (3.15)]. For general m it can be proved in a similar
way, using a block argument.

2.2 Proof of Theorem 1

Proof. As it is pointed out in [3], it is very easy to see that

P (R̂ ≥ n) ≥ Pcr(0 ↔ ∂B(n)), (2.4)

since the whole pc-open cluster of the origin is invaded before any edge with τ value larger
than pc is added to the invasion cluster. To prove that the l.h.s. of (2.4) is smaller than some



The size of a pond 415

constant c times the r.h.s. is more involved. First note that it suffices to prove this for the case
that n is of the form 2k. Indeed, if it holds for those special cases then, for any 2k−1 < n < 2k

we have

P (R̂ ≥ n) ≤ P (R̂ ≥ 2k−1) ≤ cPcr

[

0 ←→ ∂B(2k−1)
]

(2.3)

≤ c̄Pcr

[

0 ←→ ∂B(2k)
]

≤ c̄Pcr

[

0 ←→ ∂B(n)
]

.

First some additional notation and definitions. As in [7] we define log(0) k = k and log(j) k =

log(log(j−1) k) for all j ≥ 1, as long as the right-hand side is well defined. For k > 10 let

log∗ k = min{j > 0 : log(j) k is well-defined and log(j) k ≤ 10}, (2.5)

where the choice of the constant 10 is quite arbitrary. Clearly, log(j) k > 2, j = 0, 1, . . . , log∗ k
and k > 10. Further,

pk(j) := inf
{

p > pc : L(p) ≤ 2k

C2 log(j) k

}

, (2.6)

where the constant C2 will be chosen later. It is easy to see that pk(j) is well-defined for all

sufficiently large k (in fact, for all k with 2k > C2k), and that the sequence {pk(j)}log∗ k
j=0 is

decreasing in j. The definition of pk(j) together with the right continuity of L(p) and (2.1)
readily implies that

C2 log(j) k ≤ 2k

L(pk(j))
≤ DC2 log(j) k. (2.7)

Now we decompose P (R̂ ≥ n) according to the value of τ̂ as follows, where we note that since
τ has a continuous distribution, τ̂ does not coincide with pk(j) for any j = 0, . . . , log∗ k, almost
surely.

P (R̂ ≥ n) = P (R̂ ≥ n, pk(0) < τ̂) + P (R̂ ≥ n, τ̂ < pk(log∗ k))

+

log∗ k−1
∑

j=0

P (R̂ ≥ n, pk(j + 1) < τ̂ < pk(j)).
(2.8)

To bound the terms in (2.8), we will use the following observations made in [3]. Let p be an
arbitrary number between pc and 1.

Observations

(a) τ̂ < p if and only if the origin belongs to an infinite p–open cluster.

(b) If τ̂ > p and R̂ ≥ n, then there is a p–closed circuit around O in the dual lattice with
diameter at least n.

The event in observation (b) will be denoted by An,p.

An,p :=
{

∃ p-closed circuit around O in the dual with diameter at least n
}

.

Starting with the first term of (2.8), Observation (b) gives

P (R̂ ≥ n, pk(0) < τ̂) ≤ P (An,pk(0)). (2.9)
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It is well-known (see [3] for more explanation and references) that there exist C3 and C4 such
that for all p > pc,

P (An,p) ≤ C3 exp
{

− C4n

L(p)

}

(2.10)

Using the lower bound in (2.7) and the definition of log(0) k we get that

P (An,pk(0)) ≤ C3 exp
{

− C4n

L(pk(0))

} (2.7)

≤ C3n
−C4C2 (2.11)

As mentioned above, we have Pcr(0 ↔ ∂B(n)) ≥ Cn−1/2. Hence, by taking C2 ≥ 1/C4, we
can ensure that

P (An,pk(0)) ≤ C3n
−1 ≤ C̃3Pcr(0 ↔ ∂B(n)).

Remark: For future purpose we will even take C2 ≥ 2/C4.

For the second term of (2.8) we apply observation (a) to get

P (R̂ ≥ n, τ̂ < pk(log∗ k)) ≤ P (τ̂ < pk(log∗ k))
Obs. (a)

≤ θ(pk(log∗ k)).

Furthermore, using (2.2), (2.7), the definition of pk(log∗ k) and (2.3), we have

θ(pk(log∗ k)) ≤ C1Pcr

[

0 ↔ ∂B(L(pk(log∗ k))
]

≤ C1Pcr

[

0 ↔ ∂B(
2k

10DC2
)
]

≤ C5Pcr

[

0 ↔ ∂B(n)
]

,

for some constant C5.
Now let us consider a typical term in the summation in (2.8). The two observations a few

lines below (2.8) (and the definition of An,p) give

P (R̂ ≥ n, pk(j + 1) < τ̂ < pk(j))

≤ P (0
pk(j)←→ ∞, An,pk(j+1))

≤ θ(pk(j))P (An,pk(j+1)),

(2.12)

where in the last inequality we use the Harris-FKG inequality [6, Section 2.2]. To bound the
first factor in the right hand side of (2.12), note that

θ(pk(j))
(2.2)

≤ C1Pcr(0 ↔ L(pk(j)))

= C1Pcr(0 ↔ ∂B(2k))
Pcr(0 ↔ L(pk(j)))

Pcr(0 ↔ ∂B(2k))

(2.3)

≤ C1

D1
Pcr(0 ↔ ∂B(2k))

(

2k

L(pk(j))

)1/2

(2.7)

≤ C1

D1
Pcr(0 ↔ ∂B(2k))(DC2 log(j) k)1/2.

(2.13)
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The second factor in the right hand side of (2.12) can be bounded using (2.10), (2.7), (2.6)
and the choice of C2:

P (An,pk(j+1)) ≤ C3 exp
{

− C4n

L(pk(j + 1))

}

≤ C3(log(j) k)−1, (2.14)

Combining (2.13) and (2.14) gives

θ(pk(j))P (An,pk(j+1)) ≤ C8(log(j) k)−1/2Pcr

[

0 ↔ ∂B(n)
]

. (2.15)

To conclude the proof it suffices to show that

sup
k>10

log∗ k−1
∑

j=0

(log(j) k)−1/2 < ∞. (2.16)

Recall from the definitions that log(j) k > 2. Applying this to the case j = log∗ k shows that
the last term in the sum in (2.16) is at most (e2)−1/2. Similarly, the penultimate term is at
most (exp(e2))−1/2, etc. This leads to the finite upper bound C9 := 1√

e2
+ 1√

ee2
+ . . . for the

l.h.s. of (2.16).
Putting everything together we get

P (R̂ ≥ n) ≤
(

C̃3 + C5 + C8C9

)

Pcr

[

0 ↔ ∂B(n)
]

.

2.3 Proof of Theorem 2

For short, we use the following notation:

π(n) = Pcr(0 ↔ ∂B(n));

π(n, p) = Pp(0 ↔ ∂B(n)).

Recall that s(n) = n2π(n).
The difficult part of Theorem 2 is the third inequality. We need the following key ingredient.

Lemma 4. There exist constants C10 and C11, such that

Pp

(

0 ↔ ∞, |C(0) ∩ B(2k)| > s(n)
)

≤ θ(p) 2C10 exp

{

−(2C11)
−1 s(n)

22kπ(2k, p)

}

, p > pc, 2
k ≤ n.

Proof. The proof is based on the following moment estimate:

Ep

(

|C(0) ∩ B(2k)|t
∣

∣

∣
0 ←→ ∞

)

≤ C10 t!
[

C11 22k π(2k, p)
]t

, t ≥ 1. (2.17)

Very similar estimates were proved in [8, Theorem (8)] and in [11]. To adapt their proofs in
order to obtain (2.17), one merely needs that the inequality

∑n
m=0 π(n, p) ≤ Cnπ(n, p) holds

for all p ≥ pc (with some constant C independent of p). From (2.17), we readily get

Ep

(

exp

{

λ
|C(0) ∩ B(2k)|
22k π(2k, p)

}

∣

∣

∣

∣

∣

0 ←→ ∞
)

≤ C10
1

1 − λC11
, 0 < λ < C−1

11 .

Taking λ = (2C11)
−1 we easily obtain the estimate of the lemma.
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Proof of Theorem 2. The first inequality follows from [8, Remark (9)]. The second inequality
follows immediately from the fact that the pc-open cluster containing the origin is a subset of
V̂ .

The third inequality will be proved by a decomposition, somewhat similar to the one in
Theorem 1, but now two-fold: this time we will also decompose according to the value of R̂.
As in the proof of Theorem 1, without loss of generality we may assume that n is of the form
2N .

Let

En,k = {2k−1 < R̂ ≤ 2k, |V̂ | > s(n)}.
Note that s(n) ≥ C12n

3/2, and |B(2k)| ≤ C132
2k. Letting

k0 := max{k : C132
2k ≤ C12n

3/2},

for k < k0, R̂ ≤ 2k implies |V̂ | ≤ C132
2k ≤ s(n), and hence En,k = ∅. Therefore, we can write

P (|V̂ | > s(n)) ≤ P (R̂ > n) +

N
∑

k=k0

P (En,k). (2.18)

The first term on the right hand side is at most C14π(n), by Theorem 1. Consider now a
general term of the sum. We decompose this according to the value of τ̂ as follows:

P (2k−1 < R̂ ≤ 2k, |V̂ | > s(n))

= P (En,k, τ̂ > pk(0)) +

log∗ k
∑

j=0

P (En,k, pk(j + 1) < τ̂ < pk(j)),
(2.19)

where we let pk(log∗ k + 1) = pc.
We first look at the event in the first term on the right hand side. This event implies the

occurrence of A2k−1,pk(0). Hence, by virtue of (2.11), its probability is at most C15(2
2k)−C̃4C2 .

By the choice of C2, we have C̃4C2 ≥ 1. Hence the sum over k0 ≤ k ≤ N is bounded by
C16(2

2k0)−1. By the definition of k0, this is o(π(n)).
Consider now the event in the general term on the right hand side of (2.19). This event

implies the following two events:

(i) A2k−1,pk(j+1);

(ii) {0 pk(j)←→ ∞, |C(0; pk(j)) ∩ B(2k)| > s(n)};

where C(0; p) denotes the p-open cluster of 0. Since (i) is a decreasing and (ii) an increasing
event, the Harris-FKG inequality yields that the general term in (2.19) is at most the product
of the probabilities of event (i) and event (ii).
As to event (i), the same arguments that led to (2.14) (and noting the Remark a few lines
below (2.11)) show that for j < log∗ k this has probability less than or equal to

C3(log(j) k)−1 (2.20)

It is easy to see that, after increasing the value of C3 if necessary, this bound even holds for
j = log∗ k.
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As to event (ii), by Lemma 4 this has probability at most

θ(pk(j))(2C10) exp

{

−(2C11)
−1 s(n)

22k π(2k, pk(j))

}

. (2.21)

Applying the first inequality in (2.2) to the probability in the exponent in (2.21), and then
applying (2.13) twice, shows that (2.21) is at most a constant times

π(2k)(log(j) k)1/2 exp

{

−C18
22Nπ(n)

22kπ(2k)
(log(j) k)−1/2

}

. (2.22)

Combining this with (2.20) gives that the general term in (2.19) is at most

C17π(n)(log(j) k)−1/2 π(2k)

π(n)
exp

{

−C18
22Nπ(n)

22kπ(2k)
(log(j) k)−1/2

}

. (2.23)

Due to (2.3), this as at most

C19π(n)(log(j) k)−1/22(N−k)/2 exp
{

−C202
(N−k)(3/2)(log(j) k)−1/2

}

. (2.24)

We split the sums over j and k into two parts:

(1) 2(N−k) ≤ (log(j) k)1/2;

(2) 2(N−k) > (log(j) k)1/2.

In case (1), we bound the exponential in (2.24) by 1, and we have

(log(j) k)−1/22(N−k)/2 ≤ (log(j) k)−1/4 ≤ C21(log(j) N)−1/4.

The number of possible values of k is at most

(2 log 2)−1 log(j+1) k ≤ C22(log(j) N)1/8.

Hence the contribution of this case is bounded by

log∗ N
∑

j=0

(log(j) N)−1/8 ≤ C23.

In case (2), we bound the exponential by exp{−C202
(N−k)/2}, and we have

(log(j) k)−1/22(N−k)/2 ≤ 2(N−k)/2.

The sum over k can be bounded as follows:

∑

k:N−k≥c log(j+1) N

2(N−k)/2 exp{−C202
(N−k)/2} ≤ C24 exp{−C25(log(j) N)c1},

for some c1 > 0. The sum of the right hand side over j is again bounded. This proves the
theorem.
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