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Abstract

Let T be a random field weakly invariant under the action of a compact group G. We give
conditions ensuring that independence of the random Fourier coefficients is equivalent to Gaus-
sianity. As a consequence, in general it is not possible to simulate a non-Gaussian invariant
random field through its Fourier expansion using independent coefficients

1 Introduction

Recently an increasing interest has been attracted by the topic of rotationally real invariant
random fields on the sphere S

2, due to applications to the statistical analysis of Cosmological
and Astrophysical data (see [MP04], [Mar06] and [AK05]).
Some results concerning their structure and spectral decomposition have been obtained in
[BM07], where a peculiar feature has been pointed out, namely that if the development into
spherical harmonics

T =

∞∑

ℓ=0

m∑

−m

aℓ,mYℓ,m

of a rotationally invariant random field T is such that a00 = 0 and the coefficients aℓ,m,
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ℓ = 1, 2, . . . , 0 ≤ m ≤ ℓ are independent, then the field is necessarily Gaussian (the other coef-
ficients are constrained by the condition aℓ,−m = (−1)maℓ,m). In particular that non Gaussian
rotationally invariant random fields on the sphere cannot be simulated using independent co-
efficients.
Indeed a natural and computationally efficient procedure in order to simulate a random field
on the sphere is by sampling the coefficients aℓm. This is the route pursued for instance in
[Ka96] where it is proposed to generate a non Gaussian random field by choosing the aℓm’s to
be chi-square complex valued and independent. The authors failed to notice that the resulting
random field is not invariant, as a consequence of [BM07].
This fact (independence of the coefficients+isotropy⇒Gaussianity) is not true for isotropic
random fields on other structures, as the torus or Z (which are situations where the action
is Abelian). In this note we show that this is a typical phenomenon for homogeneous spaces
of compact non-Abelian groups. This should be intended as a contribution to a much more
complicated issue, i.e. the characterization of the isotropy of a random field in terms of its
random Fourier expansion.
In §2 and §3 we review some background material on harmonic analysis and spectral represen-
tations for random fields. §4 contains the main results, whereas we moved to §5 an auxiliary
proposition.

2 The Peter-Weyl decomposition

Let X be a compact topological space and G a compact group acting on X transitively with
an action that we note x → g−1x, g ∈ G. We denote by mG the Haar measure of G (see [VK91]
e.g.), from which one can derive the existence on X of the measure m =

∫
X

δg−1x dmG(g)
that is invariant by the action of G. We assume that both m and mG are normalized and
have total mass equal to 1. We shall write L2(X ) or simply L2 instead of L2(X ,m). Unless
otherwise stated the spaces L2 are spaces of complex valued square integrable functions. We
denote by Lg the action of G on L2, that is Lgf(x) = f(g−1x).
The classical Peter-Weyl theorem (see [VK91] again) states that, for a compact topological
group G, the following decomposition holds:

L2(G) =
⊕

σ∈Ĝ

⊕

1≤i≤dim(σ)

Hσ,i (2.1)

where Ĝ denotes the set of equivalence classes of irreducible representations of G. In this
decomposition G acts irreducibly on the subspaces Hσ,i. The isotypical subspaces

Hσ =
⊕

1≤i≤dim(σ)

Hσ,i

are uniquely determined, whereas their decomposition into the Hσ,i is not.
From (2.1) one can deduce a similar decomposition for L2(X ) by remarking that, if we fix x0 ∈
X , then the relation f̃(g) = f(g−1x0) uniquely identifies functions in L2(X ) as functions in
L2(G) that are invariant under the action of the isotropy group Gx0

. One verifies immediately
that the regular representation of G acts on the subspace of L2(G) of the functions that are
invariant under the action of Gx0

. Therefore the intersection of Hσ,i and L2(X ) is either {0}
or Hσ,i itself, thus providing the Peter-Weyl decomposition for L2(X ).
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Since the action of G commutes with the complex conjugation on L2(X ,m), it is clear that
for any irreducible subspace H, we have that H, its conjugate subspace is also irreducible.
If H = H, we can find orthonormal bases (φk) for H which are stable under conjugation; for
instance we can choose the φk to be real.
If H 6= H, then there are two cases according as the action of G on H is or is not equivalent to
the action on H. If the two actions are inequivalent, then automatically H ⊥ H. If the actions
are equivalent, it is possible that H and H are not orthogonal to each other. In this case
H ∩H = 0 as both are irreducible. The space S := H + H is stable under G and conjugation
and we can find K ⊂ S stable under G and irreducible such that K ⊥ K and S = K ⊕K is an
orthogonal direct sum. The proof of this is postponed to the Appendix so as not to interrupt
the main flow of the argument. If we drop the dependence on σ, we obtain the following
orthogonal decomposition of L2(X ,m) into irreducible finite dimensional subspaces

L2(X ,m) =
⊕

i∈I o

Hi ⊕
⊕

i∈I +

(Hi ⊕ Hi) (2.2)

where the direct sums are orthogonal and

i ∈ I
o ⇔ Hi = Hi, i ∈ I

+ ⇔ Hi ⊥ Hi.

We can therefore choose an orthonormal basis (φik) for L2(X ,m) such that
• for i ∈ I o, (φik)1≤k≤di

is an orthonormal basis of Hi stable under conjugation;
• for i ∈ I +, (φik)1≤k≤di

is an orthonormal basis for Hi (di =the dimension of Hi) and
(φik)1≤k≤di

is an orthonormal basis for Hi.
Such a orthonormal basis (φik)ik of L2(X ,m) has therefore the property that, if φik is an
element of the basis, then φik is also an element of the basis (possibly coinciding with φik).
We say that such a basis is compatible with complex conjugation.

Example 2.1. X = S
1, the one dimensional torus. Here Ĝ = Z and Hk, k ∈ Z is generated

by the function γk(θ) = eikθ. Hk = H−k and Hk ⊥ Hk for k 6= 0. All of the Hk’s are
one-dimensional.

Recall that the irreducible representations of a compact topological group G are all one-
dimensional if and only if G is Abelian.

Example 2.2. G = SO(3), X = G itself. The group SO(3) has one and only one irreducible
representation σℓ of dimension 2ℓ + 1 for every odd number 2ℓ + 1, ℓ = 0, 1, . . . . There
is a popular choice of a basis for the subspaces Hσℓ,i, given by the matrix elements of the
columns of the Wigner matrices (see again [VK91]). These 2ℓ + 1 subspaces are usually
indexed Hσℓ,−ℓ,Hσℓ,−ℓ+1, . . . ,Hσℓ,ℓ. We have that Hσℓ,0 = Hσℓ,0, whereas Hσℓ,−m = Hσℓ,m,
m = 1, . . . , ℓ. Therefore for every irreducible representation σℓ, there is a single subspace
that is self-conjugate, whereas the others are pairwise conjugated (and, in particular, they are
orthogonal to their conjugate).

Example 2.3. G = SO(3), X = S
2, the sphere. Among the subspaces Hσℓ,m introduced in

the Example 2.2 only Hσℓ,0 is invariant under the action of the isotropy subgroup of the north
pole. Therefore L2(S2) can be identified with the direct sum of these irreducible subspaces, for
ℓ = 0, 1, . . . . A popular choice of a basis of Hσℓ,0 are the spherical harmonics, (Yℓ,m)−ℓ≤m≤ℓ,
ℓ ∈ N (see [VK91]). Hσℓ,0 = span((Yℓ,m)−ℓ≤m≤ℓ) are subspaces of L2(X ,m) on which G

acts irreducibly. We have Y ℓ,m = (−1)mYℓ,−m and Yℓ,0 is real. In this case, therefore, all
irreducible subspaces are self-conjugated.
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By choosing φℓ,m = Yℓ,m for m ≥ 0 and φℓ,m = (−1)mYℓ,m for m < 0, we find a basis of Hℓ

such that if φ is an element of the basis, then the same is true for φ. Here dim(Hℓ) = 2ℓ + 1,
Hℓ = Hℓ, so that in the decomposition (2.2) there are no subspaces of the form Hi for i ∈ I +.

Example 2.4. G = SU(2), X = G itself. There is exactly one (up to equivalences) irreducible
representation of dimension j, j = 0, 1, . . . Again, if one chooses the basis given by the columns
of the Wigner matrices, for j even the subspaces Hσj ,i are pairwise conjugated, whereas for
j odd the situation is the same as SO(3) (one subspace self-conjugated and the other ones
pairwise conjugated). Actually, as it is well known, SO(3) is a quotient group of SU(2).

The arguments of this section also apply to the particular case of finite groups and their
homogeneous spaces. Of course in this case in the developments above only a finite number of
irreducible subspaces appears.

3 The Karhunen-Loève expansion

We consider on X a real centered square integrable random field (T (x))x∈X . We assume
that there exists a probability space (Ω,F ,P) on which the r.v.’s T (x) are defined and that
(x, ω) → T (x, ω) is B(X ) ⊗ F measurable, B(X ) denoting the Borel σ-field of X . We
assume that

E
[∫

X

T (x)2 dm(x)
]

= M < +∞ (3.3)

which in particular entails that x → Tx(ω) belongs to L2(m) a.s. Let us recall the main
elementary facts concerning the Karhunen-Loève expansion for such fields. We can associate
to T the bilinear form on L2(m)

T (f, g) = E
[∫

X

T (x)f(x) dm(x)

∫

X

T (y)g(y) dm(y)
]

(3.4)

By (3.3) and the Schwartz inequality one gets easily that

|T (f, g)| ≤ M‖f‖2‖g‖2 ,

M being as in (3.3). Therefore, by the Riesz representation theorem there exists a function
R ∈ L2(X × X ,m ⊗ m) such that

T (f, g) =

∫

X ×X

f(x)g(y)R(x, y) dm(x)dm(y) .

We can therefore define a continuous linear operator R : L2(m) → L2(m)

Rf(x) =

∫

X

R(x, y)f(y) dm(y) .

It is immediate that the linear operator R is trace class and therefore compact (see [Par05] for
details). Since it is self-adjoint there exists an orthonormal basis of L2(X ,m) that is formed
by eigenvectors of R.
Let us define, for φ ∈ L2(X ,m),

a(φ) =

∫

X

T (x)φ(x) dm(x) ,

Let λ be an eigenvalue of R, that is Rw = λw, for some non-zero function w ∈ L2(X ) and
denote by Eλ the corresponding eigenspace. Then the following is well-known.
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Proposition 3.5. Let φ ∈ Eλ.
a) If ψ, φ ∈ L2(X ,m) are orthogonal, a(ψ) and a(φ) are orthogonal in L2(Ω,P). Moreover

E[|a(ψ)|2] = λ‖ψ‖2
2.

b) If φ is orthogonal to φ, then the r.v.’s ℜa(φ) and ℑa(φ) are orthogonal and have the
same variance.

c) If the field T is Gaussian, a(φ) is a Gaussian r.v. If moreover φ is orthogonal to φ,
then a(φ) is a complex centered Gaussian r.v. (that is ℜai and ℑai are centered, Gaussian,
independent and have the same variance).

Proof. a) We have

E[a(φ)a(ψ)] = E
[∫

X

T (x)φ(x) dm(x)

∫

X

T (y)ψ(y) dm(y)
]

=

=

∫

X ×X

R(x, y)φ(x)ψ(y) dm(x) dm(y) = λ

∫

X

φ(y)ψ(y) dm(y) = λ〈φ, ψ〉 .

From this relation, by choosing first ψ orthogonal to φ and then ψ = φ, the statement follows.
b) From the computation in a), as a(φ) = a(φ), one gets E[a(φ)2] = λ〈φ, φ〉. Therefore, if

φ is orthogonal to φ, E[a(φ)2] = 0 which is equivalent to ℜa(φ) and ℑa(φ) being orthogonal
and having the same variance.

c) It is immediate that a(φ) is Gaussian. If φ is orthogonal to φ, a(φ) is a complex centered
Gaussian r.v., thanks to b).

¥

If (φk)k is an orthonormal basis that is formed by eigenvectors of R, then under the assumption
(3.3) it is well-known that the following expansion holds

T (x) =

∞∑

k=1

a(φk)φk(x) (3.5)

which is called the Karhunen-Loève expansion. This is intended in the sense of L2(X ,m) a.s.
in ω. Stronger assumptions (continuity in square mean of x → T (x), e.g.) ensure also that
the convergence takes place in L2(Ω,P) for every x (see [SW86], p.210 e.g.)
More relevant properties are true if we assume in addition that the random field is invariant
by the action G. Recall that the field T is said to be (weakly) invariant by the action of G if,
for fi, . . . fm ∈ L2(X ) the joint laws of (T (f1), . . . , T (fm)) and (T (Lgf1), . . . , T ((Lgfm)) are
equal for every g ∈ G. Here we write

T (f) =

∫

X

T (x)f(x) dm(x), f ∈ L2(X ) .

If, in addition, the field is assumed to be continuous in square mean, this implies that for every
x1, . . . , xm ∈ X , (T (x1), . . . , T (xm)) and (T (g−1x1), . . . , T (g−1xm)), have the same joint laws
for every g ∈ G. If the field is invariant then it is immediate that the covariance function R

enjoys the invariance property

R(x, y) = R(g−1x, g−1y) a.e. for every g ∈ G (3.6)

which also reads as
Lg(Rf) = R(Lgf) . (3.7)
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Then, thanks to (3.7), it is clear that G acts on Eλ. As moreover the Eλ’s are stable under
conjugation and

L2(X ) =
⊕

k

Eλk
,

it is clear that one can choose the Hi’s introduced in (2.2) in such a way that each Eλ is the
direct sum of some of them. It turns out therefore that the basis (φik)ik of L2(X ) introduced
in the previous section can always be chosen to be formed by eigenvectors of R.
Moreover, if some of the Hi’s are of dimension > 1, some of the eigenvalues of R have necessarily
a multiplicity that is strictly larger than 1. As pointed out in §2, this phenomenon is related
to the non commutativity of G. For more details on the Karhunen-Loève expansion and group
representations see [PP05].
Remark that if the random field is isotropic and satisfies (3.3), then (3.5) follows by the Peter-
Weyl theorem. Actually (3.3) entails that, for almost every ω, x → T (x) belongs to L2(X ,m).

Remark 3.6. An important issue when dealing with isotropic random fields is simulation.
In this regard, a natural starting point is the Karhunen-Loève expansion: one can actually
sample random r.v.’s α(φk), (centered and standardized) and write

Tn(x) =

n∑

k=1

√
λk α(φk)φk (3.8)

where the sequence (λk)k is summable. The point of course is what conditions, in addition to
those already pointed out, should be imposed in order that (3.8) defines an isotropic field. In
order to have a real field, it will be necessary that

α(φk) = α(φk) (3.9)

Our main result (see next section) is that if the α(φk)’s are independent r.v.’s (abiding nonethe-
less to condition (3.9)), then the coefficients, and therefore the field itself are Gaussian.

If Hi ⊂ L2(X ,m) is a subspace on which G acts irreducibly, then one can consider the random
field

THi
(x) =

∑
a(φj)φj(x)

where the φj are an orthonormal basis of Hi. As remarked before, all functions in Hi are
eigenvectors of R associated to the same eigenvalue λ.
Putting together this fact with (3.5) and (2.2) we obtain the decomposition

T =
∑

i∈I ◦

TH◦

i
+

∑

i∈I +

(TH
+

i
+ TH

−

i
) . (3.10)

Example 3.7. Let T be a centered random field satisfying assumption (3.3) over the torus
T, whose Karhunen-Loève expansion is

T (θ) =
∞∑

k=−∞

ak eikθ, θ ∈ T . (3.11)

Then, if T is invariant by the action of T itself, the fields (T (θ))θ and (T (θ + θ′))θ are equi-
distributed, which implies that the two sequences of r.v.’s

(ak)−∞<k<+∞ and (eikθ′

ak)−∞<k<+∞ (3.12)
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have the same finite distribution for every θ′ ∈ T. Actually one can restrict the attention to
the coefficients (ak)0≤k<+∞, as necessarily a−k = ak.
Conversely it is clear that if the two sequences in (3.12) have the same distribution for every
θ′ ∈ T, then the field is invariant.
Condition (3.12) implies in particular that, for every k ∈ Z, k 6= 0 the distribution of ak must
be invariant by rotation (i.e. by the multiplication of a complex number of modulus 1).
If we assume moreover that the coefficients ak appearing in (3.11) are independent, then the
discussion above implies that the random field T is invariant by the action of T if and only
if each of the complex r.v.’s ak has a distribution which is invariant with respect to rotations
of the complex plane. Hence, as it is easy to imagine a non Gaussian distribution satisfying
this constraint, in the case of the torus it is possible to have independent coefficients for a non
Gaussian random field.

4 Independent coefficients and non-Abelian groups

In this section we prove our main results showing that, if the group G is non commutative
and under some mild additional assumptions, independence of the coefficients of the Fourier
development implies their Gaussianity and, therefore, also that the random field must be
Gaussian. We stress that we do not assume independence of the real and imaginary parts of
the random coefficients.

Proposition 4.8. Let X be an homogeneous space of the compact group G. Let H+
i ⊂

L2(X ,m) be a subspace on which G acts irreducibly, having a dimension ≥ 2 and such that
if f ∈ H+

i then f 6∈ H+
i . Let (φk)k be an orthonormal basis of H+

i and consider the random
field

TH
+

i
(x) =

∑

k

akφk(x) .

for a family of r.v.’s (ak)k ⊂ L2(Ω,P). Then, if the r.v.’s ai are independent, the field TH
+

i
is

G-invariant if and only if the r.v.’s (ak)k are jointly Gaussian and E(|ak|2) = c (and therefore
also the field TH

+

i
is Gaussian).

Proof. Since G acts irreducibly on H+
i , we have

φk(g−1x) =

di∑

ℓ=1

Dk,ℓ(g)φℓ(x) ,

di being the dimension of H+
i and D(g) being the representative matrix of the action of g ∈ G.

Therefore

T (g−1x) =

di∑

ℓ=1

ãℓφℓ(x)

where

ãℓ =

di∑

k=1

Dk,ℓ(g)ak .

If the field is G-invariant, then the vectors (ãℓ)ℓ have the same joint distribution as (ak)k and
in particular the (ãℓ)ℓ are independent. One can then apply the Skitovich-Darmois theorem
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below (see [KLR73] e.g.) as soon as it is proved that g ∈ G can be chosen so that Dk,ℓ(g) 6= 0
for every k, ℓ. This will follow from the considerations below, where it is proved that the set
Zk,ℓ of the zeros of Dk,ℓ has measure zero.
Indeed, let G1 be the image of G in the representation space so that G1 is also a connected
compact group, and is moreover a Lie group since it is a closed subgroup of the unitary group
U(di). If the representation is non trivial, then G1 6= {1} and in fact has positive dimension,
and the Dk,ℓ are really functions on G1. For any fixed k, ℓ the irreducibility of the action of
G1 implies that Dk,ℓ(g) is not identically zero on G. Indeed, if this were not the case, we must
have 〈φℓ(g·), φk〉 = 0 for all g ∈ G1, so that the span of the gφℓ is orthogonal to φk; this span,
being G1-invariant and nonzero, must be the whole space by the irreducibility, and so we have
a contradiction.
Since Dkℓ is a non zero analytic function on G1, it follows from standard results that Zkℓ has
measure zero. Hence

⋃
kℓ Zkℓ has measure zero also, and so its complement in G1 is non empty.

¥

We use the following version of the Skitovich-Darmois theorem, which was actually proved by
S. G. Ghurye and I. Olkin [GO62] (see also [KLR73]).

Theorem 4.9. Let X1, . . . ,Xr be mutually independent random vectors in R
n. If the linear

statistics

L1 =

r∑

j=1

AjXj , L2 =

r∑

j=1

BjXj ,

are independent for some real nonsingular n×n matrices Aj , Bj , j = 1, . . . , r, then each of the
vectors X1, . . . ,Xr is normally distributed.

We now investigate the case of the random field TH , when H is a subspace such that H = H.
In this case we can consider a basis of the form φ−k, . . . , φk, k ≤ ℓ, with φ−k = φk. The basis
may contain a real function φ0, if dimH is odd. Let us assume that the random coefficients
ak, k ≥ 0 are independent. Recall that a−k = ak.
The argument can be implemented along the same lines as in Proposition 4.8. More precisely,
if m1 ≥ 0, m2 ≥ 0, the two complex r.v.’s

ãm1
=

ℓ∑

m=−ℓ

Dm,m1
(g)am

ãm2
=

ℓ∑

m=−ℓ

Dm,m2
(g)am

(4.13)

have the same joint distribution as am1
and am2

. Therefore, if m1 6= m2, they are independent.
Moreover a−m = am, so that the previous relation can be written

ãm1
= D0m1

(g)a0 +
ℓ∑

m=1

(
Dm,m1

(g)am + D−m,m1
(g)am

)

ãm2
= D0,m2

(g)a0 +

ℓ∑

m=1

(
Dm,m2

(g)am + D−m,m2
(g)am

)

In order to apply the Skitovich-Darmois theorem, we must ensure that g ∈ G can be chosen
so that the real linear R

2 → R
2 applications

z → Dm,mi
(g)z + D−m,mi

(g)z, m = 1, . . . , ℓ, i = 1, 2 (4.14)
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are all non singular. It is immediate that this condition is equivalent to imposing that
|Dm,mi

(g)| 6= |D−m,mi
(g)|.

We show below that (4.14) is satisfied for some well-known examples of groups and homoge-
neous spaces. We do not know whether (4.14) is always satisfied for every compact group. We
are therefore stating our result conditional upon (4.14) being fulfilled.

Assumption 4.10. There exist g ∈ G and 0 ≤ m1 < m2 ≤ ℓ such that

|Dm,mi
(g)| 6= |D−m,mi

(g)|

for every 0 < m ≤ ℓ.

We have therefore proved the following.

Proposition 4.11. Let X be an homogeneous space of the compact group G. Let Hi ⊂
L2(X ,m) be a subspace on which G acts irreducibly, having a dimension d > 2 and such
that Hi = Hi. Let (φk)k be an orthonormal basis of Hi such that φ−k = φk and consider the
random field

THi
(x) =

∑

k

akφk(x)

where the r.v.’s ak, k ≥ 0 are centered, square integrable, independent and a−k = ak. Then
THi

is G-invariant if and only if the r.v.’s (ak)k≥0 are jointly Gaussian and E(|ak|2) = c (and
therefore also the field THi

is Gaussian).

Putting together Propositions 4.8 and 4.11 we obtain our main result.

Theorem 4.12. Let X be an homogeneous space of the compact group G. Consider the
decomposition (2.2) and let

(
(φik)i∈I ◦ , (φik, φik)i∈I +

)
be a basis of L2(G) adapted to that

decomposition. Let

T =
∑

i∈I ◦

∑

k

aikφik +
∑

i∈I +

∑

k

(
aikφik + aikφik

)

be a random field on X , where the series above are intended to be converging in square
mean. Assume that T is isotropic with respect to the action of G and that the coefficients
(aik)i∈I ◦,k≥0, (aik)i∈I+ are independent. If moreover

a) the only one-dimensional irreducible representation appearing in (2.2) are the constants;
b) there are no 2-dimensional subspaces H ⊂ L2(X ), invariant under the action of G and

such that H = H;
c) The random coefficient corresponding to the trivial representation vanishes.
d) For every H ⊂ L2(X ), irreducible under the action of G and such that H = H,

Assumption 4.10 holds.
Then the coefficients (aik)i∈I ◦,k≥0, (aik)i∈I + are Gaussian and the field itself is Gaussian.

Theorem 4.12 states that if one wants to simulate a random field via the sampling of indepen-
dent coefficients, then in the decomposition (3.10) all the fields TH are necessarily Gaussian
with the only possible exception of those corresponding to subspaces H

• having dimension 1;

• having dimension 2 and such that H = H;
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• such that H = H, but not satisfying Assumption 4.10.

Let us stress with the following statements the meaning of assumption a)–d). The following
result gives a condition ensuring that assumption b) of Theorem 4.12 is satisfied.

Proposition 4.13. Let U be an irreducible unitary 2-dimensional representation of G and
let H1 and H2 be the two corresponding subspaces of L2(G) in the Peter-Weyl decomposition.
Then if U has values in SU(2), then H1 = H2 6= H1.

Proof. If we note

U(g) =

(
a(g) b(g)
c(g) d(g)

)

then one can assume that H1 is generated by the functions a and c, whereas H2 is generated
by b and d. It suffices now to remark that, the matrix U(g) belonging to SU(2), we have
a(g) = d(g) and b(g) = −c(g).

¥

Recall that the commutator G0, of a topological group G is the closed group that is generated
by the elements of the form xyx−1y−1

Corollary 4.14. Let G be a compact group such that its commutator G0 coincides with G

himself. Then assumptions a) and b) of Theorem 4.12 are satisfied. In particular these as-
sumptions are satisfied if G is a semisimple Lie group.

Proof. Recall that if G0 = G, G cannot have a quotient that is an Abelian group. If there was
a unitary representation U with a determinant not identically equal to 1, then g → det(U(G))
would be an homomorphism onto the torus T and therefore G would possess T as a quotient.
The same argument proves that G cannot have a one dimensional unitary representation other
than the trivial one. One can therefore apply Proposition 4.13 and b) is satisfied.

¥

Remark 4.15. It is easy to prove that Assumption 4.10 is satisfied when X = S
2 and

G = SO(3), if we consider the basis given by the spherical harmonics. As mentioned in
[BM07], this can be established using explicit expressions of the representation coefficients as
provided e.g. in [VMK88].
In the same line of arguments it is also easy to check the same in the cases X = G = SO(3)
and X = G = SU(2), with respect to the basis given by the columns of the Wigner matrices.
Actually in the Peter-Weyl decomposition of SO(3), the irreducible spaces H appearing in
addition to those in the decomposition of S

2 are of the type H ⊥ H and a similar situation
appears when switching from SO(3) to SU(2).

Remark 4.16. Assumption 4.10 is a sufficient condition for Proposition 4.11 to be true. Ac-
tually, in the case X = S

2 and G = SO(3), it is easy to see that Assumption 4.10 cannot hold
for the irreducible representation of dimension 3, for which however an ad hoc argument can
be developed. Besides this phenomenon, that is typical of the representations of dimension
3, we do not know of any example in which Assumption 4.10 is not satisfied and we are led
to conjecture that it holds in general. Remark that the validity of Assumption 4.10 depends
not only on the equivalence class of representations that is considered, but also on the par-
ticular basis of the irreducible subspace H under consideration, i.e. we do not know whether
Assumption 4.10 remains valid under a change of basis.
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5 Appendix

Proposition 5.17. Let V be a finite dimensional Hilbert space on which G acts unitarily, and
let V be equipped with a conjugation σ(v → v̄) commuting with the action of G. Let H be an
irreducible G-invariant subspace and let V = H + H.

a) If the actions of G on H and H are inequivalent, then H ⊥ H and V = H ⊕ H.

b) If the actions of G on H and H are equivalent, then either H = H or we can find an
irreducible G-invariant subspace K of V such that K ⊥ K and V = K ⊕ K.

Proof. Let P be the orthogonal projection V → H and A its restriction to H. Then, for every
h ∈ H, h′ ∈ H and g ∈ G, we have

〈g(Ah), h′〉 = 〈Ah, gh′〉 = 〈h, gh′〉 = 〈gh, h′〉 = 〈A(gh), h′〉

From this we get that G acts on A(H). The action of G on H being irreducible, we have
either A(H) = {0} or A(H) = H. In the first case H is already orthogonal to H. Otherwise
A intertwines the actions on H and on H, so that these are equivalent and V = H ⊕ H⊥.

V being the sum of two copies of the representation on H, there is a unitary isomorphism
V ≃ H ⊗ C

2 where C
2 is given the standard scalar product. So we assume that V = H ⊗ C

2.
G acts only on the first component, so that G acts irreducibly on every subspace of the form
H ⊗ Z, Z being a one dimensional subspace of C

2.

Let us identify the action of σ on H ⊗ C
2. Let σ0 be the conjugation on V defined by

σ0(u ⊗ v) = u ⊗ v̄ where v → v̄ is the standard conjugation (z1, z2) → (z1, z2). Then σσ0 is a
linear operator commuting with G and so is of the form 1 ⊗ L where L(C2 → C

2) is a linear
operator. Hence

σ(u ⊗ v) = σσ0(u ⊗ v) = u ⊗ Lv̄.

If Z is any one dimensional subspace of C
2, H ⊗Z is G-invariant and irreducible, and we want

to show that for some Z, H ⊗ Z ⊥ H ⊗ Zσ, i.e., Z ⊥ Zσ. Here Zσ = σ(Z).

For any such Z, let v be a nonzero vector in it; then the condition Z ⊥ Zσ becomes (v, Lv̄) = 0
where (, ) is the scalar product in C

2. Since (, ) is Hermitian, B(v, w) := (v, Lw̄) is bilinear and
we want v to satisfy B(v, v) = 0. This is actually standard: indeed, replacing B by B + BT

(which just doubles the quadratic form) we may assume that B is symmetric.

If B is degenerate, there is a nonzero v such that B(v, w) = 0 for all w, hence B(v, v) = 0. If B

is nondegenerate, there is a basis v1, v2 for C
2 such that B(vi, vj) = δij . Then, if w = v1 + iv2

where i =
√
−1, B(w,w) = 0.

¥
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