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Abstract
We construct examples of a random walk with pairwise-independent steps which is almost-
surely bounded, and for any m and k a random walk with k-wise independent steps which has
no stationary distribution modulo m.

1 Introduction

Consider a simulation of a simple random walk on a graph. How will the simulation be affected
if the source of randomness is not truly random but only pseudo random in the following specific
sense, the random bits are k-wise independent for some k > 1 and not independent as a family?
The first question to ask is, does the pseudo walk converge to the same stationary measure?
The most simple graph to consider might be a cycle of size m. This suggests the following
problem: given a random walk Sn =

∑n
i=1 Xi, where the Xi are random signs, plus or minus

1 with equal probability, and the Xi’s are k-wise independent, what can be said about the
behavior of the partial sums and in particular modulo some fixed number m? It turns out
that there is a fundamental difference between the cases k ≤ 3 and k > 3.
Examine first the case k = 2. For this case we shall show

Theorem 1. There exists a sequence of random variables {Xi}∞i=1 taking values ±1, pairwise
independent, such that Sn is bounded almost surely.

This result should be contrasted against the fact that we know that ESn = 0 and ES2
n = n, just
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Random walks with k-wise independent increments 101

like in the completely independent case. In other words, Sn for large n must have extreme “fat
tail” behavior. Naturally, M := maxn Sn satisfies EM = ∞. The example we will demonstrate
is essentially the Walsh system, which is pairwise independent. We will discuss this in section
2.
Such behavior cannot occur when k ≥ 4 for the simple reason that in this case we know that
ES4

n = 3n2 − 2n and this gives

P(S2
n > M) ≥

(
ES2

n −M
)2

ES4
n

→ 1
3

∀M.

The case k = 3 was explained to us by Ori Gurel-Gurevich and Ron Peled. Simply multiplying
the sequence we will construct in section 2 by an independent random ±1 will render it 3-wise
independent and of course will retain its boundedness.
The higher k is, the more moments we know and we can approximate the large scale shape of
Sn. However, this does not necessarily mean we can say something about Sn mod m. And
indeed, in section 3 we show the following

Theorem 2. Let m and k be some natural numbers, and let ε > 0. Then there exists a
sequence of random variables {Xi}∞i=1 taking values ±1, k-wise independent, and a sequence
Ij such that

P
(
SIj ≡ 0 (m)

)
> 1− ε ∀j. (1)

Note that the requirement that the condition holds only for some Ij is unavoidable, since,
say, if k ≥ 10m2 then the distribution of SIj+10m2 is approximately uniform, since XIj+1, . . . ,
XIj+10m2 are independent.

Explicit constructions of k-wise independent 0-1 probability spaces and estimates on their
sizes are the focus of several papers in combinatorics and complexity, see e.g. [3] for the first
construction and [1] for a recent discussion with additional references. Sums of pairwise inde-
pendent random variable were extensively studied, see e.g. [2] for some interesting examples.
Thus there are already many interesting examples of pairwise independent processes. But it
seems behavior modulo m was not studied.

2 Pairwise independent processes

We term the construction we use a “gray walk”, as it is based on the well-known Gray code
construction in combinatorics. The nth Gray code is a Hamiltonian path on the discrete n-
cube, or a listing of all 2n binary strings of length n, starting with the string 00...0, where
every string appears exactly once, and any two consecutive strings differ in exactly one place.
The construction (and hence also proof that this is possible) is done recursively, namely: To
construct the nth Gray code, write down two copies of the (n− 1)th code, where the order of
the strings in the second copy is reversed, and add to the first 2n−1 strings a zero at the nth
place, and to the second 2n−1 strings a one at the nth place.
The Gray codes of all orders n can be combined into an infinite Gray code, by listing them
sequentially for increasing n’s, and converting all strings into infinite strings by padding with
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zeros. The first few strings in the infinite code are:

A0 = 000000 . . . A1 = 100000 . . . A2 = 110000 . . .

A3 = 010000 . . . A4 = 011000 . . . A5 = 111000 . . .

A6 = 101000 . . . A7 = 001000 . . . A8 = 001100 . . .

...

To construct the gray walk, we now consider each string Ai as specifying a finite subset (also
denoted Ai) of the natural numbers N, where a 1 in the jth place signifies that j ∈ Ai, and
define

Xi =
∏

j∈Ai

ξj

where ξ1, ξ2, ... is a seed sequence of independent ±1 variables. It is easy to verify that the
Xi’s are pairwise independent. Therefore to finish theorem 1 we only need

Proposition. The gray walk Sn is bounded almost surely. More precisely

sup
n
|Sn| = 2min{j≥1:ξj=−1}−1 + 1 = sup Sn + 2 = − inf

n
Sn

Proof. For simplicity we add the element X0 ≡ 1, and prove that for S′n =
∑n

i=0 Xi we have
supS′n = − inf S′n = 2min{j≥1:ξj=−1}−1. The recursive definition of the Gray code is reflected
in the path: Assume we have defined the first steps S′0, S

′
1, S

′
2, ..., S

′
2j−1−1 of the walk, then

the next 2j−1 steps will be the previous steps listed in reverse order, and multiplied by the
random sign ξj . This implies that the path up to time 2j − 1, where j is the first value for
which ξj = −1, is 0, 1, 2, 3, 4, ..., 2j−1, 2j−1 − 1, 2j−1 − 2, ..., 3, 2, 1, 0, and all the subsequent
values are bounded between −2j and 2j .

Remark. Theorem 1 holds also if one takes the strings Ai in lexicographic order, which is
simpler and is also the standard ordering of the Walsh system (which consists of all finite
products

∏
j∈J rj , where (rj)∞j=1 are the Rademacher functions). However, we believe the gray

walk is interesting in its own right. For example, it satisfies that Xi+1
Xi

= ξj(i), i.e. the seed
sequence is exposed directly in the quotients of the Xi’s.
On the other hand, there is a vast body of knowledge about the behavior of “weighted walks”
with the lexicographical order, which is simply the question of when

∞∑
i=0

ciWi

converges where Wi is the Walsh system. The general philosophy is that it is similar to the
behavior of the Fourier system {einx}∞n=−∞, with the exception of the symmetry of the Fourier
system which has no equivalent in the Walsh system. Of course, this is very different from the
simple behavior of independent variables. See [5] for a survey, or the book [4].

3 Proof of theorem 2

Before embarking on the general proof, let us demonstrate the case m = 4 which is far simpler.
Let L > k satisfy L ≡ 0 mod 4. Let {ξi}∞i=1 be a sequence of i.i.d ±1 variables. Next define
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new variables by conditioning the ξi-s:

{Xi} :=

{
ξi

∣∣∣∣∣
L∏

b=1

ξaL+b = 1 ∀a = 0, 1, . . .

}
.

The fact that L > k clearly shows that the Xi’s are k-independent. The fact that
∏

ξaL+b = 1
shows that in each block of size L the number of −1’s is even, and since 4|L we get that∑

ξaL+b ≡ 0 mod 4 for every block. Therefore if we define Ij = jL then the condition in (1)
is actually satisfied combinatorially and not only in high probability.
How can we generalize this to m 6= 4? The remaining ingredient in the proof is based on the
following well known fact:

It is possible to construct variables with probability 1
3 , 1

3 , 1
3 given a sequence of independent

variables with probabilities 1
2 , 1

2 .

The algorithm is simple: take two such variables: if they give 11, “output” 1, if they give
1,−1 “output” 2 and if they give −1, 1, “output” 3. If they give −1,−1, take a new set of two
variables and repeat the process. The output is 1, 2 or 3, each with probability 1

3 . The time
required for each step is unbounded but the probability that it is large is exponentially small.
The proof below combines these two ideas, which we nickname“generating hidden symmetries”
and “simulating uniform variables” to get the result.

Proof of theorem 2, general m. We may assume without loss of generality that m is even (oth-
erwise take 2m instead). Let λ = λ(k, ε) be some sufficiently large parameter which we shall
fix later. Let L := 2(k + 1)

⌈
λm2

⌉
where d·e stands, as usual, for the upper integer value.

Lemma. For every µ = 0, 2, . . . ,m − 2 there exist variables Lµ and Y µ with the following
properties

1. Lµ is a random positive integer, L divides Lµ and P(Lµ = aL) ≤ 2−a−1ε for all a > 1.

2. Y µ = {yµ
i }
∞
i=1 is a sequence of k-wise independent variables taking values ±1 with prob-

abilities 1
2 .

3.
{
{yµ

i }
∞
i=Lµ+1

∣∣Lµ, {yµ
i }

Lµ

i=1

}
are i.i.d ±1 variables

4. Lµ = L implies
∑L

i=1 yµ
i ≡ µ mod m.

Proof. Define N := 2
⌈
λm2

⌉
. The first step is to divide {±1}N according to the sum modulo

m, and trim the resulting sets a little so that they all have the same size. Precisely, let

A := min
j=0,2,...,m−2

#

{
v ∈ {±1}N :

N∑
i=1

vi ≡ j (m)

}
.

We note that the distribution of
∑N

i=1±1 modulo m is uniform on the set 0, 2, . . . ,m− 2 with
an error of Ce−cλ. Therefore 2N − m

2 A ≤ C2N−cλ. For j = 0, 2, . . . ,m−2, let Gj be arbitrary
sets satisfying

Gj ⊂

{
v ∈ {±1}N :

N∑
i=1

vi ≡ j (m)

}
|Gj | = A.
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and let S := {±1}N \
⋃

Gj .
So far we have constructed some general objects having very little to do with probability. Next,
let {ξi}∞i=1 be i.i.d variables taking values in ±1, and let {Ξi}∞i=1 be a division of the ξi’s into
blocks of size N : Ξi := (ξNi−N+1, . . . , ξNi). Let

B := min
{

b : # {Ξi 6∈ S}b
i=1 = k + 1

}
.

We define

Lµ :=

{
L

⌈
B

k + 1

⌉ ∣∣∣∣∣
BN∑
i=1

ξi ≡ µ (m)

}
,

Y µ :=

{
(ξ1, ξ2, . . . )

∣∣∣∣∣
BN∑
i=1

ξi ≡ µ (m)

}
.

Properties 3 and 4 are obvious from the construction. Property 1 is a direct consequence of the
estimate P(Ξi ∈ S) ≤ Ce−cλ, if only λ is large enough. Define λ so as to satisfy this condition.
Therefore we need only prove property 2.
Let therefore i1 < · · · < ik and δ1, . . . , δk ∈ {±1} and examine the events

X := {ξi1 = δ1, . . . , ξik
= δk} Y :=

{
BN∑
i=1

ξi ≡ µ (m)

}
.

We know that P(X ) = 2−k and we need to show that P(X|Y) = 2−k. Let b be some number
and let σ ⊂ {1, . . . , b− 1} be a set with #σ = b− (k + 1) and examine the event

S = S(σ, b) = {Ξi ∈ S ⇔ i ∈ σ ∀i ≤ b} .

The point of the proof is that the event Y is independent of X ∩S. This is because X depends
only on k places, but Y depends on k + 1 Ξi’s each of which is distributed uniformly. In other
words

P(Y|X ∩ S) = P(Y) =
2
m

or

P(X ∩ S|Y) =
P(X ∩ S ∩ Y)

P(Y)
= P(X ∩ S)

which gives
P(X|Y) =

∑
σ,b

P(X ∩ S|Y) =
∑
σ,b

P(X ∩ S) = P(X ) = 2−k .

Returning to the proof of the theorem, we let

{Y µ,ν , Lµ,ν}(µ,ν)∈{0,2,...,m−2}×N

be an independent family of couples of variables constructed using the lemma. Next, we fix
some arbitrary number µ0 ∈ {0, 2, . . . ,m − 2} (in the final construction we will set µ0 = 0
but for now we want to keep its value free). We now construct our sequence Xi = Xi(µ0)
inductively as follows: assume that at the νth step we have defined X1, . . . , Xρ where ρ = ρ(ν)
is random. Define µ = µ(ν) ≡ µ0 −

∑ρ
i=1 Xi mod m and then define Xρ+1, . . . , Xρ+Lµ,ν using

Xρ+i = yµ,ν
i
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and ρ(ν + 1) = ρ(ν) + Lµ,ν . This creates a sequence of ±1 variables. Now set Ij = jL. We
have therefore constructed all objects required for the theorem.
First we wish to see that (1) holds when we set µ0 = 0. We define r(j) = max{ν : ρ(ν) < jL}
and properties 1 and 4 of the lemma will give that

P

(
jL∑
i=1

Xi 6≡ 0 (m)

)
≤

∞∑
b=1

P
(
ρ(r(j)) = (j − b)L and Lµ(r(j)),r(j) ≥ Lmax{b, 2}

)
≤

∞∑
b=1

∞∑
c=max{b,2}

P(Lµ(r(j)),r(j) = cL) ≤
∑

1≤b≤c

2−c−1ε = ε .

Therefore we need only show that the Xi’s are k-wise independent. While being strongly
related to the k-wise independence of the yµ,ν

i it is not an immediate consequence of it because
of the dependence between the yµ,ν

i and the Lµ,ν ’s.
We prove that the Xi’s are k-wise independent inductively. Let l ≤ k and I be some integers
and assume that we have shown that Xi1 , . . . , Xin are independent for every µ0, every n < l
and for n = l and i1 < I. Let I = i1 < i2 < · · · < il and let δ1, . . . , δl ∈ {±1}. Define

L = Lµ0,1 q = q(L) = #{n : in ≤ L}

and we want to see that

Xiq+1 , . . . , Xil
|L,Xi1 , . . . , Xiq

are l − q i.i.d. ±1 variables. (2)

To see (2), note that XL+1, XL+2, . . . |L are constructed exactly like X1, X2, . . . except we
need to replace µ0 with µ′0 ≡ µ0 −

∑L
i=1 Xi. Therefore using the induction hypothesis with

µ′0, m′ ≡ m− q and I ′ ≡ I − L0,1 gives us

Xiq+1 , . . . , Xil
|L, µ′0 are l − q i.i.d. ±1 variables

and summing over the possible values of µ′0 and noting that Xi1 , . . . , Xiq can affect the rest
only through L and µ′0 we get (2).
We use (2) to compare Xi1 , . . . , Xil

to yi1 , . . . , yil
where we again write yi ≡ yµ0,1

i . By property
3 of the lemma

yiq+1 , . . . , yil
|L, yi1 , . . . , yiqare i.i.d ±1 variables (3)

and below q we have simple equality:

Xin
= yin

∀n ≤ q. (4)

Altogether we get

P(Xi1 = δ1, . . . , Xil
= δl|L)

(2)
= P(Xi1 = δ1, . . . , Xiq = δq|L)2q−l =

(4)
= P(yi1 = δ1, . . . , yiq

= δq|L)2q−l (3)
= P(yi1 = δ1, . . . , yil

= δl|L)

and summing over L we get the required result:

P(Xi1 = δ1, . . . , Xil
= δl) = P(yi1 = δ1, . . . , yil

= δl) = 2−l

which finishes the induction and hence the proof of the theorem.
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Remarks.

1. It is easy to generalize the theorem to force
∑Ij

i=1 Xi to have almost arbitrary distribu-
tions. The only obstacle is the even-odd symmetry of the walk. Thus if m is odd, any
distribution whatsoever on the congruence classes modulus m might be achieved, while
if m is even, any distribution supported on the set of even or odd congruence classes can
be achieved.

2. It is easy to see from the proof that L ≈ km2 log(k/ε). In other words, the precision
is asymptotically exponential in the stepping of the subsequence Ij . We remind the
reader a fact that was discussed in the introduction: if k > m2 log 1/ε then necessarily
Ij+1 − Ij > cm2 log 1/ε because immediately after Ij we get a sequence of independent
variables.

3. Another direction in which k-wise independent random variables may be very different
from truly independent variables is their entropy. It is known that the entropy of n such
variables may be as low as k log n, see [3] and [1]. Our pairwise example is optimal in
this respect: n truly random bits create 2n pairwise independent random variables. The
example above is far from it: the entropy is linear in the number of bits. However, it
turns out that it is possible to create an example of k-wise independent variables with
low entropy satisfying the conditions of theorem 2. The example, while amusing, is a bit
off topic hence we will skip it.

Theorem 3. Let m and k be some natural numbers. Then there exists a sequence of random
variables {εi}∞i=1 taking values ±1, k-wise independent, and a sequence Ij such that

Ij∑
i=1

εi ≡ 0 (m) for j sufficiently large with probability 1.

The proof is similar to that of theorem 2, but using a different L in each step. However there
are some additional technical subtleties. Essentially, if in the main lemma of the previous
theorem we defined a variable Y µ where the parameter µ was used to “return to sync” the
series if ever the congruence is no longer 0, here we would need variables Y µ,τ where τ is some
additional parameter needed to“return to sync” in the L domain. While being only moderately
more complicated, we felt it better to present the simpler proof of the previous theorem.

4 Further related problems

We end by suggesting further problems related to k-wise independent random variables.

4.1 The random sign Pascal triangle

Let ξ+
n,k, ξ−n,k be a family of i.i.d random (1/2-1/2) signs for −1 ≤ k ≤ n + 1. Define random

variables Xn,k for −1 ≤ k ≤ n + 1 by the recurrence

X0,0 = 1, Xn,−1 = 0, Xn,n+1 = 0,

Xn,k = ξ+
n−1,k−1Xn−1,k−1 + ξ−n−1,kXn−1,k (0 ≤ k ≤ n)

Problems: Study the behavior of the central coefficient X2n,n. Find an interpretation of
the triangle as “percolation with interference” where two closed gates cancel each other out
(“quantum percolation”?) Study the behavior of the non-central coefficients.
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4.2 Two dimensional percolation

What about other functions of k-wise independent random variables? For example, instead of
considering Bernoulli percolation, the random variables determining the configuration are only
k-wise independent. Here is an “unimpressive” example: k-wise independent bond percolation
on an n× n(k + 1)- box in Z2 such that the probability to have a crossing of the narrow side
is 1. Of course, even in usual percolation the probability1 is 1− e−ck so that the improvement
is not exciting.
The construction is as follows: divide into k + 1 disjoint boxes of size n × n. Take the usual
independent percolation, conditioned such that the number of boxes with crossings is odd.
This is like conditioning k +1 Bernoulli variables to have an odd sum, so that you get a k-wise
independent structure. If the number is odd, then it is non zero. Can it be improved, say to
guarantee crossing of the n× n-box?
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