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Abstract

We consider a ψ-irreducible, discrete-time Markov chain on a general state space with transition
kernel P . Under suitable conditions on the chain, kernels can be treated as bounded linear
operators between spaces of functions or measures and the Drazin inverse of the kernel operator
I−P exists. The Drazin inverse provides a unifying framework for objects governing the chain.
This framework is applied to derive a computational technique for the asymptotic variance in
the central limit theorems of univariate and higher-order partial sums. Higher-order partial
sums are treated as univariate sums on a ‘sliding-window’ chain. Our results are demonstrated
on a simple AR(1) model and suggest a potential for computational simplification.

1 Introduction

Assume {Φ} is a ψ-irreducible, discrete-time Markov chain with transition kernel P evolving
on a Polish state space X . Denote by B(X ) the Borel sets associated with X . A “univariate
partial sum” will refer to Sn(g) =

∑n
i=1 g(Φi) for a function g : X → R. Define the “sliding-

window chain” as {Φ̃i = (Φi, . . . ,Φi+p−1)} for some integer p. A “high-order partial sum” is
Sn(g̃) =

∑n
i=1 g̃(Φi, . . . ,Φi+p−1) for some function g̃ : X p → R.

We consider the role of linear operators in formulating the limiting behavior of the chain.
Of special interest are the “fundamental kernel,” Z, and “Drazin inverse” (or “group inverse”)
Q#, of the kernel Q = I − P . Our study is somewhat unconventional since it focuses on Q#

rather than Z, which has traditionally been used in investigations of a Markov chain’s limiting
behavior. The framework centering on Q# is particularly tidy and convenient, and can simplify
computation. As an example, we show Q# allows an easy correspondence between the objects
governing sliding-window chains and their analogues on the original chain.
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A considerable literature is available on central limit theorems for univariate partial sums,
with a variety of formulas for the asymptotic variance of Sn(g). The sliding-window chain
inherits the stability properties of {Φ} and admits a viewpoint in which Sn(g̃) is treated as a
univariate partial sum,

∑n
i=1 g̃(Φ̃i). Connections between the limiting properties of Sn(g̃) and

Sn(g) are made by describing the probability laws governing {Φ̃} in terms of those of {Φ}.
Our investigation builds upon the central limit theorem derived in Meyn and Tweedie (1993,
Ch. 17) and related ideas in Glynn and Meyn (1996). Our main reference on the Drazin
inverse of a linear operator is Koliha (1996a), but Campbell and Meyer’s (1979) investigations
in finite-dimensional state space also provide inspiration. References for Markov-chain cen-
tral limit theorems abound, including Kemeny and Snell (1960), Cogburn (1972), Nummelin
(1984), Kipnis and Varadhan (1986), Tóth (1986), Geyer (1992), Chan and Geyer (1994), Tier-
ney (1994), Robert (1995), Robert and Casella (1999, Ch. 4), Roberts and Tweedie (1996),
Nummelin (2002), Hobart et al. (2002), Roberts and Rosenthal (2004), and Jones (2004).
The main results are in Section 2. Markov chain stability conditions and solutions to the
“Poisson equation” are discussed in Section 2.1; these establish the fundamental kernel and
Drazin inverse as bounded linear operators on spaces of functions and signed measures. Section
2.2 expresses representations for asymptotic variance associated with Meyn and Tweedie’s
(1993) central limit theorem in terms of the Drazin inverse. Extensions of the Drazin inverse
methodology to the sliding window chain are in Sections 2.3 and 2.4. Demonstrations on linear
autoregressive processes are in Section 3 and conclusions are made in Section 4.

2 Results

Let M denote the space of bounded signed measures on (X ,B(X )). Let ν ∈ M, g : X → R

a measurable function, A and B kernels, x ∈ X , and E ∈ B(X ). We have the following
notation: νA(E) :=

∫

A(x,E)ν(dx); Ag(x) :=
∫

g(y)A(x, dy); BA(x,E) :=
∫

A(y,E)B(x, dy);
νg :=

∫

g(x)ν(dx); I(x,E) := 1 if x ∈ E and 0 otherwise; Ig(x,E) := g(x)I(x,E). Define the
n-step transition probability kernel Pn of {Φ} as the n-fold product of P with itself.

2.1 The Poisson equation and linear operator solutions

Define the kernel R =
∑∞

i=0 q(i)P
i, where q is a probability measure on the nonnegative

integers. A set C is petite if it holds that R(x,E) ≥ ν(E) for every x ∈ C, E ∈ B(X ), some q
as above, and some nontrivial measure ν on (X ,B(X )).
A rather weak stability condition for {Φi} which yields a central limit theorem is

PV (x) ≤ V (x) − f(x) + bI(x,C) for every x ∈ X , (1)

where b is a finite constant, f : X → [1,∞), V : X → [1,∞) and C ∈ B(X ) is a petite set. Such
a chain is termed f -regular and has a stationary distribution π with πf < ∞ (see e.g. Glynn
and Meyn, Thm. 2.2). Define the kernel Π(x,E) := π(E) and note it satisfies ΠP = PΠ = Π.
For a functional g : X → R the limiting properties of Sn(g) can be understood through a
solution ĝ : X → R to the “Poisson equation,”

g − πg = ĝ − P ĝ. (2)

When (1) holds and πV < ∞ it is known solutions to the Poisson equation exist. Moreover,
these solutions may be expressed in terms of kernel operators. Glynn and Meyn (1996, Thm.
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2.3) established that when (1) holds the fundamental kernel Z = {I − P + Π}−1 provides
solutions ĝ = Zg to the Poisson equation (2). Meyn and Tweedie (1993, eq. 17.39) give
solutions to the Poisson equation through ĝ =

∑

i≥0{P
ig − πg}. Define the kernel Q# :=

∑

i≥0{P
i −Π} and then ĝ = Q#g is a solution to the Poisson equation. Thus, both Z and Q#

are kernels operating on a space of functions (defined below) to yield solutions to the Poisson
equation.
In a similar spirit, we formalize a framework for operators A that send g to its solutions ĝ = Ag
of the Poisson equation (2). Following convention, for a function h : X → [1,∞), define the
linear space L∞

h as all measurable functions g : X → R for which g(x)|/h(x) is bounded over
x ∈ X . The space L∞

h can be equipped with the norm ‖g‖h = supx |g(x)|/h(x), making it a
Banach space. The following is essentially Theorem 17.4.2 of Meyn and Tweedie (1993):

Proposition 1. Suppose (1) is satisfied. If πV < ∞, then there is an a ∈ R such for each
|g| < f the Poisson equation has a solution ĝ for which |ĝ| ≤ a(V + 1).

Following Glynn and Meyn (1996, Thm. 2.3), Proposition 1 implies a linear operator which
gives solutions to the Poisson equation is a bounded linear operator from L∞

f to L∞
V +1. When

the operator is a kernel, it may also be defined on linear spaces of signed measures. Define
Mh as the space of signed measures ν ∈ M for which |νg| is bounded over g ∈ L∞

h . Mh is a
Banach space under the norm ‖ν‖h = supg:|g|≤h |νg|.

Proposition 2. Suppose (1) is satisfied and πV <∞. The kernels Π, Q# and Z are bounded
linear operators from Mf to MV +1.

Proof. Suppose the kernel A is such that ĝ = Ag satisfies the Poisson equation (2) for g ∈ Lf .
Choose g1 ∈ L∞

f , ν ∈ MV +1 arbitrarily and set g2 = Ag1. Then Proposition 1 implies
g2 ∈ L∞

V +1, in turn implying |νg2| < ∞. Since νg2 = {νA}g1, then νA ∈ Mf . Thus A is

a bounded linear operator from Mf to MV +1 and the conclusion regarding Q#, Z follows.
Since πV < ∞ then clearly π ∈ MV +1. Since (1) holds this implies πf < ∞ and we have
νΠg1 <∞, implying νΠ ∈ Mf . Thus Π is a bounded linear operator from Mf to MV +1.

For a kernel A to be the Drazin inverse of the kernel Q = I − P it must satisfy the algebraic
criteria

QA = AQ, QAQ = Q, and AQA = A, (3)

in which case it is unique in that respect. The next Proposition establishes Q# is the Drazin
inverse of Q and delineates what will be useful relationships among Z, Q#, and Π.

Proposition 3. Suppose (1) holds and πV <∞. Consider the kernels Π, Q# and Z defined
as operators either from MV +1 to Mf or L∞

f to L∞
V +1.

(i) Q# satisfies the criteria (3) and is therefore the unique Drazin inverse of Q,

(ii) Q# = Z{I − Π} = {I − Π}Z,

(iii) Π = I −Q#Q = I −QQ#,

(iv) Z = I + PQ#, and

(v) Q# = P jQ# +
∑j−1

i=0 {P
i − Π}.
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Proof. Note when (1) is true and πV <∞, the kernels Π, Q# and Z exist and are well-defined
due to Propositions 1 and 2.
To prove statement (i), it is straightforward to use the definitions of Q and Q# to show (3).
The uniqueness of Q# with respect to the criteria (3) follows from Koliha (1996, lem. 2.4).
Statement (ii) follows from {I − Π} commuting with Z−1: {I − Π}Z = ZZ−1{I − Π}Z =
Z{I − Π}Z−1Z = Z{I − Π}.
Statement (iii) now follows from (ii), recalling Q = I − P .
Statement (iv) also follows immediately from (ii) since Z = {I − P + Π}−1 and

{I + PQ#}Z−1 = Z−1 + P{I − Π}ZZ−1 = I.

Statement (v) for the case j = 1 is immediate from statement (iii), since I − Π = QQ# is
equivalent to Q# = PQ# + {I − Π}. To prove the general case, apply this in the induction
step

Q# = P j−1Q# +

j−2
∑

i=0

{P i−Π} = P j−1[PQ# +{I−Π}]+

j−2
∑

i=0

{P i−Π} = P jQ# +

j−1
∑

i=0

{P i−Π}.

The results to this point, and those to follow, require the drift condition (1) as a sufficient
condition. We pause for a remark on the necessity of (1). The existence of the operator
Q# follows from f -regularity with π(V ) < ∞, since for a ψ-irreducible chain these imply
∑

i≥0 |P
ig − πg| < ∞ for any initial x and any function g with |g| ≤ f (Meyn and Tweedie,

1993, Thm. 14.0.1). This is not equivalent to f -ergodicity, which merely has ‖ Pn − π ‖f→ 0.
Of course, if a chain is not f -ergodic there is no hope of Q# existing, so that an investigation
into the necessity of (1) must involve f -ergodic chains. A ψ-irreducible chain is f -regular if
and only if it satisfies (1) (Meyn and Tweedie, 1993, Thm. 14.2.6), and, while an aperiodic
f -regular chain is f -ergodic, aperiodic f -ergodic chains need not be f -regular (Meyn and
Tweedie, 1993, Thm. 14.3.3). However, the f -ergodic chain restricted to a full (a set A
with ψ(A) = 1) absorbing set is f -regular. Thus, when the maximal irreducibility measure
ψ is Lebesgue measure, an aperiodic f -ergodic chain is f -regular almost everywhere. In this
case, which we suspect will contain most real applications, the drift condition (1) is ‘almost’
necessary as well as being sufficient for the existence of Q# when π(V ) <∞.
The question of the necessity of the drift condition (1) in establishing the existence of the
operator Z is resolved similarly, with the difference being Glynn and Meyn (1993, Thm. 2.3)

require for any x ∈ X that Ex[
∑τB−1

k=0 f(Φk)] < V (x) + c(B), with V as above, τB being the
hitting time for a set B ∈ B(X ), and c(·) a set function with c(B) <∞. This is slightly stronger
than the characterization, equivalent to (1), of a ψ-irreducible chain being f -regular when it has

a countable covering of the state space X by regular sets Ci with supx∈Ci
Ex[
∑τB−1

k=0 f(Φk)] <
+∞.
The special case of V -uniform ergodicity occurs when the bounding function V in (1) is a
multiple of f . The operator norm ‖A‖V = supx∈X supg:|g|≤V |Ag(x)|/V (x) makes the relevant
kernels bounded linear operators from either L∞

V to itself or MV to itself. It also allows an
equivalent characterization of V -uniform ergodicity: ‖P i − Π‖V ≤ cρi, c ∈ (0,∞), 0 < ρ < 1,
providing an immediate proof of the existence of Q# since

∑

i≥0{P
i − Π} converges in the

norm ‖ · ‖V , considered over either spaces of functions or measures.
When Q# is a bounded linear operator on a Banach space, operator theory results such as
those of Koliha (1996b) describe its spectral properties. One particular implication is that
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Q must have an isolated eigenvalue at zero, which admits the study of “second eigenvalue”
properties of Markov chains. Such ideas have been used to investigate a Markov chain’s rate of
convergence to its invariant distribution. See, e.g., Lawler and Sokal (1988) and more recent
work by François (1999) and León (2001).

2.2 Representations of asymptotic variance

Considering the kernels as operators between spaces of functions makes sense when concerned
with calculating asymptotic quantities of partial sums. Considering the kernels as operators
between spaces of measures is logical when concerned with convergence of measures, such as
convergence of the transition probabilities to the stationary. A combination of the two is
applicable to studying convergence of normalized partial sums to a normal distribution in the
Central Limit theorem. We recount some important asymptotic properties of the partial sum
Sn(g). Statements (i) and (ii) are Theorems 14.0.1 and 17.4.4 of Meyn and Tweedie (1993),
respectively.

Proposition 4. Suppose (1) is satisfied and πV <∞.

(i) The asymptotic mean of n−1Sn(g) is

µg = πg =

∫

g(x)π(dx). (4)

(ii) Suppose ĝ solves (2) and π(ĝ2) <∞. If σ2
g = π(ĝ2 − {P ĝ}2) > 0 then

n−1/2{Sn(g) − nµg} → N(0, σ2
g). (5)

The quantity σ2
g is the asymptotic variance of the partial sum Sn(g). It is a quantity of

interest in Markov chain theory; for example in the CLT as in Proposition 4.ii, also in MCMC
methodology. We express the asymptotic variance in terms of the Drazin inverse Q#.

Proposition 5. When Proposition 4.ii holds the asymptotic variance may be written

σ2
g = 2πIgQ

#g − πIg{I − Π}g, (6)

σ2
g = 2πIgZ{I − Π}g − πIg{I − Π}g, (7)

σ2
g = πIg{I + P}Q#g, (8)

σ2
g = 2πIgP

jQ#g + 2

j−1
∑

i=0

πIg{P
i − Π}g − πIg{I − Π}g. (9)

Proof. Write σ2
g = π(ĝ2 − {P ĝ}2) = π(ĝ2 − {ĝ − ḡ}2). Substituting ḡ = {I − Π}g, ĝ = Q#g

and simplifying yields σ2
g = 2π(ḡQ#g) − π(ḡ2) = 2πIḡQ

#g − πIḡ{I − Π}g. Now use the

identities πIḡ = πIg{I −Π} and ΠQ# = 0 (by Proposition 3.iii) to establish (6). Substituting
Q# = Z{I − Π}, as in Proposition 3.iv, gives an expression (7) in terms of the fundamental
matrix. Using I − Π = QQ#, by Proposition 3.ii, one is led to the compact formula (8).
Alternatively, Proposition 3.v leads to the expression (9) for any j ≥ 1.

Note (9) may be interpreted in terms of the autocovariances of {Φi}. Assuming Φ0 is initially
distributed according to π, it is straightforward to show πIg{I − Π}g = V ar[g(Φ0)] and
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πIg{P
i −Π}g = Cov[g(Φ0), g(Φi)]. Under (1), P j → Π, and since ΠQ# = 0 it follows the first

term in (9) disappears. The resulting formula is then the familiar (Meyn and Tweedie, 1993,
Thm. 17.5.3)

σ2
g = 2

∞
∑

i=0

Cov[g(Φ0), g(Φi)] − V ar[g(Φ0)]. (10)

2.3 Representations for a sliding window chain in terms of the orig-

inal chain

Recall {Φ̃i = (Φi, . . . ,Φi+p−1)} and Sn(g̃) =
∑n

i=1 g̃(Φ̃i). Under suitable regularity conditions

on {Φ̃}, the asymptotic properties of Sn(g̃) are detailed in formulas (4) - (6) with π, P , and Q#

replaced by π̃, P̃ , and Q̃#, analogous objects governing {Φ̃i}. In this section, the connection
of π̃, P̃ , and Q̃# to P , π, and Q# is made explicit.
The transition probability kernel P̃ of the sliding window chain is defined on the product
space (X p,B(X )p). We extend measures from {Φ} to {Φ̃} as follows. Define P̃ ∗(x1, E) :=
P (Φ2 ∈ E2, . . . ,Φp ∈ Ep|Φ1 = x1). Suppose ν ∈ M. For Ẽ ∈ B(X )p, define ν̃(Ẽ) :=
∫

E1

P̃ ∗(x1, E)ν(dx1); for a function g̃ : X p → R define ν̃g̃ appropriately. Define from g̃ the

function g̃∗ : X → R by g̃∗ :=
∫

g̃dP̃ ∗ and note we can write νg̃∗ = ν̃g̃.
An analogue to the drift condition (1) holds for the sliding window chain. From f and V in (1)
define f̃(x̃) = f(xp) and Ṽ (x̃) = V (xp); from the petite set C define C̃ = {x̃ ∈ X p : xp ∈ C}.
The stability condition (1) may now be rewritten

P̃ Ṽ (x̃) ≤ Ṽ (x̃) − f̃(x̃) + bI(x̃, C̃), for every x̃ ∈ X p. (11)

It remains to show that C̃ is petite.

Proposition 6. If C is petite for {Φ}, then C̃ = {(x1, . . . , xp) ∈ X p : xp ∈ C} is petite for

{Φ̃}.

Proof. Pick x̃ ∈ X p and Ẽ ∈ B(X )p. Note P̃ i+p−1(x̃, Ẽ) =
∫

E1

P̃ ∗(xp+1, E)P i(xp, dxp+1).

Define R̃ =
∑∞

i=0 q̃(i)P̃
i, where q̃(i) = 0 if i < p − 1 and q̃(i) = q(i − p + 1) else, so that

R̃(x̃, Ẽ) =
∫

E1

P̃ ∗(xp+1, E)R(xp, dxp+1). Since C is petite in X this leads to R̃(x̃, Ẽ) ≥

ν̃(Ẽ) for every x̃ ∈ C̃ and Ẽ ∈ B(X )p, implying C̃ is petite.

We now define a number of relevant linear spaces. Let Mp be the space of bounded signed
measures on the product space (X p,B(X )p). Recall the spaces L∞

h and Mh defined in Section

2.1. Let L̃∞
h denote the space of measurable functions g̃ : X p → R such that g̃∗ ∈ L∞

h . Let

M̃h denote the space of bounded signed measures ν̃ ∈ Mp for which there is a signed measure
ν ∈ Mh such that ν̃g̃ = νg̃∗ for any g̃ ∈ L̃∞

h .
Based on Proposition (6) and the preceding discussion we expect if the original chain is stable
so is the sliding-window chain. Then by the results in Section 2.2 an invariant measure must
exist, a Drazin inverse must exist and so also must solutions to the sliding-window version of
the Poisson equation. The following shows this is the case.

Proposition 7. Let g̃ : X p → R be a measurable function. Suppose (1) holds and πV <∞.

(i) The measure π̃ ∈ M̃f is the invariant measure of the sliding window chain.
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(ii) The Drazin inverse of Q̃, denoted Q̃#, exists as a bounded linear operator from L̃∞
f to

L̃∞
V +1 and from M̃f to M̃V +1, is unique and provides solutions ˆ̃g = Q̃#g̃ to the Poisson

equation.

Proof. Statement (i): If ν̃ ∈ M̃f is such that ν̃g̃ = νg̃∗ for ν ∈ Mf , any g̃ ∈ L̃f , ν ∈ Mf ,

then ν̃P̃ ig̃ = νP ig̃∗ for any i ≥ 0. Since (11) holds an invariant measure exists and is unique.
The measure π̃ ∈ M̃f such that π̃g̃ = πg̃∗ with π ∈ Mf is therefore the invariant measure of
the sliding window chain.
Statement (ii): Since πV < ∞ then π̃Ṽ < ∞. Define Q̃ = I − P̃ . As implied by Proposition
3.i, Q̃# exists, is unique, and may be written Q̃# =

∑∞
i=0{P̃

i − Π̃}. It is easily verified this
provides solutions to the Poisson equation.

Since π̃Ṽ <∞, the central limit theorem and asymptotic variance expressions in Propositions
4 and 5 apply to {Φ̃} with P̃ , Π̃, Q̃# replacing P,Π, Q#. We have already related P̃ and Π̃ to
P and Π. We next connect Q̃# to its analogous object Q# on the original chain.

Proposition 8. For a measure ν̃ ∈ M̃V +1, the measure ν̃Q̃# is in M̃f and acts on functions

g̃ ∈ L̃∞
f by ν̃Q̃#g̃ = νQ#g̃∗.

Proof. Recall by definition we extended measures ν ∈ MV +1 by ν̃g̃ = νg̃∗ for any g̃ ∈ L∞
V +1.

By Proposition 7, Q̃# takes measures ν̃ ∈ M̃V +1 to M̃f . Since ν̃Q̃# = ν̃Q# this implies

ν̃Q̃#g̃ = ν̃Q#g̃ = νQ#g̃∗.

2.4 Asymptotic variance of high-order partial sums

We apply these results to show how the asymptotic variance of Sn(g̃) can be expressed in
terms of Q#.

Proposition 9. When Proposition 4.ii holds for analogous objects of the sliding window chain,
the asymptotic variance of Sn(g̃) is

σ2
g̃ = 2πPg̃Q

#g̃∗ + 2

{(

p−2
∑

i=0

π̃Ig̃P̃
ig̃

)

− (p− 1)(π̃g̃)2

}

− π̃Ig̃{I − Π̃}g̃, (12)

where

Pg̃(x1, E) =

∫

I(xp, E)g̃(x1, . . . , xp)P (xp−1, dxp)P (xp−2, dxp−1) · · ·P (x1, dx2).

Proof. It follows almost directly from Proposition 8 that π̃Ig̃P̃
p−1Q̃#g̃ = πPg̃Q

#g̃∗. Combine

this with Proposition 3.v with j = p − 1 and (6) in which the term π̃Ig̃{P̃
i − Π̃}g̃ has been

expanded to π̃Ig̃P̃
ig̃ − (π̃g̃)2.

3 Applications to autoregressive processes

At this point, we have established the Drazin inverse methodology for {Φ}, extended it to {Φ̃}
and expressed this extension in terms of the kernels related to {Φ}. We will now illustrate all
of this with some applications.
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We consider a simple time series model, the linear autoregressive process of order one, AR(1).
The AR(1) model is Φi+1 = φΦi + ǫi+1, where the {ǫi} are mean-zero Gaussian random
variables with constant variance σ2. We suppose |φ| < 1 so that {Φi} is a mean zero stationary
process. The transition probability kernel identifies P (x, ·) with a Gaussian distribution having
mean φx and variance σ2. A straightforward iterative argument will then show that P i(x, ·) is
a Gaussian probability measure with mean φix and variance σ2

i = σ2(1−φ2i)/(1−φ2). Known
results (see, e.g., Brockwell and Davis, 1991, Ch. 3) establish the invariant distribution π is
mean-zero Gaussian with variance σ2

π = σ2
∑∞

i=0 φ
2i = σ2/(1 − φ2).

We verify the drift condition (1) for V -uniform ergodicity (and thus f -regularity, since f is
a multiple of V ) using the bounding function V (x) = ec|x|, c > 0, which satisfies V ≥ 1.
Note PV (x) <∞ and {Φt} is ψ-irreducible with the irreducibility measure ψ being Lebesgue
measure. Since |φ| < 1 and E[ec|ǫi|] <∞, for |x| large enough it holds that PV (x)/V (x) < 1,
implying there exists β > 0 so that PV (x) + βV (x) ≤ V (x). Let C = {x : PV (x) ≥ V (x)}
and let b = maxx∈C V (x); then C is petite and the drift condition for V -uniform ergodicity is
satisfied: PV (x) − V (x) ≤ −βV (x) + bI(x,C).

First, in Example 1, to demonstrate the basic techniques described in Section 2.2, we treat
a problem involving a univariate partial sum only. Next, in Example 2, to demonstrate the
techniques derived in Section 2.4, we treat a problem involving a high-order partial sum. A
third example is also given, which combines the formulas derived in Example 2 to rederive the
asymptotic variance of the least squares estimator for the autoregressive parameter.

Although the examples deduce fairly broad formulas, they have been laid out in such a way as
to sketch how our high-order asymptotic formulas might be used in a general methodology: the
first problem provides an understanding of the action of Q# as applied to a univariate partial
sum, which is then applied in the second, more complicated problem involving higher-order
partial sums; finally, the third problem pulls the results together in a useful context. The
amount of computational effort required in each example is roughly the same as that which
would be needed in taking a more direct approach, such as applying (10), e.g., which does not
involve Q#. Nevertheless, we anticipate advantages in future applications to general autore-
gressive time series in which Q# is known with uncertainty and at considerable computational
cost. By following a sequence of steps similar to these examples, one avoids calculation of
the Drazin inverse of the sliding window chain, thereby heading off additional uncertainty and
computational costs that would arise in working with this more complicated chain directly.
Further discussion of potential applications is given in Section 4.

Example 1. We calculate the asymptotic variance (6) for g(x) = xd for some integer d. By
rescaling P i(x, ·) with respect to the distribution of a standard Gaussian random variable

Z ∼ G(0, 1), the binomial theorem provides (σiZ+φix)d =
∑d

j′=0

(

d
j′

)

{σiZ}
j′{φix}d−j′ . This

leads to the formula

P ig(x) =

⌊d/2⌋
∑

j=0

(

d

2j

)

σ2j

(

1 − φ2i

1 − φ2

)j

φi(d−2j)xd−2jE[Z2j ], (13)

in which indexing uses j′ = 2j only, since the odd moments of Z are zero. Here, ⌊d/2⌋
represents the greatest integer not exceeding d/2. The binomial theorem may be used again

to expand (1 − φ2i)j =
∑j

k=0

(

j
k

)

(−1)kφ2ik. Recalling Q#g(x) =
∑∞

i=0{P
ig(x) − πg} and the
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identity
∑∞

i=0 φ
i(d−2j+2k) = (1 − φd−2j+2k)−1 leads to

Q#g(x) =

⌊d/2⌋
∑

j=0

∑

k∈Kj

σ2j
π (−1)k

(

d

2j

)(

j

k

)(

1

1 − φd−2j+2k

)

xd−2jE[Z2j ], (14)

where Kj = 0, . . . , j if j < d/2 and Kj = 1, . . . , j if j = d/2. The special indexing arises since
πg = σd

πE[Zd] is identical to the expanded summand in (13) indexed by j = d/2 and k = 0.
The first term in (6) involves πIgQ

#g. To evaluate this using (14), write h(x) = xd−2j , note

πIgh = σ
2(d−j)
π E[Z2(d−j)] and distribute.

It then remains to calculate πIg{I − Π}g, the second term in (6). This is easily done using

πIg{I − Π}g = π(g2) − (πg)2 = σ2d
π {E[Z2d] − E[Zd]2} = σ2d

π V ar[Zd].

Thus, the asymptotic variance (6) for g(x) = xd is

σ2
g = 2σ2d

π

⌊d/2⌋
∑

j=0

∑

k∈Kj

(−1)k

(

d

2j

)(

j

k

)(

1

1 − φd−2j+2k

)

E[Z2(d−j)]E[Z2j ] − σ2d
π V ar[Zd].

Expressions for the example values d = 1, 2, 3 are

σ2
g =



















































(

σ2

1 − φ2

)(

1 + φ

1 − φ

)

d = 1

2

(

σ2

1 − φ2

)2(
1 + φ2

1 − φ2

)

d = 2

(

σ2

1 − φ2

)3 [

30

(

1

1 − φ3

)

+ 18

{(

1

1 − φ

)

−

(

1

1 − φ3

)}

− 15

]

d = 3.

In general settings, the even moments of Z may be calculated through the well-known formula
E[Z2j ] = 2jπ−1/2Γ(j + 1/2), where Γ is the gamma function.

Example 2. In this example, the sliding-window chain formulas derived in Section 2.4 are
used to evaluate the asymptotic behavior of the partial sums S1 =

∑n
i=1 ΦiΦi+r−1 and S2 =

∑n
i=1 ΦiΦi+p−1, with r and p being fixed, positive integers. The specific objective is to evaluate

µi ≈ n−1E[Si], σ
2
i ≈ n−1V ar[Si], for i = 1, 2, and σ12 ≈ n−1Cov[S1, S2] under the simple

AR(1) model. The parameter r shall be restricted to 1 ≤ r < (p + 1)/2, which identifies the
simpler cases in calculating the second term in (12).
Set g̃(x̃) = a1x1xr +a2x1xp, for arbitrary constants a1 and a2. Expressions for the asymptotic
mean and variance of Sn(g̃) will have the form µg̃ = a1µ1 + a2µ2 and σ2

g̃ = a2
1σ

2
1 + 2a1a2σ12 +

a2
2σ

2
2 . Thus, once µg̃ and σg̃ are derived, the desired quantities may simply be read off.

We begin the derivation of σ2
g̃ by calculating the first term in (12) from Proposition 9. We

need the following lemma.

Lemma 1. Define ẽi(x̃) = xi, ẽij(x̃) = xixj, ẽijk(x̃) = xixjxk, where 1 < i ≤ j ≤ k ≤ p. Then
using the ∗ notation defined in Section 2.3,

ẽ∗i,j,k(x1) = x3
1φ

i+j+k−3 + 3x1φ
j+k−i−1σ2

i−1 + x1φ
i+k−j−1σ2

j−i

ẽ∗i,j(x1) = x2
1φ

i+j−2 + φj−iσ2
i−1

ẽ∗i (x1) = x1φ
i−1.
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Proof. The expressions follow directly from formula (13). It is helpful to note that whenever
g(x̃) = g(xi, xj , xk) (i.e., g is a function of xi, xj , and xk only) then

g̃∗(x1) =

∫

g̃(xi, xj , xk)P k−j(xj , dxk)P j−i(xi, dxj)P
i−1(x1, dxi).

Now observe

g̃∗(x1) = a1x1ẽ
∗
r(x1) + a2x1ẽ

∗
p(x1) = (a1φ

r−1 + a2φ
p−1)x2

1, (15)

to which one may immediately apply (14) with d = 2 in order to evaluate

Q#g̃∗(x1) = (a1φ
r−1 + a2φ

p−1)

(

x2
1 − σ2

π

1 − φ2

)

.

Thus,

Pg̃Q
#g̃∗(x1) =

(

a1φ
r−1 + a2φ

p−1

1 − φ2

)
∫

{x2
p − σ2

π}{a1x1xr + a2x1xp}P
p−1(x1, dxp)

=

(

a1φ
r−1 + a2φ

p−1

1 − φ2

)

{a1x1ẽ
∗
r,p,p(x1) + a2x1ẽ

∗
p,p,p(x1) − σ2

π g̃
∗(x1)};

hence, with (13) and some straightforward manipulation, the required formula is

πPg̃Q
#g̃∗ = 2a2

1

(

φ2(p−1)

1 − φ2

)

σ4
π+2a1a2φ

p−r

(

φ2(r−1) + φ2(p−1)

1 − φ2

)

σ4
π+2a2

2

(

φ2(p−1)

1 − φ2

)

σ4
π. (16)

To calculate the second term in (12), observe that (15) immediately provides

πg̃∗ = (a1φ
r−1 + a2φ

p−1)σ2
π, (17)

so the main task is to calculate the sum
∑p−2

i=0 π̃Ig̃P̃
ig̃. To this end, note

P̃ ig̃(x̃) =







a1xi+1xi+r + a2φ
ixi+1xp for 0 ≤ i < p− r

(a1φ
i−(p−r) + a2φ

i)xi+1xp for p− r ≤ i < p− 1,

and using h̃i(x̃) = {g̃(x̃)}{P̃ ig̃(x̃)},

h̃i(x̃) =























a2
1x1xi+1xrxi+r + a1a2x1xi+1xi+rxp

+a1a2φ
ix1xi+1xrxp + a2

2φ
ix1xi+1x

2
p for 0 ≤ i < p− r

a2
1φ

i−(p−r)x1xi+1xrxp + a1a2φ
i−(p−r)x1xi+1x

2
p

+a1a2φ
ix1xi+1xrxp + a2

2φ
ix1xi+1x

2
p for p− r ≤ i < p− 1.

The restriction r < (p + 1)/2 delineates three cases within which Lemma 1 and (13) may be
used to calculate πh̃∗i :

Case 1, 0 ≤ i < r − 1 < p− r,

πh̃∗i = a2
1(φ

2i + 2φ2(r−1))σ4
π + a1a2φ

p−r(1 + φ2i + 4φ2(r−1))σ4
π (18)

+a2
2(φ

2i + 2φ2(p−1))σ4
π;



130 Electronic Communications in Probability

Case 2, r − 1 ≤ i < p− r,

πh̃∗i = a2
1(2φ

2i + φ2(r−1))σ4
π + a1a2φ

p−r(1 + 2φ2i + 3φ2(r−1))σ4
π

+a2
2(φ

2i + 2φ2(p−1))σ4
π ;

and Case 3, r − 1 < p− r ≤ i < p− 1,

πh̃∗i = a2
1(2φ

2i + φ2(r−1))σ4
π + a1a2(2φ

2i+(p−r) + φ2i−(p−r) + 3φp+r−2)σ4
π

+a2
2(φ

2i + 2φ2(p−1))σ4
π .

The identity
∑k−1

i=j φ
2i = (1 − φ2(k−j))/(1 − φ2) then provides the sum

p−2
∑

i=0

π̃Ig̃P̃
ig̃ =

p−2
∑

i=0

πh̃∗i (19)

= a2
1

{(

1 − 2φ2(p−1)

1 − φ2

)

+ φ2(r−1)

(

p+ r −
1 − 2φ2

1 − φ2

)}

σ4
π

+a1a2φ
p−r

{

p− r + 2

(

1 − φ2(p−1)

1 − φ2

)

+ (3p+ r − 4)φ2(r−1)

}

σ4
π

+a2
2

{(

1 − φ2(p−1)

1 − φ2

)

+ 2(p− 1)φ2(p−1)

}

σ4
π.

To calculate the last term in (12), observe that π̃Ig̃π̃g̃ = π̃(g̃2) = π̃h̃0 = πh̃∗0, which is given
by (18) with i = 0. Thus,

π̃Ig̃{I − Π̃}g̃ = πh̃∗0 − (πg̃∗)2 (20)

= a2
1(1 + φ2(r−1))σ4

π + 2a1a2φ
p−r(1 + φ2(r−1))σ4

π + a2
2(1 + φ2(p−1))σ4

π .

Putting together (16), (17), (19), and (20), The asymptotic variance (12) is given by

σ2
g̃ = a2

1

{(

1 + φ2

1 − φ2

)

+ φ2(r−1)

(

2(r − 1) +
1 + φ2

1 − φ2

)}

σ4
π (21)

+2a1a2φ
p−r

{

p− r +

(

1 + φ2

1 − φ2

)

+ φ2(r−1)

(

p+ r − 2 +
1 + φ2

1 − φ2

)}

σ4
π

+a2
2

{(

1 + φ2

1 − φ2

)

+ φ2(p−1)

(

2(p− 1) +
1 + φ2

1 − φ2

)}

σ4
π.

Example 3. Under the AR(1) model, a least squares estimator for φ arises by regressing one-
step-ahead values Φi+1 onto current values Φi in the manner of no-intercept simple linear
regression. Calculating this from a trajectory of n+1 time points, Φ1, . . . ,Φn+1, the estimator
is

φ̂n =

∑n
i=1 ΦiΦi+1
∑n

i=1 Φ2
i

.

Observe that φ̂ is calculated from the partial sums of the previous example with p = 2 and
r = 1: the partial sums are S1 =

∑n
i=1 Φ2

i and S2 =
∑n

i=1 ΦiΦi+1, and the least squares

estimator is φ̂(S1, S2) = S2/S1.
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The asymptotic properties of φ̂n may therefore be calculated from the asymptotic means,
variances, and the covariance of S1 and S2 by Taylor expansion. A first-order expansion of
φ̂(S1, S2) about (µ1, µ2) implies that the asymptotic mean of φ̂n is µ2/µ1 and its asymptotic
variance is

nV ar[φ̂] ≈ {∂1φ̂}
2σ2

1 + 2{∂1φ̂}{∂2φ̂}σ12 + {∂2φ̂}
2σ2

2 . (22)

where ∂iφ̂ = ∂/(∂Si)φ̂(µ1, µ2). Note that ∂1φ̂ = −µ2µ
−2
1 and ∂2φ̂ = µ−1

1 . According to the
formulas (17) and (21), these are µ1 = σ2

π and µ2 = φσ2
π ,

σ2
1 = 2

(

1 + φ2

1 − φ2

)

σ4
π , σ

2
2 =

{

1 + φ2 + 4

(

φ2

1 − φ2

)}

σ4
π, and σ12 = 4

(

φ

1 − φ2

)

σ4
π.

The asymptotic mean of φ̂n is therefore µ2/µ1 = φ. Plugging σ2
1 , σ

2
2 , and σ12 into (22) greatly

simplifies the expression and leads to the well known formula for the asymptotic variance of φ̂
given by nV ar[φ̂] ≈ σ2(1 − φ2).

4 Conclusions and discussion

A linear operator framework was established for discrete-time Markov chains and the Drazin
inverse was shown to unify objects central to Markov chain theory. This framework was
applied to asymptotic variance calculation for univariate and higher-order partial sums, with
the formulas expressed in terms of objects governing the original chain, {Φi}, which presumably
would be obtained by statistical analysis.
A potential application is to analysis of a general autoregressive time series. The present
study does not go as far as to provide a methodology for the analysis of general autoregressive
time series, but our hope is that this technique might be exploited in future applications in
order to reduce computational expense. Another extension of these methods would be to
continuous-time Markov chains.
We note some existing literature which used asymptotic variance formulas to monitor the
convergence of simulated Markov chains to their invariant distributions. For instance, Peskun
(1973) studied convergence in chains with finite state space using the fundamental matrix.
More recent work by Chauveau and Diebolt (2002) builds upon the formula (10) to study
convergence in general state-space chains. We conjecture the present results would be useful
in these applications as well.
It is prudent to remark on continuity and approximation of π and Q#. Continuity results for
Q# are found in Campbell (1980) and Koliha and Rakočević (1998). These can be extended to
the continuity of π through our Proposition 3.iii. Meyer (1975) contains an early algorithm for
calculating Q# for finite state-space Markov chains. Working with abstract Banach spaces,
Gonzolez and Koliha (1999) study semi-iterative methods for solving linear equations such
as π = πP in cases where Q# exists. More recently, iterative methods for approximating
Q# and other generalized inverses in general state-space settings are studied in Djordjevic,
Stanimirovic, and Wei (2004). We expect the results of these investigations would be helpful
in developing efficient computational algorithms for Markov chain applications.
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