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Abstract
Let X = (Xt)t≥0 be a self-similar Markov process with values in [0,∞[, such that the state
0 is a trap. We present a necessary and sufficient condition for the existence of a self-similar
recurrent extension of X that leaves 0 continuously. This condition is expressed in terms of
the Lévy process associated with X by the Lamperti transformation.

1 Introduction

In his pioneering study [15] of the structure of self-similar Markov processes with state space
[0,∞[, Lamperti posed the problem of determining those self-similar Markov processes that
agree with a given self-similar Markov process up to the time the latter process first hits 0.
Our goal in this paper is to present a necessary and sufficient condition for the existence of
such a “recurrent extension” that, in addition, leaves 0 continuously. Our work was inspired
by that of Vuolle-Apiala [22] and Rivero [18].
To state our results precisely, we introduce some notation and recall some of the basic theory
of self-similar Markov processes. A Borel right process X = ((Xt)t≥0, (Px)x≥0) with values
in [0,∞) is self-similar provided there exists H > 0 such that, for each c > 0 and x ≥ 0,
the law of the rescaled process (c−HXct)t≥0, is Px/cH

when X has law Px. The number H
is the order of X, and when there is a need to emphasize H, we shall describe X as being
H-self-similar. By the discussion in section 2 of [15], we can (and do) assume that X is a Hunt
process; thus in addition to being a right-continuous strong Markov process, the sample paths
of X are quasi-left-continuous.
One of several zero-one laws developed by Lamperti states that if

T0 := inf{t > 0 : Xt = 0}, (1.1)

then either Px[T0 < ∞] = 0 for all x > 0 or Px[T0 < ∞] = 1 for all x > 0. Our interest is in
the latter situation, which we assume to be the case throughout the rest of the paper.
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Recurrent Extensions of Self-similar Markov Processes 231

For definiteness, we take X to be realized as the coordinate process Xt(ω) = ω(t) on the
sample space Ω of all right-continuous left-limited paths from [0,∞[ to itself. We assume
that 0 is a trap for X, so that each of the laws Px governing X is carried by {ω ∈ Ω :
ω(t) = 0,∀t ≥ T0(ω)}. The natural filtration on Ω is (Ft), and F∞ := ∨t≥0Ft. We write
Ptf(x) = Pt(x, f) := Px[f(Xt)] for the transition semigroup of X, and Uq :=

∫∞
0
e−qtPt dt,

q > 0, for the associated resolvent operators.
Define, for c > 0, Φc : Ω → Ω by Φcω(t) := c−Hω(ct). The H-self-similarity of X means that

ΦcPx(B) := Px[Φ−1
c B] = Px/cH

[B], ∀B ∈ F∞, x ≥ 0, c > 0. (1.2)

Observe that
T0◦Φc = c−1T0, (1.3)

identically on Ω.

Definition 1. A Borel right Markov processX = (Xt,P
x
) with state space [0,∞[ is a recurrent

extension of X provided (i) the stopped process ((Xt∧T 0
)t≥0, P

x
) has the same law as (Xt,Px),

for each x ≥ 0, and (ii) 0 is not a trap for X.

Typically, X will be realized as the coordinate process on Ω, in which case Xt(ω) = ω(t).
What distinguishes X from X is the collection of laws (P

x
)x≥0. For emphasis or clarity we

may at times write T 0 instead of T0, etc.
In view of (1.3), if a recurrent extension X is self-similar, then its order must be the same as
that of X.
Let X be a recurrent extension of X, with resolvent U

q
, q > 0. Writing T 0 for the hitting

time of 0 by X, we have ψq(x) := P
x
[exp(−qT 0)] = Px[exp(−qT0)], and by the strong Markov

property of X at time T 0,

U
q
f(x) = Uqf(x) + ψq(x)U

q
f(0), ∀x ≥ 0, q > 0. (1.4)

Excursion theory [13, 16, 3, 10] leads to an expression for U
q
f(0) in terms of a certain entrance

law for X. Let M denote the closure of the zero set {t ≥ 0 : Xt = 0}, and let G denote the
set of strictly positive left endpoints of the maximal intervals in the complement of M . The
excursions of X from 0 are indexed by the elements of G: The excursion es associated with
s ∈ G is the Ω-valued path defined by

es
t :=

{
Xs+t, 0 ≤ t < T0◦θs,

0, t ≥ T0◦θs,

where θs is the shift operator on Ω. Let L = (Lt)t≥0 denote X-local time at 0, normalized
so that P

0 ∫∞
0
e−t dLt = 1. Then there is a σ-finite measure n on (Ω,F∞) such that, for

predictable Z ≥ 0 and F∞-measurable F ≥ 0,

P
0

∑
s∈G

Zs F (es)

 = P
0
[∫ ∞

0

Zt dLt

]
· n[F ]. (1.5)

Formula (1.5) determines n uniquely, and under n the coordinate process (Xt)t>0 is a strong
Markov process with transition semigroup (Pt) and one-dimensional distributions

nt(B) := n[Xt ∈ B, t < T0], t > 0, B ∈ B]0,∞[. (1.6)
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One can show that there exists ` ≥ 0 such that
∫ t

0
1{0}(Xs) ds = ` · Lt for all t ≥ 0, P

0
-a.s.;

it follows from this and (1.5) (applied to Zs = e−qs and F =
∫ T0

0
e−qtf(Xt) dt, first with a

general f and then with f = 1) that

U
q
f(0) =

`f(0) + nq(f)
q`+ qnq(1)

, f ∈ bpB[0,∞[, (1.7)

where nq :=
∫∞
0
e−qtnt dt. (Here bpB[0,∞[ denotes the class of bounded non-negative Borel

functions on [0,∞[). The denominator in (1.7) is equal to

q`+ n

[∫ T0

0

qe−qt dt

]
= q`+ n[1− e−qT0 ],

which is finite for all q > 0, as follows from (1.5) with F = 1− exp(−qT0) and Zs = e−qs. The
family (nt)t>0 is an entrance law : ntPs = nt+s for all t, s > 0. The measure n is uniquely
determined by (nt) and (Pt).
If the recurrent extension X is self-similar, then (i) ` = 0 [22, p. 551] and (ii) either n[X0 =
0] = 0 or n[X0 > 0] = 0 [22, Thm. 1.2].

Definition 2. A recurrent extension X is said to leave 0 continuously provided n[X0 > 0] = 0.

It follows easily from (1.5) that X leaves 0 continuously if and only if

P
0
[Xs = 0 for all s ∈ G] = 1.

In this paper we focus on recurrent extensions that leave 0 continuously, referring the interested
reader to [22] and [18] for discussions of extensions for which n[X0 = 0] = 0.
We shall produce an H-self-similar recurrent extension of X by constructing a suitable ex-
cursion measure n as above. Motivated by the preceding discussion, we make the following
definitions. Recall that (Pt)t≥0 is the transition semigroup for X.

Definition 3. (a) A measure n on (Ω,F∞) is an excursion measure provided (i) the measure
nt defined on B]0,∞[ by formula (1.6) is σ-finite for each t > 0, (ii) (Xt)t>0 under n is Markovian
with transition operators (Pt) and one-dimensional distributions (nt), and (iii) n puts no mass
on the zero path [0] : t 7→ 0.
(b) We say that an excursion measure n is self-similar if

Φcn = c−γn, ∀c > 0, (1.8)

for some γ > 0. Equivalently,

nct(cHB) = c−γnt(B), ∀c > 0, t > 0, B ∈ B]0,∞[, (1.9)

(c) An excursion measure n is admissible provided n[1− exp(−T0)] <∞.

As noted above, the excursion measure associated with a recurrent extension ofX is necessarily
admissible.
Itô [13] showed that the excursion measure n determined by a recurrent extension X (as
in (1.5)) satisfies a set of six necessary conditions. These conditions are not quite sufficient
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for the existence of a recurrent extension, but Salisbury [20, 21] discovered that if two of
the conditions are strengthened, then the resulting set of conditions is sufficient (and still
necessary). These results hold for processes with very general state spaces. The special case
of [0,∞[-valued Feller processes was treated by Blumenthal in [2]. Vuolle-Apiala [22] verified
that the conditions imposed by Blumenthal are satisfied in the setting of self-similar Markov
processes on [0,∞[. Thus, if n is an admissible excursion measure, then X admits recurrent
extensions X

`
(one for each ` ≥ 0) such that (1.7) holds. The process X

0
has the additional

property that U
q
(x, 1{0}) = 0 for all x ≥ 0, a condition that is necessary for self-similar

recurrent extensions, as was noted above. By [22, (1.5)][ (see also [18, Lem. 2]), this extension
is self-similar if and only if n is self-similar.
Our hypotheses will be stated in terms of the Lévy process associated with X by the Lamperti
transformation. For this consider the continuous additive functional A defined by

At :=
∫ t

0

X−1/H
s ds, t ≥ 0, (1.10)

and its right continuous inverse τ defined by

τ(u) := inf{t > 0 : At > u}, u ≥ 0, (1.11)

in which we follow the usual convention that inf ∅ = +∞. According to [15, Thm. 4.1], the
[−∞,∞[-valued process

Zu := logXτ(u), u ≥ 0, (1.12)

is a Lévy process (i.e., a process with stationary independent increments). Moreover, by [15,
Lem. 3.2], we have either

Px[XT0− > 0, T0 <∞] = 1, ∀x > 0, (1.13)

or
Px[XT0− = 0, T0 <∞] = 1, ∀x > 0. (1.14)

If (1.13) holds then the random variable ζ := AT0− is exponentially distributed (with rate
δ > 0, say) and there is a real-valued Lévy process Z independent of ζ such that Z is Z killed
at time ζ:

Zu =

{
Zu, 0 ≤ u < ζ;
−∞, u ≥ ζ.

(1.15)

If (1.14) holds then ζ = AT0− = +∞, Px-a.s. for all x > 0, and Z is a real-valued Lévy process
that drifts to −∞. Let Qz denote the law of Z under the initial condition Z0 = z. The process
Z = (Zt,Qz) is referred to as the Lévy process underlying X. We shall write (Qt) for the
transition semigroup of Z.
Because A and τ are strictly increasing on their respective domains of finiteness, the Lamperti
transformation can be inverted as follows. Let (Zt,Qz) be a [−∞,∞[-valued Lévy process
that drifts to −∞ in case ζ := inf{t : Zt = −∞} = +∞, a.s. (The state −∞ is a trap, and
serves as the cemetery state for Z.) Then

τ(u) :=
∫ u

0

exp(Zs/H) ds (1.16)
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is finite for all u ≥ 0; see [1, Thm. 1]. Define the inverse of τ :

A(t) = At := inf{u : τ(u) > t}, t ≥ 0. (1.17)

For each x > 0, the process defined by

exp(ZA(t)), t ≥ 0, (1.18)

has, under Qlog x, the same law as X under Px.
Here is the main result of the paper. A recent result of V. Rivero [19, Lem. 2] (obtained after
this manuscript was submitted for publication) shows that a hypothesis included in the original
statement of our theorem (namely, the finiteness of the expectation Q0[IκH−1] appearing in
(2.15) below) is in fact implied by condition (1.19) when 0 < κH < 1. We present this improved
version of our result, noting that Rivero’s paper [19] also contains a proof of Theorem 1 (below)
by methods that are very different from those used here.

Theorem 1. (a) The H-self-similar Markov process X admits a self-similar recurrent ex-
tension that leaves 0 continuously if and only if there exists κ ∈]0, 1/H[ such that Cramér’s
condition

Q0[exp(κZt)] = 1, for some (or all) t > 0. (1.19)

holds.
(b) There is at most one self-similar recurrent extension that leaves 0 continuously.

Remark 1. (a) To see why the condition 0 < κ < 1/H is natural, observe that if there is to
be a recurrent extension X of X, then the inverse local time of X at 0 is a stable subordinator
of index γ := κH.
(b) Let C0]0,∞[ denote the class of continuous real-valued functions f on ]0,∞[ such that
limx→0 f(x) = limx→+∞ f(x) = 0. Vuolle-Apiala [22] introduced the following condition
(VA): There exists k > 0 such that the limit

lim
x→0+

Px[1− exp(−T0)]
xk

(VA.1)

exists in ]0,∞[, and the limit

lim
x→0+

Uqf(x)
xk

(VA.2)

exists for all q > 0 and all f ∈ C0]0,∞[, and is strictly positive for at least one non-negative
f ∈ C0]0,∞[. Vuolle-Apiala showed that (VA) implies the existence (and uniqueness) of a
self-similar recurrent extension of X that leaves 0 continuously.
(c) The meaning of the parameter k in (VA) was clarified by Rivero [18], who introduced the
following condition (R), expressed in terms of the underlying Lévy process Z:

The law of Z1 is not supported by a lattice rZ; (R.1)

there exists θ > 0 such that

Q0[exp(θZt)] = 1, for some (or all) t > 0 and (R.2)
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Q0[Z+
1 exp(θZ1)] <∞. (R.3)

Suppose that (R) holds. Rivero showed that if θH ≥ 1, then condition (VA) must fail, while
if 0 < θH < 1 then (VA) holds for k = θ. Conversely, Rivero showed that if (VA) holds then
0 < kH < 1 and (R.2) and (R.3) hold with θ = k. Thus, modulo the technical condition
(R.1), (VA) and (R) are equivalent, for k = θ ∈]0, 1/H[. Moreover, under (VA), k = θ = κ (as
in (1.19)).
(d) The essentially equivalent conditions (VA) and (R) imply Cramér’s condition (1.19) (with
0 < κH < 1). It is not clear how broad the gap is between these conditions.

2 Proof of Theorem 1

(a) Let us first suppose that X admits a recurrent extension leaving 0 continuously. By the
discussion in section 1 there is an admissible excursion measure n such that n[X0 > 0] = 0
and such that the scaling property

Φcn = c−γn, ∀c > 0, (2.1)

holds for some γ ∈]0, 1[. The “mean occupation measure” m defined on the Borel subsets of
]0,∞[ by

m(B) := n
∫ T0

0

1B(Xs) ds, B ∈ B]0,∞[, (2.2)

is an X-excessive measure; see [10, (4.5)]. As a consequence of (2.1), m takes the form

m(dx) = Cx−1+(1−γ)/H dx, (2.3)

for some constant 0 < C < ∞; see [18, Lem. 3]. [Briefly, (2.1) implies that m scales as
follows: m(bHB) = b1−γm(B); this in turn implies (2.3), the admissibility of m guaranteeing
the finiteness of C.] By the theory of time changes for Markov processes, as found for example
in [9], the measure ν(dx) := x−1−γ/H dx is therefore excessive for the time-changed process
t 7→ Xτ(t). Define κ := γ/H. Then ξ(dz) := e−κz dz (the image of ν under the mapping
x 7→ log x) is excessive for the Lévy process Z.
Let (Yt,Q) denote the Kuznetsov measure associated with Z and ξ. In more detail, let W be
the space of paths w : R → [−∞,+∞[ that are R-valued and right-continuous with left limits
on an open interval ]α(w), β(w)[ and that hold the value −∞ outside that interval. (Thus
−∞ serves as cemetery state for Y .) The coordinate maps Yt(w) := w(t), t ∈ R, generate
G := σ{Yt : t ∈ R}, and Q is the unique measure on (W,G) not charging the dead path
[−∞] : t 7→ −∞, and such that

Q[Yt1 ∈ dx1, Yt2 ∈ dx2, . . . , Ytn ∈ dxn]
= ξ(dx1)Qt2−t1(x1, dx2) · · ·Qtn−tn−1(xn−1, dxn),

(2.4)

for all real t1 < t2 < · · · < tn and x1, x2, . . . , xn. Thus Y = (Yt) under Q is a stationary
Markov process with random times of birth and death (namely, α and β), with one-dimensional
distributions (while alive) all equal to ξ, and with transition probabilities those of the Lévy
process Z. For the construction and various properties of such processes the reader is referred
to [17, 6, 11].
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We now use a time-reversal argument to show that ξ is in fact invariant for Z. To this end
define a semigroup (Q̂κ

t ) by the formula

Q̂κ
t f(x) := Q0[f(x− Zt)eκZt ], (2.5)

and observe that (Q̂κ
t ) is the semigroup dual to (Qt) with respect to ξ. That is,∫

R

f ·Qtg dξ =
∫
R

g ·Qκ
t f dξ, t > 0, f, g ∈ pBR;

cf. the computation in (2.15) below. Thus

Q[Yt1 ∈ dx1, Yt2 ∈ dx2, . . . , Ytn−1 ∈ dxn−1, Ytn ∈ dxn]

= ξ(dxn)Q̂κ
tn−tn−1

(xn, dxn−1) · · · Q̂κ
t2−t1(x2, dx1),

(2.6)

The moment generating function Q0[exp(λZt)], λ ∈ R, is necessarily of the form

Q0[exp(λZt)] = exp(tψ(λ)), (2.7)

where ψ : R →] − ∞,+∞]. By Hölder’s inequality, logψ is convex (strictly convex on the
interior of the interval where it is finite). Now either Z drifts to −∞ (in which case ψ(0) = 0
and Q0[Z1] = ψ′(0+) ∈ [−∞, 0[) or jumps to −∞ (in which case ψ(0) < 0). Clearly 1 ≥
Q̂κ

t 1(x) = exp(ψ(κ)t), so ψ(κ) ≤ 0. If ψ(κ) < 0 then Q0
κ[Ẑκ

t = −∞] = 1 − exp(ψ(κ)t) > 0.
If ψ(κ) = 0 then Q̂0

κ[Ẑκ
t ] = −Q0[Zte

κZt ] = −ψ′(κ−) ∈ [−∞, 0[ by convexity. Therefore Ẑκ

either jumps to −∞ at a finite time (if ψ(κ) < 0) or drifts to −∞ (if ψ(κ) = 0). In either case,
the exponential integral

Î :=
∫ ∞

0

exp(Ẑκ
s /H) ds

is finite, Q̂z
κ-a.s., for all z ∈ R. Thus if we define

ρ(u) :=
∫ u

−∞
exp(Ys/H) ds, u ∈ R, (2.8)

then
Q[ρ(u) = ∞, α < u < β] =

∫
R

Q̂z
κ[Î = ∞] ξ(dz) = 0, (2.9)

by [17, (4.7)]. In particular,
lim
u↓α

ρ(u) = 0, Q-a.s.

It follows that the inverse process K defined by

K(t) := inf{u : ρ(u) > t}, t ≥ 0,

is strictly increasing and continuous on [0, ρ(∞)[. Recalling from section 1 the discussion of
the (inverse) Lamperti transformation, we see that the measure m is proportional to the image
under the mapping z 7→ exp(z) of the Revuz measure of the CAF τ relative to the Z-excessive
measure ξ. By a result of Kaspi (see (2.3) and (2.8) in [14]), the formula

ηt(f) := Q[f(exp(ZK(t))), 0 < K(t) ≤ 1], f ∈ pB]0,∞[, t > 0, (2.10)
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defines an entrance law for (Pt) and

m =
∫ ∞

0

ηt dt. (2.11)

But by (2.2) and Tonelli’s theorem we also have m =
∫∞
0
nt dt, so by the uniqueness of such

a representation [11, (5.25)], ηt = nt for all t > 0. Let Ω+ be the space of right-continuous
left-limited paths from ]0,∞[ to [0,∞[, and let n+ be the image of n under the mapping
Ω 3 ω 7→ ω|]0,∞[ ∈ Ω+. Let F+

∞ be the σ-field on Ω+ generated by the coordinate maps X+
t ,

t > 0. Theorem (2.1) of [14] now tells us that if Π : W → Ω+ denotes the (inverse Lamperti)
transformation w 7→ (t 7→ exp(YK(t,w)(w)), t > 0) then

n+[A, t < T0] = Q[Π−1(A), 0 < K(t) ≤ 1], A ∈ F+
∞. (2.12)

In particular

Q

[
lim sup

u↓α
Yu > −∞, 0 < K(t) ≤ 1

]
= n+

[
lim sup

s↓0
X+

s > 0, t < T+
0

]
= n[X0 > 0, t < T0] = 0,

for all t > 0, from which it follows that limu↓α Yu = −∞, Q-a.s. By time reversal (as in (2.9)),
this means that the dual process Ẑκ does not jump to −∞ (Q̂z-a.s. for ξ-a.e. z ∈ R). That
is, ψ(κ) = 0; equivalently,

Q0[eκZt ] = 1, t > 0,

which is (1.19).
Conversely, suppose that (1.19) holds for some κ > 0. Then ξ(dz) = e−κz dz is an invariant
measure for Z:

ξQt(f) =
∫
R

e−κzQz[f(Zt)] dz =
∫
R

e−κzQ0[f(z + Zt)] dz

= Q0

[∫
R

e−κzf(z + Zt) dz
]

= Q0

[∫
R

eκ(Zt−y)f(y) dz
]

=
∫
R

e−κyf(y)Q0[eκZt ] dy =
∫
R

e−κyf(y), dy = ξ(f).

(2.13)

Let (Y,Q) be the Kuznetsov process for Z and ξ as before. Because ξ is invariant, Q[α >
−∞] = 0; see [11, (6.7)]. Making use of (2.5) and the discussion following (2.6) we see that

Q̂0
κ[Ẑκ

t ] = −tψ′(κ−) ∈ [−∞, 0[,

so that Ẑκ drifts to −∞. As before, (2.6) holds; consequently the time-reversal argument used
before to show the finiteness of the integral in (2.8) now permits us to deduce that Q is carried
by {α = −∞, limt↓α Yt = −∞}.
Define m(dx) = x−1−κ+1/H dx. The Revuz measure of the continuous additive functional
τ(u) :=

∫ u

0
exp(Zv/H) dv, relative to ξ, is the measure µ(dz) := ez/H ξ(dz) on R. The image

of µ under the mapping z 7→ exp(z) is the measure m; another application of Kaspi’s theorem
shows that m is purely excessive for X, so there is a uniquely determined entrance law (ηt)t>0

such that m =
∫∞
0
ηt dt. As before let Ω+ be the space of right-continuous left-limited paths
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from ]0,∞[ to [0,∞[. Let n+ be the measure on Ω+ under which the coordinate process
(X+

t )t>0 is Markovian with one-dimensional distributions (ηt)t>0 and transition semigroup
(Pt); see [12] for the construction of such measures. Then by [14, Thm. 2.1], writing Π : W →
Ω+ for the map w 7→ (t 7→ exp(YK(t,w)(w)), t > 0), we have

n+[B, t < T0] = Q[Π−1(B), 0 < K(t) ≤ 1], B ∈ F+
∞. (2.14)

In particular, the choice B = B0 := {ω ∈ Ω+ : limt↓0 ω(t) = 0} in (2.14) shows that that
n+ is carried by B0 because Q is carried by {w ∈ W : limt↓−∞ w(t) = −∞, α(w) = −∞}.
Identifying Ω with B0 and F∞ with F+

∞ ∩B0, we see that n+ induces an excursion measure n
on (Ω,F∞) as in Definition 3(a). Now write Ψx : w 7→ (w(t)+x)t∈R for the spatial translation
operator on W ; a check of finite dimensional distributions shows that

ΨxQ = e−κxQ.

This, in combination with (2.14), implies that n is self-similar, with similarity index γ = κH.
From the proof of Lemma 3 in [18], we have

n[1− exp(−T0)] = H · Γ(1− κH) ·Q0[IκH−1], (2.15)

where I :=
∫∞
0

exp(Zv/H) dv. Lemma 2 of [19] tells us that Q0[IκH−1] < ∞ because κH ∈
]0, 1[, thereby guaranteeing the admissibility of n.

(b) Turning to the uniqueness assertion, let X
1

and X
2

be self-similar recurrent extensions of
X that leave 0 continuously. In view of (1.4) and (1.7), the resolvent (and so the distribution)
of X

j
is uniquely determined by the associated entrance law (nj

t ), j = 1, 2. Because of a
uniqueness theorem [11, (5.25)] cited earlier, each entrance law is in turn uniquely determined
by its integral mj =

∫∞
0
nj

t dt. But as noted at the beginning of this section, mj has the form

mj(dx) = Cjx
−1+(1−γ)/H dx, where γ = κH. (Both X

1
and X

2
satisfy (1.19), by the part of

Theorem 1 already proved.) It follows that n1
t = (C1/C2)n2

t for all t > 0, so X
1

and X
2

have
the same resolvent.

Remark 2. The argument just given for the “if” portion of part (a) of Theorem 1 proves
a bit more than is asserted in the statement of the theorem. Namely, if κ > 0 is such that
(1.19) holds, then there is a self-similar excursion measure n (with index γ := κH) such that
n[X0 > 0] = 0. Notice that (1.3) implies the existence of a constant C̃ ∈]0,∞] such that

n[T0 > t] = C̃t−γ , t > 0. (2.16)

If, as in the proof above, we normalize n so that n
∫∞
0

1B(Xt) dt =
∫

B
x−1+(1−γ)/H dx, then

it is clear from (2.15) and [19, Lem. 2] that the constant C̃ if finite if κH < 1. It is not clear
whether C̃ is finite when κH ≥ 1.

3 An Application

Suppose that our self-similar Markov process X satisfies (1.13). In this section we shall apply
Theorem 1 to obtain the following improvement of Theorem 6(i) of Chaumont and Rivero [4].
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Theorem 2. Suppose there exists κ > 0 such that

Q0[exp(−κZt)] = 1, for some (or all) t > 0. (3.1)

Then h : x 7→ x−κ is a purely excessive function for X, and the h-transform process Xh with
laws

Px
h[F, t < T0] = xκ ·Px[FX−κ

t ], t > 0, F ∈ bFt, x > 0, (3.2)

is “X conditioned to converge to 0”:

Px
h[XT0− = 0, T0 <∞] = 1, ∀x > 0. (3.3)

Proof. Let us start with the Lévy process Ẑ := −Z, the dual of Z with respect to Lebesgue
measure on R, and apply the inverse Lamperti transformation to obtain a self-similar Markov
process X̂ = ((X̂t)t≥0, (P̂x)x≥0) on [0,∞[ with 0 as a trap. The process X̂ is in weak duality
with X with respect to the measure η(dx) := x−1+1/H dx; see [23]. By hypothesis, X̂ satisfies
the condition (1.19) of part (a) of Theorem 1. In particular, P̂x[T̂0 < ∞] = 1 for all x > 0.
(Otherwise, the Lévy process Ẑ has infinite lifetime and lim supt→+∞ Ẑt = +∞, a.s., hence
the moment generating function ψ̂ of Ẑ (defined by analogy with (2.7)) vanishes at 0 as well
as at κ. Since ψ̂ in convex on [0, κ], this yields ψ̂′(0+) ∈ [−∞, 0[, implying that Ẑ drifts to
−∞, a contradiction.) By the proof of Theorem 1 (see Remark 2), applied to X̂, there is an
X̂-excursion measure n̂ under which the coordinate process on (Ω,F∞) is a strong Markov
process with transition semigroup (P̂t) (that of X̂) and entrance law (n̂t)t>0, say. Moreover,

m(B) :=
∫ ∞

0

n̂t(B) dt =
∫

B

x−1−κ+1/H dx, ∀B ∈ B]0,∞[. (3.4)

By Nagasawa’s theorem, as found for example in the section 4 of [7] (see also [5] and the
appendix of [8]), the process X̃ defined by

X̃t :=

{
X(T0−t)−, if 0 ≤ t < T0,

0, otherwise,
(3.5)

is Markovian under n̂, with transition semigroup

Ph
t f(x) := xκPx[f(Xt)X−κ

t ; t < T0] (3.6)

i.e., the h-transform of (Pt) corresponding to h(x) = x−κ. In other words, the image ñ of n̂
under the mapping ω 7→ X̃(ω) is an Xh-excursion measure. Because ñ[T0 = ∞] = 0, we have,
for ε > 0,

0 = ñ[ε < T0 = ∞] = ñ
[
PXε

h [T0 = ∞];T0 > ε
]
,

so Px
h[T0 = ∞] = 0, first for Lebesgue a.e. x > 0, then for all x > 0 because this probability

does not depend on x—apply (1.2) and (1.3) to Xh. Similarly,

ñ[X0 6= 0] = n̂

[
lim sup

t↑eT0

X̃t > 0

]
= n̂[X0 6= 0] = 0,
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so if ε > 0,

0 = ñ

[
{T0 > ε} ∩ θ−1

ε {lim sup
t↑T0

Xt > 0}

]
= ñ

[
PXε

h

[
lim sup

t↑T0

Xt > 0

]
;T0 > ε

]
.

It follows that

Px
h

[
lim sup

t↑T0

Xt > 0

]
= 0,

first for m-a.e. x > 0, and then for all x > 0 by the reasoning used above.

Acknowledgment. I thank Victor Rivero for an early look at [19], which allowed the im-
provement discussed before the statement of Theorem 1.
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Inc., Boston, MA, 1990. MR1093669

http://www.ams.org/mathscinet-getitem?mr=2178044
http://www.ams.org/mathscinet-getitem?mr=705615
http://www.ams.org/mathscinet-getitem?mr=1138461
http://www.ams.org/mathscinet-getitem?mr=768728
http://www.ams.org/mathscinet-getitem?mr=902778
http://www.ams.org/mathscinet-getitem?mr=885460
http://www.ams.org/mathscinet-getitem?mr=1675005
http://www.ams.org/mathscinet-getitem?mr=958650
http://www.ams.org/mathscinet-getitem?mr=1093669


Recurrent Extensions of Self-similar Markov Processes 241

[12] R. K. Getoor and J. Glover. Constructing Markov processes with random times of birth
and death. In Seminar on stochastic processes, 1986 (Charlottesville, Va., 1986), vol-
ume 13 of Progr. Probab. Statist., pages 35–69. Birkhäuser Boston, Boston, MA, 1987.
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